
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 9, Nº3

- 30 -

Please cite this article in press as:
J. Bobadilla, A. Gutiérrez. Testing Deep Learning Recommender Systems Models on Synthetic GAN-Generated Datasets, International Journal of Interactive
Multimedia and Artificial Intelligence, vol. 9, no. 3, pp. 30-39, 2025, http://dx.doi.org/10.9781/ijimai.2023.10.002

Keywords

Collaborative Filtering,
Deep Learning, GANRS,
Generated Datasets,
Recommender Systems,
Synthetic Datasets.

Abstract

The published method Generative Adversarial Networks for Recommender Systems (GANRS) allows
generating data sets for collaborative filtering recommendation systems. The GANRS source code is available
along with a representative set of generated datasets. We have tested the GANRS method by creating multiple
synthetic datasets from three different real datasets taken as a source. Experiments include variations in the
number of users in the synthetic datasets, as well as a different number of samples. We have also selected six
state-of-the-art collaborative filtering deep learning models to test both their comparative performance and the
GANRS method. The results show a consistent behavior of the generated datasets compared to the source ones;
particularly, in the obtained values and trends of the precision and recall quality measures. The tested deep
learning models have also performed as expected on all synthetic datasets, making it possible to compare the
results with those obtained from the real source data. Future work is proposed, including different cold start
scenarios, unbalanced data, and demographic fairness.

DOI: 10.9781/ijimai.2023.10.002

Testing Deep Learning Recommender Systems
Models on Synthetic GAN-Generated Datasets
Jesús Bobadilla, Abraham Gutiérrez *

Universidad Politécnica de Madrid, Dpto. Sistemas Informáticos, Madrid (Spain)

* Corresponding author: jesus.bobadilla@upm.es (J. Bobadilla), abraham.gutierrez@upm.es (A. Gutiérrez)

Received 31 March 2023 | Accepted 29 September 2023 | Published 25 October 2023

I. Introduction

THE personalization field in the Artificial Intelligence area is
mainly focused on Recommender Systems (RS). Relevant RS are

Netflix, TripAdvisor, Spotify, Google Music, TikTok, etc. RS are usually
classified according to their filtering approaches, mainly: demographic
[1], content-based [2], context-aware [3], social [4], collaborative (CF)
[5] and their ensembles [6]. Demographic RS make recommendations
based on demographic similarities (gender, age, zip code, etc.); content-
based RS recommend items with similar content to the consumed ones
(book abstracts, product images, etc.). Context-aware filtering usually
uses geographic information, such as GPS coordinates. Social filtering
relies on followed, followers, etc. CF uses datasets containing the
ratings that each user has voted to each item. Ratings can be explicit
votes or implicit interactions (clicks, music listened to, films watched,
etc.). Of the existing filtering approaches, CF is the most relevant since
it provides the most accurate results. The early approaches to CF used
the K-Nearest Neighbors algorithm [7]; it is easy to understand and
directly implements the concept of CF, but it is also a slow memory-
based method, and its results are not accurate compared to modern
model-based approaches. The Matrix Factorization (MF) model [8]
creates compressed representations of the input data, called hidden
factors, and then combines these latent space vectors using the dot
product to obtain each user to item prediction. Probabilistic MF and
its variations (NMF [9], BNMF, etc.) provide straightforward models

that return accurate prediction and recommendations. Furthermore,
once the MF model has been trained, it can make very fast predictions
compared to the KNN method.

Currently, deep learning approaches dominate the RS research
scenario. The simplest deep learning CF model is the Deep Matrix
Factorization (DeepMF) [10], where iterative MF learning is replaced
with two different neural embedding layers: one for code users and
the other for code items. The embedding layers activation maps
play the role of the MF hidden factors, where large, discrete, and
sparse input vectors are converted to short, continuous, and dense
latent space vectors. As in the MF case, the embedding vectors are
combined using a dot layer. The variational design of the DeepMF
model is called VDeepMF [11], where a Gaussian stochastic noise is
introduced after the embedding layers to obtain more robust results.
Neural Collaborative Filtering (NCF) [12] is a reasonable extension
of the DeepMF model; NCF replaces the dot layer by a Multi-Layer
Perceptron (MLP), providing a deep and non-linear combination of the
embedding representations. Both the DeepMF and the NCF models
improve the MF results.

RS prediction is a regression task where real values are obtained;
however, RS recommendation usually is a classification task, where
only a discrete number of fixed values can be returned (e.g. number of
stars). Then, deep learning classification approaches naturally fit the
CF aims; a classification-based deep learning model [13] is proposed

Regular Issue

- 31 -

to both implement the recommendation task and provide a reliability
value for each recommended item. Additionally, the regular deep
classification approach can be improved by combining the obtained
<reliability, rating> tuple values [14].

This paper focuses on testing the Generative Adversarial Networks
for Recommender Systems (GANRS) [15] generated datasets by
applying a representative set of deep learning CF baselines and
comparing their recommendation quality results. Generative
adversarial networks (GAN) have recently been introduced in the RS
area [16] to reinforce the defense strategies of shilling attacks [17], but
particularly to improve results by generating augmented data; fake
purchase vectors are generated in CFGAN [18] to reinforce the real
purchase data. The Wasserstein CFGAN version is the unified GAN
(UGAN), and it manages to minimize the GAN collapse mode. Negative
sampling information is incorporated in the input data to IPGAN
[19], where two different generative models are used, respectively,
for positive and negative samples. Temporal patterns have also been
combined with GAN models in RecGAN [20], which uses Recurrent
Neural Networks (RNN). The reinforcement learning and GAN models
are used to process session information rather than rating matrices
in the DCFGAN architecture [21]. Conditional rating generation is
proposed in [22] by using a Conditional GAN (CGAN). NCGAN [23]
uses a GAN to perform recommendation training and a previous neural
network stage to obtain the nonlinear features of the users. Finally,
unbalanced data sets are processed using the PacGAN concept in the
discriminator and a Wasserstein GAN in the generator [24].

Based on Markov chains and recurrent neural networks,
RecSim [25] generates synthetic profiles of users and items; its
parameterization is low. The social Taobao web site has been used
to provide the Virtual-Taobao [26], improving search in this site;
internal distributions are simulated by a GAN. RS synthetic data
is created using the Java-based generator DataGenCars [27]; it is
based on statistical procedures, allowing a flexible parametrization,
but returning low accuracy compared to GAN models. Finally, the
SynEvaRec [28] framework makes use of the Synthetic Data Vault
(SVD) library for RS datasets generation, based on multivariate
distributions using copula functions. The SynEvaRec main drawbacks
are its poor accuracy and its low performance in the training stage.
Table I summarizes the existing methods.

A. Main Contributions
The objective of this paper is to reinforce the existing tests that

have been run on the synthetic datasets generated using the GANRS
method. Beyond the existing comparatives between source datasets
(Movielens, Netflix, and MyAnimeList) and their synthetic versions,
attending to their users, items, and ratings distributions, it is convenient
to put into the test the generated datasets on real recommendation
scenarios. Some specific and limited prediction and recommendation
experiments are provided in the GANRS paper [15], but our research
extends them with a comprehensive set of recommendation-based
tests, where different deep learning models relevant to the CF are used
as baselines and significant recommendation quality measures are
processed, and their results are compared.

The paper hypothesis is that the GANRS model can adequately
mimic different source CF datasets, such as the Movielens family,

MyAnimeList, etc., generating synthetic CF datasets that follow
the internal patterns and the probability distributions of the source
datasets in the deep learning generative processing. The hypothesis
is extended to the different parameterizations the GANRS generative
model allows, setting a) the number of fake users, b) the number of
fake items, and c) the number of samples. We will put the hypothesis
to the test by running different deep learning state of the art CF
baselines (NCF, DeepMF, etc.) on several GANRS generated datasets
and comparing the obtained recommendation qualities. The GANRS
synthetic datasets will contain different number of users, items, and
samples. Note that if the hypothesis is fulfilled, the GANRS model can
be used as a powerful tool to test current and future CF methods and
models on challenging synthetic scenarios where the number of users,
items and samples can endlessly grow.

In the rest of the paper, section II explains the different deep
learning models used in this research, both to generate the synthetic
datasets and to test the behavior of baselines on the generated data.
Section III introduces the experiments design, synthetic datasets,
and baselines. It also shows the results obtained, their explanations,
and the discussion. Section IV highlights the main conclusions of the
article and the suggested future work.

II. Models

This research uses many deep learning models, both the GANRS
[15] generative framework with which the synthetic datasets have been
obtained and the different models used to test the generated datasets.
These baseline models are as follows: DeepMF [10], VDeepMF [11],
regression NCF [12], classification NCF [13], improved classification
NCF [14] and binary regression.

Discriminator

Generator

Random
noise

Real
user profilesreal

fake
Error

backpropagation

Fa
ke

us
er

 p
ro

fi
le

s

Fig. 1. GANRS architecture.

The GANRS architecture shown in Fig. 1 consists of the generator
and discriminator models, where the generator creates CF fake
profiles from Gaussian random noise vectors. The discriminator’s
responsibility is to detect fake samples from training batches of real
and fake profiles. Once the RSGAN has been trained from a real source
dataset (MovieLens, MyAnimeList, etc.) it can generate as many fake
samples as desired by providing the generator with batches of random
noise vectors. It is important to note that the GAN is fed with embedded
user profiles rather than sparse vectors of ratings. Embeddings are
obtained in a previous stage using a DeepMF [10] model.

TABLE I. Comparison Table of Current RS Methods to Create CF Synthetic Data

method parameterization Accuracy Performance
GANRS generative high high high
RecSim generative low high high

Virtual-Taobao generative low middle high
DataGenCars statistical high low high

SynEvaRec statistical high low low

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 9, Nº3

- 32 -

 (1)

where x are real user profiles and z are random noise vectors (Fig. 1).

 (2)

 (3)

The objective of the discriminator can be defined as its ability to
recognize real profiles (first term in (1)) combined with its ability to
detect fake profiles (second term in (1)). The generator objective is to
generate fake profiles that can fool the discriminator (2). Finally, the
GAN can be seen as a minimax game in which the discriminator ‘D’
tries to maximize V, whereas the generator ‘G’ tries to minimize it (3).

CF training
dataset

CF training
dataset

Embedding
layers

Embedding
layers

mean

mean
var

var

lambda

lambda

rating

item ID

user ID

rating

item ID

user ID

backpropagation

backpropagation

Dot
layer

Dot
layer

Error
Prediction

value

Prediction
value

Error

a)

b)

Fig. 2. (a) DeepMF and (b) VDeepMF models.

Regarding the models used to test the generated datasets, the DeepMF
and its variational VDeepMF version can be seen as representative
baselines. Fig. 2(a) shows the DeepMF model architecture, where two
separate embedding layers, one for users and the other for items,
convert from discrete and sparse integer inputs to continuous and
dense latent space vectors. The hidden factors obtained are combined
by means of a dot product layer, as in the MF machine learning model,
to predict the rating of each user to each item. The model learns using
a loss function that compares each predicted rating with the real label
(MSD in Fig. 2).

 (4)

 (5)

 (6)

On an RS dataset containing U users and I items, the prediction
of item i to user u is shown in (4), where the function f is defined
as a neural network that converts their integer inputs user u ID and
item i ID in their corresponding prediction. P and Q denote the neural
network equivalence to the hidden factors of the MF, where K is the
number of factors (i.e., the number of neurons in each embedding
layer). Note that, usually, the set of weights in P and Q are called θ. The
prediction of an item i to the user u is computed as the dot product of
the embedding layer activations g(u|P) and h(i|Q) in (5). Finally, the
squared loss is used (6) to learn the model parameters.

The VDeepMF architecture is an extension of the DeepMF one,
where a variational stage is added. Fig. 2(b) shows the variational
stage located between the embedding layers and the dot layer. This
variational stage converts input embeddings to parameters of a

statistical distribution (usually a Gaussian one). This concept can be
seen in the ‘mean’ and ‘variance’ layers that follow the VDeepMF
embedding layers, both for users and items (Fig. 2(b)). Each pair
of mean and variance layers codes the corresponding Gaussian
distribution parameters. Each Lambda layer uses the Gaussian mean
and variance to stochastically sample vectors in the latent space. The
result is a more robust model due to its stochastic learning.

 (7)

 (8)

 (9)

Equation (7) shows the ‘mean’ and ‘var’ layers conversion from
embedding latent vectors to activation maps representing Gaussian
distributions. Thus, the input of the Lambda layers are the pairs
of random vectors in equation (8). In equation (9), 𝒩 denotes a
K-dimensional multivariate distribution, where μ represents the mean
vector and diag σ is the covariance matrix.

Fig. 3. (a) Regression NCF, and (b) Classification NCF.
The Keras template that summarizes each of the baseline models

is provided in Table II. Please note that NCF Binary regression can be
coded in a similar way to the regular NCF classification, by replacing
the size of the deepest layer to only one output neuron.

The ‘regression NCF’ term refers to the regular Neural Collaborative
Filtering model. This model extends the DeepMF one by adding a
Multi-Layer-Perceptron (MLP) stage, as it can be seen in Fig. 3(a). The
DeepMF model generates accurate embedding vectors, but it combines
them (the user and item vectors) using a linear dot layer. The NCF
approach improves the DeepMF model, due to the non-linear and deep
learning processing of the embedding output vectors.

 (10)

 (11)

 (12)

 (13)

 (14)

 (15)

The additional MLP model is formalized in equations (10) to (12),
where pu and qi denote the embedding layers weights, and bx are
the weight matrix and bias vector of layer x in the MLP, ϕ𝓍 denotes the
layer 𝓍 with its activation function. The regression NCF model has an

Regular Issue

- 33 -

output layer containing a unique neuron with an activation function
that is linear, implementing the required regression. In contrast,
the NCF classification model replaces this output layer with a layer
containing as many neurons as possible votes in the RS (usually from
one to five stars), as can be seen in Fig. 3(b). The softmax activation
function is used in this output layer, while the model loss function
is the categorical cross entropy; this ensures a probabilistic output
that can be interpreted as a set of <reliability, vote> tuples (13), where
the argmax(reliability) selects the predicted vote (14). The improved
classification model basically combines the existing <reliability, vote>
tuple values (15), providing a more accurate output function than the
argmax one.

By combining the GANRS generated datasets with the chosen deep
learning baselines and the selected recommendation quality measures,
a set of experiments is designed and tested in the next section. Results
are shown and explained, and finally an overall discussion is provided.

III. Experiments and Results

This paper runs a complete set of experiments to test the
performance of current CF deep learning models on GANRS generated
datasets.

Table III shows a summary of the designed experiments. The tested
CF datasets are generated using ‘GANRS’ [15], obtained from the
source datasets: Netflix* [29], MyAnimeList [30], and Movielens 100K
[31]. For comparative reasons, results using the three source datasets
are also provided. The six deep learning models chosen as baselines are
DeepMF [10] and regression NCF [12], and their variations VDeepMF
[11], and classification based NCF [13]. Finally, the ‘improved
classification NCF’ [14] and the binary regression are included. Since
we use classification-based models, where recommendations are not
a subset of predictions, only recommendation quality measures can
be properly used, from which precision, recall, and F1 have been
selected. Finally, we have set even values from 2 to 10 as the number

of recommendations (N), and the two most relevant rating values as
relevancy threshold (q): 4 & 5 for Movielens and Netflix*, and 9 & 10
for MyAnimeList.

Table IV shows the values of the main parameters for both the
real and synthetic datasets used in the designed experiments. Our
first set of experiments are based on the source dataset Netflix*, and
it compares the quality recommendation results obtained both from
Netflix* and their synthetic generated versions: 2,000 & 8,000 users.

TABLE IV. Main Parameter Values of the Tested Datasets

Dataset #users #items #ratings scores sparsity

Movielens
100K

943 1682 99,831 1 t o 5 93.71

Netflix* 23,012 1,750 535,421 1 to 5 98.68

MyAnime 19,179 2,692 548,967 1 to 10 98.94

GANRS
Netflix* 2,000

2,000 4,000 405,539 1 t o 5 94.93

GANRS
Netflix* 8,000

8,000 4,000 628,194 1 t o 5 98,03

GANRS
Netflix* 150K

2,000 4,000 108,710 1 t o 5 98,64

GANRS
Netflix* 500K

2,000 4,000 272,853 1 t o 5 96,59

GANRS
Netflix* 3M

2,000 4,000 587,651 1 t o 5 92,65

GANRS
Movielens

2,000
2,000 4,000 353,269 1 t o 5 95,58

GANRS
Movielens

8,000
8,000 4,000 509,193 1 t o 5 98,40

GANRS
MyAnime

2,000
2,000 4,000 419,234 1 t o 10 94,76

GANRS
MyAnime

8,000
8,000 4,000 654,247 1 t o 10 97,95

The three rows in Fig. 4 show, respectively, the results on Netflix*
(top row), on GANRS 2,000 users (middle row), and on GANRS 8,000
users (bottom row). The middle and right columns show the precision

TABLE II. KeraS TEMPLATE of the Baseline Models

DeepMF
Input (user) -> Embedding (user) -> Flatten
Input (item) -> Embedding (item) -> Flatten
Dot (Embedding (user), Embedding (item))
Loss =”mean_squared_error”
VDeepMF
Input (user) -> Embedding (user_mean) ->
Dense (user_mean) -> Dense (user_var) ->
Lambda() -> Flatten
Input (item) -> Embedding (item_mean) ->
Dense (item_mean) -> Dense (item_var) ->
Lambda() -> Flatten ->
Dot, Loss = “mean_squared_error”
NCF Regression

Input (user) -> Embedding (user) -> Flatten
Input (item) -> Embedding (item) -> Flatten
-> Concatenate (Embedding (user), Embedding (item)) ->
Dense(70) -> Dropout(0.5) -> Dense(30) -> Dropout(0.4) -> Dense(1, “ReLu”)
Loss = “mean_squared_error”

NCF Classification
Input (user) -> Embedding (user) -> Flatten
Input (item) -> Embedding (item) -> Flatten
-> Concatenate (Embedding (user), Embedding (item)) ->
Dense(70) -> Dropout(0.5) -> Dense(30) -> Dropout(0.4) -> Dense(6,
“softmax”), Loss = “categorical_crossentropy”

TABLE III. Information Summary of the Designed Experiments

CF deep learning
models CF Datasets Quality

Measures
Testing

parameters
DeepMF [10] Netflix* [29] Precision Relevance

threshold (q):
9, 10

(MyAnimeList):
4, 5 (Netflix* and

Movielens).

Number of
recommendations

(N):
[2, 4, 6, 8, 10]

Gaussian standard
deviation: 2.5

VDeepMF [11] GANRS Netflix*:
2,000; 8,000 users

Recall

Regression NCF [12] GANRS Netflix*:
150K, 500K, 3M

F1

Classification NCF
[13]

Movielens 100K [31]

Classification
improved NCF [14]

GANRS Movielens
100K: 2,000; 8,000

users

Binary regression MyAnimeList [30]

GANRS
MyAnimeList: 2,000;

8,000 users

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 9, Nº3

- 34 -

and recall values when threshold q is set to 4 and 5 (respectively). The
left column shows the precision/recall based F1 quality measure. The
legend in the upper-right area of Fig. 4 holds the colors that represent
each one of the chosen deep learning baselines. Note that the expected
behavior is the superior performance of the deep learning models:
regression NCF, improved NCF classification, VDeepMF and DeepMF,
whereas classification NCF and binary regression should provide
weaker results.

A. Experiment 1: Netflix* Versus GANRS 2000 Users, Versus
GANRS 8000 Users

This experiment compares the absolute values and the trends in the
recommendation quality obtained for each baseline when applied to
the original Netflix* dataset, to the GANRS generated dataset setting
2000 users, and to the GANRS generated dataset setting 8000 users.
Both generated datasets take Netflix* as the source to catch its internal
patterns. We expect similar trends in the graph functions, showing
that the GANRS generated datasets adequately mimic the Netflix*
patterns. We also expect different absolute quality values due to the
different number of users selected for each GANRS generated dataset.

The top row in Fig. 4 (Netflix*) shows the expected performance
evolutions, where the higher the number of recommendations (x-axis),
the lower the prediction quality measure, and the higher the recall (it
is more complicated to get right 10 recommendations than to get right
the two most promising ones). In the same way, a lower threshold value
(middle graph) gets a better precision than a higher threshold value
(right graph), since there are more samples that reach the threshold, and
consequently it is easier to get right with the recommended items. In
contrast, the higher the threshold, the better the recall, since there will
be less relevant items in the recall denominator. Once we have checked
the expected behaviors, the key question is: will the synthetic datasets
accomplish the expected trends? Looking at the middle and bottom
rows in Fig. 4 we can observe the same aforementioned tendency. The
relevant difference between the results from the source Netflix* and the
generated GANRS is not the quality trend, but the absolute precision
and recall values, where the precision is slightly superior in the
GANRS datasets, whereas recall is lower. Please note that the Netflix*
dataset contains 23,012 users (Table IV), and then the GANRS versions,
particularly the 2000 user version, suffer from a lack of richness that
influences the recall results. Additionally, as expected, the higher the
threshold, the worse the precision and the better the recall.

F1

N (number of recommendations)

threshold 5

2
0.30

0.32

0.34

0.36

0.38

0.40

0.42

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 4

2

0.3

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

Netflix*

GANSRS
generated dataset
std=2.5
2000 users
4000 items

GANSRS
generated dataset
std=2.5
8000 users
4000 items

threshold 5

Precision VDeepMF
Recall VDeepMF
Precision DeepMF
Recall DeepMF
Precision NCF regr.
Recall NCF regr.
Precision NCF classif.
Recall NCF classif.
Precision NCF classif. improv.
Recall NCF classif. improv.
Precision binary regr.
Recall binary regr.

2

0.3

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10

F1

N (number of recommendations)

threshold 5

2

0.15

0.20

0.25

0.30

0.35

0.40

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 4

2

0.3

0.4

0.5

0.6

0.2

0.1

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 5

2

0.10

0.15

0.20

0.25

0.30

0.35

0.40

3 4 5 6 7 8 9 10

F1

N (number of recommendations)

threshold 5

2

0.25

0.30

0.35

0.40

0.45

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 4

2

0.3

0.4

0.5

0.6

0.2

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 5

2

0.3

0.2

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10

Fig. 4. Comparative among Netflix*, GANRS 2,000 users, and GANRS 8,000 users. Generated datasets include 4000 items and sets 2.5 for the standard deviation
of the Gaussian random noise. Number of recommendations N = [2, 4, 6, 8, 10].

Regular Issue

- 35 -

The F1 quality measure (left column in Fig. 4) balances precision
and recall and allows us to visually compare the different results of the
data set. We can observe that synthetic datasets provide quality trends
and values that are compatible with those achieved by their source
dataset (Netflix*). In addition, the GANRS 8,000 user results are more
similar to the source than the GANRS 2,000 user ones, as expected
due to the 23,000 users contained in Netflix*. Regarding the behavior
of deep learning baselines, synthetic data sets maintain the ‘ranking
order’ obtained from Netflix*, where the regression NCF slightly
‘wins’, closely followed by the improved classification NCF, DeepMF
and VDeepMF. NCF classification and binary regression swap their
position in the queue when tested on Netflix* and GANRS. Overall,
synthetic GANRS datasets perform adequately for CF testing using
state-of-the-art deep learning models.

B. Experiment 2: Netflix* Based GANRS 3 Million Samples,
Versus GANRS 500 Thousand Samples, Versus GANRS 150
Thousand Samples

This experiment compares the absolute values and the trends in the
recommendation quality obtained for each baseline when applied to
the GANRS generated dataset setting 3 million samples, to the GANRS

generated dataset setting 500 thousand samples, and to the GANRS
generated dataset setting 150 thousand samples. All the generated
datasets take Netflix* as the source to catch its internal patterns.
Like the previous experiment, we expect similar trends in the graph
functions, showing that the GANRS generated datasets adequately
mimic the Netflix* patterns. We also expect different absolute quality
values due to the different number of samples selected for each GANRS
generated dataset.

The following experiment uses three synthetic GANRS datasets
where the number of samples varies. We use the GANRS Netflix*
150K, 500K, and 3M versions (Table IV) which, respectively, contain
108710, 272853 and 587651 samples. Fig. 5 shows the recommendation
results obtained in the 3M version (top row), the 500K version (middle
row), and the 150K version (bottom row). As expected, precision
decreases as size falls; this effect can be particularly observed in the
most extreme experiment: the highest threshold (q =5) combined with
the smallest dataset (150K version). On the other hand, the larger
the dataset, the lower the recall results, since there will be more
‘total relevant’ items in each recommendation process. This effect is
more severe when the threshold is not high (q =4), since even further
‘total relevant’ items will be in the denominator of the recall quality

F1

N (number of recommendations)

threshold 5

2

0.05

0.0

0.15

0.20

0.25

0.30

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 4

2

0.2

0.1

0.0

0.3

0.4

0.5

0.6

0.8

0.7

0.2

0.1

0.0

0.3

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

Netflix*. GANRS 3M

Netflix*. GANRS 500K

Netflix*. GANRS 150K

threshold 5

Precision VDeepMF
Recall VDeepMF
Precision DeepMF
Recall DeepMF
Precision NCF regr.
Recall NCF regr.
Precision NCF classif.
Recall NCF classif.
Precision NCF classif. improv.
Recall NCF classif. improv.
Precision binary regr.
Recall binary regr.

2 3 4 5 6 7 8 9 10

F1

N (number of recommendations)

threshold 5

2

0.10

0.15

0.20

0.25

0.30

0.35

0.45

0.40

0.50

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 4

2

0.3

0.4

0.5

0.6

0.7

0.8

0.2

0.1

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 5

2

0.1

0.2

0.2

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10

F1

N (number of recommendations)

threshold 5

2

0.25

0.30

0.35

0.40

0.50

0.45

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 4

2

0.3

0.4

0.5

0.7

0.6

0.2

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 5

2

0.3

0.2

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10

Fig. 5. Comparative among Netflix*, GANRS 150K, 500K, and 3M samples. Generated datasets with 2,000 users; 4,000 items and 2.5 for the standard deviation
of the Gaussian random noise. Number of recommendations N = [2, 4, 6, 8, 10].

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 9, Nº3

- 36 -

measure. The top and middle graphs of the ‘threshold 4’ column in
Fig. 5 show the concept. Beyond the specific quality values, we can
observe that it is possible to use generated datasets with different sizes
to test CF machine learning models in different scenarios: the results
will show the expected behavior and trends. Regarding the tested deep
learning models, it is interesting to observe how the NCF classification
and, particularly, the binary regression dramatically decreases their
performance when the dataset size increases. We can also see how the
improved NCF classification reaches the NCF regression, compared to
the results in Fig. 4.

C. Experiment 3: Movielens 100K Versus GANRS 2000 Users,
Versus GANRS 8000 Users

This experiment compares the absolute values and the trends in the
recommendation quality obtained for each baseline when applied to
the source Movielens 100K dataset, to the GANRS generated dataset
setting 2000 users, and to the GANRS generated dataset setting 8000
users. Both generated datasets take Movielens 100K as the source to
catch its internal patterns. As in the previous subsections, we expect
similar trends in the graph functions, showing that the GANRS
generated datasets adequately mimic the Movielens 100K patterns.

We also expect different absolute quality values due to the different
number of users selected for each GANRS generated dataset.

To avoid unnecessary repetitions, experiments on the synthetic
datasets generated from Movielens and MyAnimeList are restricted to
the 2,000 versus 8,000 user comparatives.

Fig. 6 shows the Movielens results; they are similar to those
obtained using generated datasets from Netflix*. In fact, both sets of
synthetic data contain a similar number of samples: 405,539 versus
353,269 in the 2,000 user versions and 628,194 versus 509,193 in the
8,000 user datasets. Comparing the precision & recall results of the
GANRS versions, both at thresholds 4 and 5 in Fig. 4 and Fig. 6, we can
see that the absolute values (y-axis) and the curve trends are similar.
Regarding the baselines, the NCF regression provides a balanced (F1)
superiority, as it happens in the source Netflix* data set.

D. Experiment 4: MyAnimeList Versus GANRS 2000 Users,
Versus GANRS 8000 Users

This experiment compares the absolute values and the trends in
the recommendation quality obtained for each baseline when applied
to the MyAnimeList dataset, to the GANRS generated dataset setting
2000 users, and to the GANRS generated dataset setting 8000 users.

F1

N (number of recommendations)

threshold 5

2

0.20

0.25

0.30

0.40

0.35

0.20

0.25

0.10

0.15

0.30

0.40

0.45

0.35

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 4

2

0.2

0.1

0.3

0.4

0.5

0.6

0.8

0.7

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

Movielens 100K

GANRS
generated dataset
std=2.5
2000 users
4000 items

GANRS
generated dataset
std=2.5
8000 users
4000 items

threshold 5

Precision VDeepMF
Recall VDeepMF
Precision DeepMF
Recall DeepMF
Precision NCF regr.
Recall NCF regr.
Precision NCF classif.
Recall NCF classif.
Precision NCF classif. improv.
Recall NCF classif. improv.
Precision binary regr.
Recall binary regr.

2 3 4 5 6 7 8 9 10

F1

N (number of recommendations)

threshold 5

2
0.10

0.15

0.20

0.25

0.30

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 4

2

0.3

0.4

0.5

0.6

0.2

0.1

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 5

2 3 4 5 6 7 8 9 10

F1

N (number of recommendations)

threshold 5

2

0.22

0.20

0.24

0.26

0.28

0.30

0.34

0.32

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 4

2

0.3

0.4

0.5

0.6

0.2

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 5

2

0.3

0.2

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10

0.20

0.25

0.10

0.15

0.30

0.35

Fig. 6. Comparative among Movielens 100K, GANRS 2,000 users; and GANRS 8,000 users. Generated datasets with 4,000 items and 2.5 for the standard deviation
of the Gaussian random noise. Number of recommendations N = [2, 4, 6, 8, 10].

Regular Issue

- 37 -

The MyAnimeList family of generated datasets provides interesting
results, since MyAnimeList contains a range of ten ratings (1 to 10)
instead of the usual 1 to 5. Focusing on the threshold (q=10) in Fig. 7,
it can be observed that precision improves (compared to the preceding
results when q=5). It probably happens due to a higher proportion
of ratings 10, compared to the equivalent (ratings 5) in Movielens or
Netflix*. The important here is that the synthetic datasets in Fig. 7
mimic this behavior; that is: the comparative between MyAnimeList
(Fig. 7 top right graph) and Movielens/Netflix* (Fig. 4 and Fig. 6
top-right graphs), looks similar to the comparative between the
MyAnimeList GANRSs (Fig. 7 middle-right and bottom-right graphs)
and Movielens/Netflix* GANRSs (Fig. 4 and Fig. 6 middle-right and
bottom-right graphs). This means that the GANRS synthetic datasets
are adequate. Finally, as expected, the classification models perform
worst in this scenario (exception the improved one), since it is harder
to correctly classify ten categories than five categories.

IV. Discussion

Overall, the obtained results show that the synthetic GANRS
datasets adequately mimic the behavior of the source datasets from

which the GAN learns their patterns. Results sustain the hypothesis of
the paper, and they confirm that the GANRS generator creates synthetic
datasets containing similar patterns and probability distributions to
the chosen source datasets, and what is more: this is also true when
the selected number of users, items and samples varies. Our view is
that the GANRS generative model gets its successful behavior from
the architectural key with which it has been designed: to feed the GAN
kernel of the model with short and dense embeddings instead of the
traditional large and sparse raw data [15]. In this way the GAN stage
improves its performance, better catches the source patterns, and it
reduces the mode collapse condition.

Since the synthetic datasets can be generated setting their sizes,
number of items, and number of users, it is possible to use them to
test CF machine learning models on different scenarios, e.g., when the
number of users varies. Specifically, all the synthetic datasets tested in
the experiments show adequate variation of precision and recall, where
precision improves (and recall gets worst) as the number of samples
increases. This is because the higher the total number of samples, the
higher the average number of ratings for each user. Additionally, as
expected, accuracy and recall differ when tested by setting different
recommendation thresholds. Observing the results of the tested

F1

N (number of recommendations)

threshold 9

2

0.20

0.25

0.30

0.35

0.40

0.45

0.50

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

threshold 8

2

0.2

0.3

0.4

0.5

0.6

0.8

0.7

0.2

0.3

0.4

0.5

0.6

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)

MyAnimeList

threshold 9

threshold 9 threshold 8 threshold 9

threshold 9 threshold 8 threshold 9

Precision VDeepMF
Recall VDeepMF
Precision DeepMF
Recall DeepMF
Precision NCF regr.
Recall NCF regr.
Precision NCF classif.
Recall NCF classif.
Precision NCF classif. improv.
Recall NCF classif. improv.
Precision binary regr.
Recall binary regr.

2 3 4 5 6 7 8 9 10

F1

N (number of recommendations)
2

0.10

0.15

0.05

0.20

0.25

0.30

0.35

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)
2

0.3

0.4

0.5

0.6

0.7

0.0

0.2

0.1

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)
2

0.1

0.2

0.2

0.4

0.5

0.6

0.0
3 4 5 6 7 8 9 10

F1

N (number of recommendations)
2

0.25

0.20

0.10

0.15

0.30

0.35

0.40

0.50

0.45

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)
2

0.3

0.4

0.5

0.1

0.6

0.2

3 4 5 6 7 8 9 10

Pr
ec

is
io

n
&

 R
ec

al
l

N (number of recommendations)
2

0.3

0.1

0.2

0.4

0.5

3 4 5 6 7 8 9 10

GANRS
generated dataset
std=1.2
2000 users
4000 items

GANRS
generated dataset
std=1.2
8000 users
4000 items

Fig. 7. Comparative among MyAnimeList, GANRS 2,000 users; and GANRS 8,000 users. Generated datasets with 4,000 items and 2.5 for the standard deviation
of the Gaussian random noise. Number of recommendations N = [2, 4, 6, 8, 10].

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 9, Nº3

- 38 -

deep learning models, the NCF regression and the improved NCF
classification perform significantly better than the NCF classification
and the binary regression. DeepMF and VDeepMF provide slightly
lower quality results than NCF regression. All these results are
compatible with the state-of-the-art ones. Finally, it is remarkable how
the tested GANRS datasets adequately catch the quality loss of the NCF
classification when MyAnimeList is taken as a source, since this dataset
encodes a ten ratings interval instead of the usual five ratings interval.

V. Conclusions

This paper tests the performance of the synthetic datasets generated
from the published GANRS method. A representative set of generated
datasets has been created by selecting a different number of users and
a different number of samples. The obtained datasets have been tested
on six representative CF deep learning models: DeepMF, VDeepMF,
NCF, NCF classification, improved NCF classification, and binary
regression. The recommendation quality measures precision, recall,
and F1 have been chosen. The results show adequate performance of
the synthetic datasets on all applied deep learning models. In particular,
it can be observed that, as expected, precision improves when the size
of the dataset increases, as well as when the average number of ratings
of each user also increases. In the same way, the recall decreases as the
size of the data set increases. The interval of the ratings in the dataset
(ten in MyAnimeList and five in Movielens and Netflix*) has the
expected impact, where both the recall and, particularly, the precision
drop using MyAnimelist. The tested CF deep learning models perform
similarly when the results of the synthetic datasets are compared with
the real datasets, and it happens on the different combinations of the
selected number of samples and number of users. Overall, the GANRS
method generates valuable synthetic datasets that can be used to test
new deep learning models proposed in the CF RS area. Future works
include testing synthetic datasets tailored to specific CF scenarios
such as user cold start, item cold start, dataset cold start, imbalanced
data, demographic variations, binary ratings (like, non-like), fairness,
recommendation to groups of users, and heavy sparse data.

Acknowledgment

This work was partially supported by Ministerio de Ciencia e
Innovación of Spain under the project PID2019-106493RB-I00 (DL-
CEMG) and the Comunidad de Madrid under Convenio Plurianual
with the Universidad Politécnica de Madrid in the actuation line of
Programa de Excelencia para el Profesorado Universitario.

References

[1] J. Bobadilla, A. González-Prieto, F. Ortega, R. Lara-Cabrera, “Deep
learning feature selection to unhide demographic recommender systems
factors,” Neural Computing and Applications, vol. 33, no. 12, pp. 7291-
7308, 2021.

[2] Y. Deldjoo, M. Schedl, P. Cremonesi, G. Pasi, “Recommender systems
leveraging multimedia content,” ACM Computing Surveys (CSUR), vol. 53,
no. 5, pp. 1-38, 2020.

[3] S. Kulkarni, S.F. Rodd, “Context aware recommendation systems: A
review of the state of the art techniques,” Computer Science Review, vol.
37, 100255, 2020.

[4] J. Shokeen, C. Rana, “A study on features of social recommender systems”,
Artificial Intelligence Review, vol. 53, no. 2, pp. 965-988, 2020.

[5] J.B. Schafer, D. Frankowski, J. Herlocker, S. Sen, “Collaborative Filtering
Recommender Systems,” in: The Adaptive Web. Lecture Notes in
Computer Science, Brusilovsky, P., Kobsa, A., Nejdl, W. (eds), Springer,
Berlin, Heidelberg, 2007, vol. 4321.

[6] E. Cano, M. Morisio, “Hybrid recommender systems: A systematic literature
review,” Intelligent Data Analysis, vol. 21, no. 6, pp. 1487-1524, 2017.

[7] B. Zhu, R. Hurtado, J. Bobadilla, F. Ortega, “An efficient recommender
system method based on the numerical relevances and the non-numerical
structures of the ratings,” IEEE Access, vol. 6, pp. 49935-49954, 2018.

[8] A. Mnih, R. R. Salakhutdinov, Probabilistic matrix factorization, Advances
in neural information processing systems, vol. 20, 2007.

[9] C. Févotte, J. Idier, “Algorithms for nonnegative matrix factorization with
the β-divergence,” Neural computation, 2011, vol. 23, no. 9, pp. 2421-2456,
2011.

[10] H.-J. Xue, X. Dai, J. Zhang, S. Huang, J. Chen, “Deep Matrix Factorization
Models for Recommender Systems,” in: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, 2017, pp. 3203-
3209.

[11] J. Bobadilla, J. Dueñas, A. Gutiérrez, F. Ortega, “Deep Variational
Embedding Representation on Neural Collaborative Filtering
Recommender Systems,” Applied Sciences, vol. 12, no. 9, 4168, 2022.

[12] X. He, L. Liao, H. Zhang, “Neural Collaborative Filtering,” International
World Wide Web Conference Committee (IW3C2), 2017, pp. 173-182.

[13] J. Bobadilla, F. Ortega, A. Gutiérrez, S. Alonso, “Classification-based Deep
Neural Network Architecture for Collaborative Filtering Recommender
Systems,” International Journal of Interactive Multimedia and Artificial
Intelligence, vol. 6, no. 1, pp. 68-77, 2020.

[14] J. Bobadilla, A. Gutiérrez, S. Alonso, A. González-Prieto, “Neural
Collaborative Filtering Classification Model to Obtain Prediction
Reliabilities,” International Journal of Interactive Multimedia and Artificial
Intelligence, vol. 7, no. 4, pp. 18-26, 2022.

[15] J. Bobadilla, A. Gutiérrez, R. Yera, L. Martínez “Creating Synthetic
Datasets for Collaborative Filtering Recommender Systems using
Generative Adversarial Networks,” Knowledge-Based Systems, pre-proof:
111016, 2023. https://doi.org/10.1016/j.knosys.2023.111016.

[16] M. Gao, J. Zhang, J. Yu, J. Li, J. Wen, Q. Xiong, “Recommender systems
based on generative adversarial networks: A problem-driven perspective,”
Information Sciences, vol. 546, pp. 1166-118, 2021.

[17] Y. Deldjoo; T. Noi, F.A. Merra, “A Survey on Adversarial Recommender
Systems: From Attack/Defense Strategies to Generative Adversarial
Networks,” ACM computing surveys, vol. 54, no. 2, pp. 1-38, 2021.

[18] D.-K. Chae, J.-S. Kang, S.-W. Kim, J.-T. Lee, “CFGAN: a generic
collaborative filtering framework based on generative adversarial
networks,” in: Proceedings of the 27th, ACM International Conference on
Information and Knowledge Management, CIKM 2018, 2018, pp. 137-146.

[19] G. Guo, H. Zhou, B. Chen, et al., “IPGAN: Generating informative item
pairs by adversarial sampling,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 33, no.2, pp. 694-706, 2022.

[20] H. Bharadhwaj, H. Park, B.Y. Lim “Recgan: recurrent generative
adversarial networks for recommendation systems,” in: Proceedings of the
12th ACM, Conference on Recommender Systems, RecSys 2018, 2018, pp.
372-376.

[21] J. Zhao, H. Li, L. Qu, Q. Zhang, Q. Sun, H. Huo, M. Gong, “DCFGAN:
An adversarial deep reinforcement learning framework with improved
negative sampling for session-based recommender systems,” Information
sciences, vol. 596, pp. 222-235, 2022.

[22] J. Wen, X. Zhu, C.D. Wang, Z. Tian, “A framework for personalized
recommendation with conditional generative adversarial networks,”
Knowledge and information systems, vol. 64, no. 10, pp. 2637-2660, 2022.

[23] J. Sun, B. Liu, H. Ren, W. Huang, “NCGAN: A neural adversarial
collaborative filtering for recommender system,” in: Journal of intelligent
& fuzzy systems, vol. 42, no. 4, pp. 2915-2923, 2022.

[24] W. Shafqat, Y.C. Byun, “A Hybrid GAN-Based Approach to Solve
Imbalanced Data Problem in Recommendation Systems,” in: IEEE access,
vol. 10, pp. 11036-11047, 2022.

[25] M. Mladenov, C.W. Hsu, V. Jain, E. Ie, C. Colby, N. Mayoraz, H. Pham,
D. Tran, I. Vendrov, C. Boutilier, “Demonstrating Principled Uncertainty
Modeling for Recommender Ecosystems with RecSim NG,” in: RecSys
2020 - 14th ACM Conference on Recommender Systems, 2020, pp. 591–593.

[26] J.C Shi, Y. Yu, Q. Da, S.Y. Chen, A.X. Zeng, “Virtual-Taobao: Virtualizing
real-world online retail environment for reinforcement learning,” in:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no.
01, 2019, pp. 4902–4909.

[27] M. del Carmen, S. Ilarri, R. Hermos, R. Trillo-Lado, “Datagencars:
A generator of synthetic data for the evaluation of contextaware
recommendation systems,” Pervasive and Mobile Computing, vol. 38, pp.

Regular Issue

- 39 -

516–541, 2017.
[28] V. Provalov, E. Stavinova and P. Chunaev, “SynEvaRec: A Framework

for Evaluating Recommender Systems on Synthetic Data Classes,” in:
International Conference on Data Mining Workshops (ICDMW), Auckland,
New Zealand, 2021, pp. 55-64.

[29] F. Ortega, B. Zhu, J. Bobadilla, A. Hernando, “CF4J: Collaborative filtering
for Java,” Knowledge-Based Systems, vol. 152, pp. 94-99, 2018.

[30] M. Račinský, “MyAnimeList Dataset,” Kaggle, 2018. [Dataset]. Available:
https://www.kaggle.com/azathoth42/myanimelist, doi: 10.34740/
KAGGLE/DSV/45582.

[31] F.M. Harper, J.A. Konstan, “The movielens datasets: History and context,”
ACM Transactions on Interactive Intelligent Systems, vol. 5, no. 4, pp. 1-19,
2015.

Jesús Bobadilla

Jesús Bobadilla received the B.S. and the Ph.D. degrees
in computer science from the Universidad Politécnica de
Madrid and the Universidad Carlos III. Currently, he is a
full professor with the Department of Information Systems,
Universidad Politécnica de Madrid. He is a habitual author
of programming languages books working with McGraw-
Hill, Ra-Ma and Alfa Omega publishers. His research

interests include information retrieval, recommender systems and speech
processing. He oversees the FilmAffinity.com research team working on the
collaborative filtering kernel of the web site. He has been a researcher into the
International Computer Science Institute at Berkeley University and into the
Sheffield University. Head of the research group.

Abraham Gutiérrez

Abraham Gutiérrez received the B.S. and the Ph.D. degrees
in computer science from the Universidad Politécnica de
Madrid. Currently, he is currently an associate professor
with the Department of Information Systems, Universidad
Politécnica de Madrid. He is the author of search papers
in most prestigious international journals. He is a habitual
author of programming languages books working with

McGraw-Hill, Ra-Ma and Alfa Omega publishers. His research interests include
P-Systems, machine learning, data analysis and artificial intelligence. He is in
charge of this group innovation issues, including the commercial projects.

