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Abstract

The published method Generative Adversarial Networks for Recommender Systems (GANRS) allows 
generating data sets for collaborative filtering recommendation systems. The GANRS source code is available 
along with a representative set of generated datasets. We have tested the GANRS method by creating multiple 
synthetic datasets from three different real datasets taken as a source. Experiments include variations in the 
number of users in the synthetic datasets, as well as a different number of samples. We have also selected six 
state-of-the-art collaborative filtering deep learning models to test both their comparative performance and the 
GANRS method. The results show a consistent behavior of the generated datasets compared to the source ones; 
particularly, in the obtained values and trends of the precision and recall quality measures. The tested deep 
learning models have also performed as expected on all synthetic datasets, making it possible to compare the 
results with those obtained from the real source data. Future work is proposed, including different cold start 
scenarios, unbalanced data, and demographic fairness.
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I. Introduction

THE personalization field in the Artificial Intelligence area is 
mainly focused on Recommender Systems (RS). Relevant RS are 

Netflix, TripAdvisor, Spotify, Google Music, TikTok, etc. RS are usually 
classified according to their filtering approaches, mainly: demographic 
[1], content-based [2], context-aware [3], social [4], collaborative (CF) 
[5] and their ensembles [6]. Demographic RS make recommendations 
based on demographic similarities (gender, age, zip code, etc.); content-
based RS recommend items with similar content to the consumed ones 
(book abstracts, product images, etc.). Context-aware filtering usually 
uses geographic information, such as GPS coordinates. Social filtering 
relies on followed, followers, etc. CF uses datasets containing the 
ratings that each user has voted to each item. Ratings can be explicit 
votes or implicit interactions (clicks, music listened to, films watched, 
etc.). Of the existing filtering approaches, CF is the most relevant since 
it provides the most accurate results. The early approaches to CF used 
the K-Nearest Neighbors algorithm [7]; it is easy to understand and 
directly implements the concept of CF, but it is also a slow memory-
based method, and its results are not accurate compared to modern 
model-based approaches. The Matrix Factorization (MF) model [8] 
creates compressed representations of the input data, called hidden 
factors, and then combines these latent space vectors using the dot 
product to obtain each user to item prediction.  Probabilistic MF and 
its variations (NMF [9], BNMF, etc.) provide straightforward models 

that return accurate prediction and recommendations. Furthermore, 
once the MF model has been trained, it can make very fast predictions 
compared to the KNN method. 

Currently, deep learning approaches dominate the RS research 
scenario. The simplest deep learning CF model is the Deep Matrix 
Factorization (DeepMF) [10], where iterative MF learning is replaced 
with two different neural embedding layers: one for code users and 
the other for code items. The embedding layers activation maps 
play the role of the MF hidden factors, where large, discrete, and 
sparse input vectors are converted to short, continuous, and dense 
latent space vectors. As in the MF case, the embedding vectors are 
combined using a dot layer. The variational design of the DeepMF 
model is called VDeepMF [11], where a Gaussian stochastic noise is 
introduced after the embedding layers to obtain more robust results. 
Neural Collaborative Filtering (NCF) [12] is a reasonable extension 
of the DeepMF model; NCF replaces the dot layer by a Multi-Layer 
Perceptron (MLP), providing a deep and non-linear combination of the 
embedding representations. Both the DeepMF and the NCF models 
improve the MF results. 

RS prediction is a regression task where real values are obtained; 
however, RS recommendation usually is a classification task, where 
only a discrete number of fixed values can be returned (e.g. number of 
stars). Then, deep learning classification approaches naturally fit the 
CF aims; a classification-based deep learning model [13] is proposed 
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to both implement the recommendation task and provide a reliability 
value for each recommended item. Additionally, the regular deep 
classification approach can be improved by combining the obtained 
<reliability, rating> tuple values [14].

This paper focuses on testing the Generative Adversarial Networks 
for Recommender Systems (GANRS) [15] generated datasets by 
applying a representative set of deep learning CF baselines and 
comparing their recommendation quality results. Generative 
adversarial networks (GAN) have recently been introduced in the RS 
area [16] to reinforce the defense strategies of shilling attacks [17], but 
particularly to improve results by generating augmented data; fake 
purchase vectors are generated in CFGAN [18] to reinforce the real 
purchase data. The Wasserstein CFGAN version is the unified GAN 
(UGAN), and it manages to minimize the GAN collapse mode. Negative 
sampling information is incorporated in the input data to IPGAN 
[19], where two different generative models are used, respectively, 
for positive and negative samples. Temporal patterns have also been 
combined with GAN models in RecGAN [20], which uses Recurrent 
Neural Networks (RNN). The reinforcement learning and GAN models 
are used to process session information rather than rating matrices 
in the DCFGAN architecture [21]. Conditional rating generation is 
proposed in [22] by using a Conditional GAN (CGAN).  NCGAN [23] 
uses a GAN to perform recommendation training and a previous neural 
network stage to obtain the nonlinear features of the users. Finally, 
unbalanced data sets are processed using the PacGAN concept in the 
discriminator and a Wasserstein GAN in the generator [24].

Based on Markov chains and recurrent neural networks, 
RecSim [25] generates synthetic profiles of users and items; its 
parameterization is low. The social Taobao web site has been used 
to provide the Virtual-Taobao [26], improving search in this site; 
internal distributions are simulated by a GAN. RS synthetic data 
is created using the Java-based generator DataGenCars [27]; it is 
based on statistical procedures, allowing a flexible parametrization, 
but returning low accuracy compared to GAN models. Finally, the 
SynEvaRec [28] framework makes use of the Synthetic Data Vault 
(SVD) library for RS datasets generation, based on multivariate 
distributions using copula functions. The SynEvaRec main drawbacks 
are its poor accuracy and its low performance in the training stage. 
Table I summarizes the existing methods.

A. Main Contributions
The objective of this paper is to reinforce the existing tests that 

have been run on the synthetic datasets generated using the GANRS 
method. Beyond the existing comparatives between source datasets 
(Movielens, Netflix, and MyAnimeList) and their synthetic versions, 
attending to their users, items, and ratings distributions, it is convenient 
to put into the test the generated datasets on real recommendation 
scenarios. Some specific and limited prediction and recommendation 
experiments are provided in the GANRS paper [15], but our research 
extends them with a comprehensive set of recommendation-based 
tests, where different deep learning models relevant to the CF are used 
as baselines and significant recommendation quality measures are 
processed, and their results are compared.

The paper hypothesis is that the GANRS model can adequately 
mimic different source CF datasets, such as the Movielens family, 

MyAnimeList, etc., generating synthetic CF datasets that follow 
the internal patterns and the probability distributions of the source 
datasets in the deep learning generative processing. The hypothesis 
is extended to the different parameterizations the GANRS generative 
model allows, setting a) the number of fake users, b) the number of 
fake items, and c) the number of samples. We will put the hypothesis 
to the test by running different deep learning state of the art CF 
baselines (NCF, DeepMF, etc.) on several GANRS generated datasets 
and comparing the obtained recommendation qualities. The GANRS 
synthetic datasets will contain different number of users, items, and 
samples.   Note that if the hypothesis is fulfilled, the GANRS model can 
be used as a powerful tool to test current and future CF methods and 
models on challenging synthetic scenarios where the number of users, 
items and samples can endlessly grow.

In the rest of the paper, section II explains the different deep 
learning models used in this research, both to generate the synthetic 
datasets and to test the behavior of baselines on the generated data. 
Section III introduces the experiments design, synthetic datasets, 
and baselines. It also shows the results obtained, their explanations, 
and the discussion. Section IV highlights the main conclusions of the 
article and the suggested future work.

II. Models

This research uses many deep learning models, both the GANRS 
[15] generative framework with which the synthetic datasets have been 
obtained and the different models used to test the generated datasets. 
These baseline models are as follows: DeepMF [10], VDeepMF [11], 
regression NCF [12], classification NCF [13], improved classification 
NCF [14] and binary regression. 
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Fig. 1. GANRS architecture.

The GANRS architecture shown in Fig. 1 consists of the generator 
and discriminator models, where the generator creates CF fake 
profiles from Gaussian random noise vectors. The discriminator’s 
responsibility is to detect fake samples from training batches of real 
and fake profiles. Once the RSGAN has been trained from a real source 
dataset (MovieLens, MyAnimeList, etc.) it can generate as many fake 
samples as desired by providing the generator with batches of random 
noise vectors. It is important to note that the GAN is fed with embedded 
user profiles rather than sparse vectors of ratings. Embeddings are 
obtained in a previous stage using a DeepMF [10] model. 

TABLE I. Comparison Table of Current RS Methods to Create CF Synthetic Data

method parameterization Accuracy Performance
GANRS generative high high high
RecSim generative low high high

Virtual-Taobao generative low middle high
DataGenCars statistical high low high

SynEvaRec statistical high low low



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 9, Nº3

- 32 -

 (1)

where x are real user profiles and z are random noise vectors (Fig. 1).

 (2)

 (3)

The objective of the discriminator can be defined as its ability to 
recognize real profiles (first term in (1)) combined with its ability to 
detect fake profiles (second term in (1)). The generator objective is to 
generate fake profiles that can fool the discriminator (2). Finally, the 
GAN can be seen as a minimax game in which the discriminator ‘D’ 
tries to maximize V, whereas the generator ‘G’ tries to minimize it (3).
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Fig. 2. (a) DeepMF and (b) VDeepMF models.

Regarding the models used to test the generated datasets, the DeepMF 
and its variational VDeepMF version can be seen as representative 
baselines. Fig. 2(a) shows the DeepMF model architecture, where two 
separate embedding layers, one for users and the other for items, 
convert from discrete and sparse integer inputs to continuous and 
dense latent space vectors. The hidden factors obtained are combined 
by means of a dot product layer, as in the MF machine learning model, 
to predict the rating of each user to each item. The model learns using 
a loss function that compares each predicted rating with the real label 
(MSD in Fig. 2).

 (4)

 (5)

 (6)

On an RS dataset containing U users and I items, the prediction 
of item i to user u is shown in (4), where the function f is defined 
as a neural network that converts their integer inputs user u ID and 
item i ID in their corresponding prediction. P and Q denote the neural 
network equivalence to the hidden factors of the MF, where K is the 
number of factors (i.e., the number of neurons in each embedding 
layer). Note that, usually, the set of weights in P and Q are called θ. The 
prediction of an item i to the user u is computed as the dot product of 
the embedding layer activations g(u|P) and h(i|Q) in (5). Finally, the 
squared loss is used (6) to learn the model parameters.

The VDeepMF architecture is an extension of the DeepMF one, 
where a variational stage is added. Fig. 2(b) shows the variational 
stage located between the embedding layers and the dot layer. This 
variational stage converts input embeddings to parameters of a 

statistical distribution (usually a Gaussian one). This concept can be 
seen in the ‘mean’ and ‘variance’ layers that follow the VDeepMF 
embedding layers, both for users and items (Fig. 2(b)). Each pair 
of mean and variance layers codes the corresponding Gaussian 
distribution parameters. Each Lambda layer uses the Gaussian mean 
and variance to stochastically sample vectors in the latent space. The 
result is a more robust model due to its stochastic learning.

 (7)

 (8)

 (9)

Equation (7) shows the ‘mean’ and ‘var’ layers conversion from 
embedding latent vectors to activation maps representing Gaussian 
distributions. Thus, the input of the Lambda layers are the pairs 
of random vectors in equation (8). In equation (9), 𝒩 denotes a 
K-dimensional multivariate distribution, where μ represents the mean 
vector and diag σ is the covariance matrix.

Fig. 3. (a) Regression NCF, and (b) Classification NCF.
The Keras template that summarizes each of the baseline models 

is provided in Table II. Please note that NCF Binary regression can be 
coded in a similar way to the regular NCF classification, by replacing 
the size of the deepest layer to only one output neuron.

The ‘regression NCF’ term refers to the regular Neural Collaborative 
Filtering model. This model extends the DeepMF one by adding a 
Multi-Layer-Perceptron (MLP) stage, as it can be seen in Fig. 3(a). The 
DeepMF model generates accurate embedding vectors, but it combines 
them (the user and item vectors) using a linear dot layer. The NCF 
approach improves the DeepMF model, due to the non-linear and deep 
learning processing of the embedding output vectors.

 (10)

 (11)

 (12)

 (13)

 (14)

 (15)

The additional MLP model is formalized in equations (10) to (12), 
where pu and qi denote the embedding layers weights,  and bx are 
the weight matrix and bias vector of layer x in the MLP, ϕ𝓍 denotes the 
layer 𝓍 with its activation function. The regression NCF model has an 
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output layer containing a unique neuron with an activation function 
that is linear, implementing the required regression. In contrast, 
the NCF classification model replaces this output layer with a layer 
containing as many neurons as possible votes in the RS (usually from 
one to five stars), as can be seen in Fig. 3(b). The softmax activation 
function is used in this output layer, while the model loss function 
is the categorical cross entropy; this ensures a probabilistic output 
that can be interpreted as a set of <reliability, vote> tuples (13), where 
the argmax(reliability) selects the predicted vote (14). The improved 
classification model basically combines the existing <reliability, vote> 
tuple values (15), providing a more accurate output function than the 
argmax one.

By combining the GANRS generated datasets with the chosen deep 
learning baselines and the selected recommendation quality measures, 
a set of experiments is designed and tested in the next section. Results 
are shown and explained, and finally an overall discussion is provided.

III. Experiments and Results

This paper runs a complete set of experiments to test the 
performance of current CF deep learning models on GANRS generated 
datasets. 

Table III shows a summary of the designed experiments. The tested 
CF datasets are generated using ‘GANRS’ [15], obtained from the 
source datasets: Netflix* [29], MyAnimeList [30], and Movielens 100K 
[31]. For comparative reasons, results using the three source datasets 
are also provided. The six deep learning models chosen as baselines are 
DeepMF [10] and regression NCF [12], and their variations VDeepMF 
[11], and classification based NCF [13]. Finally, the ‘improved 
classification NCF’ [14] and the binary regression are included. Since 
we use classification-based models, where recommendations are not 
a subset of predictions, only recommendation quality measures can 
be properly used, from which precision, recall, and F1 have been 
selected. Finally, we have set even values from 2 to 10 as the number 

of recommendations (N), and the two most relevant rating values as 
relevancy threshold (q): 4 & 5 for Movielens and Netflix*, and 9 & 10 
for MyAnimeList.

Table IV shows the values of the main parameters for both the 
real and synthetic datasets used in the designed experiments. Our 
first set of experiments are based on the source dataset Netflix*, and 
it compares the quality recommendation results obtained both from 
Netflix* and their synthetic generated versions: 2,000 & 8,000 users. 

TABLE IV. Main Parameter Values of the Tested Datasets

Dataset #users #items #ratings scores sparsity

Movielens 
100K

943 1682 99,831 1 t  o 5 93.71

Netflix* 23,012 1,750 535,421 1 to 5 98.68

MyAnime 19,179 2,692 548,967 1 to 10 98.94

GANRS 
Netflix* 2,000

2,000 4,000  405,539 1 t  o 5 94.93

GANRS 
Netflix* 8,000

8,000 4,000 628,194 1 t  o 5 98,03

GANRS 
Netflix* 150K

2,000 4,000 108,710 1 t  o 5 98,64

GANRS 
Netflix* 500K

2,000 4,000 272,853 1 t  o 5 96,59

GANRS 
Netflix* 3M

2,000 4,000   587,651 1 t  o 5 92,65

GANRS 
Movielens 

2,000
2,000 4,000 353,269 1 t  o 5 95,58

GANRS 
Movielens 

8,000
8,000 4,000 509,193 1 t  o 5 98,40

GANRS 
MyAnime 

2,000
2,000 4,000 419,234 1 t  o 10 94,76

GANRS 
MyAnime 

8,000
8,000 4,000   654,247 1 t  o 10 97,95

The three rows in Fig. 4 show, respectively, the results on Netflix* 
(top row), on GANRS 2,000 users (middle row), and on GANRS 8,000 
users (bottom row). The middle and right columns show the precision 

TABLE II. KeraS TEMPLATE  of the Baseline Models

DeepMF
Input (user) -> Embedding (user) -> Flatten
Input (item) -> Embedding (item) -> Flatten
Dot (Embedding (user), Embedding (item))
Loss =”mean_squared_error”
VDeepMF
Input (user) -> Embedding (user_mean) -> 
Dense (user_mean) -> Dense (user_var)  -> 
Lambda( ) -> Flatten
Input (item) -> Embedding (item_mean) -> 
Dense (item_mean) -> Dense (item_var)  -> 
Lambda( ) -> Flatten ->
Dot,     Loss = “mean_squared_error”
NCF Regression

Input (user) -> Embedding (user) -> Flatten
Input (item) -> Embedding (item) -> Flatten
-> Concatenate (Embedding (user), Embedding (item)) ->
Dense(70) -> Dropout(0.5) -> Dense(30) -> Dropout(0.4) -> Dense(1, “ReLu”)
Loss = “mean_squared_error”

NCF Classification
Input (user) -> Embedding (user) -> Flatten
Input (item) -> Embedding (item) -> Flatten
-> Concatenate (Embedding (user), Embedding (item)) ->
Dense(70) -> Dropout(0.5) -> Dense(30) -> Dropout(0.4) -> Dense(6, 
“softmax”),      Loss = “categorical_crossentropy”

TABLE III. Information Summary of the Designed Experiments

CF deep learning 
models CF Datasets Quality 

Measures
Testing 

parameters
DeepMF [10] Netflix* [29] Precision Relevance 

threshold (q): 
9, 10 

(MyAnimeList): 
4, 5 (Netflix* and 

Movielens).

Number of 
recommendations 

(N):
[2, 4, 6, 8, 10]

Gaussian standard 
deviation: 2.5

VDeepMF [11] GANRS Netflix*: 
2,000; 8,000 users

Recall

Regression NCF [12] GANRS Netflix*: 
150K, 500K, 3M

F1

Classification NCF 
[13]

Movielens 100K [31]

Classification 
improved NCF [14]

GANRS Movielens 
100K: 2,000; 8,000 

users

Binary regression MyAnimeList [30]

GANRS 
MyAnimeList: 2,000; 

8,000 users
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and recall values when threshold q is set to 4 and 5 (respectively). The 
left column shows the precision/recall based F1 quality measure. The 
legend in the upper-right area of Fig. 4 holds the colors that represent 
each one of the chosen deep learning baselines. Note that the expected 
behavior is the superior performance of the deep learning models: 
regression NCF, improved NCF classification, VDeepMF and DeepMF, 
whereas classification NCF and binary regression should provide 
weaker results.

A. Experiment 1: Netflix* Versus GANRS 2000 Users, Versus 
GANRS 8000 Users

This experiment compares the absolute values and the trends in the 
recommendation quality obtained for each baseline when applied to 
the original Netflix* dataset, to the GANRS generated dataset setting 
2000 users, and to the GANRS generated dataset setting 8000 users. 
Both generated datasets take Netflix* as the source to catch its internal 
patterns. We expect similar trends in the graph functions, showing 
that the GANRS generated datasets adequately mimic the Netflix* 
patterns. We also expect different absolute quality values due to the 
different number of users selected for each GANRS generated dataset.

The top row in Fig. 4 (Netflix*) shows the expected performance 
evolutions, where the higher the number of recommendations (x-axis), 
the lower the prediction quality measure, and the higher the recall (it 
is more complicated to get right 10 recommendations than to get right 
the two most promising ones). In the same way, a lower threshold value 
(middle graph) gets a better precision than a higher threshold value 
(right graph), since there are more samples that reach the threshold, and 
consequently it is easier to get right with the recommended items. In 
contrast, the higher the threshold, the better the recall, since there will 
be less relevant items in the recall denominator. Once we have checked 
the expected behaviors, the key question is: will the synthetic datasets 
accomplish the expected trends? Looking at the middle and bottom 
rows in Fig. 4 we can observe the same aforementioned tendency. The 
relevant difference between the results from the source Netflix* and the 
generated GANRS is not the quality trend, but the absolute precision 
and recall values, where the precision is slightly superior in the 
GANRS datasets, whereas recall is lower. Please note that the Netflix* 
dataset contains 23,012 users (Table IV), and then the GANRS versions, 
particularly the 2000 user version, suffer from a lack of richness that 
influences the recall results. Additionally, as expected, the higher the 
threshold, the worse the precision and the better the recall.
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Fig. 4. Comparative among Netflix*, GANRS 2,000 users, and GANRS 8,000 users. Generated datasets include 4000 items and sets 2.5 for the standard deviation 
of the Gaussian random noise. Number of recommendations N = [2, 4, 6, 8, 10].
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The F1 quality measure (left column in Fig. 4) balances precision 
and recall and allows us to visually compare the different results of the 
data set. We can observe that synthetic datasets provide quality trends 
and values that are compatible with those achieved by their source 
dataset (Netflix*). In addition, the GANRS 8,000 user results are more 
similar to the source than the GANRS 2,000 user ones, as expected 
due to the 23,000 users contained in Netflix*. Regarding the behavior 
of deep learning baselines, synthetic data sets maintain the ‘ranking 
order’ obtained from Netflix*, where the regression NCF slightly 
‘wins’, closely followed by the improved classification NCF, DeepMF 
and VDeepMF. NCF classification and binary regression swap their 
position in the queue when tested on Netflix* and GANRS. Overall, 
synthetic GANRS datasets perform adequately for CF testing using 
state-of-the-art deep learning models.

B. Experiment 2: Netflix* Based GANRS 3 Million Samples, 
Versus GANRS 500 Thousand Samples, Versus GANRS 150 
Thousand Samples 

This experiment compares the absolute values and the trends in the 
recommendation quality obtained for each baseline when applied to 
the GANRS generated dataset setting 3 million samples, to the GANRS 

generated dataset setting 500 thousand samples, and to the GANRS 
generated dataset setting 150 thousand samples. All the generated 
datasets take Netflix* as the source to catch its internal patterns. 
Like the previous experiment, we expect similar trends in the graph 
functions, showing that the GANRS generated datasets adequately 
mimic the Netflix* patterns. We also expect different absolute quality 
values due to the different number of samples selected for each GANRS 
generated dataset.

The following experiment uses three synthetic GANRS datasets 
where the number of samples varies. We use the GANRS Netflix* 
150K, 500K, and 3M versions (Table IV) which, respectively, contain 
108710, 272853 and 587651 samples. Fig. 5 shows the recommendation 
results obtained in the 3M version (top row), the 500K version (middle 
row), and the 150K version (bottom row). As expected, precision 
decreases as size falls; this effect can be particularly observed in the 
most extreme experiment: the highest threshold (q =5) combined with 
the smallest dataset (150K version). On the other hand, the larger 
the dataset, the lower the recall results, since there will be more 
‘total relevant’ items in each recommendation process. This effect is 
more severe when the threshold is not high (q =4), since even further 
‘total relevant’ items will be in the denominator of the recall quality 
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Fig. 5. Comparative among Netflix*, GANRS 150K, 500K, and 3M samples. Generated datasets with 2,000 users; 4,000 items and 2.5 for the standard deviation 
of the Gaussian random noise. Number of recommendations N = [2, 4, 6, 8, 10].
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measure. The top and middle graphs of the ‘threshold 4’ column in 
Fig. 5 show the concept. Beyond the specific quality values, we can 
observe that it is possible to use generated datasets with different sizes 
to test CF machine learning models in different scenarios: the results 
will show the expected behavior and trends. Regarding the tested deep 
learning models, it is interesting to observe how the NCF classification 
and, particularly, the binary regression dramatically decreases their 
performance when the dataset size increases. We can also see how the 
improved NCF classification reaches the NCF regression, compared to 
the results in Fig. 4.

C. Experiment 3: Movielens 100K Versus GANRS 2000 Users, 
Versus GANRS 8000 Users

This experiment compares the absolute values and the trends in the 
recommendation quality obtained for each baseline when applied to 
the source Movielens 100K dataset, to the GANRS generated dataset 
setting 2000 users, and to the GANRS generated dataset setting 8000 
users. Both generated datasets take Movielens 100K as the source to 
catch its internal patterns. As in the previous subsections, we expect 
similar trends in the graph functions, showing that the GANRS 
generated datasets adequately mimic the Movielens 100K patterns. 

We also expect different absolute quality values due to the different 
number of users selected for each GANRS generated dataset.

To avoid unnecessary repetitions, experiments on the synthetic 
datasets generated from Movielens and MyAnimeList are restricted to 
the 2,000 versus 8,000 user comparatives. 

Fig. 6 shows the Movielens results; they are similar to those 
obtained using generated datasets from Netflix*. In fact, both sets of 
synthetic data contain a similar number of samples: 405,539 versus 
353,269 in the 2,000 user versions and 628,194 versus 509,193 in the 
8,000 user datasets. Comparing the precision & recall results of the 
GANRS versions, both at thresholds 4 and 5 in Fig. 4 and Fig. 6, we can 
see that the absolute values (y-axis) and the curve trends are similar. 
Regarding the baselines, the NCF regression provides a balanced (F1) 
superiority, as it happens in the source Netflix* data set.

D. Experiment 4: MyAnimeList Versus GANRS 2000 Users, 
Versus GANRS 8000 Users

This experiment compares the absolute values and the trends in 
the recommendation quality obtained for each baseline when applied 
to the MyAnimeList dataset, to the GANRS generated dataset setting 
2000 users, and to the GANRS generated dataset setting 8000 users.
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The MyAnimeList family of generated datasets provides interesting 
results, since MyAnimeList contains a range of ten ratings (1 to 10) 
instead of the usual 1 to 5. Focusing on the threshold (q=10) in Fig. 7, 
it can be observed that precision improves (compared to the preceding 
results when q=5). It probably happens due to a higher proportion 
of ratings 10, compared to the equivalent (ratings 5) in Movielens or 
Netflix*. The important here is that the synthetic datasets in Fig. 7 
mimic this behavior; that is: the comparative between MyAnimeList 
(Fig. 7 top right graph) and Movielens/Netflix* (Fig. 4 and Fig. 6 
top-right graphs), looks similar to the comparative between the 
MyAnimeList GANRSs (Fig. 7 middle-right and bottom-right graphs) 
and Movielens/Netflix* GANRSs (Fig. 4 and Fig. 6 middle-right and 
bottom-right graphs). This means that the GANRS synthetic datasets 
are adequate. Finally, as expected, the classification models perform 
worst in this scenario (exception the improved one), since it is harder 
to correctly classify ten categories than five categories.

IV. Discussion

Overall, the obtained results show that the synthetic GANRS 
datasets adequately mimic the behavior of the source datasets from 

which the GAN learns their patterns. Results sustain the hypothesis of 
the paper, and they confirm that the GANRS generator creates synthetic 
datasets containing similar patterns and probability distributions to 
the chosen source datasets, and what is more: this is also true when 
the selected number of users, items and samples varies. Our view is 
that the GANRS generative model gets its successful behavior from 
the architectural key with which it has been designed: to feed the GAN 
kernel of the model with short and dense embeddings instead of the 
traditional large and sparse raw data [15]. In this way the GAN stage 
improves its performance, better catches the source patterns, and it 
reduces the mode collapse condition. 

Since the synthetic datasets can be generated setting their sizes, 
number of items, and number of users, it is possible to use them to 
test CF machine learning models on different scenarios, e.g., when the 
number of users varies. Specifically, all the synthetic datasets tested in 
the experiments show adequate variation of precision and recall, where 
precision improves (and recall gets worst) as the number of samples 
increases. This is because the higher the total number of samples, the 
higher the average number of ratings for each user. Additionally, as 
expected, accuracy and recall differ when tested by setting different 
recommendation thresholds. Observing the results of the tested 
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deep learning models, the NCF regression and the improved NCF 
classification perform significantly better than the NCF classification 
and the binary regression. DeepMF and VDeepMF provide slightly 
lower quality results than NCF regression. All these results are 
compatible with the state-of-the-art ones. Finally, it is remarkable how 
the tested GANRS datasets adequately catch the quality loss of the NCF 
classification when MyAnimeList is taken as a source, since this dataset 
encodes a ten ratings interval instead of the usual five ratings interval.

V. Conclusions

This paper tests the performance of the synthetic datasets generated 
from the published GANRS method. A representative set of generated 
datasets has been created by selecting a different number of users and 
a different number of samples. The obtained datasets have been tested 
on six representative CF deep learning models: DeepMF, VDeepMF, 
NCF, NCF classification, improved NCF classification, and binary 
regression. The recommendation quality measures precision, recall, 
and F1 have been chosen. The results show adequate performance of 
the synthetic datasets on all applied deep learning models. In particular, 
it can be observed that, as expected, precision improves when the size 
of the dataset increases, as well as when the average number of ratings 
of each user also increases. In the same way, the recall decreases as the 
size of the data set increases. The interval of the ratings in the dataset 
(ten in MyAnimeList and five in Movielens and Netflix*) has the 
expected impact, where both the recall and, particularly, the precision 
drop using MyAnimelist. The tested CF deep learning models perform 
similarly when the results of the synthetic datasets are compared with 
the real datasets, and it happens on the different combinations of the 
selected number of samples and number of users. Overall, the GANRS 
method generates valuable synthetic datasets that can be used to test 
new deep learning models proposed in the CF RS area. Future works 
include testing synthetic datasets tailored to specific CF scenarios 
such as user cold start, item cold start, dataset cold start, imbalanced 
data, demographic variations, binary ratings (like, non-like), fairness, 
recommendation to groups of users, and heavy sparse data.
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