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Abstract

Optimising the use of the photovoltaic (PV) energy is essential to reduce fossil fuel emissions by increasing 
the use of solar power generation. In recent years, research has focused on physical simulations or artifical 
intelligence models attempting to increase the accuracy of PV generation predictions. The use of simulated data 
as pre-training for deep learning models has increased in different fields. The reasons are the higher efficiency 
in the subsequent training with real data and the possibility of not having real data available. This work 
presents a methodology, based on an deep learning model optimised with specific techniques and pre-trained 
with synthetic data, to estimate the generation of a PV system. A case study of a photovoltaic installation 
with 296 PV panels located in northwest Spain is presented. The results show that the model with proper pre-
training trains six to seven times faster than a model without pre-training and three to four times faster than 
a model pre-trained with non-accurate simulated data. In terms of accuracy and considering a homogeneous 
training process, all models obtained average relative errors around 12%, except the model with incorrect pre-
training which performs worse.
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I. Introduction

Nowadays, the demand for electric power is growing significantly 
and the mayor issue is to reduce fossil fuel emissions and thus 

control global warning [1]. Transport and electricity generation have 
accounted for 60% of all energy produced in the last few years [2]. 
In this way, the European Commission has defined new targets for 
2030 which include reducing the CO2 emissions by 40% with respect 
to 1990 levels [3]. Meeting this target requires reducing the electricity 
demands and/or increasing the use of renewable energies [4].

Among the renewable energies, solar power generation has proven 
to be a serious option as a result of its great availability and low 
production cost [5]. This type of renewable energy generation has two 
main sources: thermal and photovoltaic (PV). In recent years, solar PV 
production has expanded considerably, becoming the fastest growing 
resource for electric power generation with the highest power density 
among all renewable energy resources [6]–[8]. This resource also has 
two important barriers: the low efficiency of the PV modules (directly 

related to meteorological conditions) and the large investment cost [5], 
[9]. Nevertheless, its potential to feed energy into the grid along with 
the reduction of transmission losses it provides makes this renewable 
resource very attractive [10].

Recently, artificial intelligence techniques, more specifically deep 
learning models, has become widespread as a novel data-driven 
approach that can be applied to numerous scientific fields such as 
PV energy analysis or related areas [11], [12]. Deep learning models 
are famous because they are able to learn complex patterns without 
requiring in-depth knowledge of the subject under analysis and are 
characterised for their high performance and easy implementation. In 
addition, these models have become increasingly more popular due 
to their ability to better optimise and replicate learning patterns than 
the more classical machine learning techniques [11]. Some concrete 
examples of that, in similar studies of the one proposed, are Nabipour 
et al. [13] show the higher accuracy of DL models prediction stock 
market trends and Mert. [14] show the better performance of DL 
models in solar-powered systems production estimations.
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Long Short-Term Memory (LSTM) neural networks are a deep 
learning model, within the group of Recurrent Neural Networks (RNN) 
[15], which contain a specific hidden layer that considers the existence 
of connections with past values [16], [17]. In this way, they are suitable 
for mapping long-term dependencies. These neural networks have 
been implemented in similar fields such as environment [18], energy 
efficiency in buildings [16], image processing [17] and PV generation 
[19], [20]. In particular, they have shown better performance in 
photovoltaic generation estimations thanks to being able to use the 
information learned from previous steps [21], [22]. Moreover, most 
deep learning models leave room for optimisation based on the 
hyperparameters that defined them. These improvements, which can 
be achieved in model performance reaching the optimal values for the 
hyperparameters is demonstrated in several previous studies [23],[24]. 
In the literature can be found different techniques to efficiently 
perform this search: univariate dynamic encoding algorithms [25], 
combination between grid and random searches [26], particle swarm 
optimisation [27] or genetic algorithms [28]. In particular, Genetic 
Algorithms (GA) have increased their use in this type of optimisations 
mainly due to their easy of implementation and the reduction in the 
number of evaluations and time needed to reach an optimum [24], 
[29], [30]. Furthermore, multiobjective genetic algorithms such as 
Non-dominant Sorting Genetic Algorithm (NSGA-II) make it possible 
to optimise the values of the selected hyperparameters considering 
more than one objective function [1], [31], [32].

In recent years, feeding machine and deep learning models with 
simulated data, prior to real data, has been shown to improve their 
performance. The spread of this technique is due to the fact that several 
studies have shown that pre-training the model with synthetic data 
enables subsequent training with real data to be faster and/or more 
accurate, on the one hand, and that in certain situations collecting real 
data is very costly or not possible, on the other hand [33], [34]. This 
methodology has been applied in several fields such as signal denoising 
[35], pattern recognition [36] and robot perception [37]. The aim of 
this research is to introduce a methodology to optimise deep learning 
models architecture and improve their performance using synthetic 
data. In particular, this study focuses on estimating PV generation and 
comparing the accuracy of the built models depending on their pre-
training. The analysed installation is located on the roof of the School 
of Mining Engineering in northwest Spain. The available data consist of 
hourly frequency observations of PV generation together with outdoor 
temperature and global solar irradiance of the area. Additionally, three 
temporal variables (month of the year, day of the month and hour of 
the day) are also considered as model inputs. In this way, taking into 
account the aforementioned inputs and the variable of interest (PV 
generation), the optimisation process and the improvement provided 
by a proper pre-training were analysed. Specifically, both the epochs 
required to reach a certain error limit and the coefficient of variation 
of the root mean squared error (CV(RMSE)) and normalised mean bias 
error (NMBE) are the model evaluation metrics selected.

The novelty of this paper lies in the application of deep learning 
models, optimised with the NSGA-II algorithm and pre-trained 
with simulated data, to perform PV generation predictions of an 
installation consisting of 296 PV modules. Furthermore, the introduced 
methodology shows the significant improvement of the model 
behaviour with a correct pre-training process based on synthetic data. 
Thus, this work contributes with a method that efficiently optimises 
the deep learning model and improves its training speed in comparison 
with a model without pre-training or with an incorrect pre-training. 
In the field of renewable energies, this improvement allows better 
control and utilisation of photovoltaic energy, optimising, for example, 
the connection between a house with photovoltaic panels and an 
electric vehicle.In addition, the presented use of synthetic data allows 

the implementation of deep learning models in situations where the 
monitored data is limited or the PV systems have just been installed 
and there is very few data available to feed the model.

II. Material and Methods

The aim of this research is to analyse the usefulness of synthetic 
data to pre-train deep learning models and thus study whether they 
improve their performance in the training process with real data. 
In this case, the study focuses on a photovoltaic installation, and 
specifically, on estimating the generation of a PV system based on 
meteorological and temporal variables. To this end, the deep learning 
models used are LSTM neural networks optimised with NSGA-II 
multiobjective genetic algorithm.

A. Long Short-Term Memory (LSTM) Neural Network
The deep learning model used in this study is a Long Short-Term 

Memory (LSTM) neural network. This type of neural networks are 
Recurrent Neural Networks (RNN); sequenced-based models that take 
into account the possible correlations between past and current data 
[38], [39]. RNN use the backpropagation through time (BPTT) method, 
which considers that the decision a RNN makes at time step t − 1 can 
influence the decision at time step t. However, due to the vanishing 
gradient problem [40], these models are not good learning relationships 
in the long run. This problem is described as the gradient norm decays 
exponentially to zero from long-range dependencies. In this case, 
LSTM neural networks, having an architecture with a memory cell and 
a forget gate, are capable of solving the aforementioned problem [41].

The dynamics of RNN can be established with deterministic 
transitions from previous to current hidden state ( ):

 (1)

being l the layer and t the time step. In constrast, LSTM neural 
networks present a more sofisticated structure that enables the 
memorisation of information for many time steps. The long-term 
memory is stored in a dedicated vector of memory cells  ∈ ℝk:

 (2)

As an illustration, we assume an input vector x, where xt ∈ ℝk is a 
k-dimensional vector at time step t. LSTM neural networks maintain 
an internal memory cell state during the entire process in order to 
build the temporal connections. The memory cell st−1 interacts 
with the hidden state ht−1 and the specific input xt to establish the 
elements of the inner state vector to be deleted, updated or mantained. 
Furthermore, LSTM neural networks have a forget gate ft, an input 
gate it, an input node nt and an output gate ot in their structure (see Fig. 
1). The architecture of these models can be defined by the equations 
3, 4 and 5 [38], [41]:

 (3)

 (4)

 (5)

being W weight matrices associated to the activation functions, 
⊙ an element-wise multiplication and σ the representations of the 
sigmoid function.

In this way, the new current cell state (nt) can be calculated with 
Equation 6:

 (6)

where φ represent the tanh activation function. Based on the forget 
and input gate the state st is updated through Equation 7:
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 (7)

and the current hidden output using Equation 8:

 (8)

As shown in Fig. 1 there are three sigmoid functions in the LSTM 
block, which can be 0 or 1 and act as switches to manage which 
elements pass through the gates. In addition, the present input xt and 
the past state ht1 affect the decision made at the forget gate f, the 
input gate i and the output gate o. The forget gate determines which 
elements of the previous memory cell st1 are forgotten and the input 
gate selects which elements are kept. Thus, the inner state is updated 
and the elements of st that move forward as LSTM state ht are selected 
through the output gate. This process is replicated at every time step 
[39], [41].

On the one hand, the LSTM neural networks built in this analysis 
are optimised with a mutiobjective genetic algorithm focusing on the 
accuracy and the complexity of the model. The parameters adjusted are 
the number of LSTM layers, the number of Dense layers, the number 
of neurons in each of them and the number of epochs the model is 
allowed not to improve (stopping criterion). On the other hand, the 
built neural networks use the internal optimisation algorithm known 
as Adam, the Rectified Linear Unit (reLU) activation function and a 
batch size of 24.

B. Model Optimisation
The optimal architecture together with the optimal value for the 

parameter defining the stopping criterion (number of epochs without 
improvement) of the built LSTM neural network are obtained with a 
multiobjective genetic algorithm. Genetic Algorithms (GA) are known 
for trying to replicate biological evolution to solve optimisation 
problems. They initiate the process with a random population based 
on individuals. These individuals are represented by chromosomes 

consisting of genes which, in turn, are the values of the considered 
covariates. Thus, this type of algorithms conducts optimisation based 
on three main operators: crossover, mutation and elitism. Crossover 
refers to exchanging a portion of a specific chromosome with a 
portion of another random chromosome. Mutation increases diversity 
in populations to avoid stagnating at local optima by randomly 
modifying part of solutions. Elitism is the way in which the selection 
process is accomplished by choosing the best chromosomes to pass 
through generations [42], [43].

In this study, the specific algorithm used is the Non-Dominant 
Sorting Genetic Algorithm (NSGA-II). It is a robust multiobjective 
algorithm widely implemented in different practical fields that allows 
the simultaneous optimisation of several parameters. Furthermore, it 
is characterised by generating a Pareto front betweeen the objectives 
where the overall optimum is selected and for being an improved 
version of the original version of the NSGA. These improvements are 
based on the use of a crowding distance operator, the elitism and a fast 
nondominated ranking [31], [44].

This algorithm is based on four internal principles that defined its 
processing [45]:

• Non-dominated sorting: The options considered, which form a 
population, are ordered by Pareto dominance. In this way, the 
elements/options with the best rank are separated and the ordering 
continues with the rest of the options.

• Crowding distance: Between two possible solutions, the one with 
a larger crowding distance is considered to be in a less crowded 
area. Thus, the elements in a less crowded region will be selected 
first. The crowding distance for an element is presented in the 
Equation 9:

 (9)
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Fig. 1. Internal structure of LSTM block.
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where k is the number of objectives,  the value of the i-th element 
for objective j, and ;  the maximum and minimum values for 
objective j.

• Elitism: The best option combinations pass directly pass to next 
generations of the algorithm. Non-dominated combinations 
continue until another solution dominate them.

• Selection operator: The selection of elements to be transferred 
for next generations is based on their rank and their crowding 
distances.

The objective functions considered to be minimised with NSGA-
II are the CV(RMSE) in PV generation predictions and a complexity 
function that summarises the layers and neurons of the model. This 
complexity function, already use in [31], [46], relies on the number of 
layers and neurons in the built neural network:

 (10)

with l and L being the number of layers used and the maximum 
value allowed (in this analysis, 5). In addition, nj and N represent the 
neurons in each layer and the maximum number of neurons allowed 
(in this analysis, 500). In order to avoid rejecting excessive multilayer 
architectures, a lower weighting for the number of layers is introduced. 
In this case, the termination of the optimisation process is based 
on a specific tolerance value within the space of feasible solutions 
and the optimal point along the final Pareto front is selected using 
a decomposition function, known as penalty boundary intersection 
(PBI) [47].

Further information about the NSGA-II can be found in [48].

C. Validation and Error Assessment
The validation metrics considered in this analysis to evaluate 

the accuracy of the deep learning models are the the Coefficient of 
Variation of the Root Mean Square Error (CV(RMSE)), Normalised 
Mean Biased Error (NMBE) and Mean Absolute Error (MAE):

 (11)

 (12)

 (13)

where 𝑦i represents the real values,  the estimations and N the 
number of observations. These metrics are used to compare the 
performance of the built LSTM neural networks throught a cross-
validation process (considering an expanding window) with average 
results presented in the section IV. They were used in similar studies 
such as [24], [49], [50]. Moreover, the accuracy of the models is 
assessed only considering the hours with positive solar irradiance 
(without irradiance it is known that the panels do not produce).

III. Experimental System

The studied PV system is an installation located on the roof of the 
School of Mining Engineering in north-western Spain at University of 
Vigo (see Fig. 2).

This installation is composed by 296 PV modules in parallel, 
with an azimuth of 72.8º-112.6º, because two groups of modules are 
considered, and a slope of 2º. In addition, the specific coordinates of 
the installations are latitude of N 42º 10' 6.1'' and longitude of W 8º 41' 
18.44''. The technical information about the inverters and PV modules 
of the analysed installation is presented in Table I.

TABLE I. PV Inverters and Modules Datasheets

Inverter

VDC,max 1000 V

VDC,MPP 500 - 800 V

IDC,max 120 A

ISC,max 30 A

VAC,nom 230 V

fnom 50 Hz

IAC,max 72.5 A

PV module

PMPP 400 W

Clasification range 0/+5 W

Accuracy (PMPP) ± 3%

UMPP 40.32 V

IMPP 9.92 A

UOC 400 V

ISC 10.45 A

Fig. 2. Pictures of the PV installation analysed.
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A. Synthetic Data
In this study, the available simulated data is generated with the 

software TRNSYS [51], [52]. The data consist of simulated photovoltaic 
generation based on physical laws and weather data significantly 
correlated with PV generation (in this case outdoor temperature 
and solar irradiance) along one year (see Fig. 3). The aforementioned 
simulation, considering the same weather conditions, is carried out for 
different PV installations considering different number of PV modules 
in parallel, different azimuths and different slopes. The number of PV 
modules varies between 60 and 740 (60, 89, 178, 296, 414, 562, 740), 
the azimuth between 0 and 337.5 degrees (22.5 by 22.5) and the slope 
between 0 and 90 degrees (15 by 15) generating data from 784 different 
PV instalations. Among this grid of parameters combinations there is 
the same configuration as the analysed installation.

Params - Type 70

txt

per

Weather data - Type 15

Power plo�er - Type 65a W to kW - Type 57 Inverter losses

ºC to K - Type 57 PV - Type 94a

Simulation time-step Load voltage

1 2 30

1 20

1 2 30

1 20

Fig. 3. Simulation process followed by TRNSYS in order to generate PV 
generation data.

The purpose of these synthetic data is to provide data from different 
installations (to fit a wide range of possibilities) in order to subsequently 
pre-train deep learning models and improve their performance on real 
data. Thus, the deep learning model reaches the training process, with 
real data, knowing the relationship between the selected inputs and 
the specific power generation of the installed panels.

B. Weather Data
The meteorological variables considered as model inputs in this 

analysis are global solar irradiance and outdoor temperature. They 
have a significant correlation with the generation of the photovoltaic 
modules [53]. Specifically, the data source used to obtain these data is 
an automatic weather station belonging to a meteorological agency 
known as MeteoGalicia [54]. The station is located 250 m northeast 
of the centre of the PV installation and 35 m higher. For missing or 
invalid values collected by the station, the Global Forecast System 
(GFS flux) surface flux model is used. This model generates hourly 
forecasts on a 13 km resolution grid [55].

C. Data Preprocessing
This research is focused on analising the improvement, on PV 

generation estimations, that produces pre-training a deep learning 
model with simulated data (see Fig. 4). In addition to the right 
installation parameters, the deep learning model is also pre-trained 
with simulated data based on random parameters (extracted from 
the list of section A) to consider the case where these data are not 
available. As mentioned, the aim of the built LSTM neural network 
is to predict the generation of a PV installation. The data available 
in this analysis are hourly observations of the PV generation of the 
studied installation and simulated observations, considering the 
parameters of that installation and 783 variations of them (Section 
A), in addition to the solar irradiance and outdoor temperature of the 
area. The availability of the real data corresponds to the year 2021 
(from March to September) and the simulated data corresponds to 
2020. In this period of time there is no missing or invalid data. Three 
complementary variables related with the time (hour of the day, day of 
the month and month of the year) are also considered as model inputs 
to improve the accuracy of the model. In order to take into account the 
existing inertia in the solar irradiance, and thus in PV generation, 24 
hourly lags are considered. Moreover, the data set is normalised based 
on the limits 0 and 1.

As mentioned, the pretaining is conducted with simulated data 
considering on the one hand the parameters of the studied installations 
(n_panels: 296, azimuth: 90º and slope: 2º) and, on the other hand, a 
random set of parameters n_panels: 562, azimuth: 247.5º and slope: 
60º). Specifically, these parameters are the number of modules, their 
azimuth and their slope. The following section presents two analyses: 
one focused on introducing the process of selecting the optimal 

PRE-TRAINING

Correct
simulated data

Pretrained
LSTM 1

Pretrained
LSTM 2

Trained
LSTM 3

Trained
LSTM 2

Trained
LSTM 1

PV Generation
Training speed

Accuracy

New LSTM

Random
simulated data

TRAINING

REAL DATA

EVALUATION

Fig. 4. Research methodology in which the three parts (pre-training with synthetic data, training with real data and the subsequent evaluation) are presented 
in different ways depending on the pre-training. In addition, the measures selected to compare the performance of the models, which are training speed and 
accuracy, are shown.
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architecture and stopping criterion of the deep learning model and 
the other focused on showing the improvement in training speed and 
model accuracy due to pre-training (see Fig. 4).

IV. Results and Discussion

This paper presents a methodology for estimating PV generation 
optimised with a genetic algorithm that searches for the best LSTM 
neural network architecture together with the best stopping criterion 
for training and improved with pre-training based on simulated data. 
The inputs to produce the PV generation estimations of the built 
models are solar irradiance, outdoor temperature and three temporal 
variables. To validate this methodology, monitored data from a 
photovoltaic installation located in the northwest of Spain are available. 
On the one hand, section A shows the results and parameters used 
in the optimisation process of the LSTM neural network architecture 
and its stopping criterion. On the other hand, section B presents the 
improvements obtained by pre-training the model with synthetic data 
based on speed and accuracy. In this section, a comparison between two 
different pre-training and no pre-training is presented by analysing 
the number of epochs needed to reach certain error levels (directly 
related with time) and the accuracy they yield with similar training 
(same stopping criterion). In addition, the proposed optimisation and 
method, along with the following results, were implemented using the 
Python programming language [56].

A. LSTM Neural Network Optimisation
The optimal selection of the LSTM neural network architecture 

(considering LSTM hidden layers, dense hidden layers and the neurons 
within them) and the number of epochs without enhancement to stop 
training is obtained with NSGA-II. The average CV(RMSE), from a 
cross-validation experiment on the simulated sample corresponding 
to the studied system, and the complexity of the model (Equation 10) 
are the objective functions considered. The aim of the multi-objective 
genetic algorithm is to minimise these functions simultaneously. The 
optimisation is conducted with simulated data instead of real data, in 
order to assume the situation where real data is not yet available. The 
table II shows the specific hyperparameters used in the optimisation 
process: those that define the option space and those that configure 
the algorithm termination and selection process.

TABLE II. Parameters and Functions Used in the Optimisation 
Through NSGA-II, Comprising the General Parameters Related to the 
Multiobjective Algorithm and the Specific Parameters Related to the 

Optimal Selection

General parameter Value Termination parameter Value

Neurons options 20 100 (20 by 20) Tolerance (tol) 0.1

LSTM layer options 1 3 Nº max evals (n_max) 5000

Dense layer options 0 2 Last genes considered (n_last) 40

Patience options 10 or 20 epochs Decomposition function PBI

Population 50

Mutation 0.9

Crossover 0.1

In this case, considering the parameters presented in Table II, 
NSGA-II needed 2490 evaluations to find 5 optimal points on the 
Pareto front (7688 possible options in total). These points correspond to 
LSTM architectures and epoch limits to stop the model training. Then, 
the PBI decomposition function taking into account heterogeneous 
weights (0.75{0.25), respectively for the error and complexity objective 
functions, is used to select a point on the Pareto front. Although in this 
case we give more importance to error, the distribution of weights can 
be adapted to obtain less accurate but simpler models.

The results are an LSTM neural network architecture with an 

LSTM hidden layer with 80 neurons and a Dense hidden layer with 40 
neurons (5  80  40  1), as well as a model patience, measured in epochs, 
of 20. More information and details of this selection process can be 
found in [31], [57], [58].

B. LSTM Neural Network Performance
Once the optimal LSTM architecture and the stopping criterion 

for training the model have been obtained, two different analyses are 
performed: one based on analysing the improvement in training speed 
produced by a model pre-training and the other focused on comparing 
the differences in accuracy between the built models considering 
the same training process. In this case, the comparison is carried out 
considering three different models: one without pre-training, one with 
a random pre-training and one pre-trained with the parameters of the 
studied installation (number of PV modules, azimuth and slope). In 
this specific analysis, the values of the random parameters selected are 
562 PV modules with an azimuth of 247.5º and a slope of 60º.

On the one hand, Table III, in which the training speed is analysed, 
shows the average results (30 repetitions) of measuring the number of 
epochs each model requires to reach certain error limits, also taking 
into account the time, measured in seconds, required to reach it. 
Normalised data and the Mean Squared Error (MSE), for error limits, 
are considered. The pre-trained models use one year of simulated data 
and all built models are retrained and evaluated with seven months of 
real data (first 4 for training and the remaining for validation).

TABLE III. Average Results of 30 Repetitions of an Experiment in 
Which the Number of Epochs Needed by Each Model to Reach the 

Error Limits Shown Are Analysed. The Average Number of Epochs and 
Time Each Model Needed to Reach the Limits Are Presented

MSE 
Limits

Correct pre-training Random pre-training No pre-training

Epochs [n] Time [s] Epochs [n] Time [s] Epochs [n] Time [s]

0.005 1 4.86 1 4.88 3.90 8.00

0.004 1 4.41 1 4.61 5.27 9.51

0.003 1 4.45 1 4.42 8.43 12.54

0.002 3.33 7.41 18 25.51 42.67 46.11

In the case of the first limits (0.005, 0.004, 0.003), both pre-trained 
models with synthetic data only needed one epoch to reach the limit. 
The model without pre-trainig is the slowest, needing more than 3, 
5 and 8 epochs on average to reach respectively the first mentioned 
limits. Considering the times spent on training, the pre-trained models 
reduce it to half at the first limit and to one third at the third limit. 
With regard to the last error limit, the differences between the three 
built models become more significant. The model with the correct 
pre-training requires on average 3.33 epochs to reach the error limit, 
while the model with a random pre-training requires 18 epochs. 
Moreover, the model without pre-training remains the slowest, 
taking, on average, 42.67 epochs. Observing the times the results are 
similar: the model with a correct pre-training spent, on average, 7.41 
seconds (more than three times less than the model pre-train with 
random parameters (25.51) and more than six times less than the 
model without pre-training (46.11). In this way, it can be seen that 
the improvements, in terms of speed, provided by a pre-training with 
synthetic data are significant considering both correct and incorrect 
parameters. The information extracted in this pre-training generates 
models able to adapt faster to real situations, although considering the 
right pre-training is more efficient.

On the other hand, the results of the study of the accuracy of the 
built models following a homogeneous training process are presented 
in Table IV. The training process is based on a cross-validation 
experiment considering an expanding window; the models are 
evaluated on the seven months of real data available (one by one) 
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using the remaining previous months for training. In addition, the 
LSTM architecture and the stopping criterion considered are those 
obtained in the previous section.

In terms of CV(RMSE), with which the average distance to the real 
curve is measured, it can be observed in Table IV that the average value 
of the model with a random pre-training is significantly higher than the 
others (21.15 % ). The standard deviation among all CV(RMSE) values 
is also the highest (± 5.87), showing a large variability in the results. 
The average CV(RMSE) yielded by the model with correct pre-training 
and the one without pre-training are close, with similar variability, but 
the former is lower (12.84 % and 14.22 % respectively). As for the NMBE 
results, which measure how close the estimations are on average to 
reality, the model with incorrect pre-training has the highest average 
value (0.10 %) and the highest variability in results ( 0.08) (see Table 4). 
In this case, the model with no pre-training presents the lowest value 
(0.07 % ) followed by the model pre-trained with correct parameters 
(0.07 %), both with controlled variances. Regarding the MAE results, 
a metric that measures the average distance to the real values but in 
absolute units, the situation is the same as in the previous errors. The 
model pre-trained with correct simulated data yields the lowest value 
(3.71 kW ±1.18), followed by the model without pre-training (4.17 kW 
± 1.03) and the model with a random pre-training (6.37 % ± 1.96).

TABLE IV. Average Results of a Cross-Validation Experiment 
Considering an Expanding Window and Considering the Accuracy 

of the Models. The Average CV(RMSE), the Average NMBE and 
the Average MAE Are Presented Together With Their Standard 

Deviations (SD)

Pre-training CV(RMSE) [%] SD NMBE [%] SD MAE [kW] SD
Correct 12.84 3.22 0.07 0.04 3.71 1.18

Random 21.15 5.87 0.10 0.08 6.37 1.96

None 14.22 3.21 0.06 0.04 4.17 1.03

Moreover, Fig. 5 shows the performance of the three built models 
over an entire week (specifically, from 12 July 2022 to17 July 2022) 
and considering the similar training process used for the previous 
accuracy analysis. It can be seen that, as presented in Table IV and 
considering the CV(RMSE) results, the model with correct pre-training 

best replicate the real behaviour of the studied PV installation. 
Although the model with no pre-training exhibits an accuracy not 
too far from the model just mentioned, the model pre-trained with 
incorrect simulated data is far from the real data.

In short, it is demonstrated from a speed and accuracy approach 
that pre-training the deep learning model with synthetic data is an 
effective way to improve its performance. Furthermore, in order 
to efficiently get this improvement, it is important to use correct 
simulated data. Pre-training with appropriate synthetic data allows 
to reduce the number of epochs, and thus the computational time, 
required in the training process by more than six times compared with 
no pre-training (see Table III). However, the use of incorrect simulated 
data, although faster than the model without pre-training, increases 
the computational time required in training by more than three times 
compared with the model correctly pre-trained. With respect to the 
accuracy of the models based on similar trainings, the use of incorrect 
simulated data, again, generates a model significantly less accurate 
than the model with a correct pre-training, but also than the model 
without pre-training (see Table IV). In this case, focusing only on the 
final average errors, both the model with no pre-training and the model 
with the correct pre-training show a similar performance, although 
the model pre-trained with the correct synthetic data achieved lower 
errors. These results show that although pre-training with synthetic 
data can provide more speed adapting to real data, if the data used is 
not appropriate, the accuracy of the model can stagnate and not reach 
the levels that would be achieved without pre-training.

Comparing the results of the proposed research with previous 
similar studies, taking into account the differences between 
installations and the improvements shown by the pre-trainings, the 
built models show error values lower or in the same range [59]–[61] 
and complying with the ASHRAE Guidelines [61], [62].

V. Conclusions

A methodology for optimising deep learning model configurations 
and improving their performance by means of pre-training based on 
synthetic data is presented in this paper. In this way, a great time 
reduction can be obtained, not only considering the reduction in the 

Real
125

100

75

kW 50

25

0

125

100

75

kW 50

25

0

125

100

75

kW 50

25

0

12
-07

 00
:00

12
-07

 12
:00

13
-07

 00
:00

13
-07

 12
:00

14
-07

 00
:00

14
-07

 12
:00

15
-07

 00
:00

15
-07

 12
:00

16
-07

 00
:00

16
-07

 12
:00

17
-07

 00
:00

17
-07

 12
:00

18
-07

 00
:00

18
-07

 12
:00

19
-07

 00
:00

Correct

Real
Random

Real
None
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model training time but also in the time devoted to the search for the 
optimal architecture and the optimal training stopping criterion of the 
deep learning model. The study was conducted with an LSTM neural 
network built to perform PV generation predictions and pre-trained 
using synthetic data acquired with TRNSYS software.

On the one hand, the results achieved demonstrate that it is possible 
to pre-train a deep learning model, both with data simulated using 
the correct parameters and using random parameters, significantly 
reducing the time (measured in epochs and seconds) spent in the 
training process. The computational time required for the model to 
reach specific training error values is reduced by up to six times. In 
addition, in relation to the optimisation of DL model configurations, 
the proposed method (based on a multiobjective genetic algorithm) 
also reduces to less than half the evaluations needed to search all 
possible configurations and select an optimal one. On the other 
hand, the impact of using synthetic data generated with erroneous 
parameters is also analysed. In this case, an inadequate pre-training 
not only does not come close to the performance of a correct pre-
training, but even can worsens the situation without pre-training. 
With regard to the accuracy of the built models considering the same 
training process on real data, it is shown that an incorrect pre-training 
produces less accurate models when fed with real data than a correct 
pre-training or a model without pre-training. The former two show a 
similar final accuracy but the model pre-trained with data simulated 
considering the correct parameters yields lower average errors. Here 
is a key insight of the research: although a pre-training with synthetic 
data may provide higher speed of adaptation to reality, if the data used 
in this pre-trainig are far from the real situation, it will affect to the 
final accuracy of the model and even lead to a worse performance 
compared to a model without pre-training.

The main limitation of this research is the amount of data. 
The monitoring period could be longer to reach a full year and the 
availability of data from more PV installations would make this study 
more consistent. The main outcome of this study is the evidence that 
the presented methodology can contribute to improve the performance 
of deep learning models. First, the multiobjective genetic algorithm 
NSGA-II allows us to use an efficiently optimised LSTM neural 
network without the need to evaluate all possible hyperparameter 
options. Second, the use of synthetic data to pre-train the built model 
allows us to significantly reduce the time spent on training and even 
slightly improve the final accuracy of the model. In this way, these 
improvements can be focused on making the use and distribution of 
photovoltaic energy more efficient. Thus, the fulfilment of the European 
Commission targets, commented at the beginning of the paper, will 
be closer. Lastly, this research evidences the importance of selecting 
adequate datasets for pre-training and generating global models that, 
once trained with simulated data, are used in real PV installations.

As future lines of research, more installations based on different 
parameters and different deep learning models could be considered 
to develop a more complete comparison and analysis. Using more 
installations to pre-train the deep learning model, or plug it in with 
a model that estimates the correct installation parameters from 
monitored data, can generate a global model that can be applied to 
different installations instead of having to pre-train the model with 
data specific to the particular installation under study.
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