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Abstract

Traffic optimization systems require optimization procedures to optimize traffic light timing settings in order 
to improve pedestrian and vehicle mobility. Traffic simulators allow obtaining accurate estimates of traffic 
behavior by applying different timing configurations, but require considerable computational time to perform 
validation tests. For this reason, this project proposes the development of traffic optimizations based on the 
estimation of vehicle waiting times through the use of different prediction techniques and the use of this 
estimation to subsequently apply evolutionary algorithms that allow the optimizations to be carried out. The 
combination of these two techniques leads to a considerable reduction in calculation time, which makes it 
possible to apply this system at runtime. The tests have been carried out on a real traffic junction on which 
different traffic volumes have been applied to analyze the performance of the system.
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I. Introduction

ACCORDING to United Nations data, in 2018 55% of the population 
was living in urban spaces, the distribution of the urban 

population varies considerably by region: Northern America 82%, 
Latin America and the Caribbean 81%, Europe 74%, Oceania 68%, Asia 
60% and Africa 43%. The urban population is continuously increasing; 
it is estimated that 66% of the population will live in urban areas by 
2050, an increase of 16% compared to 2008 [1]. These data are very 
similar to those provided by the United Nations organization since in 
2018 it estimated that 68% of the population will live in urban areas in 
2050. This increase implies greater traffic congestion in cities due to 
both the increase in traffic and the unsuitable infrastructures [1].  For 
this reason, programs such as Horizonte Europa have analyzed global 
challenges such as climate, energy and mobility, and in particular, 
intelligent mobility through the optimization of infrastructures. Due 
to this increase in population and the need to improve infrastructure 
management, there is a demand to create systems capable of improving 
traffic efficiency, which will be applied in this project.

Traditional operational research incorporates the use of queuing 
theory to make predictions about different parameters such as waiting 
times [2]. The queuing theory approach in which there are usually 
M/G/s models [3] where M refers to the arrival of vehicles which is 

represented by a poisson, G the service rate which in certain cases can 
be modeled by an exponential and finally, s represents the number of 
servers.  From these definitions, it is possible to determine parameters 
such as waiting times, which will be the object of study of this project. 
However, classical queuing theory would not take into account 
parameters that need to be considered, such as the time lost from the 
moment a traffic light turns green until the cars start moving. For 
these reasons, simulators such as SUMO [4] are currently being used 
for time estimation. The SUMO simulator uses an extension of the 
Gipps model [5] in which aspects such as user reaction time, braking 
time, or speed differences between the vehicles in the queue are taken 
into account.  However, for this study the aim is not to apply the use 
of certain equations, but rather to create a system that is capable of 
estimating waiting times from traffic data obtained from SUMO 
simulations in order to subsequently perform optimizations.

In order to improve traffic efficiency, studies are mainly based on 
the analysis of intersections with or without traffic lights [6].  In the 
study [6] the convenience of introducing traffic lights at an intersection 
is analyzed by converting a nonlinear integer programming problem 
to linear integer programming in order to achieve an efficient 
resolution. The intersection problem is not restricted to decide only 
when it is more appropriate to introduce a traffic light, but it also 
involves the problem of dynamically controlling the timing of traffic 



Regular Issue

- 97 -

lights to reduce waiting times [7] through the application of different 
techniques such as Bayesian networks [8], evolutionary techniques 
[9], reinforcement learning [10], fuzzy logic [11], [12]... Waiting times 
are usually associated with vehicles, but it is also relevant to consider 
pedestrian waiting times since they also have a relevant impact on 
vehicle waiting times at intersections.  

In this project it is proposed a system that allows to cover two 
aspects, first, the system allows to make an estimation of waiting 
times through the use of different prediction techniques, which allows 
to calculate these waiting times without the need of testing with a 
simulator, which would require a high computational time. On the other 
hand, the system allows the optimization of traffic light configurations, 
thus reducing waiting times through evolutionary algorithms. The 
use of estimators allows a considerable time reduction, which makes 
this technique more dynamically applicable to traffic changes. The 
system has been tested on a real intersection on which different traffic 
flows have been applied in order to analyze the performance of the 
prediction systems and also of the optimization method applied. 

The article is structured as follows: section 2 contains a description 
of the state of the art, section 3 the proposal for the data analysis and 
finally sections 4 and 5 the case study and the results obtained. 

II. Related Works

Systems for the improvement of mobility in infrastructures are 
usually based on the management of intelligent traffic lights in which 
the timing of the different states can be changed dynamically [9]. In 
this review we will analyze different studies that determine the timing 
of the different traffic light states in order to reduce the waiting times 
of vehicles. 

Among the studies that can be found are those based on fuzzy logic, 
which have been carried out for quite some time. For example, there is 
the work [13] from 1977, in which a study of time intervals and vehicle 
flow to manage an intersection was carried out. This work includes a 
model for traffic simulation, in which they consider different aspects 
in each traffic light cycle such as number of waiting vehicles, queues, 
saturation, and car delays in order to calculate the optimal time of 
the traffic lights. Subsequently, these studies were extended to more 
intersections [14], [15], [7], [16] and the simulator initially defined in 
[13] was also adapted by incorporating more intersections in one or 
more roads [17]. In more recent studies [11] a combination of Fuzzy 
Logic Controllers and genetic algorithms is performed to optimize the 
management of several intersections with traffic lights, this procedure 
allows using Fuzzy Logic to establish times, specifically the number of 
vehicles in the intersection is taken into account and applying fuzzy 
logic and the Mandami method the time interval of each traffic light 
is established. Genetic algorithms are used to maximize the number of 
vehicles crossing the intersections and fuzzy logic for the estimation 
of the green intervals of the traffic lights. In the paper [7] it is possible 
to find an extensive study on different works in which different 
defuzzification and memberships functions are applied. In some works 
such as [18] the combination of fuzzy logic and a neural network is 
analyzed to control the delay of the green state of traffic lights taking 
into account the size of the queue of cars. There are also works that 
attempt to improve traffic flow from route prediction through the 
use of regression methods for time estimation and fuzzy logic for the 
selection of the best route [19]. 

For the estimation of the time of traffic lights, procedures can be 
applied in order to determine the congestion levels, thus, in k [20] 
the congestion level is estimated through a time series from the use 
of decision trees, regression and neural networks to try to reduce 
pollution and energy consumption collecting data for five days. In the 
work [21] a prediction of congestion is also made through the use of 

neural networks such as LSTM (Long Short-Term Memory) and also 
regressors such as Support Vector Regression, Random Forest, Gradient 
Boosting Regression and other statistical techniques and it is verified 
how these systems are able to predict congestion from the creation of 
matrices that represent congestion, and to do so they use information 
from historical data of speeds, road maps, distances. In  [22] an 
estimation of the daily traffic in England and Wales is made from the 
application of cluster and regression techniques such as Support Vector 
Regression (SVR) and Random Forest (RF).  Likewise in the work [23] 
the SVR is applied to make a traffic flow prediction, but in this case 
other aspects such as meteorological factors are considered. In other 
study [24], traffic flow prediction is carried out through the use of 
an ARIMA model and an LSTM network that predicts the number of 
vehicles in 15-minute periods. First, the linear regression feature of 
the traffic data is captured by using ARIMA, then back-propagation is 
applied to train the LSTM network and capture the nonlinear features 
of the data, and finally, both results are combined based on the dynamic 
weighting of the sliding window. Using three sets of highway data, this 
method was compared with the other techniques separately (ARIMA, 
LSTM and EW) and it was determined that the proposed combined 
model has better prediction effects.

On the other hand, another parameter to be used to describe the 
traffic flow can be the average speed of cars within a given period of 
time [25], generally focused on the short term.  In this work, recurrent 
neural networks are explored using historical time data, as well as a 
number of contextual factors, including additional information such as 
date, week, etc., to determine how accurate the speed prediction is. A 
multi-layered RNN (two versions, one with LSTM and one with GRU) 
is used to learn the sequential traffic data, and a sparse autoencoder is 
used for the contextual data. Both outputs are merged and delivered 
to the predictor (neural network) to learn traffic patterns and predict 
future speed. The model was tested with two real-world data sets and 
compared with ten frequently used models, k nearest neighbor (k-NN), 
support vector machine (SVM), decision tree (DT), gradient booting 
decision tree (GBDT), random forest (RF), stacked autoencoder (SAE), 
LSTM, GRU, Con-vLSTM, BiLSTM, showing that the proposed model 
(specifically the version with LSTM) performs better than the rest in 
terms of stability and accuracy.

Finally, due to the impossibility of considering, with existing 
algorithms, nonlinear historical data and other uncertain factors that 
influence peak-hour congestion, hybrid neural network algorithms 
such as CNN (Convolutional Neural Network) and LSTM are 
also proposed for short-term prediction of traffic flows based on 
multivariate analysis [26]. Traffic information is obtained from a 
Pavement Management System (PMS) that stores data from multiple 
detectors located throughout California, and weather information 
(such as temperature, humidity, etc.) from Mesowest. Experimental 
results show that the combination of CNN and LSTM obtains a high 
degree of accuracy compared to other models.

Another type of methods used for traffic optimization are 
reinforcement learning methods. These methods allow an agent to 
interact in a smart way with the environment in real time. At each 
instant of time, the agent perceives the environment, evaluates the 
policy, and performs the optimal action according to the policy. For 
each action performed by the agent, a reward is assigned according 
to whether this action brings the agent closer to or further away 
from the objectives. From previous observation-action pairs and their 
associated rewards, the agent is able to optimize its policy to maximize 
the rewards obtained. 

Within these reinforcement learning methods, the most commonly 
used in traffic optimization are Q-learning based methods. The most 
common is traditional Q-learning with works such as [27], [28], [29], 
[30] and [31]. Other variants such as Deep Q-learning with works such 
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as [31], [32], and [33]; and Double Deep Q-learning [34] also appear 
frequently in the state of the art.  However, although they are the most 
common, Q-learning based techniques are not the best performers. 
The best results are obtained by other algorithms such as SARSA [27] 
or variants of Actor-Critic, for instance, Traditional Actor-Critic [27], 
Advantage-Actor-Critic [35] o Deep Deterministic Policy Gradient [36].

In addition to the techniques used for traffic optimization, it is also 
relevant to consider the alternatives in traffic simulators. There are 
several software packages for traffic simulation that offer different 
functions and, therefore, it is common to find articles that use different 
options according to the needs of the study or, sometimes, several 
simulators within the same study in order to make comparisons.

For instance, the VISSIM software package can be used to train 
an algorithm using reinforcement learning to optimize the safety of 
signalized intersections [37] This same traffic simulator is also used 
simultaneously with TransModeler [38] as a comparison to demonstrate 
that the proposed SSAT model offers better performance when applied 
to simulate mixed traffic on two-way, two-lane roads. Furthermore, in 
the work [39] the ability of the CORSIM software package to replicate 
the highway failure process is assessed and a sensitivity analysis is 
performed on different driver behavior parameters to determine the 
effect of these on such failures.  However, the simulator finally chosen 
to carry out the tests on the study intersection was SUMO due to the 
widespread use of this simulator in the scientific field such as [30], 
where this software is used to obtain traffic information which will be 
used in a Q-learning algorithm to create a TSC system that maximizes 
the number of vehicles passing through an intersection; or [9], where 
it is used to evaluate in real time the performance of the proposed 
algorithms (swarm heuristic optimization algorithms, PSO) using real-
world data (intersection in Turkey) to optimize traffic light control.

As illustrated above, there are studies that make use of regression 
techniques in traffic analysis, but these studies are focused on 
traffic flow estimation. In this work, the use of these techniques 
will be focused on the prediction of waiting times in order to reduce 
the time in the simulations to determine the behavior of different 
configurations without the need to perform a simulation. The use of 
this procedure would allow the system to adapt to different behaviors 
of the environment without being tied to any simulator, although 
SUMO will be used for testing. Subsequently, this data can be used 
with different optimization techniques, which will reduce computation 
time and thus improve its applicability to dynamic environments that 
require constant traffic adaptations.

III. Proposal

The proposed system consists of three components as shown in 
Fig. 1, the first of which would be the waiting time prediction part 
that allows estimating waiting times based on the time intervals of 
the traffic lights. In addition, it must be considered that it is necessary 
for the traffic lights to comply with some temporal relationships that 
are defined as contracts in such a way that the time intervals of a 
traffic light affect the time intervals of the rest. The second component 
is optimization. Optimization uses the first estimation component to 
generate from evolutionary algorithms an optimal configuration of 
traffic light times to reduce a certain parameter, in this case the waiting 
time of vehicles. The last component is the simulator, which is initially 
used to generate waiting time data from different configurations and 
use this information for the first estimation component; subsequently, 
the simulator component is replaced by the predictor component 
when performing the optimizations in the optimization component.

Environment

Predict Optimize

SUMO

Fig. 1.  System Components.

A. Prediction Component
The prediction component acts as a substitute for the traffic 

simulator during the optimization process. Therefore, its function is to 
estimate the waiting time at the traffic lights from the time intervals 
provided to the traffic lights. In this prediction component, techniques 
based on regressors and neural networks have been incorporated to 
estimate the waiting times. Specifically, Random-Forest [40], AdaBoost 
based on a decision tree [41], Bagging also based on a decision tree 
[42], ExtraTrees using the Gini index for the gain [43], and deep 
learning techniques and neural networks [44]  have also been included 
to make the predictions within the prediction model. 

Four different architectures are used within neural networks: a 
neural network with a single hidden layer, a neural network with 
multiple layers (specifically, 14 layers in the best performing one), a 
neural network with multiple layers and jump connections (specifically, 
16 layers in the best performing one), and, finally, an LSTM.

All these models are trained using data generated by the simulator 
before the optimization process, but future work could use data 
obtained in real environments and remove the simulator completely 
from the system. In addition, adding inputs related to road conditions 
and structure to the predictors could move towards real-time traffic 
optimization by adapting to actual flow conditions.

B. Optimization
Traditionally, in traffic estimation studies, the optimizer launches 

multiple simulations with different parameters in the traffic simulator 
in order to evaluate its efficiency. These simulations are complex and 
have a high time cost, resulting in an inefficient optimization process. 
In this work, the optimizer does not communicate at any time with the 
traffic simulator; instead, the optimizer communicates only with the 
prediction component, greatly accelerating the optimization process 
in exchange for a small penalty in the time cost.

This optimization is performed using a particle optimization 
algorithm, but considering that, in this case, the particles correspond 
to configurations of the traffic lights and , therefore, there are some 
relationships and restrictions between them that must be fulfilled as 
their position is updated. For this reason, in Fig. 2 the information of 
the restrictions and relations between the traffic lights is included in 
order to limit the value in each of the iterations and thus obtain valid 
solutions. Each particle at time instant t is represented by x i(t), and 
will contain as many values as variables are being optimized. X is the 
set of particles, vi(t) is the velocity with which particle i moves, c1 is 
the cognitive acceleration factor, c2 is the social acceleration factor, pi 

is the most optimal solution calculated for particle i, p stores the set of 
most optimal values for all particles, pbeast is the best calculated global 
solution. Ci contains the constraint for traffic light i, ci

l is the lower 
bound for constraint i, and ci

u is the upper bound for constraint i, C 
contains the set of constraints for all traffic lights, T is a set of values 
of the estimation of the time lost for each particle i.
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C. Traffic Simulator
In this work, after evaluating several alternatives, SUMO was used 

as a traffic simulator. SUMO is a spatially continuous microscopic 
traffic simulator. This means that SUMO simulates vehicle-to-vehicle 
traffic flow in a non-discretized space. 

SUMO uses the traffic model proposed by Stefan Krauß [45], [46]. 
This model is intended to be a simpler alternative to previous proposals, 
but, at the same time, to accurately capture traffic dynamics. The model 
is based on car tracking, i.e., the behavior of one car is conditioned by 
the positions and speeds of neighboring cars. Specifically, the S. Krauß 
model is based on the calculation of a maximum speed at which a 
car can go in such a way that it is impossible for it to collide with 
the cars it is following, considering a specific deceleration capacity 
and reaction time. Cars try to go at the maximum safe speed at all 
times. In addition, it introduces a stochastic term in the calculation 
of the current speed as a function of acceleration, which introduces a 
random element into the simulation.

Ultimately, continuous models offer greater accuracy at the cost of a 
performance penalty. Similarly, microscopic simulations offer greater 
accuracy than macroscopic simulations, which simulate the behavior 
of cars at a higher accuracy, again at the cost of a performance penalty. 
The model proposed by Krauß, despite being one of the simplest 
among the spatially continuous microscopic models, also carries a 
high time complexity that scales linearly with respect to the number 
of cars and the number of time instants simulated.

IV. Case Study

In order to simulate the intersection, the SUMO tool was used, 
which has a series of console commands that allow generating the 
flow of cars and pedestrians to carry out the simulation. In order to 
facilitate the continuous use of these commands and to automatize 
the process, all of them were grouped in a Python script that makes 
the necessary calls and creates the files required by SUMO to run the 

simulation. In the following section, we will describe how both the 
generation of cars and pedestrians from this file and the creation of 
the traffic light logic work.

For the generation of cars, we decided to create several flows for 
each of the routes that make up the intersection shown in Fig. 3, each 
of which can have a different number of cars, which is indicated as a 
variable within the Python script. This was done to have more control 
over the vehicles and to be able to make a model which was closer to 
reality, since otherwise the random generation could put all the cars 
on the same route.

Fig. 3.  Car flows of the different routes.

Fig. 4.  Flow generation in the xml file.

The value of these variables will be written inside an xml file (flows.
rou.xml, Fig. 4) specifying the above-mentioned routes so that SUMO 
can understand them, that is, indicating the ids of the origin (from) and 
destination (to). In addition, the time that these flows will last (end), is 
also included, which must coincide with the time that the simulation is 
expected to last, and randomness is added to the frequency with which 
the cars of a flow are generated, since by default a uniform frequency 
is used.  The following variable values were used for this case study:

• simTime: 1000 (Simulation duration in milliseconds)

• flowSanVicenteBaja: 20 cars

• flowSanVicenteBaja_Espejo: 20 cars

• flowMaristas_Espejo: 40 cars

• flowMaristas_SanVicenteBaja: 20 cars

• flowMaristas_SanVicenteSube: 20 cars

// Update particles
     repeat
          foreach (xi) ∈ X do
               vi (t+1) = vi (t) + c1 ⋅ rand ⋅ (pi − xi (t)) + c1 ⋅ rand ⋅ (pbest − xi (t))
               xi (t+1) = xi (t) + vi (t+1)
          end
          // Update constraints according to the relation among semaphores
          foreach ci ∈ C do
               ci = updateConstraint (X, C)
          end
          // Update particles according to the constraints
          repeat
               foreach (xi) ∉ ci do
                    if xi < then
                         xi (t+1) = 
                    else
                         xi (t+1) = 
                    end
               end
          until ∀ixi ∈ ci;
          // Predict time loss with regressor
          T = timeLossParticle (X, regressorCars, C, listSemaphores )
          // Update local and global best
          (p, pbeast) = updateLocalGlobal (T)
     until;
// X matrix with particples
// regressorCars regressor to predict loos time
// C matrix with constraints semaphores
// listSemaphores list with each semaphore

Fig. 2. Optimization Process.
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• flowSanVicenteSube: 20 cars

• flowSanVicenteSube_Espejo: 20 cars

Therefore, a maximum of 160 cars are generated in 1000 ms in total.

The generation of pedestrians is less complex since it is not divided 
into flows (since it is not possible to specify routes for them), so it is 
only necessary to indicate the maximum total number of pedestrians 
in the entire crossing (100 in this case study). In order to carry out this 
task, it was necessary to use the randomTrips tool included with SUMO, 
a Python script that allows to create a random file with pedestrian 
trips (map.pedestrians.trips.xml) by means of the following command:

python “%SUMO_HOME%\\tools\\randomTrips.py” -n map.net.xml 
-o map.pedestrians.trips.xml -r map.pedestrians.rou.xml -e simTime 
-p pPed -l --pedestrians --max-distance 500

Where simTime is the total simulation time (1000 ms), used to 
indicate for how many milliseconds pedestrians have to be generated, 
and pPed is the repetition rate, obtained by dividing the simulation 
time by the number of pedestrians. This is because the script generates 
pedestrians with a constant frequency of 1/pPed per second, so if 100 
pedestrians must be generated in 1000 ms, the frequency should be 
1000/100. Furthermore, the --max-distance option was used to set 
the maximum length of the trips, so that pedestrians would not be 
circulating for too long.

Finally, for the traffic light logic, an additional file (traffic_lights.
add.xml) containing the durations of the green, yellow, red and 
amber phases for each of them. The goal was to reproduce the real 
operation of the traffic lights at the intersection, but at the same time 
allow to modify their durations to a certain extent. For this purpose, 
four variables are used, as shown in Fig. 5, from which the value of 
the other phases of the traffic lights are calculated so that the real 
configuration is respected.

• green1: Green time of the traffic light of San Vicente Uphill (Must 
be less than or equal to green2)

• green2: Green time of the traffic light of San Vicente Downhill

• green3_d: Green time of the traffic light of Maristas (right lanes, 
must be greater than or equal to amber3_i)

• yellow3_i: Amber time of the traffic light of Maristas (left lanes) 
The green time will be calculated by subtracting this value from 
green3_d, so that the left lanes are at most the same time on green 
as the right lanes and, if they last less, the rest will be on amber.

V. Results

In this section, the results obtained with the proposed method 
are discussed, both those of the models for estimating the time lost 
by vehicles at traffic lights (subsection V.B) and those of the traffic 
optimization algorithm (subsection V.C). In addition, there is a section 
in which we discuss why we consider only the time lost by vehicles 
instead of both vehicles and pedestrians (subsection V.A).

A. Time Lost by Pedestrians and Time Lost by Vehicles
Since the methods consulted in the state of the art only consider 

the time lost by vehicles to perform traffic optimization, at the 
beginning of this work, one of the novelties intended to be included 
was to consider the time lost by pedestrians at traffic lights when 
performing this optimization. However, when evaluating the results of 
the optimization using the proposed method, the total lost time (sum 
of the time lost by vehicles and the time lost by pedestrians) predicted 
for specific traffic signal times was far from the time calculated by the 
traffic simulator.

In order to analyze this discrepancy, 1000 runs of the traffic 
simulator were performed with the same traffic light times, specifically, 
those predicted as optimal by the optimizer. In these runs, both the 
time lost by pedestrians and the time lost by vehicles were collected, 
analyzed and plotted as the density plot shown in Fig. 6. In addition to 
the optimal times, two other tests were also performed with different 
values for traffic light times but with similar results. The conclusion 
of these tests is that introducing randomness in the pedestrian paths 
introduced a standard deviation of less than 1 second in the time lost 
by vehicles, but of about 3.5 seconds in the time lost by pedestrians 
with a difference of more than 20 seconds between the minimum 
and maximum. In contrast, by repeating these tests with constant 
pedestrian recoveries and introducing randomization in the vehicle 
paths, the standard deviation of both lost times is very close to zero.
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Fig. 6. Density plot of time lost by vehicles and pedestrians for different 
pedestrian random paths.

The reason behind this disparity in the values of time lost by 
pedestrians when randomness is introduced for pedestrians, but 
not when randomness is introduced for vehicles, is due to the 
implementation of the traffic simulator used, SUMO. Specifically, 
SUMO allows us to specify the number of vehicles that will make 
a route between a specific origin and a specific destination, but it 
generates the pedestrian routes in a completely random way.

Thus, in order to guarantee reproducibility and considering that 
this discrepancy in the results was due to the implementation of 

Fig. 5.  Variables for traffic lights durations.
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the traffic simulator itself, there are two possible solutions to the 
problem: eliminating the randomness introduced in the pedestrians 
or considering only the time lost by vehicles, which have a smaller 
deviation. Since limiting the randomness to only vehicles could 
introduce a bias towards a certain number of pedestrian paths, it 
was decided to consider only the time lost by vehicles to perform the 
optimization.

B. Comparison Between Models for Estimating Lost Time at 
Traffic Lights

As mentioned in Section 3, this project has analyzed the use 
of several artificial intelligence models to estimate the time lost by 
vehicles at traffic lights. The methodology used to evaluate these 
models is described below and a comparison of results is provided.

In order to train these estimation models, we used a dataset 
generated from the lost time at traffic lights retrieved from multiple 
simulations for different traffic light times using SUMO. Specifically, 
these simulations were performed on the scenario described in the case 
study. A total of 625,000 simulations were performed corresponding to 
all possible combinations giving values between 1 and 50 seconds to 
each of the green times of the different traffic lights. In addition, in the 
case of neural network architectures [43], the hyperparameters were 
selected using the Bayesian hyperparameter as the tuning method and 
the mean MAE over a cross-validation of 10 folds as the evaluation 
criteria. The optimizer used was Adam and the batch size (131,072 
samples) was selected to maximize GPU utilization.

To evaluate the performance of each of the models, cross-validation 
of 10 iterations and the mean absolute error (MAE) metric on each 
of them was used. The mean of the results over these 10 iterations is 
given in Table I with a 95% confidence interval.

TABLE I. Mean MAE and NMAE of the 10-Fold Cross-Validation of 
Each Method With 95% Confidence Interval

Method MAE NMAE
Random Forest 0.094 ± 0.000 0.00083 ± 0.00000

Ada Boost 5.488 ± 0.234 0.04840 ± 0.00206
Bagging 0.094 ± 0.000 0.00083 ± 0.00000

Extra Trees 0.006 ± 0.000 0.00005 ± 0.00000
LSTM 1.629 ± 0.004 0.01437 ± 0.00004

Shallow Network 1.761 ± 0.009 0.01553 ± 0.00008
Deep Network 1.143 ± 0.041 0.01008 ± 0.00036

Residual Network 0.873 ± 0.007 0.00770 ± 0.00006

Even though it would be possible to determine which methods 
perform better from the values available in this table, it was decided 
to use the Mann Whitney hypothesis validation test to ensure that 

this assessment has a certain statistical reliability. Specifically, two 
separate tests were performed for all possible pairs of methods. The 
first one had as null hypothesis the equality of the results between 
pairs of methods and as alternative hypothesis the inequality of the 
results between them.  The second test had as the null hypothesis 
the inferiority of the results of the first method and the alternative 
hypothesis the superiority of the results of the first method. The 
results of these tests are shown in Fig. 7.

According to these graphs, it can be shown that the results of the 
Bagging Regressor and the Random Forest Regressor are equivalent, 
while the rest of the methods are quite different from each other. On 
the other hand, it can be observed that the results of the Extra Trees 
Regressor outperform the results of the other methods while the results 
of the Ada Boost Regressor are inferior to the rest. Furthermore, it 
can be observed that the results of neural network based methods are 
worse than those of traditional Machine Learning algorithms, with the 
exception of Ada Boost. Based on these observations, it was decided 
to use the Extra Trees Regressor algorithm as a method for estimating 
the waiting time at traffic lights in order to optimize traffic flow.

C. Traffic Optimization
The traffic optimization experiments were developed using Python 

scripts which use a particle optimization algorithm implemented in 
the pyswarm library. Two implementations were performed. The 
first one used the SUMO simulator to calculate the waiting times 
of vehicles at traffic lights and the second one used the Extra Trees 
Regressor algorithm to calculate an approximation. In the first case, 
the run lasted 1 day, 7 hours, 33 minutes, and 48 seconds. In the second 
case, the run lasted 2 minutes and 26 seconds. Although the difference 
in execution time is dramatic, the results obtained are very similar. 
Specifically, in the first case, the average waiting time for vehicles was 
16.66 seconds and in the second case, 17.26 seconds. 

VI. Conclusions and Future Enhancements

We have developed a system capable of optimizing traffic based 
on particle flooding which improves its performance by replacing the 
traffic simulator with an estimation system based on machine learning 
algorithms. Several estimation methods have been analyzed and the 
one with the best results, the Extra Trees Regressor, has been selected. 
Finally, the loss of precision in the results when using our method has 
been evaluated and it has been observed that the resulting waiting 
time when using the approximator is 0.6 seconds longer than when 
using the simulator. However, the computation time when using the 
simulator (113627.74892 seconds) is up to 777 times longer than when 
using the approximator (146.138249 seconds).
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 Fig. 7.  P-value matrices of the Mann Whitney test for equality and inferiority of the results of the different methods, respectively.
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In future studies, we will analyze the use of other traffic optimization 
algorithms and their compatibility with our Extra Trees Regressor-
based approach. Furthermore, mechanisms will be studied to allow the 
approximation algorithm to be able to generalize to other intersections 
without the need for a complete retraining. Finally, we will consider 
the development of a system capable of collecting data to train the 
estimator automatically by analyzing images obtained by cameras 
implanted in the traffic lights.
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