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Abstract

Privacy breaches on sensitive and widely distributed health data in consumer electronics (CE) demand novel 
strategies to protect privacy with correctness and proper operation maintenance. This work presents a scalable 
Federated Learning (FL) framework-based smart healthcare approach. Remote medical facilities frequently 
struggle with imbalanced datasets, including intermittent client connections to the FL global server. The 
proposed approach handled intermittent clients with diabetic foot ulcers (DFU) images. A data augmentation 
approach proposes to handle class imbalance problems during local model training. Also, a novel Convolutional 
Neural Network (CNN) architecture, ResKNet (K=4), is designed for client-side model training. The ResKNet is 
a sequence of distinctive residual blocks with 2D convolution, batch normalization, LeakyReLU activation, and 
skip connections (convolutional and identity). The proposed approach is evaluated for various client counts 
(5,10,15, and 20) and multiple test dataset sizes. The proposed framework can leverage consumer electronic 
devices and ensure secure data sharing among multiple sources. The potential of integrating the proposed 
approach with smartphones and wearable devices to provide highly secure data transmission is very high. The 
approach also helps medical institutions collaborate and develop a robust patient diagnostic model.
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I. Introduction

TECHNOLOGICAL advancements and globalization result in 
massive data collection by various enterprises and organizations 

using consumer electronic devices. The use of CE devices in data 
collection provides a great help in facilitating better service to humans. 
These data include a Wide range of information, from financial and 
industrial to medical records. However, in the case of medical records, 
the data transmissions from patients require more careful strategies. 
[1]. The greater demand for in-depth analysis of these vast data 
influx results in various advancements in machine learning (ML) and 
deep learning (DL) strategies [2], [3]. However, given the value of 
this information, ensuring the confidentiality and security [4] of the 
analyzed data is of utmost importance [5]. Adherence to regulatory 
requirements, such as the General Data Protection Regulation (GDPR) 

[6], becomes mandatory in many instances. The traditional method for 
applying ML to decentralized data comprises a centralized framework 
sharing data by various entities, shown in Fig. 1. The client must 
transfer data to a centralized server for model training and subsequent 
results. Thereby, each client gets the final results. One of the major 
disadvantages of this approach is data confidentiality and the attributes 
related to it [7]. Furthermore, it requires a high bandwidth and low 
latency communication infrastructure to handle predictions promptly 
and successfully. One potential solution is each data owner possesses 
the model, so transferring data is not required when new information 
becomes accessible [8], [9]. It can decrease latency by making predictions 
for each client individually. Also, it reduces network reliance, lowering 
communication expenses. Nevertheless, each client must transmit 
data to the central server for the initial training of the model [10]. 
Although multiple traditional ML approaches are introduced to design 
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data-driven DFU identification systems, most systems are centralized 
frameworks and work on imbalanced class labels. An approach has yet 
to consider a decentralized technique for model training. FL [11] gains 
popularity as a practical approach to guarantee that data remains 
on the servers of specific data owners, even throughout the training 
process [12]. It preserves essential data privacy when acquiring data 
locally from clients for centralized training is impossible [13]. FL does 
data analysis in a decentralized approach to avoid sending user data 
to central servers [14]. The primary motivation of this work is to 
address the disparity between advanced ML methods and real-world 
applicable conservative, large-scale healthcare solutions, taking better 
care of patient privacy and improving diagnostic performance in low-
resource settings. To build such a robust system that can be put into 
practice on consumer devices for healthcare, the learning process has 
to be offloaded, and data sharing has to be internalized using federated 
learning. The development of DFU often leads to complications such 
as neuropathy and arterial disease in the lower extremities [15]. It 
is imperative to harness advanced ML, DL, and computer vision 
techniques to assist clinicians in accurately diagnosing DFU, thereby 
enhancing patient care. The identification of DFU using ML and DL 
techniques is introduced in various works. In one such work [16], a 
two-stage ML classification approach is proposed that analyzed foot 
thermograms. In another work [17], a novel parallel convolution 
layer-based CNN architecture (DFUNet) is proposed for differentiating 
between normal and abnormal DFU wounds. DFU_QUTNet [18], a 
CNN architecture is introduced for extracting multi-level features, 
which are subsequently input into Support Vector Machine (SVM) and 
K-Nearest Neighbours (KNN) classifiers. The hybridization of Neural 
Networks (NN) and Bayesian Classifiers (BNC) to detect necrotic 
tissue in wounds [19]. A dedicated DL-based model [20] for wound 
image segmentation with wound detection is also considered as a 
significant approach. Traditional ML approaches like a 2-level SVM 
classifier [21] for determining wound boundaries. In a study, standard 
CNN architectures [22] were employed for DFU wound segmentation. 
Later, a new dataset with ground truth labels for ischaemia and 
infection recognition [23].

This paper uses FL to investigate medical images and make 
predictions. While predictions are made, different numbers of clients 
and test image samples are considered. The proposed approach is 
decentralized by a training model with local augmented data. The 
local clients learn from the data they acquire and share the knowledge 
with other clients. At first, the imbalance data are augmented using a 
hybridized oversampling approach with combined capabilities of both 
SMOTE (Synthetic Minority Oversampling TEchnique) and SVM-
SMOTE (Support Vector Machine-synthetic Minority Oversampling 
TEchnique). The proposed augmentation approach helps generate 
suitable synthetic data from the minority class and improves client 

learning. The local machine update (LMU) is then sent to FL for 
global machine update (GMU). This collaborative approach helps 
better learning and provides a more realistic approach to ischaemia 
and infection identification in DFU with data privacy. The key 
contributions of the proposed method are as follows:

1. The use of FL to diagnose DFU without sharing sensitive data 
or related information in a remote healthcare setting to improve 
privacy and security.

2. A hybridized data augmentation technique is proposed to expand 
and balance the class distribution of the samples and examine 
the impact of the proposed augmentation approach on the 
collaborative framework.

3. A deeper residual block-based shallow CNN architecture that 
requires less computational resources for client-side model 
training.

4. The presence of decentralized data and the uneven distribution 
resulting from intermittent clients, the proposed architecture 
exhibits robustness and yields superior performance.

The remaining work sections are: Section II includes related works, 
and section III includes detailed problem definition and system model. 
Section IV offers a detailed description of the proposed methodology, 
outlining the key elements of the approach. Section V carries out 
experiments and provides detailed explanations, shedding light on 
the experimental process and results. Finally, section VI serves as the 
paper’s conclusion, summarising the essential findings and insights 
gathered throughout the work.

II. Related Works

The development of DFU often leads to complications such as 
neuropathy and arterial disease in the lower extremities. It has been 
estimated that approximately 50%of DFU patients will experience 
neuropathy-related issues in later stages, with around 20% of them 
developing arterial blood flow problems. As many as 80% may 
suffer from both conditions simultaneously. However, identifying 
the presence of DFU solely based on its visual characteristics poses 
a significant challenge for clinicians. In many cases, DFU does not 
exhibit consistent shape and texture characteristics, making manual 
diagnosis unreliable [24], [25]. Manual diagnosis of DFU results in 
misdiagnosis in 2 out of every 3 cases. Therefore, it is imperative to 
harness advanced ML, DL, and computer vision techniques [26] to 
assist clinicians in accurately diagnosing DFU, thereby enhancing 
patient care. Developing an automatic diagnostic model can improve 
decision-making reliability at a minimal cost. While some research has 
been conducted in automatic DFU classification, there remains room 
for further investigation and development [27], [28].

Filipe et al. [16] introduced a two-stage ML classification approach 
that utilizes foot thermograms. At first, healthy and infected feet are 
distinguished [29]. In the next stage, assess the severity of the infection. 
However, the approach is costly and requires expertise to handle it. Goyal 
et al. [17] proposed DFUNet, a novel parallel convolution layer-based 
CNN architecture for differentiating between normal and abnormal 
DFU. DFUNet outperformed standard CNNs like LeNet, AlexNet, 
and GoogleNet, as well as traditional low-feature-based classification 
methods. However, the primary objective did not encompass identifying 
ischaemia in abnormal DFU wounds. Alzubaidi et al. [18] presented 
DFU_QUTNet, a CNN architecture for extracting multi-level features, 
which are subsequently input into Support Vector Machine (SVM) and 
K-Nearest Neighbours (KNN) classifiers. The method was compared to 
three standard CNN architectures (GoogleNet, AlexNet, and VGG16) to 
highlight its efficiency. Nonetheless, DFU_QUTNet did not address the 
identification of ischaemia in DFU cases. Another approach involved 

Client 1 Client 2 Client 3 Client N

Parameter Tuning

Data

Res
ul

ts D
at

a

D
at

a

Results

Results

D
at

a

Results

Centralized ServerDeep Learning

Fig. 1. Traditional centralized learning.



Regular Issue

- 7 -

the hybridization of Neural Networks (NN) and Bayesian Classifiers 
(BNC) to detect necrotic tissue in wounds [19]. The NN model extracted 
color and texture features from segmented wound images, which 
BNC then processed for prediction. This method requires strategies 
to reduce false positive detections and enhance efficiency. Scebba et 
al. [20] proposed a DL-based model for wound image segmentation, 
with wound detection performed before segmentation to improve 
generalization. However, similar to the previous approach, this method 
necessitates strategies to minimize false positive detections and 
enhance efficiency. Wang et al. [21] introduced a 2-level SVM classifier 
for determining wound boundaries. Incorrectly identified samples 
from level 1 undergo further processing by the level 2 SVM classifier to 
enhance overall performance. In a study by Ohura et al. [22], standard 
CNN architectures were employed for DFU wound segmentation, 
with U-Net achieving the best results among LinkNet, U-Net_VGG16, 
SegNet, and U-Net. Nevertheless, this approach also requires addressing 
ischaemia identification. Goyal et al. [23] introduced a new dataset 
with ground truth labels for ischaemia and infection recognition. They 
applied various traditional ML-based feature extraction techniques 
[24] and CNN architectures to differentiate between ischaemia and 
infection as binary classification problems [25]. An ensemble approach 
demonstrated significant performance improvements in both tasks, 
although infection vs. non-infection results were less promising 
compared to ischaemia vs. non-ischaemia classification. However, FL’s 
use in DFU research has not yet been explored. But, in the healthcare 
domain, FL gained attention [30], [31]. Haya et al. [32] proposed 
frameworks integrating FL and the Internet of Things (IoT) within 
the healthcare domain. They introduced a data integration approach 
for monitoring patients remotely through IoT without incorporating 
FL into the surveillance process. The work is assessed using ECG 
data, validating that DL surpassed other implemented algorithms in 
performance. The work efficiently integrated FL with an IoT digital 
system to uphold personal privacy. Sun et al. [33] advocated using FL 
to enhance the learning efficiency of IoT-based intelligent automation. 
Numerous researchers [34] proposed specialized federated learning 
paradigms for detecting COVID-19 cases using X-ray images. They 
applied transfer learning on pre-trained algorithms, with residual 
networks exhibiting superior performance. Rahman et al. [35] 
introduced an FL model for healthcare that incorporates a DL edge 
layer and blockchain to enhance security and reliability. A system for 
sharing industrial IoT data using FL and blockchain is also proposed. 
In addition [36], proposed FL method for Electronic Health Records 
(EHRs) in the healthcare domain, showcasing promising results. Baheti 
et al. [37], leveraging FL, employed CT scans to detect respiratory lung 
nodules. Huang et al. [38] utilized a clustering technique to generate 

community-based data with clinical relevance, with their clustering-
based FL model surpassing the standard FL model in performance. 
They addressed the issue of non-IID (Non-Independently and 
Identically Distributed) ICU health information by grouping clients 
into significant clinical populations, thus enhancing fatality and ICU 
wait-time predictions. Furthermore, Lee et al. [39] developed a system 
for patient resemblance learning within a federated environment while 
safeguarding patient privacy. Their model can identify similar patients 
across healthcare centres, even when no records are shared. The related 
works are summarised in table I.

III. Problem Definition and System Model

A. Problem Definition
The DFU are among the most serious diabetic complications 

and consequences often resulting in. These include limb shortening 
through amputation or surgery, lasting nerve pain, or severe infections. 
This makes early identification and diagnosis more imperative, but 
modern diagnostic systems have several limitations.

1. Data Privacy Concerns: A central requirement for deploying 
traditional diagnostic models is data storage and management at 
one central location, creating room for security risks concerning 
privately held information, especially with sensitive medical 
information.

2. Infrastructure Limitations: Many medical institutions may not 
have the necessary equipment to consolidate and analyse large 
amounts of data.

3. Limited access to expensive diagnostic tools: The current diagnostic 
systems are often associated with the need for specialized imaging 
modalities and do not offer many possibilities that could be 
available in every primary care and low-resource setting.

The objective of this work consists of designing an intelligent 
and decentralized DFU diagnosis supporting system overcoming 
the above-mentioned challenges due to the improvement of privacy, 
decreased need for centralized data, and broadening diagnostic tools'  
availability.

B. System Model
To deal with the abovementioned challenges, this work presents a 

novel system model for diagnosing DFU based on federated learning. 
The system allows each clientâ€™s devices, such as mobile phones, 
tablets and wearables, to build local machine-learning models using 
local data without sharing raw data with the central facility. The key 
elements of the system model are defined as follows:

TABLE I. Gap Analysis of DFU Diagnosis Approaches

Study Focus Methods Gaps

Filipe et al. [16] DFU severity classification Two-stage ML with foot thermograms High cost; Expertise required

Goyal et al. [17] DFU classification
Parallel convolution layer-based CNN 

(DFUNet)
Does not address ischaemia

Alzubaidi et al. [18] DFU feature extraction CNN + SVM and KNN classifiers Does not address ischaemia

Veredas et al. [19] Necrotic tissue detection NN + Bayesian Classifiers (BNC) High false positive rate; Efficiency concerns

Scebba et al. [20] Wound image segmentation DL-based model Requires minimization of false positives

Wang et al. [21] Wound boundary determination 2-level SVM classifier Inefficiencies in level 1 classifier

Ohura et al. [22] DFU wound segmentation Standard CNN architectures Does not address ischaemia detection

Goyal et al. [23] Ischaemia and infection recognition Traditional ML-based techniques and CNN Less promising infection vs. non-infection results

Chen et al. [30] Healthcare with Federated Learning FL integration in healthcare Not specific to DFU

Fathima et al. [31] FL in healthcare FL integration with IoT No FL integration in DFU monitoring
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1. Client-Side Architecture:

• Each client contains a local DFU image dataset of diabetic 
patients.

• The ResKNet architecture is employed on the client side for 
model training. ResKNet is designed to be lightweight, efficient, 
and perform well in resource-constrained environments.

• Clients use a hybridized data augmentation approach to handle 
the class imbalance in their datasets, generating additional 
synthetic data for underrepresented classes.

2. Federated Learning Framework:

• The central server orchestrates the training process by 
collecting only the model updates (weights and gradients) 
from each client, instead of raw data.

• The server aggregates these updates using techniques such 
as Federated Averaging (FedAvg) and applies them to the 
global model.

• This decentralized approach ensures that patient data remains 
local, significantly enhancing privacy and reducing the risk of 
data breaches.

3. Data Transmission:

• Client devices periodically transmit their locally trained model 
updates to the central server. These updates are secured using 
encryption protocols to ensure the confidentiality of sensitive 
medical data further.

• The system is robust to intermittent client connections, 
common in resource-constrained environments.

4. Global Model Update:

• Once the central server aggregates the model updates from 
multiple clients, the global model is updated and sent back to 
the clients for further training and improvement.

• This iterative process continues until the global model achieves 
satisfactory accuracy for DFU diagnosis across all clients.

5. Consumer Electronics Integration:

• The system is designed to be integrated with consumer 
electronics such as smartphones, wearable devices, and 
tablets, making it accessible to a wide range of users in various 
healthcare settings, including remote or under-resourced areas.

• The reliance on readily available consumer electronics 
mitigates the need for expensive diagnostic tools, enabling 
scalable deployment.

IV. Proposed Method

The proposed method employs DFU images for infection detection 
and ischaemia identification. The motivation for the proposed 
scheme arises from the need to tackle several critical challenges 
in diagnosing DFU and healthcare diagnostics in general. These 
challenges revolve around privacy concerns, class imbalances in 
medical datasets, resource constraints in healthcare settings, and the 
high costs associated with traditional diagnostic tools. The proposed 
scheme is designed with these specific challenges in mind, leveraging 
advanced machine learning techniques in a way that is both efficient 
and scalable. The primary goal is to show how FL enables the secure 
and privacy-preserving sharing of crucial private information in CE 
devices when integrated alongside a CNN architecture. The proposed 
FL architectural system in CE, depicted in Fig. 2, is connected to remote 
hospitals through intermittent clients. Fig. 2 visualizes the overall flow 
and structure of the federated learning system. The left side of the 
figure illustrates the local training process on the client devices. Each 

device performs model training using locally collected data and applies 
data augmentation to handle class imbalances. The middle section 
of the figure shows the process of sharing model updates with the 
central server. Instead of raw data, only the updated model parameters 
are transmitted, ensuring privacy protection. The right side of the 
figure demonstrates the aggregation process performed by the central 
server. The server collects the updates from all participating clients, 
applies the FedAvg technique, and updates the global model. This 
global model is then redistributed back to the clients and used as the 
basis for further local training. This entire process iterates, gradually 
improving the global model’s ability to diagnose DFU accurately while 
maintaining data privacy and minimizing the need for expensive 
infrastructure or specialized medical devices. These remote hospitals 
provide DFU images for the training procedure. Data augmentation 
guarantees data balance before application in local training machines 
to create LMU. Every hospital supplies LMU to the centralized server 
through local training weights. The centralized server, akin to a hub in 
a CE system, collects LMU from many remote hospitals and combines 
them to generate GMU. The GMU is then returned to the hospitals for 
updating to achieve precise classification findings. This collaborative 
exchange is reminiscent of the resonance in CE ecosystems, where 
information is shared for shared development. This work extensively 
tested the suggested method, considering scenarios involving 
intermittent clients and diverse image samples to determine its 
usefulness and make the best classification performance feasible. The 
proposed technique for decentralized model training in DFU images 
utilizing the FL approach is divided into five steps. These processes 
involve collecting datasets, augmentation, dealing with intermittent 
clients, client-side model training, and server-side model aggregation.

A. Dataset Preparation
The dataset is accessed from Manchester Metropolitan University, 

London. The creators compile the dataset from Lancashire Teaching 
Hospitals, London. The dataset is divided into two subdirectories: 
DFU images for detecting ischaemia (dataset 1) and infection (dataset 
2) images. Both tasks rely on binary classification, which can aid in 
evaluating DFU wounds by identifying Ischaemia and Infection. The 
dataset 1 initially had 1459 complete foot pictures (210 Ischaemia and 
1249 Non-ischaemia). Then, 1666 patches are extracted with the region 
of interest (ROIs) in mind. In dataset 2, the initial number of whole 
foot photos was 1459 (628 infected and 831 non-infected), and 1666 
patches were created from them. A few example image patches from 
both datasets are shown in Fig. 3.

B. Data Augmentation
The data augmentation approach can efficiently address overfitting 

concerns and enhance the model’s overall outcomes. Recent research 
has seen the emergence of various innovative approaches to advance 
the data augmentation field. Each customer might possess diverse 
image samples within each category in this situation. Consequently, 
this could lead to the potential problem of class imbalance. The 
dataset is comprised of 628 samples of infectious nature and 831 
samples classified as normal. The normal class contains more 
samples, whereas the infectious class has a minor representation. 
The class imbalance problem is solved with hybridized oversampling 
techniques combining strategies of SMOTE and SVM-SMOTE. At 
first, the samples are divided equally. Secondly, in the first half of 
the samples, SMOTE oversampling was used to generate minority 
samples diagonally by choosing a random minority sample and 
its K-nearest neighbours. Thirdly, the SVM-SMOTE oversampling 
method was applied to half of the samples left out. At last, separately 
generated synthetic samples are combined to get a balanced and more 
representative and balanced dataset. The data generation has been 
conducted in the following steps:
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Fig. 3. Example images: (a)-(b) Non-Ischaemia, and (c)-(d) Ischaemia images from DFU Ischaemia (dataset 1). (e)-(f) Non-Infection, and (g)-(h) Infection images 
from DFU Infection (dataset 2).
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1. Divide the training samples T into T1 and T2, where |T1| = |T2|.
2. For each sample in T1, do the following:

• Choose any minority sample 'r' from the feature space.

• Select any instance 'm' from the k nearest neighbors of 'r'.

• Generate a synthetic sample SSMOTE along the line segment 
between 'r' and 'm', where SSMOTE = r + w × (m − r), and w is a 
random number in the range [0, 1].

3. For each sample in T2, do the following:

• Train an SVM with T2 to find the decision boundary.

• Choose a minority sample 'r'.

• Select any instance 'm' from the k nearest neighbours of 'r' 
within the decision boundary line segment.

• If the number of majority samples among the k nearest 
neighbors is less than half:

 - Generate a synthetic sample SSVMSMOTE either above or below 
the line segment connecting 'm' and 'r' (extrapolation).

• Else, generate a synthetic sample ’s’ between the line segment 
connecting 'm' and 'r' (interpolation).

4. Combine the synthetic samples generated in steps 2 and 3 to create 
a new set of training samples T'.

C. Irregular Clients
Several variables can contribute to the issue of infrequent clients. 

The most prevalent issues typically revolve around constraints in data 
transmission, network connections, and computing infrastructure 
[25]. Here, approaches are employed to address irregular clients, and 
the imbalance dataset is used.

• The proposed method is being tested on various clients, with 
some departing and others joining. The weights obtained during 
training sessions are not considered if a client departs from the 
system. The weights from the new client are integrated into the 
aggregation. In this scenario, the model performance is influenced 
by the image samples provided by the new client. This approach 
can yield improved classification results if the new client possesses 
sufficient picture samples for local training. However, it is 
important to note that new clients with fewer picture samples may 
negatively impact the aggregation weights.

• Upon a client’s departure, its latest weights are retained and used 
in subsequent aggregations to update the model. The weights 
obtained from the most recent client are added to the aggregation, 
and the departing client’s image samples are used to evaluate the 
model’s performance.

D. CNN for Client-Side Model Training
On the client side, each FL client utilized personal data and local 

resources to execute mini-batch ADAM and local CNN training. The 
algorithm 1 is used for local client training. In algorithm 1, the inputs 
W eight refer to the local model weight, and W eightT refers to the global 
model weight at round t. Db is the data size in batches and DPk is data 
points on client K. The local data trains the local model with collected 
weight W eightT . Once the weights are collected, the updated W eightT the 
W eight is updated. After iteratively running ADAM with local epochs 
aligned to create the most recent model update, the client computes 
a gradient update. The newly updated parameters are subsequently 
transmitted to the global server to update the data stored on the server. 
Further, the significant role played by the proposed CNN. The proposed 
CNN architecture, Res4Net, is designed as a shallow network with a 
deeper structure based on residual blocks. This network comprises 
a sequence of distinctive residual blocks involving 2D convolution, 
batch normalization, and LeakyReLU activation, connected by skip 

connections (convolutional and identity). A visual representation of 
the model’s layer-by-layer architecture can be observed in Fig. 4. The 
first residual block output block with skip connection can be defined 
mathematically from eq. (1).

 (1)

The next consecutive residual block contains no skip connection 
and can be derived mathematically by eq. (2).

 (2)

where Res4Netblock(1/3) is the output of residual blocks 1 and 3. ADD 
represents addition operation Convskip_1W×H×D is skip convolution layer 
with width W, height H, and D channel depth. The BN stands for batch 
normalization, and LR stands for leakyReLU activation function. After 
the convolution operation, The batch normalisation output will help 
balance input feature map distribution. The output of BN operation 
OutB,C,X,Y is derived in eq. (3).

 (3)

where InputB,C,X,Y  is a four-dimensional input with batch (B), Channel 
(C), X, and Y are spatial dimensions. The μC represents mean activation 
and βC and σC are channel-wise affine transmission.

Algorithm 1: Client-Side Model Training (LMU)

Input: (Weight, WeightT). 
Output: Local Model Update (LMU) Weight

   1:   Begin (Weight = WeightT)        // Initialization
   2:   Spit Db ← DPK, where Db is batch data size and DPK is data points  
        for client K.
   3:   Update Weight(T, D) with ADAM optimizer and initial learning  
         rate 1e − 2.
   4:   for local epochs i from 1 to N: do         // Beginning of outer
         for loop
   5:      while use optimizer: do                            // Optimizer loop
   6:         for every D(bi) in Di: do                           // Data batch loop
   7:            Find GlobalD

(bi)  ←  σD(Weightb, N).        // Global update
   8:            Save Weight ← Weightb ← GlobalD

(bi).    / Weight update
   9:         end for        // End of data batch loop
 10:      end while        // End of optimizer loop
 11:   end for           // End of outer for loop
 12:   return Weight as LMU.          // Return LMU

E. FL Server-Side Model Aggregation
The LMU is the weight after training clients with irregular clients. 

The LMU from the client side forms GMU on the FL server side. The 
details of GMU formation are discussed in algorithm 2. If CN is the 
client’s number and Ck is the number of client data for k, k ∀ [1, ..., CN], 
then the average weight from clients is calculated with eq. (4).

 (4)

The aggregated weights on the FL server side can be calculated 
using eq. (5).

 (5)
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Algorithm 2: FL Server-Side Aggregation (GMU)

Input: Weight, FLn (Federated cycles).

Output: Weightagg, weight aggregation.

   1: Begin FLn ← 0, Weight0, both cycles and weight initialized to 0.

   2: Compute M ← MAX(C × k, 1) maximum clients.

   3: Select It randomly of n clients at t cycle.

   4: while k ← It: do    // Beginning of while loop
   5:    Update weight Weightt−1 to It−1.

   6:    Weightt
tk ← update(tk, Weightt−1).    // Update current weight

   7: end while                  // End of while loop
   8: Aggregation Weightagg ← Weightt

tk.   // Aggregating  
                weights
   9: return Weightagg

V. Performance Analysis

The proposed model performance is evaluated with the help 
of multiple important evaluation metrics. Further, the results are 
represented and analyzed with the help of various tables and graphs. 

The following subsections include a detailed discussion of results 
evaluation and discussion.

A. Evaluation Metrics
The proposed approach is evaluated for varying-sized test data 

from intermittent clients. The proposed approach tested the capability 
of identification of infection vs. non-infection DFU wounds. Five 
evaluation metrics are recorded to check the performance of the 
proposed approach. The evaluation matrices considered Accuracy, 
Precision, Sensitivity, Specificity, and F1-Score are given in eqs. (6) - (10).
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Fig. 4. The proposed CNN (ResKNet) architecture for client training.
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In eqs. (6)-(10), TP refers to True Positive, TN refers to True Negative, 
FP refers to False Positive, and FN refers to False Negative counts.

B. Results and Discussion
The data collected from consumer electronic devices to train an FL 

framework to learn from data can be analysed using various parameters. 
One such measure is the training vs. validation loss curve. The training 
vs. validation loss curves on the server side are shown in Fig. 5 for both 
datasets. Fig. 5 (a) is the loss curve for dataset 1 (ischaemia vs non-
ischaemia), which shows training loss in blue coloured and validation 
loss in orange coloured. The training loss constantly decreases, but 
the validation loss shows a more dynamic nature. On the other hand, 
in the case of dataset 2, a more suitable training and validation loss 
curve is achieved. In Fig. 5 (b), for dataset 2, the training loss linearly 
decreases. However, in the case of validation loss, a sharp increase 
is observed in the 45th epoch. Additionally, the proposed method 
examines intermittent clients, selecting a certain amount of clients in 
every run while utilizing 300 instances from both datasets as the test 
data. Table II reports the classification results of dataset 1 for 5, 10,15, 
and 20 clients. In case 5 clients’ classification between ischaemia and 
non-ischaemia, the precision, sensitivity, and specificity scores are 
96.44%, 97.43%, and 96.46%, respectively. However, for non-ischaemia 
classes, a small improvement of the results is observed between 1-2% 
for 5 clients. Furthermore, the accuracy and F1-score values are the 
same for both classes at 96.90% and 97.47%, respectively. Similarly, for 
clients, 10 table II indicates that on increasing the number of clients 
to 10, classification performance increases. The classification results 
are improved (1-2)% compared to 5 clients. The results suggest that 
the sensitivity score of the non-ischaemia class is slightly higher than 
the ischaemia class. This is the reason for the larger value of false 

negative counts. However, the interesting observation from table II is 
that an increase in client numbers increases the performance of the 
proposed system. The reason behind the performance improvement 
is an increase in client numbers reduces the load. Further, with 
15 clients for dataset 1, the highest score in the ischaemia class is 
98.37%, 98.67%, and 98.38% for precision, Sensitivity, and Specificity, 
respectively. These results are again better than 5 and 10 clients. 
Another important observation is that the proposed approach achieved 
higher performance in ischaemia identification than non-ischaemia 
identification for 15 clients. The last setup results with client 20 are 
reported in table II. The proposed approach achieved almost perfect 
results in identifying both ischaemia and non-ischaemia. In the case 
of the ischaemia class, the highest precision, recall, and specificity are 
99.18%, 99.49%, and 99.20%, respectively. Similarly, with a small low 
score for the non-ischaemia class, the highest precision, sensitivity, 
and specificity scores are 98.99%, 99.18%, and 99.00%, respectively. The 
overall accuracy score is 99.50%, with an F1-Score of 98.41. Therefore, 
starting from 5 clients to 20 clients, the results are improved, which 
signifies that an increase in clients helps in better learning and thereby 
improves performance.

Result table III shows the performance of the proposed approach 
with 5, 10, 15, and 20 clients in dataset 2. The classification results 
of infection are poor compared to the ischaemia classification. The 
highest results for the infection class in terms of precision, recall, and 
specificity are 85.90%, 82.81%, and 85.36%, respectively. Similarly, table 
III shows results with 10 clients for dataset 2. In the case of dataset 2 
for infection and non-infection, both classes show a sharp increase in 
results. The results are improved by more than 3%. However, in the 
case of 10 clients, the identification results of the non-infection class 
slightly decreased.
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Fig. 5. Training and validation loss curve: (a) DFU Ischaemia (dataset 1). (b) DFU Infection (dataset 2).

TABLE II. Results With Different Clients Using Dataset 1

Class Client Precision Sensitivity Specificity Accuracy F1-Score

Ischaemia
5

96.44 97.43 96.46
96.90 97.47

Non-Ischaemia 96.74 96.84 96.97

Ischaemia
10

97.15 97.20 97.18
97.25 97.55

Non-Ischaemia 97.06 97 97.07

Ischaemia
15

98.37 98.67 98.38
98.73 98.41

Non-Ischaemia 97.87 98.27 97.88

Ischaemia
20

99.18 99.49 99.20
99.50 99.36

Non-Ischaemia 98.98 99.18 99.00
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Once the number of clients further increased to 15, the performance 
of the proposed approach improved, as shown in table III. But the 
increment is quite promising, with an average value of (4-5)%. In the case 
of infection identification, the results are reported as 92.84%, 89.19%, 
and 92.59% for precision, sensitivity and specificity. The improvement 
in sensitivity score is lower than the other two evaluation metrics due 
to the large count of false negative values. Similarly, an improvement 
is observed in the case of non-infection identification compared to 10 
clients. However, the improvement is slightly lower than the infection 
class. The identification of positive class always has a higher priority 
in medical diagnosis.

The last records in table III show the results of dataset 2 with 20 
clients. There is a significant improvement in both infection and non-
infection identification. The results with 20 clients are (4-7)% higher 
than 15 clients. Also, the results are improved to around 4% for the 
non-infection class. The increase in clients helps improve the results 
of the proposed approach. However, in the case of dataset 2, where 
identification of the correct class is more complex than dataset 1, there 
are more improvements. Further, the training and test accuracy in the 
line graph for different client numbers (dataset 1) is shown in Fig. 6 (a). 
The difference between training accuracy and test accuracy reduces the 
client number is increased. Similarly, Fig. 6 (b) shows the train and test 
accuracy for different clients in dataset 2. The characteristic of the line 
graph is similar to dataset 1. The reduction in train and test accuracy 
differences from 10 clients shows that the model learns very well and 
provides more generalization once the client numbers are increased.

In FL architecture, collaborating hospitals can produce LMUs using 
a variety of image sets as test data. Therefore, evaluating the proposed 
approach with random test data is very important. The proposed 
model is analyzed using varied test data sizes from both datasets. 
The results for dataset 1 on taking various image sample sizes are 
reported in table IV. The different numbers of image test samples are 

taken as 200, 150, 100, and 50. In the case of 200 test samples, the 
overall accuracy is 98.22%, and the F1-score is 98.91%. The precision, 
sensitivity and specificity scores in the ischaemia class are slightly 
higher than the non-ischaemia class. Further, when the test sample 
size is reduced to 150, the overall accuracy and F1-score scores are 
reduced to 97.46% and 97.05%, respectively. Similar characteristics are 
observed in the case of ischaemia and non-ischaemia, where precision, 
sensitivity and precision are reduced by around 1%. The highest 
overall accuracy and F1 scores are achieved for a test sample size of 
100 with the values of 99.54% and 99.12%, respectively. With 100 test 
sample size, the performance of ischemia identification is better than 
non-ischaemia identification. In the case of ischaemia identification, 
the highest sensitivity score is 99.08%. Similarly, the scores of 
precision and specificity are 99.18% and 99.10%, respectively. The 
performance of non-ischaemia with a 100 test sample size is slightly 
reduced, but it is the highest result among other test sample sizes. 
The precision and sensitivity scores for non-ischaemia are 98.77%. 
The specificity score is also almost the same, with a value of 98.80%. 
Further, when the test sample is reduced to 50, the overall accuracy 
and F1-score outperformed compared to the 200 and 150 sample sizes. 
More specifically, with an accuracy of 99.03%, it is the second-best 
performing sample size. The sensitivity score of the ischaemia class 
is 98.67%, whereas for non-ischaemia, it is 98.27%. The results of 
considered test samples for dataset 2 are reported in table V. Similar 
characteristics are observed for infection vs. non-infection datasets as 
well. The overall accuracy and F1-score of 200 and 150 test samples 
are poor compared to 100 and 50 sample sizes. In the case of 200 test 
samples, the accuracy score is achieved as 85.86%, Which is further 
reduced to 83.71% with a 150 sample size. The F1-score for 200 samples 
is reported as 85.52%, and the lowest F1-score of 81.05% is reported 
with a 150 sample size. In individual classes, the precision, recall, 
and specificity scores for infection are 86.58%, 83.46%, and 86.06%, 

TABLE III. Results With Different Clients Using Dataset 2

Class Client Precision Sensitivity Specificity Accuracy F1-Score

Infection
5

85.90 82.81 85.36
84.04 84.86

Non-Infection 86.80 83.46 86.42

Infection
10

88.59 83.73 88.18
87.09 85.33

Non-Infection 88.03 84.28 87.65

Infection
15

92.84 89.19 92.59
91.34 90.32

Non-Infection 91.92 87.56 91.71

Infection
20

99.95 94.10 97.02
96.26 94.49

Non-Infection 95.55 91.65 96.47
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Fig. 6. The training and test accuracy on different numbers of clients: (a) DFU Ischaemia (dataset 1). (b) DFU Infection (dataset 2).
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respectively, with 200 samples. These scores slightly improved for the 
non-ischaemia class with around 1%. Among all considered sample size 
settings, the highest results are reported with a 100-test sample size. 
The overall accuracy and F1-score are 96.31% and 94.51%, respectively. 
In the case of infection with 100 samples, the highest precision, 
sensitivity and specificity results are 97.10%, 93.28%, and 97.00%. A 
slightly low sensitivity score compared to precision and specificity is 
due to a somewhat high value of false negative count. Similarly, in the 
case of non-infection identification, the results are impressive, with a 
slight decrement around (1-2)% compared to infection. The second-
best result is achieved with a sample size of 50, where the accuracy 
and F1-Score are 90.38% and 88.01%. The evaluation of different test 
data sizes for dataset 1 and dataset 2 is shown in Figs. 7 (a) and 7 
(b), respectively. The difference between training and test accuracy 
for 200 and 150 is higher than 100 and 50 in both datasets. Therefore, 
the observation from these tables is that the proposed approach can 
greatly help evaluate small sample sizes in real-life clinical practice. 
Fig. 8 shows the comparison of the proposed approach in terms of 

accuracy and F1-Scores with state-of-the-art works. The proposed 
approach outperforms the popular standard CNNs. The significant 
improvements of the proposed work with nearly (4-9)% of accuracy in 
dataset 1 and (2-24)% in dataset 2 shows its importance in diagnosing 
the disease.

VI. Conclusions

This paper presents a federated learning-based approach for the 
automatic diagnosis of DFU, addressing key challenges such as data 
privacy and diagnostic accuracy. By leveraging a decentralized learning 
framework, this work enables training machine learning models 
directly on client devices, such as smartphones and tablets, without 
transferring sensitive patient data to a central server. This approach 
significantly mitigates privacy concerns commonly associated with 
centralized data processing in healthcare. Furthermore, the proposed 
approach introduces a hybridized data augmentation technique to 
handle class imbalance in DFU datasets, improving the model’s ability 
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(b)
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200 150 100 50200 150 100 50
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Fig. 7. The training and test accuracy on different test data sizes: (a) DFU Ischaemia (dataset 1). (b) DFU Infection (dataset 2).

TABLE IV. Results With Different Test Data Size Using Dataset 1

Class Client Precision Sensitivity Specificity Accuracy F1-Score

Ischaemia
200

97.67 98.16 97.69
98.22 98.91

Non-Ischaemia 97.36 97.86 97.39

Ischaemia
150

96.67 97.45 96.69
97.46 97.05

Non-Ischaemia 96.16 96.84 96.19

Ischaemia
100

99.08 99.18 99.10
99.54 99.12

Non-Ischaemia 98.77 98.77 98.80

Ischaemia
50

98.57 98.67 98.60
99.03 98.61

Non-Ischaemia 98.27 98.27 98.30

TABLE V. Results With Different Test Data Size Using Dataset 2

Class Client Precision Sensitivity Specificity Accuracy F1-Score

Infection
200

86.58 83.46 86.06
85.86 85.52

Non-Infection 87.24 83.96 86.06

Infection
150

84.51 82.16 83.77
83.71 81.05

Non-Infection 85.13 82.48 83.06

Infection
100

97.10 93.28 97.00
96.31 94.51

Non-Infection 96.25 92.47 96.11

Infection
50

90.83 87.56 90.31
90.38 88.01

Non-Infection 89.98 86.74 89.59
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to classify ischaemia and infection in DFU. Using lightweight CNN 
(ResKNet) demonstrates the feasibility of running effective models 
even on resource-constrained devices, offering a practical solution for 
real-world healthcare applications. The result shows that the federated 
learning system achieved strong performance across multiple 
communication rounds, with continuous improvements in accuracy 
and reductions in model loss. The system’s effectiveness is further 
validated with high precision in correctly classifying DFU stages, 
with minimal false positives and false negatives. This performance, 
coupled with the system’s scalability and ability to function in low-
resource environments, underlines its potential for widespread 
deployment in developed and developing regions. Ultimately, the 
proposed approach has the potential to provide accessible, affordable, 
and privacy-preserving diagnostic support for DFU patients. Future 
research could expand on this work by exploring more sophisticated 
data augmentation techniques to further enhance model performance, 
particularly in scenarios with more severe class imbalances. Applying 
the federated learning framework to other medical domains may 
improve data privacy and diagnostic accuracy across various 
conditions. These developments could help strengthen the impact of 
federated learning in healthcare, making it a key enabler for secure 
and effective medical diagnostics in diverse settings. 
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