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Abstract

Detecting Alzheimer’s disease (AD) in its early stages is essential for effective management, and screening 
for Mild Cognitive Impairment (MCI) is common practice. Among many deep learning techniques applied 
to assess brain structural changes, Magnetic Resonance Imaging (MRI) and Convolutional Neural Networks 
(CNN) have grabbed research attention because of their excellent efficiency in automated feature learning of a 
variety of multilayer perceptron. In this study, various CNNs are trained to predict AD on three different views 
of MRI images, including Sagittal, Transverse, and Coronal views. This research use T1-Weighted MRI data of 3 
years composed of 2182 NIFTI files. Each NIFTI file presents a single patient's Sagittal, Transverse, and Coronal 
views. T1-Weighted MRI images from the ADNI database are first preprocessed to achieve better representation. 
After MRI preprocessing, large slice numbers require a substantial computational cost during CNN training. To 
reduce the slice numbers for each view, this research proposes an intelligent probabilistic approach to select 
slice numbers such that the total computational cost per MRI is minimized. With hyperparameter tuning, batch 
normalization, and intelligent slice selection and cropping, an accuracy of 90.05% achieve with the Transverse, 
82.4% with Sagittal, and 78.5% with Coronal view, respectively. Moreover, the views are stacked together and 
an accuracy of 92.21% is achived for the combined views. In addition, results are compared with other studies 
to show the performance of the proposed approach for AD detection.
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I. Introduction

ALZHEIMER'S Disease (AD) is the most common type of dementia. 
It is a irreversible, progressive, and chronic neurodegenerative 

disease starts with mild memory loss and possibly leading to the 
serious memory loss and even death [1]. AD involves parts of the brain 
that control thought, memory, and language. It is clinically expressed 
by cognitive dysfunction, amnesia, and steady loss of various brain 
functions and everyday living independent actions [2]. AD patients 
are anticipated to grow worldwide from today's figure of 47 million 
to 152 million by 2050 [2]. This anticipated increase will produce 
tremendous medical, social, and economic impacts [3], [4]. AD may 
cause shrinking in some areas of the human brain, reduce the brain's 
hippocampal size, and in some cases, lead to an enlargement in the 
brain ventricles [4]. Additionally, the pathogenesis of AD remains 
not fully explored, and the available therapies cannot reverse it or 
completely stop its progression. Mild Cognitive Impairment (MCI) and 

Cognitive Normal (CN) tests are typically conducted by neurologists to 
detect AD [5]. However, these tests are challenging and complex. [6]. 
Studies have shown that most patients who suffer from Mild Cognitive 
Impairment are at risk of developing Dementia or other forms of AD.  
About 10–15% of people with MCI progress to AD annually [7].

Detecting AD using MCI screening is critical for successfully 
designing and implementing care practices and policies to counter 
disease deterioration. Therefore, early and stages detection is crucial to 
slow down the progression of the disease as it enables the development 
of early intervention and treatment plans [8]. Neuropathology changes 
in the brain help detect AD and its progression. For instance, the 
brain’s gray matter loss has accompanied MCI and AD [6]. Typically, 
neurologists use clinical methodologies such as Cerebrospinal 
Fluid (CSF) examinations to classify AD [9]. An increase in the 
norepinephrine level in the CSF indicates AD progression. The CSF 
is usually collected directly from the brain ventricles [10]. However, 
CSF collection and examinations carry risks [11], [12]. Alternatively, 

Please cite this article as:   
M. Irfan, S. Shahrestani, M. ElKhodr. The Application of Deep Learning for Classification of Alzheimer's Disease Stages by Magnetic Resonance Imaging 
Data, International Journal of Interactive Multimedia and Artificial Intelligence, vol. 9, no. 2, pp. 18-25, 2025, http://dx.doi.org/10.9781/ijimai.2023.07.009



Regular Issue

- 19 -

non-invasive procedures such as MRI have been used by physicians 
to determine and assess any changes in the brain. Neurologist uses 
MRI scans to observe and analyze the structural changes in the 
brain that might be caused by AD, MCI, and CN manifestation [13]. 
Therefore, neuroimaging helps in visualizing the structural changes 
in the brain. Fig. 1 shows the changes in the brain of an AD patient.  
The ventricle enlargement and the changes in the hippocampal size 
can be observed in these MRI samples, which were taken from the 
ANDI database. Fig. 1 shows a comparison between images of an AD 
brain with cortical atrophy with the MRI images of an MCI and a CN 
patient. The brain texture changes with the progression of AD disease 
(CN to MCI to AD). Morphological changes in the texture, volume, 
and structure of the brain are usually used as indicators of the brain’s 
health [14], [15].

Many studies, such as reported [16]-[26], have used neuroimaging 
biomarkers to predict the stages or the progress of AD. Commonly, 
MRI images are extensively used in all these studies due to their 
high resolutions and reasonable cost. Many successful machine 
learning frameworks have used MRI to predict AD [27], a few of them 
including RF (random forests) [28], SVM (support vector machine) 
[29], and boosting techniques [30]. Current machine learning 
frameworks generally involve a manual assortment of the defined ROI 
(regions of interest) of the patient brain based on known MRI feature 
representation [16]-[26], [31]. 

However, Manual ROI assortment can be susceptible to subjective 
errors [30], [32], [33]. A manual and automated ROI assortment 
comparison is presented in [33]. The findings demonstrate 
significant differences between manual and automated approaches 
to ROI analysis.  The automated process led to a larger estimated 
task-related effect size. The percent of activated voxels in the 
automated approach was also more prominent than that of the 
manual approach in both lesioned and control brains and the right 
and left hemispheres [33]. 

To fill this gap, this study proposes the application of deep learning 
to extract signifying features from brain MRI images. The proposed 
method utilizes a four-layered Convolutional Neural Network (CNN) 
architecture to classify clinically evaluated patients with AD into 
people with MCI and those who are CN. 

A two-dimensional (2D) CNN architecture to detect the different 
stages of AD is proposed in this work. The labeled data is selected 
from the ANDI dataset [34] and applied 2D-CNN with preprocessing 
to improve the detection accuracy. The MRI data to train the CNN 
has three different labels: AD, MCI, and CN, respectively. This work 
has considered T1-weighted data files. Each file contains a sagittal, 
coronal, and transverse view. A sample of the views is shown in 
Fig. 2. Noise is evident in MRI images. Therefore, preprocessing is 
first applied to extract the brain parts from these images. A three-
layered CNN architecture with two dense layers is implemented 
to detect AD stages. The preprocessing pipeline in this study 
includes skull stripping, spatial normalization, smoothing, grey 
normalization, slicing, and resizing. After tuning the parameters and 
hyperparameters of the CNN, the prediction accuracies of AD stages 
are significantly improved. In addition, intelligent frame selection 
and batch normalization reduced the model overfitting. The main 
contributions of this study include:

a) Sagittal Slice b) Coronal Slice c) Transverse Slice

Fig. 2. Sample views of MRI images from the ADNI database.

• A 2D CNN architecture to detect the different stages of AD is 
proposed which is trained on the labeled data from ANDI dataset.

• Efficient preprocessing pipeline, slices selection and cropping 
is proposed to reduce the input data size and avoid model’s 
underfitting.

• The proposed model is trained on three views of MRI, separately 
and combined. 

• A wide set of comparison is performed between different views 
and the recent state-of-the-art literature.

The remaining of this paper is organized as follows. Section II 
presents the background of this work and its related studies. Our 
proposed methodology for classifying AD stages is explained in 
Section III. Section IV discusses the obtained experimental results and 
outcomes. Finally, the last section gives the conclusions of this work. 

II. Related Studies 

Deep learning approaches attempt to imitate the human brain by 
utilising CNNs, RNNs, stacked auto-encoder, and deep belief networks 
(DBNs) [35], [36], [37], [38]. They transform low-level features available 
in the data to build an abstract high-level representation of the learning 
systems [39]. A dual-tree complex wavelet transform-based method 
in [40] extracts features from the input, followed by classification 
with FDNN (feedforward neural network). CNN is a deep multilayer 
artificial neural network (ANN) composed of convolutional layers, 
allowing a model to extract feature maps learned from the product of 
inputs and kernels, thereby detecting the patterns. Moreover, CNNs 
have shown high accuracy in feature classification [41]-[43]. In the 
segmentation applications, CNNs outperformed other methodologies 
such as SVM and logistic regression, which showed less intrinsic 
feature extraction capabilities [44]. CAD (Computer-Aided Diagnosis) 
systems built on CNNs successfully detect neurodegenerative diseases 
[45]. CNN architectures, including the ResNet and GoogleNet, have 
been successfully used in differentiating the healthy from AD and MCI 
[46]. LeNet-5 CNN architecture differentiates AD from the NC brain 
[47]. A deep supervised adaptive 3D-CNN in [48] predicted AD by 
stacking 3D Convolutional autoencoders without stripping the skull 
structure. ResNet-152 in [41] obtained highly-discriminative features 
to detect the stage of the disease progression (AD, MCI, and CN) using 
neuroimaging data taken from the ADNI database. The study in [49] 
has used transfer learning and VGG-16 pre-trained architecture for 
multiclass AD classification on AD, MCI, and CN. The study in [50] 
implemented 3D-ResNet-18 with data augmented Resnet-18 for feature 
extraction to classify AD stages accurately. ResNet-18 architecture 

Cognitive Normal (CN) Mild Cognitive Impairment (MCI) Alzheimer’s Disease (AD)

Fig. 1. Cross-sections from MRI images of CN, MCI, and AD.
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was modified in [51] for the binary AD classification: CN vs. AD, CN 
vs. MCI, AD vs. MCI, and CN vs. MCI. The Transfer Learning scheme 
is used in [52] for the three-way classification (AD, CN, MCI) of MRI 
images, implemented in three pre-trained CNNs, including ResNet-18, 
ResNet-50, and ResNet-101, respectively. A 2D-CNN architecture in 
[53] used ResNet-50 with diverse activations and batch normalization 
to classify brain slices into NC, MCI, and AD. 

SegNet can classify patients’ AD stages using extracted 
morphological local features from the brain [54]. Resnet-101 also 
attempted to classify AD, MCI, and CN stages. In [55], A 3D-CNN used 
a classifier to differentiate the CN and AD using brain MRI images. 
Using the ADNI dataset, a probability-based CNNs fusion in [47] used 
DenseNet to detect AD stages. A 3-D Net-121 with a 70% dropout rate 
is shown to detect the AD stages [56]. A layer-wise Transfer Learning 
using VGG-19 in [57] discriminated the CN, early MCI, late MCI, and 
AD. Another Transfer Learning method was presented in [58], which 
recommended VGG-16 to accurately classify brain MRI slices into 
CN, MCI, and AD. A pre-trained AlexNet in [59] extracted significant 
features from the MRI images to classify the AD. Another fine-
tuned pre-trained AlexNet, presented in [60] used Transfer Learning 
to classify the MRI images. In addition, a modified AlexNet in [61] 
with the parameters adjustment discriminated AD stages. In [62], 
various pre-trained architectures were utilized after fine-tuning the 
Transfer Learning approach for CN, MCI, and AD classification from 
the ADNI dataset. For the AD and MCI prediction, an ensemble of 
densely-connected 3D-CNNs is suggested in [63] for improving usage 
of extracted features. The CNN topologies for the binary classification 
(AD/MCI or MCI/CN) are proposed in [64] by integrating freezing 
characteristics engaged from ImageNet dataset. Usullay MRI images 
are used with one or few views without removing the redundant 
information and noise. In addition, no preprocessing is generally 
applied for neural networks to learn better. After styding the related 
research, the issues addressed by preprocessing the MRI images along 
with noise removal for efficient feature learning. Many denoisiyng 
methods can be applied such as in [65]-[67].

A 2D CNN architecture to detect different stages of AD is proposed 
in this work. The CNN architecture is fine-tuned on the dataset, which 
is preprocessed by a feature engineering method. After parameters and 
hyperparameters tuning the CNN, AD stages’ prediction accuracies 
are significantly improved. The intelligent frame selection and batch 
normalization reduced model overfitting. The MRI data to train the 
CNN has three different labels: AD, MCI, and CN, respectively. This 
work has considered T1-weighted data files. Each file contains a 
sagittal, coronal, and transverse view.   

III. Methodology 

A. Dataset 
This study uses the MRI data from the Alzheimer’s disease 

Neuroimaging Initiative (ADNI) database. ADNI is a labeled dataset 
that has three different labels, i.e., Alzheimer’s disease (AD), Mild 
Cognitive Impairment (MCI), and Cognitive Normal (CN). This dataset 
contains data about the multiple visits of the same patient during the 
trial. There are 2182 NIFTI files (3D view MRI images). Each NIFTI 
file contains a single subject’s sagittal, coronal, and transverse views. 
There is almost 200+ sequenced frames of all three views of the MRI 
images. Sample views of some of the MRI images taken from the ADNI 
database are presented in Fig. 2. Since the initial views are noisy and 
difficult to process, therefore, brain part has been extracted from the 
MRI to allow further processing. These details of this process are 
provided in Section B. The dataset distribution gender and label, along 
with the statistics, age, and the number of visits, are given in Table I.

TABLE I. The Dataset Distribution

Male Patients 1279
Female Patients 930
Cognitive Normal (CN) 748
Mild Cognitive Impairment (MCI) 981
Alzheimer’s Disease (AD) 453
Average Age of Patients 76.23
Average Patients Visits 4.10
Age Standard Deviation 6.80

B. MRI Preprocessing   
The T1-Weighted MRI data from the ANDI in NIFTI format was 

preprocessed using the CAT12 toolkit of SPM12 toolbox (MATLAB 
third party toolbox) with default settings. The preprocessing pipeline 
includes skull stripping, spatial normalization and smoothing 
such that after preprocessing, all MRI images follow the dimension 
(121×145×121), that is (X × Y × Z) with a spatial resolution of 
(1.5×1.5×1.5) mm3/voxel. In addition, all MRI images, including 
each voxel value, were normalized in terms of signal intensity. The 
original value was divided by the actual maximal value of the MRI 
image. This normalization yields values in the range of 0 and 1. The 
resultant views after preprocessing the pipeline are shown in Fig. 3. 
The 3D-MRI (121×145×121), which is the number of sagittal, coronal, 
and transverse views, were acquired via re-slicing, i.e., (145×121), 
(121×121), and (121×145), respectively. All the 2D slices were resized 
to (145×145) after edge padding and zero filling. After resizing, each 
2D slice was squared, whereas the central and spatial resolution of the 
reformatted MRI image remained unchanged. 

(A) (B) (C)

Fig. 3. MRI Preprocessed Views; (A) Sagittal Slice, (B) Coronal Slice, and (C) 
Transverse Slice.

1. Skull Stripping 
A skull stripping method is integral in brain image processing 

applications [68]. It acts as a preliminary step in numerous medical 
ML applications as it increases the speed and accuracy of diagnosis 
manifold [69]. It removes non-cerebral tissues like the skull, scalp, 
and dura from brain images. Adaptive Probability Region-Growing 
(APRG) is a method that refines the probability maps by region-
growing techniques [64]. This is currently the method with the most 
accurate and reliable results. This research has removed the skull from 
MRI data using the APRG method.

2. Spatial Normalization
Human brains differ in size and shape, and one goal of spatial 

normalization is to deform the human brain scans, so one location in 
one subject’s brain scan corresponds to the same location in another 
subject’s brain scan. More specifically, images from different subjects 
must be transformed spatially so that they all reside in the same 
coordinate system, with anatomically corresponding regions being in 
similar locations. Spatial normalization is a particular form of image 
registration that maps a subject’s MRI image to a reference brain space 
to allow comparisons across subjects with varied brain morphologies 
[70]. This research used Diffeomorphic Anatomical Registration 
Through Exponentiated Lie Algebra (DARTEL) registrations and its 
existing templates for spatial registration. Furthermore, an optimized 
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shooting approach is applied that uses an adaptive threshold and 
lower initial resolutions to obtain a good tradeoff between accuracy 
and calculation time by selecting the first of the six images (iterations) 
of a DARTEL template similar to work conducted in [65].

3. Smoothing
Smoothing is used to remove the different noises from the MRI 

frames. Then, the Gaussian filter is applied to the MRI data to reduce 
the noise. The images are shown in Fig. 3, which depicts the finalized 
preprocessed frames of all three views.

C. Proposed Features Engineering
After preprocessing, there are almost 150 slices per view per MRI 

image. These large numbers of frames require substantial computation 
power to train a CNN model on them. Moreover, data redundancy 
would cause the CNN to be overfitting. Therefore, reducing the number 
of frames of each view is essential to reduce the total computational 
power needed to process each MRI. To address this challenge, a recent 
research has randomly selected 40 sagittal slices, 50 coronal slices, and 
33 transverse slices, i.e., 123 slices of a subject’s 3D brain image [66]. 
However, the random selection of frames is not convincing as it is 
unknown which frame contains more information. Random selection 
can lead to loss of information. To fill this gap, this research relied 
on a new method that used statistical analysis when selecting the 
important frames. Firstly, several informative pixels are calculated. If a 
slice has less than a threshold value of informative pixels, these slices 
were discarded, and the remaining frames are selected. The formula 
used for calculating the number of informative pixels is given in (1):

 (1)

Where N0 is the number of zeros in an image, HI is the Height of the 
image, and WI is the width of the image. This study has selected the 
highest 40 informative frames of each view, resulting in 120 frames 
per patient. The process of statistical selection of frames has resulted 
in reducing the computational complexity of MRI features selection 
process. Given that every single frame contained various sizes of the 
informative region. A generic average windows size was calculated for 
all the patients and all the three views (sagittal, coronal, and transverse) 
using the proposed algorithm. The subsequent slices have further 
reduced the computational complexity of the MRI file processing. A 
sample transverse view after slice cropping is shown in Fig. 4.

Fig. 4. Sample Transverse View of Slices.

Algorithm for Generic Windows Size
for slice in ISS (Intelligently Selected Slices):
       for patient in patients:
            find top, bottom, left, and right first zero vector
            drop the zero valued vectors from frame
average the cropped image (windows size)

D. Convolutional Neural Network (CNN)
The CNN neural model has recently gained significant research 

attention with remarkable success in recognizing images [42]. The 
input images move through a chain of convolution layers with 
CNN, including filtering, pooling, and fully connected dense layers. 
In addition, the softmax activation function is usually applied for a 
probabilistic classification of the images between 0 and 1, making 
CNN appropriate for image feature representation learning. In CNN, 
a convolution layer contains the extraction and mapping of features. 
During the feature extraction, all neurons are connected to the local 
accessible fields of the higher layer for local feature extraction. After 
the local feature extraction, a spatial relationship with other features 
is concluded.

On the other hand, convolution operations are applied to the input 
data using learnable filters (kernels) to produce a feature map during 
the feature mapping. Multiple feature maps can be computed with a 
chain of filters. In this manner, the CNN parameters are tuned and 
can be effectively reduced. After the convolutional layer, the max-
pooling layer executes a down-sampling operation in addition to the 
spatial dimensions. Such a distinctive dual-feature extraction scheme 
can successfully moderate the feature resolution. The activations 
usually use nonlinear functions such as the sigmoid, tanh, ReLU, and 
Leaky ReLU. To accelerate the learning and prevent overfitting of the 
proposed model, pooling layers were integrated into the CNN. This 
layer reduces the samples extracted from the data, thereby reducing 
the spatial information. Average pooling and max-pooling are the 
prominent pooling schemes. The FC (fully-connected) layer is similar 
to the Artificial Neural Network (ANN). Its task is to set a path for 
effective detection. An example demonstration of the CNN model’s 
convolutional, pooling, and fully connected layers are shown in Fig. 5. 

This study mainly used CNN with the following architecture to 
recognize 2D MRI images. The preprocessed MRI image was fed into 
the CNN model as feature extraction and mapping vectors. Then, 
the max-pooling layer learns the features from the training data. 
This process improves the effectiveness of CNN instead of manually 
extracting the features. The CNN was trained by applying the learnable 
filters and convolutional operations. Using a local weight distribution 
has significantly reduced the complexity of the model. The format for 
CNN with 3D input data follows (Width × Height × No. of Frames). All 
three views of a single MRI image were treated separately. For each 
view, an individual CNN was trained. The model architecture for 3D 
inputs is provided in Table II. The model configurations are provided 
in Table III. 

Input MRI Image Convolutions Pooling Layer

Fully
Conn
ected
Layer

Fig. 5. Example demonstration of the convolutional, pooling, and fully connected layers of the CNN model.
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The CNN model proposed in this study contains three convolutional 
layers with different filter numbers, sizes, and strides, two max-
pooling layers, and two fully-connected dense layers. Leaky activation 
and batch normalization are used after the convolutional layers. The 
architecture of the layers used in the CNN is shown in Fig. 6. The 
first convolutional layer contains 32 (3×3) size filters and stride 1. 
Similarly, the second and third convolutional layer contains 64 and 128 
filters of size (3×3) and stride 1. All pooling layers use a max-pooling 
scheme with the pooling window size of (2×2) and strides 2. The last 
max-pooling layer’s output is passed through the flattening layer and 
converted 2D data into 1D. The output of the flattened layer is fed to 
the fully-connected dense layer with 100 neurons using softmax as the 
activation function. The fully-connected layer is an Artificial Neural 
Network (ANN) based- architecture. ADAptive Moment (ADAM) 
estimation is used to optimize the learning weights of model, which is 
extended version of stochastic gradient decent [68]. The learning rate 

and momentum are fixed to 0.0001, 0.9, and the binary cross-entropy 
loss function in the CNN model training. If validation accuracy is not 
improving and patience to stop reaches to maximum point, the model 
stops at that point, as provided in Table III.

IV. Experimental Results and Discussions 

The intelligent frames selection dropped the initial frames with 
more than 50% zeros. After intelligent frame selection, the frames were 
normalized between 0 and 1. Finally, the preprocessed data is trained 
and tested on the same CNN model (as explained in section 3.3). The 
methodology includes three different strategies. Firstly, different MRI 
views were trained on the same CNN. This research first presents 
transverse slices’ results where the input frame size was (123×98). 
Initially, an accuracy of 80.21% is achieved with the transverse view. 
However, after tuning the parameters and hyperparameters of CNN 

TABLE II. Layers and Parameters in CNN Model for MRI Images

Layers Output 
Shape Para# Layers Output 

Shape Para# Layers Output 
Shape Para#

Conv2D
L-ReLU

(41, 32, 32)
(41, 32, 32)

11552
0

Conv2D
BN

L-ReLU
Maxpool

(13, 10, 64)
(13, 10, 64)
(13, 10, 64)
(13, 10, 64)

18496
256
0
0

Conv2D
BN

L-ReLU
Maxpool

(4 3, 128)
(4 3, 128)
(4 3, 128)
(4 3, 128)

73856
512
0
0

Flatten Layer: (None, 1536), Para# = 0

Dense Layer: (None, 100), Para# = 153700  

Dense Layer:  (None, 3), Para# = 303  

Total Trainable Para#: 258,291

(BN= Batch Normalization, Conv2D= 2D Convolution, L-ReLU= Leaky ReLU, Maxpool= Maxpooling layer)

TABLE III. Model Configurations Table

Parameter Configuration

Learning Rate

Initial Value 0.001
Nature Timely Decreasing (Adaptive)

Reduction Factor 0.1
Minimum Possible Value 0.00001

Reduction Monitoring Validation Accuracy
Patient to Reduction 2 times

Stopping Criteria
Stopping Monitoring Validation Accuracy

Patience to Stop 20 times
Initial Learning Rate 0.001

Weights
Trainable Yes

Initial Weights Random

Training

Optimizer Adam
Loss Categorical Cross-Entropy

Maximum Possible Epochs Infinite
Batch Size 32

Validation Split 15%

Performance Metric
Accuracy

Loss

Input

Conv2D BatchNorm Leaky ReLU Maxpool

(41x32x32)

(13x10x64)

(13x10x64)

(4x3x128)

(4x3x128)

Fla�en
Layer

Dense
Layer
100

Dense
Layer
100

Fig. 6. The architecture of the layers used in the CNN.
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model, the prediction accuracy improved from 80.21% to 90.5±1.5%. 
In addition, an intelligent frame selection and batch normalization 
reduced the model overfitting. Also, a precision of 87.2±1.2%, Recall 
with 90.7±1%, and F1 with 90.7±1% F1 measures are achieved with 
transverse views. Secondly, the results of the sagittal slices where 
the input frame size to CNN was (106×123) were noted. With the 
proposed probability-based frame selection and features engineering, 
the achieved accuracy was 80.5±2.5% for sagittal views.

Moreover, other measures achieved are precision of 80.5±2.5%, 
Recall with 82.3±2.7%, and F1 score with 81.5±3.1%. Lastly, the results 
of the coronal slices, where the input frame size was (104×97), were 
compiled with intelligent frame selection and feature engineering. 
It achieved an accuracy of 78.5±4.5% for the coronal views. Table IV 
shows the performance measures in terms of accuracy, precision, 
recall, and F1 scores for three MRI views, sagittal, coronal, and 
transverse, respectively. The results indicate that better performance 
was achieved with transverse views, and the accuracy has improved 
from 78.5 ± 4.5% to 90.5 ± 1.5%, whereas precision improved from 80.5 
± 2.5% to 87.2 ± 1.2%. This research work has combined all views and 
trained the same CNN architecture. With this strategy, an accuracy 
of 92.21% has been achieved. Table V shows all the corresponding 
measures for the three combined views. The CNN model has been 
trained and validated for 50 epochs and achieved 90.41% testing 
accuracy on transverse view.

TABLE IV. CNN’s Performance Analysis for Three Separate Views

View Transverse Sagittal Coronal
Accuracy 90.5 ± 1.5 82.4 ± 2.9 78.5 ± 4.5
Precision 87.2 ± 1.2 80.5 ± 2.5 77.3 ± 3.3

Recall 90.7 ± 1 82.3 ± 2.7 79.1 ± 2.8
F1-score 90 ± 1.3 81.5 ± 3.1 77.8 ± 3.1

TABLE V. Performance Analysis of CNN Trained on All Views

Combined Views
Accuracy Precision Recall F1-Score

92.21 ± 1 89.47 ± 1.3 91.05 ± 2.7 90.25 ± 3.1

Additionally, to further evaluate the performance of the proposed 
CNN model, the model with frame selection was compared with the 
PCA+SVM [71], 3D-SENet and CNN+EL 3D-SENet [66]. As a central 
element of CNN, the convolution operation enables networks to obtain 
informative feature representation by combining spatial and channel-
wise information within local fields. The results in terms of the accuracy 
of the different models are given in Table VI. It can be observed that CNN 
with the proposed probabilistic frame selection for early AD detection is 
more accurate and robust than the PCA+SVM, 3D-SENet, and CNN+EL. 
The model’s accuracy improved from (71.33 ± 0.29)% with PCA+SVM 
to (83.33 ± 2.96) % with the proposed approach. Also, the accuracy is 
increased from (75.11 ± 0.23)% and (75.11 ± 0.60) % with 3D-SENet and 
CNN+EL to (83.33 ± 2.96)% with the proposed model.

TABLE VI. Performance of the Proposed CNN With Other Models  

Models Accuracy of Models
PCA+SVM 71.33 ± 0.29
CNN+EL 75.11 ± 0.60
3D-SENet 75.11 ± 0.23
Proposed 83.33 ± 2.96

The transfer learning with pre-trained models, such as the AlexNet, 
VGG, and GoogleNet, was also examined against the proposed 
approach. Most of the classification-prediction problems in medical 
imaging have been implemented with SVM. Table VII compares the 

SVM and other models to investigate the performance. The trained 
model was the most convenient tool for the AD detection prediction 
problem based on classification accuracy and prediction responses. 
The SVM classifier presented the result with (70~80) % accuracy. 
However, CNN models provide a prediction accuracy of (80~90) %, as 
represented in Fig. 7. 

TABLE VII. Performance Analysis of the Proposed CNN With State-of-
the-Art Models  

Models Accuracy of Models
Deep learning using AlexNet 85.14%
Deep learning using VGG16 88.92%
Deep learning using VGG19 90.02%

Deep learning using GoogLeNet 87.29%
Support Vector Machine (SVM) 74.25%

Proposed 92.21 ± 2.96
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Fig. 7. Overall Accuracy of SVM and CNN-basedModels.

V. Conclusions 

This research aimed to deploy unconventional deep learning 
methods to determine whether they can extract helpful Alzheimer’s 
disease biomarkers from Magnetic Resonance Imaging and classify 
brain images into Alzheimer’s disease, Mild Cognitive Impairment, 
and Normal Cognitive groups. The T1-Weighted MRI data from the 
ANDI database in NIFTI format was preprocessed, but many MRI slices 
required a massive computational cost. Therefore, it was essential to 
reduce the slice numbers for three MRI views to minimize the total 
computational cost. Probabilistic frame selection was proposed to 
address the problem, which has improved the overall CNN accuracy 
from 80.21% to 90.5±1.5. This study first trained CNNs on three 
different MRI views (transverse, sagittal, and coronal). During this set 
of experiments, the proposed approach achieved a better accuracy of 
(90.5 ± 1.5) and a precision of (87.2 ± 1.2) for transverse views.

Furthermore, all three views were combined and tested with CNN 
using MRI scans. This proposed approach improved the performance 
and achieved (92.21 ± 1) accuracy and (89.47 ± 1.3) precision. With 
intelligent frame selection, the trained CNN model achieved an 
accuracy of 92.21%, which is significantly better than similar models. 
It is observed that the absolute accuracy has increased from 71.33% 
(PCA+SVM), 75.11% (CNN+EL), and 75.11% (3D-SDNet) to 83.33% with 
the proposed CNN approach. The transfer learning with pre-trained 
models, such as the AlexNet, VGG, and GoogleNet, was also examined. 
The CNN models obtained the results in terms of accuracy of (80~90) 
%, which is higher than SVM classifier, which produced results with 
an accuracy of (70~80) %. The end-to-end implementation of CNN 
to classify AD, MCI, and CN groups in three different MRI views 
reflects the identification of distinctive elements in brain images. In 
this context, the proposed approach represents a promising tool in 
finding the biomarkers helping the early AD detection, eventually 
taking critical and successful care policies to counter deterioration in 
the disease.
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This study includes on T1-weighted MRI scans to detect the 
different stages of AD. Although with such arrangement, the model 
achieved the state-of-the art results surpassing the related studies, but 
furher improvements can be achieved if T2-weighted scans are also 
utilized. In addition, microarray gene expression data can be used to 
classify the disease.  
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