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Abstract

Deep learning (DL) networks have grown into powerful alternatives for speech enhancement and have 
achieved excellent results by improving speech quality, intelligibility, and background noise suppression. 
Due to high computational load, most of the DL models for speech enhancement are difficult to implement 
for real-time processing. It is challenging to formulate resource efficient and compact networks. In order to 
address this problem, we propose a resource efficient convolutional recurrent network to learn the complex 
ratio mask for real-time speech enhancement. Convolutional encoder-decoder and gated recurrent units 
(GRUs) are integrated into the Convolutional recurrent network architecture, thereby formulating a causal 
system appropriate for real-time speech processing. Parallel GRU grouping and efficient skipped connection 
techniques are engaged to achieve a compact network. In the proposed network, the causal encoder-decoder 
is composed of five convolutional (Conv2D) and deconvolutional (Deconv2D) layers. Leaky linear rectified 
unit (ReLU) is applied to all layers apart from the output layer where softplus activation to confine the 
network output to positive is utilized. Furthermore, batch normalization is adopted after every convolution 
(or deconvolution) and prior to activation. In the proposed network, different noise types and speakers can 
be used in training and testing. With the LibriSpeech dataset, the experiments show that the proposed real-
time approach leads to improved objective perceptual quality and intelligibility with much fewer trainable 
parameters than existing LSTM and GRU models. The proposed model obtained an average of 83.53% STOI 
scores and 2.52 PESQ scores, respectively. The quality and intelligibility are improved by 31.61% and 17.18% 
respectively over noisy speech.  
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I. Introduction

SPEECH enhancement (SE) aims to suppress background noise 
signals from the target speech, which include non-speech noise, 

competing speech, and room reverberations [1]. SE is used as a front-
end in various real-world applications such as robust ASR systems and 
mobile phone communications where real-time processing is required. 
In such applications, SE is required to perform with little computational 
complexity and provide near-instantaneous outputs. The aim of this 
study is to focus on single-microphone speech enhancement, operating 
in real-time systems. For listeners using digital hearing aids, a delay of 
3 milliseconds is perceptible, whereas delays longer than 10 msec are 
intolerable [2]. Speech enhancement techniques have made significant 
progress during the last several decades. Speech enhancement 

techniques may be divided into two categories depending on the 
quantity of microphones used, that is, single-channel based and multi-
channel. The high-availability and low-cost single-channel approaches 
nevertheless have significant research significance, even if the extra 
spatial information of the microphone array may assist in reducing the 
direction-related noise interference. As a result, the goal of this work is 
to concentrate on real-time, single-microphone speech enhancement. 
Delays of 3 milliseconds or less are noticeable to listeners, whereas 
those of 10 milliseconds or more are unpleasant [2]. In these situations, 
a causal SE system is often necessary to prevent delays. A Causal SE 
system is often a requisite in such applications to avoid delays. 

In recent years, SE has been formulated as a supervised learning 
problem where a deep neural network (DNN) learns a mapping 
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function from the noisy features to a time-frequency mask [3]. The 
ideal binary mask, which categorises time-frequency units into the 
speech-dominant and noise-dominant, was the first training-target 
used in supervised speech enhancement [3]. More recent training-
targets include ideal ratio mask (IRM) [4]-[5] complex ratio mask [6], 
mapping-based targets related to the magnitude or power spectra of 
the target speech [7]-[8], ideal amplitude mask [9]. For supervised SE, 
both noise and speaker generalizations are vital. An easy but useful 
approach to cope with noise generalization is to train a network with 
large noise types [10]. Likewise, a large number of speakers can be 
used in a training set to deal with speaker generalization. However, in 
the presence of several training speakers, a feedforward DNN is inept 
at tracking a target-speaker [10]-[11]. 

The training-targets in the time-frequency domain are mainly 
divided into two classes: the masking-based and mapping-based 
targets. The masking-based targets describe a time-frequency 
relationship between the clean speech and background noise signals, 
whereas the mapping-based targets correspond to the spectral 
representations of clean speech. In the masking-based class, ideal 
binary mask (IBM) [12], ideal ratio mask (IRM) [4] and spectral 
magnitude mask (SMM) [4] only use the magnitude between clean 
speech and mixture speech, overlooking the phase spectrum. 
Alternatively, the phase-sensitive mask (PSM) [13] incorporated the 
phase information and showed the importance of phase spectrum 
estimation. Afterward, complex ratio mask (cRM) [6] can be used to 
recover speech efficiently by improving both real and imaginary parts 
of the clean and noisy speech spectrograms simultaneously. Recently, 
[14] proposed a convolutional recurrent network using one encoder 
and two decoders to estimate the real and imaginary spectrograms 
(complex spectral mapping) of the noisy speech concurrently. It is 
important that the complex ratio mask and complex spectral mapping 
obtain the complete information of a speech signal to accomplish 
the best SE performance. The convolutional encoder-decoder (CED) 
and GRU produce a convolutional recurrent neural network (CRN), 
which is used to develop the SE in this article. CED is a strong tool 
for extracting temporal and spatial patterns from raw data. A causal 
system that is suitable for real-time speech processing is created 
by integrating a convolutional encoder-decoder and GRUs into the 
convolutional recurrent network architecture. In comparison to 
typical RNNs, GRU has the capacity to learn long-term temporal 
dependencies in speech signals with a far smaller number of trainable 
parameters. The contributions of this study are summarized as:

• A causal SE system which is appropriate for real-time speech 
processing is created by integrating a convolutional encode-
decoder and GRUs into the convolutional recurrent network 
architecture. 

• For an appropriate shape of the inputs required by GRUs, the 
proposed model has grouped the fully connected recurrent neural 
networks into disconnected parallel recurrent neural networks, 
where the forward information flow remains the same.

• By adding the skipped connections, to avoid gradient decay, 
which connect the output of the encoder to input of decoder 
output doubles the feature Maps, results in increasing the model 
complexity. Therefore, in the proposed model, add-skipped 
connection between conv-deconv layers having (1×1) kernel size 
is proposed which improves network performance at negligible 
complexity.

The remaining of the paper is organized as follows. Related studies 
on the research are presented in Section II. Description of the proposed 
model is given in Section III. The experimental setup and results are 
given in Section IV. Finally, the paper is concluded in Section V.

II. Related Studies 

Generally, a DNN individually predicts labels for all time frames 
using small context windows and cannot control long-term context 
windows that are essential for target speaker tracking. Recently, studies 
[11], [15] suggest that it is better to formulate SE as a sequence-to-
sequence process to control the long-term context windows. Recurrent 
Neural Networks [16] and Convolutional Neural Networks have been 
employed with such a formulation where training and testing with 
different noise types and speakers can be carried out. A four-layer 
LSTM model for speaker generalization is proposed in [15]. The 
results showed that the LSTM model generalized better to untrained 
speakers and considerably outperformed a DNN-based model in terms 
of speech intelligibility. Recently, a dilated convolution-based gated 
residual network is developed in [17]-[18] which demonstrated better 
generalization potential for untrained speakers at various SNRs when 
compared to the LSTM by [10]. However, the gated residual network 
requires future information for spectral masking or spectral mapping. 
Thus, it is not suitable for real-time SE. Motivated by recent studies 
[19]-[20] on convolutional recurrent networks; we designed a compact 
and efficient architecture for real-time speech enhancement. The 
first convolutional encode-decoder architecture has been introduced 
for SE by [21]. A redundant convolutional encode-decoder [22] was 
proposed, based on the convolution repetitions, batch normalization, 
and a ReLU activation layer. Moreover, to facilitate network 
optimization, skip connections are used. In this study, a skips-based 
convolutional encoder-decoder and the parallel GRUs are integrated 
into a convolutional recurrent architecture to estimate the complex 
ratio mask (cRM). We observed that the proposed architecture 
provided improved speech quality and intelligibility as compared to 
the GRU and LSTM with fewer trainable parameters. A deep residual 
GRU-based model to enhance noisy speech was proposed [23] which 
performed better as compared to SOTA for speech enhancement and 
recognition tasks. The study in [24] presented a joint structure to 
solve single-channel speech enhancement in the complex-domain. 
The RBM in [25] is extended for spectral masking and noisy speech 
enhancement. The acoustic features in traditional RBMs are extracted 
layerwise, where feature compression results in a loss of information 
during training. To address this problem of retaining information in 
raw speech, RBMs are extended for acoustic feature representation 
and speech enhancement. Acoustic features and regularized sparse 
features are combined to train DNNs for better speech enhancement 
[26]. Using short context windows, FNN model [27] independently 
predicts labels for all time frames. The CNN [28]-[29] may learn local 
features involved in the training data, in contrast to the FNN [8]-[9] 
which can fully use the previous knowledge of speech. The long-term 
contexts of speech signals cannot be leveraged by either the FNN or 
the CNN model, however. In order to regulate the long-term context 
windows, it has recently been recommended by the research [30]-[31], 
that it is preferable to design SE as a sequence-to-sequence process. 
The RNN model [32] can deal with long-term contexts in a sequence-
based way, but often needs very complex hand-crafted features like 
MFCC. Convolutional recurrent networks (CRN) were first used for 
speech improvement by combining the CNN and RNN [31], [33]. 
Convolutional and recurrent neural networks [34] have been used 
in a formulation that enables training and testing with a variety of 
speakers and noise sources. Due to high computational load, most of 
the DL models for speech enhancement are difficult to implement for 
real-time processing. It is challenging to formulate resource efficient 
and compact networks.  
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III. Proposed System Description 

The convolutional encoder-decoder (CED) and GRU produce a 
convolutional recurrent neural network (CRN), which is used to 
develop the SE in this article. CED is  a strong tool for extracting 
temporal and spatial  patterns from raw data. A causal system that 
is suitable for real-time speech processing is created by integrating 
a convolutional encoder-decoder and GRUs into the convolutional 
recurrent network architecture. In comparison to typical RNNs, GRU 
has the capacity to learn long-term temporal dependencies in speech 
signals with a far smaller number of trainable parameters. CED and 
GRU are explained in the following subsections.

A. Causal Convolution-Based Encoder-Decoder 
The encoder in the causal convolution-based encoder-decoder 

framework is made up of stacked convolutional and pooling layers 
that extract high-level features from raw input data. Fundamentally 
similar structure as the encoder but in the reverse order, the decoder 
maps low-level features at the encoder output to full input feature 
size. This symmetric structure of the encoder-decoder ensures the 
shape of inputs and outputs. We imposed causal convolutions on the 
encoder-decoder framework to design a real-time SE system. Fig. 1. 
illustrates the causal convolutions with time-dimension. We treat the 
inputs as the sequence of the feature vectors, whereas the outputs 
are independent of the future sequence of the feature vectors. With 
such causal convolutions, the architecture leads to a causal encoder-
decoder framework. The causal deconvolution can easily be applied 
to the decoder.

Past Frames Future FramesTime

O
utput

Input
H

idden Layer

Fig. 1. An example of causal convolutions. The convolution output does not 
depend on future inputs.
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Fig. 2. Skip connections (a) add-skipped connections, (b) doubling the decoder 
inputs.

In the proposed network, the causal encoder-decoder is composed 
of five convolutional (Con2D) and deconvolutional (Decon2D) layers. 
Leaky linear rectified unit (ReLU) [35]-[36] is applied to all layers apart 
from the output layer where softplus activation (which can confine the 
network output to always be positive) [37] is utilized. Leaky ReLU has 
shown fast convergence and better generalization. Furthermore, batch 
normalization is adopted after every convolution (or deconvolution) 
and prior to activation. The kernel number is increased steadily in 
the encoder, whereas it is decreased steadily in the decoder, such 
that symmetric kernel numbers are adopted. So as to leverage large 
contexts, a stride of 2 is used along the frequency direction for all the 
convolutional (or deconvolutional) layers, whereas the time dimension 
of the features remains the same. To get a better flow of gradients and 
information all through the network, skip connections are utilized 
which connect the encoder outputs to the decoder inputs, as depicted 
in Fig. 2(a). In a recent study [17], the skip connections have been 
adopted by connecting the output of the encoder to the input of the 
decoder, as depicted in Fig. 2(b), which doubles the number of input 
channels to the decoder, resulting in increasing the complexity.

B. Temporal Modeling Using Parallel GRUs
Leveraging the long context is important to track a target speaker. 

The GRU [26] is the newer type of recurrent neural network that 
includes memory cells and is successful in temporal modeling. To 
integrate the temporal dynamics of the speech signals, we inserted 
a parallel GRU layer between the convolutional-encoder and the 
convolutional-decoder. Equations (1)-(4) describe the GRU network.

 (1)

  (2)

 (3)

 (4)

Where  represent update gate, reset gate, intermediate 
memory, and output respectively whereas  and  are 
the model parameters that are learned during training. For a suitable 
shape of the inputs required by GRUs, the approach proposed by 
[17] has been adopted to group the wide fully connected recurrent 
neural networks into P disengaged parallel recurrent neural networks. 
But, noted that the forward information flow remains the same. The 
parallel GRUs are denoted by P, where P = 1 indicates that the last 
convolutional encoder output is flattened to a single vector and fed 
to a single GRU, whereas P > 1 indicates that the encoder output is 
reshaped to P vectors of the same length, fed through P disconnected 
GRUs, and reshaped again to the number of decoder channels. 
Another practical advantage is the possible parallel execution of the 
disconnected RNNs. It is important to note that the insertion of the 
GRUs does not impact the system’s causality.

C. Network Architecture
In this paper, we used 161-dimensional STFT magnitude spectrum 

of noisy speech as the input features and a complex ratio mask as 
the training target. The proposed convolutional recurrent network 
is illustrated in Fig. 3, where inputs to the network are encoded into 
a high-dimension latent space, and the sequences of latent features 
are subsequently modelled by the GRU layer. Next, the output 
sequences of the GRU layer are transformed back by the decoder 
into their original input shape. The proposed convolutional recurrent 
network uses CNNs for feature extraction and RNNs for temporal 
modeling, thus combining two powerful topologies with improved 
results. A representation of the architecture is given in Table 1. The 
input and output layers’ sizes are specified as FeatureMaps (FM), 
TimeSteps (TS), and FrequencyChannels (FCh), respectively, while 
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the hyperparameters along the layer are specified as KernelSize 
(KZ), Strides (S), and OutChannels (OCh). In all the convolution and 
the deconvolution layers, a zero-padding in the time direction is 
applied, but no padding is involved in the frequency direction. For 
causal convolutions, a (2×3) kernel size is used, where (2×3) indicates 
(time×frequency). Note that by adding the skipped connections, which 
connect the output of the encoder to the input of the decoder output, 
doubles the feature maps, thus increasing the network complexity. 
By adding an add-skipped connection between the conv-deconv with 
(1×1) kernel size, it improves network performance at negligible added 
complexity, as shown in Fig. 4. We denoted the proposed network as 
CGCRN.

Conv Layer P-GRU Layer Deconv Layer

Conv (1x1)
Add-Skipped
Connection

Fig. 4. (1 × 1) convolutions in the add-skipped connections.

D. LSTM and GRU Baselines 
In the experiments, causal LSTM and GRU baselines were selected 

for comparison purposes. In the causal LSTM and GRU models, a 
context feature window of 11 frames, composed of 10 past speech 
frames and 1 current speech frame is used to estimate one frame of 
the target speech. A concatenated long vector of 11 frames of feature 
vectors is used as input to the network at all-time steps. We used the 
same network architectures for LSTM and GRU [11 161, 1024, 1024, 
1024, 1024, 1024, 1024, 1024] units from the input to the output layer. 
No future information is used by baselines, which makes them causal 
speech enhancement systems. 

IV. Experimental Setup

In the experiments, we evaluated SE networks on the LibriSpeech 
dataset [38] (derived from the read audiobooks, LibriVox project) 
including 0.25 Million utterances from 2.1k speakers. We have used 
the LibriClean version of LibriSpeech which contains 104014 clean 
utterances (about 360 hours) belonging to 921 different speakers. But 
to evaluate the networks used in this study, we randomly selected 5000 
speech utterances from 40 speakers. Among these speakers, 2 male 

TABLE I. Network Architecture, Where T Denotes the Time Frames in the STFT Magnitude Spectrum, Here P = 2 in P-GRU Layer, Epochs= 100, 
and Learning Rate Is 0.0001

Layer 
Input Size Hyperparameters Output Size

FM × TS × FCh KZ, S, OCh FM × TS × FCh

Reshape-1 T × 161 --- 1 × T × 161

Conv-1 1 × T × 161 2 × 3, (1, 2), 16 16 × T × 80

Conv-2 16 × T × 80 2 × 3, (1, 2), 32 32 × T × 39

Conv-3 32 × T × 39 2 × 3, (1, 2), 64 64 × T × 19

Conv-4 64 × T × 19 2 × 3, (1, 2), 128 128 × T × 9

Conv-5 128 × T × 9 2 × 3, (1, 2), 256 256 × T × 4

Reshape-2 256 × T × 4 --- T × 2048

P-GRU T × 2048 2048 T × 1024

Reshape-3 T × 1024 --- 256 × T × 4

Deconv-1 512 × T × 4 2 × 3, (1, 2), 128 128 × T × 9

Deconv-2 256 × T × 9 2 × 3, (1, 2), 64 64 × T × 19

Deconv-3 128 × T × 19 2 × 3, (1, 2), 32 32 × T × 39

Deconv-4 64 × T × 39 2 × 3, (1, 2), 16 16 × T × 80

Deconv-5 32 × T × 80 2 × 3, (1, 2), 1 1 × T × 4

Reshape-4 1 × T × 161 --- T × 161

Conv (1 x 1) Add-Skipped Connections: From Encoder outputs to Decoder Inputs
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Fig. 3. Network architecture of our proposed CGCRN.
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and 2 female speakers are used as untrained speakers, whereas the 
remaining 36 speakers are used to train the networks. In order to train 
noise-independent networks, we have used 60 noise types from the 
Perception and Neurodynamics Laboratory (http://web.cse.ohio-state.
edu/pnl/data.html) and Laboratory for Recognition and Organization 
of Speech and Audio (https://www.ee.columbia.edu/~dpwe/sounds/) 
for network training. For testing purpose, we used three challenging 
noise types (multi-talker babble, street, and cafeteria). We created a 
training set by randomly selecting utterances with an indiscriminate 
cut from the 60 training noise types at SNRs selected from -5dB, -3dB, 
-1dB, 0dB, and 2dB. During testing, we used three SNRs for the test 
set, that is, -5dB, -2dB, and 2dB. In order to examine the speaker 
generalization, the models are tested with two test sets for all noise 
types (i.e., multi-talker babble, street, and cafeteria) using trained 
and untrained speakers, respectively. First test set is composed of 120 
mixtures created from 30 × 4 utterances of 5 trained speakers, whereas 
the second test set is composed of 120 mixtures created from 30 × 4 
utterances of 4 untrained speakers. Speech utterances and noise types 
are sampled at 16 kHz. The networks are optimized with the Adam 
optimizer [39]-[40]. We fixed the learning rate to 10-4 and the mean 
squared error (MSE) served as a loss function. The networks are 
trained with minibatch size of 16 and the number of epochs is fixed to 
80. Inside all minibatches, the training samples are zero padded such 
that to contain the equal number of time steps. 

The experiments use two widely used objective metrics to quantify 
the proposed speech enhancement, including the STOI (Short-Time 
Objective Intelligibility), the PESQ (Perceptual Evaluation of Speech 
Quality). Intelligibility and quality of the enhanced speech signals 
are determined by STOI and PESQ, respectively. PESQ [41], an ITU-T 
P.862 recommendation, scores the perceptual speech quality from -0.5 
to 4.5. Similarly, STOI [42] assesses speech intelligibility with output 
values ranging from 0 to 100. 

V. Results and Discussions 

Two performance metrics are used in the experiments. Perceptual 
evaluation of speech quality (PESQ) [41] measures the speech 
quality whereas the short-term objective speech intelligibility 
(STOI) [42] measures the speech intelligibility, respectively. A high 
value for both the metrics indicates a better performance. We also 

included the Convolutional recurrent network (CRN) proposed by 
[17], CNN-GRU [43], and fully connected CNN (FCNN) [44] as SOTA 
for comparison. The proposed CGCRN network is the extension 
of CRN. Table II-III presents STOI and PESQ test scores of noisy 
speech and speech processed by different networks across all the 
noise types and input SNRs. The best performance is highlighted 
with boldface numbers. As indicated by Table II-III, the LSTM and 
GRU networks yielded almost similar STOI and PESQ scores which 
suggests that the noisy speech can effectively be enhanced by using 
GRU networks with less trainable parameters. The results indicated 
that replacing the LSTM layers by a parallel GRU layer in the 
CRN significantly improved the performance with fewer trainable 
parameters and network complexity. The CRN outperformed both 
the LSTM and GRU networks. On the other hand, the proposed 
CGCRN consistently outperformed the LSTM, GRU, and CRN in both 
the metrics. For example, the average STOI test scores are improved 
from 66.93% to 84.83% with CGCRN (∆STOI = 17.90%) in babble 
noise type. Here ∆ indicates the improvements in metrics. Also, the 
average STOI test scores are improved from 65.60% to 82.05% with 
CGCRN (∆STOI = 16.45%) in cafeteria noise type. On average, 3.09% 
STOI gain is achieved when the CGCRN when compared to the 
LSTM network. Moreover, 0.79% improvement in STOI test scores 
is achieved against the CRN. In addition, the average PESQ test 
scores are improved from 1.76 to 2.56 with the proposed CGCRN 
(∆PESQ = 0.80 equivalent to 31.25%) in babble noise type. Similarly, 
the average PESQ test scores are improved from 1.71 to 2.52 with 
the proposed CGCRN (∆PESQ = 0.81 equivalent to 32.14%) in street 
noise type. 

Table IV-V presents the speaker generalization potential of the 
neural networks used in this study. It can be observed from Tables 
that the CGCRN and CRN showed better generalization to untrained 
speakers. In the most challenging noisy cases, where the utterances 
from the untrained speakers are mixed with three untrained noise 
types at -5dB and -2dB, the proposed CGCRN improved the average 
STOI by 15.72% and the PESQ by 0.70 (28.29%) over the noisy speech.  
The CGCRN improved the PESQ by 9.16 % over the GRU in trained 
speakers whereas by 9.91% in untrained speakers, respectively. 
Thereby indicates that the proposed models can success-fully be 
implemented in untrained situations.

TABLE II. Networks Comparison in Three Test-Noises in Terms of the STOI (In %)   

Noise Types Babble Street Cafeteria 
Input SNR -5 dB -2 dB 0 dB Avg -5 dB -2 dB 0 dB Avg -5 dB -2 dB 0 dB Avg

Noisy Speech 58.95 66.30 75.55 66.93 58.30 66.20 75.08 66.52 57.40 65.19 74.21 65.60

LSTM 77.29 82.62 84.96 81.62 75.21 82.62 84.11 80.64 74.32 81.38 83.07 79.59

GRU 77.45 83.21 85.01 81.89 75.30 82.05 85.01 80.78 74.14 81.25 83.22 79.53

CRN 79.71 85.48 86.88 84.02 77.12 84.44 87.23 82.93 76.07 82.68 85.10 81.28

CNN-GRU 78.11 84.31 85.82 82.74 76.21 83.01 85.66 81.62 75.04 82.31 84.14 80.49

FCNN 70.22 75.21 80.34 75.26 71.44 75.57 81.02 76.00 70.34 76.70 80.87 75.97

CGCRN 80.47 86.29 87.74 84.83 77.86 85.23 88.07 83.72 76.80 83.43 85.92 82.05

TABLE III. Networks Comparison in Three Test-Noises in Terms of the PESQ   

Noise Types Babble Street Cafeteria 
Input SNR -5 dB -2 dB 0 dB Avg -5 dB -2 dB 0 dB Avg -5 dB -2 dB 0 dB Avg

Noisy Speech 1.63 1.79 1.86 1.76 1.58 1.71 1.84 1.71 1.52 1.70 1.82 1.68
LSTM 2.06 2.36 2.53 2.32 2.03 2.31 2.48 2.27 2.04 2.30 2.47 2.27
GRU 2.07 2.36 2.54 2.32 2.05 2.27 2.47 2.26 2.03 2.31 2.48 2.27
CRN 2.17 2.44 2.62 2.41 2.14 2.40 2.60 2.38 2.12 2.38 2.59 2.36

CNN-GRU 1.95 2.26 2.53 2.25 1.98 2.31 2.55 2.28 1.94 2.25 2.50 2.23
FCNN 1.81 2.15 2.44 2.13 1.88 2.21 2.51 2.20 1.85 2.20 2.48 2.18

CGCRN 2.29 2.59 2.79 2.56 2.25 2.53 2.76 2.52 2.21 2.49 2.72 2.47



Regular Issue

- 71 -

The batch normalization in convolution operations accelerated 
the training and improved the performance. We observed a faster 
convergence and less MSEs with the CGCRN as compared the LSTM 
and GRU networks. Importantly the fewer trainable parameters are 
the key significance of the CGCRN, as illustrated in Fig. 5. In addition, 
the causal convolution operations captured the local patterns in the 
magnitude spectra exclusive of the future in-formation. In contrast, 
the GRU and LSTM networks deal all input frames as flattened 
feature vectors, thereby lack ample control over the time-frequency 
structures in the magnitude spectra. The parallel GRUs layer models 
the long-term temporal dependencies in a compressed space which 
is vital to speaker classification in the speaker-independent SE. As 
shown in experiments, replacing the LSTM layers in CRN with a 
single parallel GRUs layer yielded a considerable performance gain 
and enormous computational savings. A single GRU layer reduces 
25% of trainable parameters (network complexity) as com-pared to 
single LSTM layer. 
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Fig. 5. Parameter efficiency comparison of different models. We compare the 
number of trainable parameters in different models.

Table VI shows impact of add-skipped connections in the CGCRN 
architecture. Adding the skipped connections is superior to no skipped 
connections. Although add-skips improved the PESQ and STOI test 
scores, but a better performance is achieved by inserting Conv (1 × 
1) add-skipped connections. In order to visualize the spectrotemporal 
characteristics, the spectrograms are presented in Fig. 6. which 
belongs to the clean speech, noisy speech, and speech processed by 
the LSTM, GRU, and CGCRN with the cRM as the training-target. 
It is evident that few speech parts are missing in the spectrograms 
(highlighted with boxes) of speech enhanced by LSTM and GRU. In 
contrast, the speech enhanced by CGCRN demonstrates comparable 
spectrotemporal patterns to the clean speech and less distortion can 
also be noticed.

TABLE VI. Effects of Skipped Connections   

Skip Types STOI PESQ
No Skips 79.21 2.34
Add Skips 81.33 2.40
Conv Skips 83.45 2.49

The proposed speech enhancement CGCRN performed better at all 
input SNRs in terms of speech intelligibility and quality. However, to 
confirm the success at SNRs, one-way analysis-of-variance (ANOVA) 
statistical analyses are conducted at -5dB, -2dB and 0dB. The statistical 
tests are performed at 95% confidence interval. Differences between test 
results are believed statistically important if the probability (Pvalue) is 
less than 0.05 (P<0.05) and Fvalue is higher than the critical value of 
FDistribution (Fvalue>FCritical). Table VII shows the statistical tests in 
terms of speech intelligibility at 95% confidence interval with FCritical 
is 3.09. It is clear that Pvalues of the proposed model are less than 
0.05 and the values of FCritical are higher than 3.09, which indicates 
that the intelligibility results of the proposed model are statistically 
significant. Similarly, Table VIII shows the statistical tests in terms of 
speech intelligibility at 95% confidence interval with FCritical is 3.09. 
For illustration at adverse noise levels (-5dB), the CGCRN against the 
noisy speech (CGCRN → Noisy), we achieved [F (2, 100) = 39.5, p < 
0.001] for STOI and [F (2, 100 = 32.2), p < 0.001] for PESQ, respectively. 
Also, against the CRN (CGCRN → CRN), we achieved [F (2, 100) = 21.1, 
p < 0.001] for STOI and [F (2, 100) = 24.1, p < 0.001] for PESQ. Moreover, 
against LSTM (CGCRN → LSTM), we achieved [F (2, 100) = 22.2, p < 
0.001] for STOI and [F (2, 100) = 18.3, p < 0.015] for PESQ. The ANOVA 
results at low SNRs indicate that the proposed model achieved better 
results statistically over the competing deep learning models.
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Fig. 6. Spectrotemporal characteristics of the speech processed by different 
networks.

TABLE IV. Speaker Generalization of the Networks in Terms of STOI (In %)   

Speaker Types Trained Speakers Untrained Speakers
Noise Type Babble Street Cafeteria Avg Babble Street Cafeteria Avg

LSTM 81.62 80.64 79.59 80.61 79.32 78.22 77.01 78.18
GRU 81.89 80.78 79.53 80.73 79.57 78.41 77.19 78.39

CGCRN 84.83 83.72 82.05 83.53 83.66 82.33 80.23 82.07

TABLE V. Speaker Generalization of the Networks in Terms of PESQ   

Speaker Types Trained Speakers Untrained Speakers
Noise Types Babble Street Cafeteria Avg Babble Street Cafeteria Avg

LSTM 2.32 2.27 2.27 2.29 2.22 2.19 2.18 2.20
GRU 2.32 2.26 2.27 2.28 2.21 2.17 2.17 2.18

CGCRN 2.56 2.51 2.47 2.51 2.45 2.43 2.38 2.42
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VI. Summary and Conclusions 

In this paper we propose resource efficient Convolutional recurrent 
network to learn the complex ratio mask for real-time speech 
enhancement. Convolutional encode-decoder and gated recurrent 
unit are integrated into the Convolutional recurrent network 
architecture thereby formulated a causal system, which is suitable for 
the real-time speech processing. Parallel GRU grouping and efficient 
skipped connections techniques are used to achieve compact network. 
Different noise types and speakers are used in training and testing 
to observe the speaker and noise generalization. With LibriSpeech 
dataset, the experiments showed that the proposed real-time approach 
led to improve perceptual speech quality and intelligibility with much 
fewer trainable parameters than existing LSTM and GRU models. The 
quality and intelligibility are improved by 31.61% and 17.18% over 
noisy speech. CGCRN proves comparable spectrotemporal patterns to 
the clean speech and less distortion can also be noticed. We showed 
gains on the speech quality and intelligibility with less computational 
complexity by more effective skip connections and a parallel GRUs 
structure. The proposed model used fewer parameters and causal 
operations; therefore, suitable for real-time speech enhancement. 
The ANOVA statistical analysis confirmed that the intelligibility and 
quality results are statistically significant. The average STOI test scores 
are improved from 66.93% to 84.83% with CGCRN (∆STOI = 17.90%) 
in babble noise type. Here ∆ indicates the improvements in metrics. 
Also, the average STOI test scores are improved from 65.60% to 82.05% 
with CGCRN (∆STOI = 16.45%) in cafeteria noise type. On average, 
3.09% STOI gain is achieved when the CGCRN when compared to the 
LSTM network. Moreover, 0.79% improvement in STOI test scores is 
achieved against the CRN. In addition, the average PESQ test scores 
are improved from 1.76 to 2.56 with the proposed CGCRN (∆PESQ = 
0.80 equivalent to 31.25%) in babble noise type. at adverse noise levels 
(-5dB), the CGCRN against the noisy speech (CGCRN → Noisy), we 
achieved [F (2, 100) = 39.5, p < 0.001] for STOI and [F (2, 100 = 32.2), 
p < 0.001] for PESQ, respectively. Also, against the CRN (CGCRN → 
CRN), we achieved [F (2, 100) = 21.1, p < 0.001] for STOI and [F (2, 
100) = 24.1, p < 0.001] for PESQ. Moreover, against LSTM (CGCRN → 
LSTM), we achieved [F (2, 100) = 22.2, p < 0.001] for STOI and [F (2, 
100) = 18.3, p < 0.015] for PESQ. 

Speech perception quality also depends on the phase. However, 
since phase lacks spectrotemporal structure, it seems to be impossible 
to correctly estimate phase spectra using masking-based supervised 
learning, like in this proposed model. The complex spectral mapping, 
which concurrently improves the magnitude and phase responses of 

noisy speech, tries to estimate the real and imaginary spectrograms of 
clean speech from those of noisy speech. In future work, we would be 
devoted to proposing more flexible, scalable, and phase included CRNs 
for real-time speech enhancement, trained on large datasets and tested 
on the real recordings.  
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