
Regular Issue

- 149 -

Keywords

Intelligent System, 
LSTM, Smart Grid, Time 
Series, Forecasting. 

Abstract

Accurate electricity price forecasting (EPF) is important for the purpose of bidding strategies and minimizing 
the risk for market participants in the competitive electricity market. Besides that, EPF becomes critically 
important for effective planning and efficient operation of a power system due to deregulation of electricity 
industry. However, accurate EPF is very challenging due to complex nonlinearity in the time series-based 
electricity prices. Hence, this work proposed two-fold contributions which are (1) effective time series pre-
processing module to ensure feasible time-series data is fitted in the deep learning model, and (2) an improved 
long short-term memory (LSTM) model by incorporating linear scaled hyperbolic tangent (LiSHT) layer in 
the EPF. In this work, the time series pre-processing module adopted linear trend of the correlated features 
of electricity price series and the time series are tested by using Augmented Dickey Fuller (ADF) test method. 
In addition, the time series are transformed using boxcox transformation method in order to satisfy the 
stationarity property. Then, an improved LSTM prediction module is proposed to forecast electricity prices 
where LiSHT layer is adopted to optimize the parameters of the heterogeneous LSTM. This study is performed 
using the Australian electricity market price, load and renewable energy supply data. The experimental results 
obtained show that the proposed EPF framework performed better compared to previous techniques.
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I. Introduction

SMART grids (SG) are introduced to improve the performance of 
the traditional grid. With deregulation of electricity industry, 

electricity price forecasting (EPF) becomes critically important for 
effective planning and efficient operation of the power system. In 
several countries, deregulations of the electricity sector have been 
developed to enhance congestion control, facilitate renewable energy, 
and maximize the resource allocation of the power system [1]. Due to 
the significant volatility and intricate nonlinearity of electricity pricing, 
EPF has been a challenging issue. Accurate price forecasting has the 
ability to assist market participants to regulate their bidding strategies, 
production or consumption schedule with the intention to maximize 
their profits in the electricity market [2], [3]. Whenever demand is 
over- or under-predicted, inaccurate projections can have disastrous 
social and financial repercussions. Underestimating demand has a 
negative impact on supply, which leads to forced power interruptions 
and negative production effects. Meanwhile, overestimating demand 
may result in excessive investment in generation capacity, potential 

financial difficulty, and eventually increased electricity prices. Hence, 
this study plays an important role in the areas of power production 
and management with the aim to overcome the risk in electricity 
production investments and maintain affordable electricity price for 
the consumers [4].

Existing statistical techniques aim to reveal the specific pattern of 
historic power price by utilizing curve fitting. For instance, German 
electricity market has tested a k-factor Guégan Introduced Generalized 
Autoregressive Conditionally Heteroskedastic (GIGARCH) to forecast 
electricity price [5]-[6]. An iterative neural network methodology 
is also adopted along with this combinatorial neural network-based 
prediction technique to forecast upcoming electricity price. The 
advantages of this method include good precision, model functionality, 
and reliability. Meanwhile, Auto-regressive Integrated Moving Average 
(ARIMA) was proposed for short-term power load forecasting [7]. 
Application of statistical models had shown to be challenging when 
predicting multi-dimensional nonlinear price of electricity since they 
are mainly based on linear equations.
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On the other hand, shallow learning models have been proven 
to perform better compared to statistical models in terms of error 
minimization and some other factors. Due to nonlinearity and high 
volatility of the features in EPF, shallow learning models have shown 
to be feasible in electricity price forecasting [8]. In the field of load 
forecasting, Support Vector Machine (SVM) [9], [10] has been applied 
to predict ranges of nonlinear quantities and perform feature selection. 
Support vector regression (SVR) [11], artificial neural network 
(ANN) [18], [19], and regression tree are the main shallow machine 
learning models that have been commonly applied in forecasting 
system. Besides, the work in proposed a hybrid of SVR and gray wolf 
optimization to forecast life cost of power transformer. A hybrid model 
based on SVR and ANN is proposed in [16] by adopting new signal 
decomposition and correlation analysis technique to predict electricity 
price for next 24-hours. Furthermore, in [1] a hybrid approach of ANFIS 
and Backtracking Search algorithm (BSA) was proposed for electricity 
price forecasting and feature selection. Besides, a multi-objective 
binary-valued backtracking search algorithm (MOBBSA) and ANFIS 
approach have been employed. Nevertheless, over-fitting and gradient 
disappearance have been the common challenges in shallow machine 
learning models. It can be seen that previous techniques seemed to 
be less feasible for day-ahead EPF due to limited compatibility with 
big data and perplexing nonlinear problems [20]. The detail literature 
reviews related to this study is shown in the Table I.

Alternatively, deep learning algorithms have increasingly become 
popular in the disciplines of artificial intelligence and big data due to its 
ability to generate efficient classification approximations from a huge 
volume of input data and extract the data’s underlying properties [21]-
[23]. The model in [16] focused on distributed depiction, bidirectional 

gated recurrent unit (BiGRU) and learning algorithm with the BiGRU 
layer processing past and prospect information concurrently to fully 
extract chronological and nonstationary features from input data 
with the goal of improving forecasting performance. Meanwhile, to 
extract difficult nonlinear characteristics, [14] incorporated the deep 
belief network (DBN), LSTM RNN, and convolutional neural network 
(CNN). The DBN model was used in [24] to use signal processing and 
correlation analysis techniques. In addition, [25] created a multi-input 
and multi-output LSTM model for forecasting electricity demand. 
When evaluating the aerial correlation of dataset, it seems to be that a 
deep learning algorithm with a recurrent feedback framework called 
Recurrent neural network RNN has the capacity to accomplish more 
overarching and entire designing of time series than other traditional 
AI algorithms. The gradient inflation and gradient vanishing issues 
could be handled using LSTM through the RNN training procedure. 
As a result, LSTM has been used to anticipate day-ahead power prices 
for the Victoria region of Australia and the Singapore market [17]. 
Furthermore, the network topology of single gated recurrent units 
(GRU) has been explored for prediction purposes. When compared to 
an LSTM network, the GRU’s simple neuron topology has been proven 
to lead to a faster processing time [26]. In a nutshell, LSTM has been 
demonstrated to perform better in terms of forecasting accuracy than 
SVM, ANN, and RNN [27], [28]. As a result, the analysis of time-series 
data for deep learning model in EPF has been an active subject of 
research for decades.

Based on the previous literatures, it can be seen that most of the 
works consider electricity supply, price and seasons to be the input 
features for the EPF system. Thus, in order to develop accurate 
prediction model, this work considers several inputs such as the price, 

TABLE I.  Comparisons of Recent Studies in Electricity Price Forecasting 

Method Application RMSE MAPE (%) Limitations/Challenges

SVM[12]

LSSVM[12]

Machine learning techniques are adopted to solve longer time 
horizon and highly nonlinear data for mid-term electricity 
market clearing price.

N/A
11.7491

10.9722

Accuracy in spike price forecasting 
considerably low by using the proposed 
machine learning methods. Optimization of 
forecasting accuracy in the spike price area is 
the main challenge of the study.

ANN PSO 
(Hybrid)[13]

Mid-Term Load Power Forecasting considering environment 
Emission using North American electricity market

N/A 1.9  
ANN PSO method is not feasible to handle 
large data set of nonlinear data.

IFCM-SVM [9]

A dynamic parallel forecasting model using modified fuzzy time 
series and SVM.  IFCM model is used to cluster the input data 
set, then the FTS model and SVM model are improved, finally the 
dynamic parallel model is used to forecast.

11.66 7.92

Computation of large data is a challenge. 
During forecasting process, the number of 
operation cycles need to be reduced in order 
to obtain good prediction accuracy.

k-factor 
GIGARCH [5]

This work combines several machine learning approaches to 
develop a novel hybrid forecasting model, namely EMD-SVR-
PSO-AR-GARCH model. This work adopts the New South Wales 
(NSW, Australia) electricity market.

427 - 759 2.76 - 3.74
The nonlinearity and randomness of 
sequences of electricity consumption data.

GA-CNN [14]
The work is tested on Pennsylvania-New Jersey-Maryland (PJM) 
power market. The method integrates CNN with an evolutionary 
algorithm and utilizes spatiotemporal data.

0.007 – 
0.02 

3.5 – 4.9
Limited discussion on time series data 
analysis and statistical reliability.

EEMD-LSTM_
SMBO [15]

An optimized heterogeneous structure LSTM model is proposed 
to solve the problems of the single network structure and 
hyperparameter selection. PJM electricity market is adopted in 
this work.

0.9 – 1.9 2.5 – 4.7 
Uncertain accuracy due to limited variables 
considered in the prediction model.

Bi-GRU (EGA-
STLF) [16] 

Bi-GRU layer in EGA-STLF computes the past and the future data 
simultaneously to fully extract temporal and nonlinear features 
from input data.  This work adopts Australia electricity market 
for short-term load forecasting (STLF).

255.12 3.06
Analyze influence factors from more complex 
environments.

SCAR-Dvine 
model [17]

A flexible class of drawable vine copula models is applied by 
incorporating the dependence parameters of the constituting 
bivariate copulae to be time-varying. This work adopts Australia 
electricity market for the one-day-ahead forecasting.

N/A N/A
Modelling risk of the five markets as a 
complex interconnected system, as opposed to 
analyzing markets individually.
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demand, seasons, fuel supply, renewable and non-renewable energy, 
peak, and off-peak hours. Predicting the unknown source of spike 
can be a challenge in EPF. In light of this, an optimized improved 
deep learning framework is proposed by incorporating linear scaled 
hyperbolic tangent (LiSHT) layer in the EPF. The LiSHT layer is 
adopted to optimize the hyper parameters of the heterogeneous 
LSTM, to further improve the performance of the forecasting model 
and predicting the spikes.

Meanwhile, the unique properties and characteristics of time-
series data are important for forecasting and prediction purposes. 
Time series data can be challenging due to presence of noise, exhibit 
high volatility and extremal directional movements [29]. Generally, 
stationarity of time series data is vital because various analytical tools 
and statistical models rely on it. Therefore, a pre-processing module 
is required to contribute towards accurate forecasting performance in 
terms of reliability and accuracy. In order to overcome this challenge, 
this work proposed a pre-processing module to ensure the feasibility 
of the time-series data to fit the proposed deep learning model. In 
the pre-processing module, a proper transformation is performed in 
order to satisfy the stationarity property of the time series data by 
applying Augmented Dickey–Fuller test and transformations. This is 
to prevent autocorrelation in the prediction model’s errors.  This will 
then contribute towards more accurate EPF.  The contributions of this 
work are as follow:

1. Propose pre-processing module to monitor the suitability of the 
time series data for the deep learning model.

2. Propose an optimized RNN-LSTM based algorithm by 
incorporating LiSHT layer.

This paper is organized as follows. Section II discusses on the 
time-series analysis; Section III explains on the proposed forecasting 
model; Section IV presents the experimental results and discussion 
on case studies of the Australian electricity market. Finally, Section V 
concludes this study. 

II. Data Pre-processing 

A. Autocorrelation of the Model’s Forecasting Reliability
In this research, the time series dataset includes electricity price, 

demand, and renewable energy supply of Australia’s most important 
five economic zones. The electricity market data covers the duration 
from 1 September 2020 to 31 May 31 2021 which is obtained from 
https://aemo.com.au website. Conventional time series data may 
contain missing values, outliers and high dimensional data. These 
factors contribute to unstable forecasting performance. Therefore, 
pre-processing is required to solve the abovementioned problems. 
This work emphasized on linear trend-based equation for features 
processing. The linear trend approach can perform effectively with 
the trend and depict it without any assumptions. Besides, the residual 
seasonality, peak-off peak hour and renewable energy trend can 
distinguish any time series dataset shown in Table II.

Let h1, h2, … …, hn be the time-series data. Equation (1) is the 
definition of a nonlinear regression model of order m is denoted by:

 (1)

where gt = (ht–1, ht–2….. ht–m) ∈ ℝm made of m values of ht, θ is the 
parametric vector and ϵt is the residual. After the model has been built, 
machine learning or deep learning approaches can be used to find the 
function f(∗). Root mean square error (RMSE) and mean absolute error 
(MAE) are the most often used indicators for regression performance 
evaluation of a forecasting model. Nevertheless, both regression 
performance evaluators only indicate the accuracy of the observed 
and estimated values. Since they are unable to analyse the fitness of 

time series data in the proposed forecasting model, the residuals are 
employed to assess this dedicatedly. In other words, the forecasting 
model’s residuals of regression analysis for normal distribution and 
autocorrelation are estimated by function , where  is the predicted 
value as equation (2).

 (2)

The presumption of no autocorrelation in the residuals might 
make the forecasting vulnerable as there may not be exploration 
on all available data in the training process. In other words, the 
reliance of the residuals indicates that the model did not well fit 
the time-series data and that there is important data remaining that 
must be investigated. Dataset used in this research showed in Table 
II. The autocorrelation function (ACF) plot and the Ljung–Box Q 
test for residual autocorrelation are two important techniques for - 
determining the presence of  autocorrelation in the residuals [30]. 
More analytically, by calculating the linear correlation of every 
residual in various lags, , , ... the ACF can be obtained in which 
the temporal autocorrelation is depicted by ACF, and the Ljung–Box 
Q test is a “portmanteau” test. The null hypothesis H0 that ‘‘a sequence 
of residuals does not exhibit autocorrelation for a specified number of 
lags L”, is proved technically with respect to other hypothesis H1 that 
‘‘some autocorrelation coefficient is nonzero.’’ Equation (3) defines the 
Ljung–Box Q test statistic in more detail,

 (3)

where equation (4) indicates at lag-k, autocorrelation coefficients  
ρk are,

 (4)

with  under H0 the statistic Q asymptotically follows a 
 distribution. The model shows autocorrelation and reject the zero 

hypothesis H0 if as following equation (5),

 (5)

where the critical value of the Chi-square distribution is defined for 
significance level α, or critical level p = 1 – α, known as p value.

TABLE II. Features Used in Time Series Data

Peak/
Off-Peak 
Hours

Time 
(Hour)

Main 
Electricity 
Supply 
(MWH)

Previous 
Hour 
Price 
(AUD)

Solar 
Power 
supply 
(MWH)

Hydro 
Power 
Supply 
(MWH)

Wind 
Power 
Supply 
(MWH)

1 5 7360.25 40.54 0 992 215.06

1 6 7066.01 43.59 0 992 192.84

1 7 6841.68 34.74 0 645.09 168.44

1 8 6732.33 17.15 0 325.58 146.70

1 9 6980.24 16.61 0 214.92 136.46

0 10 7661.34 31.56 0 125 186.70

0 11 8639.57 40.02 0 60 179.90

0 12 9890.74 49.99 0 2.5 810.19

0 13 9845.55 50.25 0 20 776.65

0 14 9446.45 54.32 0 94.58 819.08

0 15 8992.55 55.51 9.76 380.62 825.95

0 16 8547.70 47.99 189.73 705.43 760.85

0 17 8162.07 39.65 418.42 478.88 746.72

cont cont cont cont cont cont cont
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B. Stationarity and No Stationarity
Autocorrelation, long memory, fractal and multi-fractal properties 

are the features of time-series that appear so frequently that they 
are referred to as stylized facts. The main disadvantage of working 
with values of price time series is that they follow a random walk 
process from the standpoint of stochastic processes. The coefficient of 
autocorrelation is ρk, with k > 1 are statistically remarkable for many 
lags L and the first-order autocorrelation coefficient ρ1 is equal to one. 
This kind of time series are called unit root time-series or integrated 
of order one which are expressed by I (1). Modelling the levels of these 
series under such conditions is unproductive since the residuals of 
the models show redundancy, which putting the entire framework 
of statistical validity in jeopardy. In order to examine these series 
effectively, they must be stationary which is essential for the advent of 
a new forecasting model.

Assume that Fh (ht1+ τ, ….., htn+ τ) is the total distribution algorithm of 
the intrinsic joint distribution of {ht} at times t1 +  τ, ….., t1 + n then the 
stochastic process {ht} is strictly stationary if (6),

 (6)

for all τ, t1 …. tn 𝜖 ℝ and n ϵ N. Nevertheless, the stationarity of time 
series is reduced resulting to weak covariance stationarity [30]. A 
stochastic process becomes covariance stationary when the mean is 
constant, the second moment is finite, and the covariance function 
relies on the difference between t1 and t2. Hence, in equation (7) the 
auto-covariance needs to be denoted with one variable, i.e.,

 (7)

where covhh is the auto-covariance of the yr series to summarize 
stationarity based on statistical features of the stochastic process. It 
has been a general hypothesis that many procedures such as statistical 
assessment, modelling and prediction become simpler when adopted 
the stationary processes. The partial autocorrelation function provides 
a resolution once the problem has been detected, where the lag-k 
coefficient ϕk,k is displayed by the indicated formula in equation (8),

 (8)

for k > 1 and ϕ1,1 = ρ1. Clearly, if there is unit root throughout the 
series, that is ρ1 = 1, the first-order partial autocorrelation coefficient 
ϕ1,1 will become one. Commonly, the initial coefficient is statistically 
significant while the rest are insignificant. Then, the first series should 
be characterized by the first differences as sown in equation (9) of the 
series, defined by (9)

 (9)

Therefore, the first difference of the time series in stationarity 
obtained can be represented with integrated of order zero which is I(0). 
However, crossover of different non-stationarities could present while 
computing the time-series data there such as unit-roots, structural 
pause, level up-downs, seasonal trend or a shifted variance. When the 
series is non-stationary (I (1)), the typical transformation is to take the 
first differences and transform it to stationary series (I (0)), whereas 
if the series contains structural breaks or a changing variance due to 
crises, a nonlinear BoxCox transformation will be the best  solution 
[31]. As normality is an essential criterion for various statistical 
procedures, a BoxCox transformation provides a mechanism to turn 
non-normal data into a normal pattern. The following equation (10) 
defines one-parameter Box-Cox transformation as,

 (10)

where nonzero Box-Cox transformations are used for λ =   ̶ 3,  ̶ 2,  
   ̶0.5, 0, 0.5,1 and 2. The rule λ = 0 is followed by majority of the time 
series; therefore, the returns which are the first logarithmic differences 
are used to attain stationarity in these series as equation (11),

 (11)

the last expression being the percentage change or returns [30].

C. Augmented Dickey Fuller (ADF) Test
The proposed pre-processing module for greatly improving the 

accuracy and durability of a deep learning algorithm for time series 
prediction is discussed in this part, based on well-known statistical 
concept and estimation for stationarity and non-stationarity qualities. 
Generally, the components of the dataset are not-stationary when a 
machine learning or deep learning model is applied to estimate the time-
series. This implies that they may have unit roots and some order of 
integration. It is worth noting that the Augmented Dickey–Fuller (ADF) 
test has the ability to identify a unit root in a time series data [30], [32]. 
The model is subjected to the testing method as following equation (12),

 (12)

where ρ1 denotes the first-order autocorrelation coefficient and α 
is a constant, β is the coefficient of trend, and γ = (ρ1–1). It is notable 
that k is the lag order of the autoregressive determined so that the 
residuals ϵt have no serial correlation. There has a stochastic random 
walk process, if α = 0 and β = 0, while if α ≠ 0 and β = 0, here the 
stochastic process is with drift. The unit root test is employed to 
evaluate statistical importance under the null hypothesis. H0:{γ = 0 
that is ρ = 1} versus the nonzero hypothesis H1: {γ < 0 that is ρ < 1}.

Recursively taking the first differences in (9) or returns in (11) until 
the sequence is made stationary depending on the nature of the series. 
The autocorrelation in the model’s residuals will be reduced when 
using a series of transformations based on the first difference and 
returns. This means that the forecasting method will be considerably 
better at explaining the data because it captures all conceivable 
nonlinearities, assuring the model’s accuracy and efficacy. 

The pseudo-code for the framework is shown below pseudo-code. 
Firstly, the time-series data is imported. The ADF test is then used to 
determine if the sequence levels are non-stationary, or if they have a 
unit root in Step 2. If the sequence is stochastic, the dataset will be 
continuously converted using first differences or returns till the 
resultant series becomes stationary in Steps 4–7. The newly modified 
time-series data is then utilised to train the forecasting model in Step 8. 

Pseudo-code of proposed algorithm
1. Input time series data
2. Assess unit root test (ADF)
  3. If (Unit root exist in time-series) then
  4. Repeat
   5. Convert the time series based on differences (9) or returns (11).
   6. Assess unit root test (ADF).
   7. Until (Stationarity exists in time-series.)
   8. By using converted time-series, train the prediction model.
  Else
      9. By using real time-series, train the prediction models.
      10. On the training sample, estimate the residuals.
      11. If (Autocorrelation exists in residuals.) then
       12. Convert the time series based on differences (9) or returns (11).
       13. Using the converted time-series, retrain the forecasting model.
            End
     End
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LSTM Lisht

Sequential
LSTM layer

with 100 units

Output
layer

Input Sequences

Fig. 1. LSTM+LiSHT prediction model architecture.

If the data is stationary, then levels of time-series are employed to 
train the forecasting model in Step 10. The errors of the estimation 
method on the learning algorithm are employed for further analysis 
and testing. It is noticeable that a training is performed with a 
series that has a unit root then the predicted values become near 
to the real values for any realistic model then, the presence of 
strong autocorrelation factors marks the model as unproductive 
[33]. Therefore, ACF plots and/or the Ljung–Box Q test are used to 
investigate autocorrelation within residuals of the dataset in step 11. 
Eventually, if the residuals have autocorrelation, the recommended 
transformation is performed to the training phase and the algorithm 
is retrained utilizing the newly transformed dataset according to 
steps 12–13. It is noticeable that if the series levels are stationary and 
the residuals on the training dataset indicate no autocorrelation, there 
is no need to reform the series because it will result in catastrophic 
phenomena of over-differencing. To put it in another way, over-
differencing makes the entire mechanism “non-invertible,” and 
thus lacked an endless autoregressive expression. In the form of a 
flowchart, Fig. 2 depicts an insight into the intended structure.

Finally, if the classifier is trained with a transformed series with no 
autocorrelation in residuals, the inverse transformation will be used in 
the model’s forecasts to obtain the forecast for the levels of the exact 
time-series and reliable for parametric and no parametric tests.

III. The Proposed Improved LSTM Forecasting Model

In order to process the long sequence of time series data, LSTM 
Recurrent Neural Network (RNN) is proposed with the aim to 
overcome the problem of vanishing gradient and gradient explosion 
that can occur in conventional RNN. The input gates and output gates 
are replaced by memory/forget gates in the hidden layer of LSTM 
RNN which include memory space and information flow process for 
long historical time series [14]. A sequential layer followed by a fully 
connected layer, lstm layer, tanh layer and regression layer are applied 
in this algorithm Fig.1. In this study, sgdm optimization is applied 
with max epoch 1500. Gradient threshold is 1, learning rate schedule 
piecewise. In lstm layer, number of hidden units is 100, state activation 
function tanh and sigmoid gate activation function are adopted in this 
algorithm. The parameters of LSTM are shown in Table III. 

TABLE III. Parameters Used in Lstm

LSTM Parameters

Hidden layers 3

Neurons per layer 100

Type of layer LSTM

Activation layers Sigmoid

Epochs 1500

Optimizer SGDM

Time series data
is stationary? 

Time series data is
stationary? 

Autocorrelation 
exist? 

Apply Transformation

Train deep learning
model with time series

Evaluate the residual
 of the training data

Apply Transformation
Training process

completed

Testing the
stationarity of the 

time series data

Yes

No

YesNo

No

Yes

Electricity Input data
in time series 

Testing the
stationarity of the
time series data

Fig.2. Flowchart of the proposed algorithm.
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Conventional activation functions such as ReLU and Swish are less 
feasible for large negative input values and also may suffer from the 
dying gradient problem due to zero-hard rectification. Therefore, it 
is essential to adopt a better activation function to overcome those 
limitations. In this work, a non-parametric function, called Linearly 
Scaled Hyperbolic Tangent (LiSHT) for Neural Networks (NNs) is 
employed in this model as referred (13). The LiSHT activation function 
is utilized to scale the non-linear Hyperbolic Tangent (Tanh) function 
through a linear function and tackle the dying gradient problem.

Let an input vector be a ∈ Rd, and each hidden layer is capable to 
transform its input vector by applying a nonlinear mapping from the 
qth layer to the (q + 1) th layer as equation (13):

 (13)

LiSHT is a non-parametric linearly scaled hyperbolic tangent 
activation layer that has unrestricted upper limits property on the 
right-hand side of the activation curve. LiSHT has the advantage of 
positive activation that does not identically propagate for all inputs, 
which solves the gradient problem at back propagation and contributes 
to faster training of the deep neural network. The LiSHT activation 
function is calculated by multiplying the Tanh function by its input x 
and defined as the equation (14) and (15). where g(x) is a hyperbolic 
tangent function [32].

 (14)

 (15)

IV. Results and Discussions

In this work, the data were divided into training and test set 
consisting of hourly electricity price data as tabulated in Table IV:

TABLE IV. Seasonal Training Dataset

Season
Training set

1 day forecasting 1 month forecasting 
Sep-Oct-Nov (Spring) Oct (696 hours) Sep-Oct (1440 hours)
Dec-Jan-Feb (Summer) Jan (696 hours) Dec-Jan (1440 hours)
Mar-Apr-May (Autumn) Apr (696 hours) Mar-Apr (1440 hours)

There have been no missing data in any of the time-series and outlier 
prices were not eliminated in order to preserve the characteristics of 
every series, even though these prices are the consequence of rare 
events presents the descriptive analysis for every training dataset 
and testing dataset, such as the measurements of minimal, max, 
average, sample variance (std. dev.), median, skewness, and kurtosis 
for illustrating the distribution’s nature. Using the ADF unit root test, 
the proposed framework employed the National Electricity Market 
(NEM) price time-series in Australia to determine whether the training 
data are stationary or not. The outputs of the ADF unit root test for 
the training data of Australia’s five states series under investigation 
are shown in Table V. Considering the t-statistics (t-stat) and the 
corresponding p values the null hypothesis H0: ‘‘the levels possess a 
unit root and are non-stationary’’ is accepted for time series.

TABLE V. ADF Unit Root Test for the Training Data

Series NSW QLD SA TAS VIC
t static -37.16 -71.36 -28.82 -39.42 -24.58
p value 0.000* 0.000* 0.000* 0.000* 0.000*

In the sequel, the ADF test was run on a time-series to see if the 
unit root existed, as per the provided framework. The outcomes of the 
ADF unit root test for the training data of all time-series datasets are 
shown in Table IV. The (*) indicates statistical impact at the 5% critical 
threshold. Clearly, it’s worth noting that all p values are almost zero, 
the null hypothesis H0 is rejected.

As a result, the time series are “appropriate” for training a deep 
learning model with minimal autocorrelation in the errors, and 
a significant boost in forecasting accuracy is anticipated when 
comparing to same model trained with the non-transformed series. 
In order to evaluate the performance of the proposed model, the 
regression ability is assessed using mean absolute error (MAE) 
and root mean square error (RMSE). Besides that, another four key 
performance indicators are also employed: Accuracy (Acc), F1-score 
(F1), Sensitivity (Sen), Specificity (Spe), Positive Predicted Values 
(PPR) and Negative Predictive Values (NPV) which are indicated by 
the following equations (16)-(21).

 (16)

 (17)

 (18)

 (19)

 (20)

 (21)

In this case, TP represents the frequency of prices that were 
successfully identified as raised, the number of prices that were 
successfully detected as having a decreasing value is denoted by 
TN, FP is the amount of prices that were incorrectly detected as 
being increased, whereas FN denotes the quantity of prices that 
were incorrectly detected as being dropped. Furthermore, the area 
under curve (AUC) statistic, considered one of the most important 
classification metrics which has been incorporated in the assessment 
and is shown using the receiver operating characteristic (ROC) 
curve. The ROC curve is made by comparing the true positive rate 
(Sensitivity) against the false positive rate (Specificity) at different cut-
off values.

A. Pre-processing of Time Series Data for the Prediction Model
In the following section, the predictability of all prediction techniques 

is investigated by using the Auto-Correlation Function (ACF) plot 
and the Ljung–Box Q test to detect autocorrelation in the residuals. 
This is to ensure that each trained model adequately fits the time-
series and if they are uniformly distributed evenly and monotonically 
independent. The Ljung– Box Q test is a ‘‘portmanteau’’ test which 
analyse the null hypothesis H0 that ‘‘a series of residuals exhibits no 
autocorrelation for a fixed number of lags L,’’ which is the opposite 
of another hypothesis H1 that ‘‘some autocorrelation coefficient is 
nonzero coefficient is nonzero’’. Fig. 3 – 7 displayed the ACF graphs 
of LSTM+LiSHT model for the electricity price data. The ACF graphs 
of the prediction model are trained with typical time-series defying 
the presumption of the free autocorrelation residuals. The high spikes 
which observed in several lags (fig. 3(a) – 7(a)), show that such model’s 
estimation may be inaccurate. The ACF plot spikes at lag 1 then slowly 
decays to lag 10. From lag 1 to 4 spikes are too high and cut off at the 
significant band 0.2, Which shows that the significant autocorrelation 
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presents in the residual of trained data. On the contrary, from the fig 
3(b)-7(b) it is shown that the spikes from lag 2 immediately go down 
under or between the significant band. Therefore, the autocorrelation 
in the residual does not exist in the trained data and is statistically 

sound for the evaluation of time series. In summary, all ACF plots of 
the LSTM+LiSHT generated using the converted time series (figs 3(b) 
– 7(b)), show that the residuals do not have autocorrelation. This can 
be further verified by the results obtained from the Ljung– Box Q test 

Fig. 3(a).  Autocorrelation of residuals for NSW time series. Fig. 3(b).  Autocorrelation of residuals for transformed (box-cox) NSW time series.
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Fig. 4(a).  Autocorrelation of residuals for QLD time series. Fig. 4(b).  Autocorrelation of residuals for transformed (box-cox) QLD time series.
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Fig. 5(a).  Autocorrelation of residuals for SA time series. Fig. 5(b).  Autocorrelation of residuals for transformed (box-cox) SA time series.
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Fig. 6(a).  Autocorrelation of residuals for TAS time series. Fig. 6(b).  Autocorrelation of residuals for transformed (box-cox) TAS time series.
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Fig. 7(a).  Autocorrelation of residuals for VIC time series. Fig. 7(b).  Autocorrelation of residuals for transformed (box-cox) VIC time series.

A
ut

o-
C

or
re

la
ti

on

A
ut

o-
C

or
re

la
ti

on

Lag Lag
0 2 4 6 8 10

-0.2

0

0.2

0.4

0.6

0.4

0.6

0.8

1

0 2 4 6 8 10

-0.2

0

0.2

0.8

1



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 9, Nº1

- 156 -

(Table VI) where the transformed time series data using the BoxCox 
transformation is free from autocorrelation.

TABLE VI.   Represent the Result of the Ljung–Box Q test Using L = 10

Condition Forecasting Autocorrelation existence

Before transformed
1 day Yes

1 month Yes

After transformed 
1 day No

1 month No

In this work, it has been established theoretically and 
experimentally that the time-series data are ‘‘appropriate’’ for 
developing a deep learning model, which is one of the contributions 
of this study. In another way it can be said that this work has 
developed a new framework that can discover effective time series 
data for training a deep learning model. This will lead to a stable 
and reliable forecasting model. The term “appropriate” denotes that 
the time-series data has satisfied the stated scientific requirements 
and is adequate for training a forecasting model. If, on the other 
hand, the series fails to meet the desired criteria, it is deemed 
“unsuitable,” and any attempts to develop a solid prediction model 
would most likely be useless. Therefore, this work is a beginning 
point for the development of any prediction methodology for various 
time series forecasting. If the starting dataset is unstable or non-
stationary, the work done for developing the forecasting model 
could be meaningless. Furthermore, it can be justified that this 
work has developed an innovative and comprehensive framework 
that allows any unstable time-series to be transformed to a stable 
condition by conducting a boxcox transformation method. It can be 
seen that the proposed transformation has successfully eliminated 
the “unsuitable” data, avoiding the costly and time-consuming “trial 
and error” method. Besides that, it is noticeable that one of the most 
interesting properties of our suggested framework is that this method 
can be simply modified to encompass a broader scientific domain 
of time-series forecasting operations without requiring any further 
adjustments or limits. More specifically, the recommended method 
uses statistic and economic tests to conduct an optimal pre-processing 
phase for utilising the internal structure of the timeseries. Finally, it 
is seen that while deep learning models are well accepted for time 
series, the proposed framework significantly enhances performance. 
However, more study is being done to see which of these approaches 
may be implemented more effectively a priori based on the properties 
for every time-series in order to get better forecasting performance. 
For accomplishing the prerequisite diagnosis and appropriate time 
transformation methodology, a complex pre-processing framework 
that refers to the inherent time-series particular traits such as 
stationarity, heteroskedasticity, seasonal cycles, and shifting variance 
can be used. 

B. Forecasting Performance of the Proposed LSTM+LiSHT Model
The efficacy of the proposed LSTM+LiSHT prediction model for 

the energy price dataset during spring season is presented in Table 
VI, while the results for other seasons are presented in Appendix A. 
In spring, the accuracy of the proposed LSTM+LiSHT model is above 
0.95 and 0.87 for the case of one day forecasting and one month 
forecasting respectively. Commonly, Medium-Term Forecast (MTF) 
studies horizons from a few days to months ahead. MTF is normally 
used for risk management, balance sheet calculations, and derivatives 
pricing. Meanwhile, Short-Term Forecast (STF) covers horizons from 
a few minutes up to a few days ahead has become an essential tool for 
the daily market operations. 

Table VII also computed the sensitivity and specificity of the proposed 
forecasting model for both forecasting horizons. The sensitivity analysis 
of the proposed model is computed to permit the analysis of changes 
in expectations used in forecasting the electricity price. By studying 
all the variables and the possible outcomes, important decisions can 
be made about businesses, the economy, and making investments. On 
the other hand, high specificity indicates the good capability of the 
proposed model to avoid false alarms or false spikes in forecasting 
the electricity prices. The sensitivity and specificity of the proposed 
forecasting model is considered good performance which is above 0.7 
and 0.8 respectively for both 1 day forecasting and 1 month forecasting. 
As such, sensitivity and specificity analysis are very useful methods 
to be applied in investment appraisal, sales and profit forecasting and 
other quantitative aspects of business management. 

Table VIII presented the performance of the forecasting model 
without applying the transformation method in the pre-processing 
module. More specifically, the proposed model had shown to be biased 
when it was trained using the conventional time-series data which 
resulted to low forecasting performance. The forecasting accuracies 
are in the range between 0.4 to 0.8 and 0.3 to 0.8 for 1 day forecasting 
and 1 month forecasting respectively. The sensitivity and specificity 
are significantly low as well. The forecasting sensitivity is below 0.6 
for both 1 day forecasting and 1 month forecasting. The sensitivity and 
specificity are significantly low as well. Hence, it is important to adopt 
the proposed pre-processing module to transform the conventional 
time series data in order to improve the forecasting performance.

As compared to table VII, the proposed forecasting model exhibits 
better performance in terms of ACC, sensitivity, and specificity when 
the data is trained with the transformed time series in the proposed pre-
processing module. Furthermore, the interrelation between sensitivity 
and specificity has been significantly improved. In summary, the 
performance of the proposed LSTM+LiSHT forecasting model has 
been considerably improved after adopting the first transformed box-
cox time series data, instead of the conventional time-series data. This 
justifies the contribution of the proposed pre-processing module in 
this work.

TABLE VII. Performance of the Proposed LSTM+LiSHT Model for Spring Season (After Transformation)

Australia’s region Forecasting ACC AUC F1 Sen Spe PPV NPV

NSW
1 day 1 0.945 1 1 1 1 1

1 month 0.984 0.802 0.852 1 0.983 0.742 1

QLD
1 day 1 0.957 1 1 1 1 1

1 month 0.870 0.768 0.678 0.76 0.894 0.612 0.944

SA
1 day 0.958 0.896 0.909 1 0.947 0.833 1

1 month 0.923 0.853 0.927 1 0.851 0.864 1

TAS
1 day 0.958 0.965 0.933 0.875 1 1 0.941

1 month 0.970 0.910 0.977 0.997 0.921 0.958 0.995

VIC
1 day 1 0.962 1 1 1 1 1

1 month 0.997 0.955 0.9583 1 0.997 0.92 1
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In addition, the proposed forecasting model is compared with 
several deep learning models as tabulated in Table IX and Table X 
for one day forecasting and one month forecasting respectively. 
More comparison results which cover other regions and seasons are 
presented in the Appendix. Besides that, the graphical representation 
of the actual electricity price and predicted electricity price for one 
day (24 hours) forecasting and 1 month forecasting for five different 
states over the spring season are presented in Figs. 8 (a-e) and 9 (a-e), 
respectively. The regression analysis has been performed to quantify 

the relationship between variables used in the forecasting models. 
As shown in Table VIII and Table IX, the regression (R) values for 
all the forecasting methods are approximately 1.0 which indicates a 
good relationship between the forecast variable of interest and the 
predictor variables. Generally, RMSE which represents the standard 
deviation of residuals (forecasting errors), is computed to determine 
the concentration of data around the line of best fit. Meanwhile, 
MAE computed the average of all differences between actual and 
forecast absolute value. Another common metric applied is the mean 

TABLE VIII. Performance of the Proposed LSTM+LiSHT Model for Spring Season (Before Transformation)

Australia’s region Forecasting ACC Sen Spe

NSW
1 day 0.583 0 0.636

1 month 0.885 0.090 0.936

QLD
1 day 0.800 0.500 0.826

1 month 0.761 0.183 0.818

SA
1 day 0.400 0.500 0.380

1 month 0.332 0.574 0.226

TAS
1 day 0.680 0.500 0.695

1 month 0.785 0.333 0.825

VIC
1 day 0.800 0.500 0.826

1 month 0.850 0.065 0.976

TABLE IX. One Day Forecasting for New South Wales

Seasonality Error BILSTM LSTM+GRU GRU LSTM The proposed work

Spring

RMSE 2.7418 2.1190 1.5455 1.3222 4.197x10-6

MAE 2.0013 1.6080 1.0110 0.8655 0.023

MBE 0.6502 0.2198 0.1456 0.0443 0.0067

MSE 7.5173 4.4903 2.3884 1.7481 0.0004

R 0.9998 0.9999 0.9984 0.9993 0.9998

Summer

RMSE 4.3231 0.8878 0.8254 0.6725 2.598x10-6

MAE 4.1249 0.7626 0.6944 0.4768 0.0094

MBE 4.1249 0.5250 0.3768 0.2045 0.1822

MSE 18.6895 0.7882 0.6814 0.4523 0.0003

R 0.9967 0.9988 0.9992 0.9992 0.9997

Autumn

RMSE 3.1852 0.4122 0.2081 0.2430 1.730x10-6

MAE 2.8768 0.3114 0.1596 0.1762 0.0018

MBE 2.8550 -0.1127 0.0659 0.0427 0.0599

MSE 10.1452 0.1699 0.0433 0.0590 0.0009

R 0.9972 0.9992 0.9998 0.9997 0.9999

TABLE X. One Month Forecasting for New South Wales 

Seasonality Error BILSTM LSTM+GRU GRU LSTM The proposed (LSTM+LiSHT)

Spring

RMSE 3.5388 0.5678 0.5630 0.4507 0.4065

MAE 3.1164 0.3811 0.3236 0.2492 0.2530

MBE 2.6034 0.0205 0.0192 0.0352 0.0134

MSE 12.5229 0.3224 0.3170 0.2032 0.1652

R 0.9991 0.9997 0.9997 0.9997 0.9998

Summer

RMSE 3.5682 0.7065 0.7134 0.5407 0.4207

MAE 3.3058 0.3294 0.3274 0.2634 0.2329

MBE 3.2019 0.0254 0.0498 8.6863e-04 0.0255

MSE 12.7318 0.4991 0.5090 0.2924 0.2285

R 0.9956 0.9964 0.9978 0.9978 0.9984

Autumn

RMSE 16.2570 7.6945 7.5842 5.5981 5.4047

MAE 14.4163 2.6332 2.2764 2.3837 2.4569

MBE 13.0280 0.1859 0.9894 0.5336 0.3663

MSE 264.290 59.2051 57.520 31.3386 29.2107

R 0.9983 0.9980 0.9980 0.9989 0.9990
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bias error (MBE) which could provide indication whether the model 
overestimates or underestimates the output. The smaller the values of 
RMSE, MBE and MAE indicate better performance of the forecasting 
model. It can be seen that the lowest RMSE, MBE and MAE are achieved 
by the proposed LSTM+LiSHT forecasting model when compared 
to other forecasting models. In contrast, BiLSTM forecasting model 
produces the highest RMSE, MBE and MAE for spring, summer and 
autumn respectively. This shows that BiLSTM is the least preferable 
forecasting model to be used in this work followed by LSTM+GRU, 
GRU and LSTM. Hence, this can be justified from figs 8 (a-e) and 9 
(a-e), where the curves of the proposed model coincide with the curve 
of the actual data which shows that the proposed model is able to 
forecast the electricity price effectively unlike the BiLSTM curves. 

The proposed model is benchmarked with previous works as 
tabulated in Table XI. The work in [34]  shows that the proposed 
Bi-GRU and Gated-FCN obtains RMSE of 8.23 and 3.12 respectively. 
Besides, the work in [35] that applied CNN-LSTM obtains RMSE 
of 6. The work in [36]  applied BP, CNN, LSTM-NN, WT-TDLSTM 
model for  electricity price forecasting and achieved the considerably 
low RMSE of 0.012798, 4.697257 × 10-5, 0.008360, and 3.940309 × 10-6 

respectively. Moreover, the work in [36] shows the WT_TDLSTM 
model is superior compared to the neural network system that exclude 
discrete wavelet transform and pre-processing of multiscale data. As 
for this work, the proposed model is tested on a smaller dataset that 
spans from year 2020 to 2021 and has produced considerably low 
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Fig. 8(a). One day prediction results for NSW. Fig. 8(b). One day prediction results for QLD.

Fig. 8(c). One day prediction results for SA.

Fig. 8(e). One day prediction results for VIC.

Fig. 8(d). One day prediction results for TAS.

TABLE XI. Performance Comparison of the Proposed EPF Model With 
Recent Works

Work MSE RMSE MAE

Bi-GRU [34] N/A 8.23 N/A

CNN-LSTM [35] N/A 5.92 N/A

Gated-FCN [34] N/A 3.12 N/A

BP [36] 0.113129 0.012798  0.281345 

CNN [36] 0.006854 4.697257 × 10-5 0.071783 

LSTM-NN [36] 0.091435 0.008360 0.22594 

WT_TDLSTM [36] 0.001985
3.940309 × 

10-6
0.035024 

The proposed work 0.00053 2.8438× 10-6 0.0114
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RMSE, MAE and MSE as compared to previous works. The RMSE of 
the proposed LSTM+LiSHT framework varies for different season 
and region with the lowest value of 2.8438 × 10-6. This justifies that 
the proposed forecasting model is suitable to be applied in the EPF 
application under various seasons in Australian electricity market.

V. Conclusion

In this work, time series data analysis has been performed and 
improved deep learning method has been proposed for short term 
electricity price forecasting. The developed forecasting model consists 
of pre-processed and post trained data analysis which incorporates 
time series statistical reliability method. An augmented dickey fuller 
test is performed to examine the stationarity and nonstationary data 
before the training process. Then, autocorrelation of the residuals is 
computed after the training process. In this work, the autocorrelation 
of the residuals has been evaluated to ensure the feasibility of the data 
for the deep learning approach. The autocorrelation in residuals has 
been fixed by transforming the data through box-cox transformation 
technique. Finally, the forecasting of electricity price is performed 

by applying the proposed deep learning module which has been 
modified to optimize the parameters of the heterogeneous LSTM. The 
performance of the proposed forecasting model has been benchmarked 
with previous works to justify the feasibility of the proposed method. 
Based on the results obtained, it can be seen that the proposed model 
has shown superior results compared to other methods in terms of 
RMSE, MSE and MAE.

In future works, further analysis can be performed such as 
comparing the proposed method for new profit and return-based 
performance measurements. Moreover, long-term electricity price 
forecasting can be explored. The proposed methodology can also be 
applied in other time series forecasting data. 
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Fig. 9(c). Monthly prediction results for SA.
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