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Abstract

In recent years generative AI models and tools have experienced a significant increase, especially techniques 
to generate synthetic multimedia content, such as images or videos. These methodologies present a wide 
range of possibilities; however, they can also present several risks that should be taken into account. In this 
survey we describe in detail different techniques for generating synthetic multimedia content, and we also 
analyse the most recent techniques for their detection. In order to achieve these objectives, a key aspect is the 
availability of datasets, so we have also described the main datasets available in the state of the art. Finally, 
from our analysis we have extracted the main trends for the future, such as transparency and interpretability, 
the generation of multimodal multimedia content, the robustness of models and the increased use of diffusion 
models. We find a roadmap of deep challenges, including temporal consistency, computation requirements, 
generalizability, ethical aspects, and constant adaptation.
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I. Introduction

The recent progress in Artificial intelligence (AI) has led to a 
revolution in the creation of synthetic images and videos, mainly 

due to the remarkable capabilities of advanced generative models, 
diffusion models, or Generative adversarial networks (GANs), among 
others. There are now a large number of applications and tools 
available to users, such as DALL-E [1], GLIDE [2], Midjourney [3], 
Imagen [4], VideoPoet [5], Sora [6], or Genie [7]. These tools are 
designed to produce realistic and believable digital content easily. This 
development has had a profound impact, with various applications 
across different areas. 

These techniques are capable of generating multimedia content 
on any topic or object. Therefore, there are countless opportunities, 
especially in some application domains, which can benefit greatly 
from these techniques and tools: entertainment and media, allowing 
the generation of characters, scenarios or elements that would be very 
difficult to create by traditional means [8]–[10]; creative industries, 
allows artists to streamline their work and improve its quality, for 
example by creating sketches to work on further, or creating elements 
to add to their work [11], [12]; education, creating engaging educational 

content, including simulations and visual aids to help illustrate and 
clarify complex ideas, and adapting to different learning styles [13], 
[14]; security and forensics, helping to create robust models capable of 
detecting false or generated information more easily, for example by 
assisting in data augmentation [15], [16]. As we can see, the applications 
of these techniques are limitless, and as their capabilities improve, they 
can be more easily applied to different problems in society.

This collection of tools and methodologies not only presents 
advantages, but also a number of weaknesses and potential risks that 
need to be carefully analysed. The ability to produce highly realistic 
synthetic media easily causes concern about their possible inappropriate 
use. Deepfakes and other kinds of manipulated content can be used 
to spread misinformation, create disinformation, and manipulate 
public opinion, undermining trust in digital media [17], [18]. This dual 
potential for both positive and negative impact highlights a crucial 
problem. While leveraging the benefits of generative models, there is 
an urgent need to develop effective detection methods to distinguish 
between real and AI-generated content. As generative models become 
more sophisticated, the task of detecting synthetic media becomes 
increasingly complex, necessitating the continuous evolution of 
detection techniques.
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Despite the significant advancements in generative models, several 
gaps and challenges persist in both their deployment and the methods 
used to detect synthetic media. One major challenge lies in the 
resource-intensive nature of training and deploying these models. High 
computational requirements limit accessibility, particularly for smaller 
organizations and researchers lacking the necessary infrastructure 
to fully utilise these technologies. This creates a barrier to wider 
adoption and raises concerns about the scalability and sustainability 
of generative models as they continue to evolve. Furthermore, even 
advanced models such as GLIDE [2] and DALL·E 2 [1] encounter 
challenges when processing complex prompts. These challenges can 
limit their ability to generate high-quality outputs under specific 
conditions. Similarly, Imagen [19] enhances computational efficiency 
but still grapples with resource demands and complex prompts. These 
limitations underscore a need for improved flexibility and robustness 
in current generative technologies.

On the video generation front, text-to-video models face significant 
challenges in maintaining high fidelity and continuity of motion over 
extended sequences. Many existing methods simply extend text-to-
image models, which do not fully address the unique complexities 
inherent in video generation. This highlights the need for more 
specialized approaches that can effectively handle the temporal 
dynamics and continuity required for high-quality video content.

Detecting synthetic media presents significant challenges. Current 
detection models struggle to keep pace with the rapid advancements 
in generative technologies, making it difficult to reliably differentiate 
between real and AI-generated images and videos. These models tend 
to specialize in the types of synthetic content they were trained on, 
leading to poor performance when faced with new data from different 
or updated models. Additionally, detection algorithms must be 
resilient against various transformations and adversarial attacks [20], 
[21], such as image compression and blurring, which can significantly 
diminish their effectiveness. Techniques for identifying deepfakes 
[22] and other forms of image and video forgeries [23] also encounter 
obstacles due to the constantly evolving nature of these manipulations 
and the need for high-quality datasets and standardized benchmarks.

To address these challenges and advance the field, this survey:

• Presents an updated picture of synthetic image generation and 
detection techniques.

• Presents an overview of video generation and detection techniques.

• Provides a list of the main video and image datasets used by 
researchers.

• Describes trends, challenges and research directions that can be 
explored in the AI generation, in video and image, and supports 
them with the conclusions of the analysis.

By providing a thorough examination of both the generative and 
detection aspects of synthetic media, this survey aims to foster a deeper 
understanding of the current challenges and opportunities in the field, 
promoting the development of technologies that can maximize the 
benefits of AI-generated content while minimizing its risks.

This survey is structured to comprehensively address both the 
generative capabilities and detection techniques of AI-generated 
images and videos, see Fig. 1. Section II reviews related works and 
surveys, providing a foundation for understanding the current state 
of research in this domain. Section III dives into image generation 
and detection, detailing various advanced generative models and 
the methods used to detect synthetic images. Section IV focuses on 
video generation and detection, exploring the advancements in video 
generation and the techniques to identify AI-generated videos. Section 
V discusses the datasets used for generative and detection algorithms, 
highlighting the importance of diverse and high-quality datasets. 

Section VI identifies the ongoing challenges in both generating and 
detecting synthetic media. Finally, Section VII concludes the survey 
by summarizing the key findings and suggesting future directions for 
research and development in this field.

II. Related Work and Related Surveys

The field of AI-generated images and videos has been extensively 
studied, with several surveys reviewing the advancements and 
challenges in this area. This section provides an overview of key 
surveys and positions our work in relation to them, highlighting the 
unique aspects of our approach, summarised in Table I.

• Liu et al. [24] conducted an extensive review on human image 
generation, categorizing existing techniques into three main 
paradigms: data-driven, knowledge-guided, and hybrid. The survey 
covers the most representative models and approaches within each 
paradigm, highlighting their specific advantages and limitations. 
Additionally, it explores a range of applications, datasets, and 
evaluation metrics relevant to human image generation. The 
paper also addresses the challenges and potential future directions 
in the field, offering valuable insights for researchers interested in 
this rapidly evolving domain.

• Chen et al. [28] concentrated on controllable text-to-image 
generation models. They investigated various methods that 
precisely control the produced content, such as personalized and 
multi-condition generation techniques. The authors explore the 
practical applications of these models in content creation and 
design while also recognizing current constraints and suggesting 
future directions to enhance the adaptability and accuracy of these 
generative models.

• Joshi et al. [29] provided an extensive analysis on the use of 
synthetic data in human analysis, focusing on the advantages 
and challenges in biometric recognition, action recognition, and 
person re-identification. The survey delves into various techniques 
for generating synthetic data, including deep generative models 
and 3D rendering tools, emphasizing their potential to tackle 
issues related to data scarcity, privacy concerns, and demographic 
biases in training datasets. Additionally, the authors explore 
how synthetic data can augment real datasets to enhance model 
performance scalability analysis and simulate complex scenarios 
that are challenging to capture with real data. They also address 
concerns about synthetic datasets, such as identity leakage and 
lack of diversity.

• Figueira et al. [25] focused on the generation of synthetic data 
with Generative Adversarial Networks (GANs). The authors 
emphasize the significance of synthetic data, particularly in cases 
where data is limited or contains sensitive information. They 
highlight how GANs can proficiently create high-quality synthetic 
samples that imitate real data distributions. This study presents a 
detailed summary of current methods and challenges in synthetic 
data generation, emphasizing the utilization of GANs for diverse 
data types, including tabular data, and exploring various GAN 
architectures that cater to these requirements.

• Nguyen et al. [26] offered a comprehensive review of deepfake 
generation and detection methods using deep learning techniques. 
They explored different types of deepfakes, such as face-swaps, lip-
syncs, and puppet-master variations, while highlighting the progress 
and challenges in identifying these manipulations. The survey 
covers traditional and deep learning-based approaches for detecting 
deepfakes, including methods based on manual feature creation and 
those utilizing deep neural networks. Their work emphasizes the 
importance of developing robust detection algorithms to counter 
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the increasing complexity of deepfake creation techniques. This 
study holds particular relevance in developing new multimodal 
approaches for deepfake detection, which are in alignment with 
investigating cross-modality fusion strategies.

• Bauer et al. [27] examined Synthetic Data Generation (SDG) 
models, analyzing 417 models developed over the past decade. 
The survey classifies these models into 20 distinct types and 42 
subtypes, providing a comprehensive overview of their functions 
and applications. The authors identified significant model 
performance and complexity trends, highlighting the prevalence 
of neural network-based approaches in most domains, except 
privacy-preserving data generation. The survey also discusses 
challenges, such as the absence of standardized evaluation metrics 
and datasets, indicating the need for enhanced comparative 
frameworks in future research.

• Zhang et al. [22] analysed the generation and detection of deepfakes, 
shedding light on both the progress made and the challenges 
encountered in this area. They outline two main techniques for 
creating deepfakes, face swapping and facial reenactment, and 
discuss the impact of GANs and other deep learning methods. 

Their work also explores various detection strategies, ranging from 
biometric and model features to machine learning-based methods. 
They emphasize the persistent challenges arising from evolving 
deepfake technologies, the need for high-quality datasets, and 
the absence of a standardized benchmark for detection methods. 
This survey is essential for gaining insights into the current state 
of generating and detecting deepfakes, which present significant 
challenges to privacy, security, and societal trust.

• Tyagi et al. [23] conducted a comprehensive analysis of image 
and video forgery detection techniques, highlighting the 
various manipulation methods, such as morphing, splicing, and 
retouching, and the challenges associated with detecting these 
alterations in digital media. The survey also reviewed different 
datasets used for training and evaluating forgery detection 
algorithms, emphasizing the need for robust, generalized 
methods capable of detecting multiple types of manipulations 
across diverse visual datasets. This work provides a detailed 
examination of both traditional and deep learning-based 
approaches, illustrating the advancements and limitations in the 
field of digital media forensics.

Survey of AI-generated
images and video

Comparison against
other surveys

Challenges and
Future trendsImage Video Conclusions

Generation

Detection

Generation

Detection

Dataset

Image

Video

Fig. 1. Schematic representation of the structure followed.

TABLE I. Comparison of Previous Literature Reviews

Authors Year
Task analysed Modalities

Main Contribution Limitations
Generation Detection Image Video

Liu et al. [24] 2022     It provided an extensive review on the 
generation of human images

It only deals with the generation of 
human images, without covering 
other possible scenarios.

Zhang et al. [22] 2022  
It provides a detailed analysis of video and 
image sample manipulation and detection 
techniques.

Focus on the manipulation of video 
and image samples.

Figueira et al. [25] 2022    

It provides a very detailed analysis of 
the use of GANs within data generation, 
focusing on training problems and 
evaluation techniques.

It does not focus on image and video 
generation.

Nguyen et al. [26] 2022    
It analyses both the techniques of 
generation, or manipulation, and the 
detection of images and videos.

It is mainly focused on the 
manipulation of multimedia data, 
not so much on the generation of 
synthetic samples.

Tyagi et al. [23] 2023    
Performs a detailed analysis of 
manipulation and detection techniques for 
video and audio samples.

The focus is not on synthetic sample 
generation and detection techniques, 
but on manipulation techniques.

Bauer et al. [27] 2024     It performs one of the most comprehensive 
data generation analyses available.

It is not focused on the generation of 
image and video samples.

Chen et al. [28] 2024    
It covers one of the newest approaches 
to image generation, diffusion models for 
Text-to-image task.

This is a very limited survey, as 
it covers only one of the imaging 
approaches, without analysing other 
techniques or modalities.

Joshi et al. [29] 2024    

Explores techniques including improving 
model performance, increasing data 
diversity and scalability, and mitigating 
privacy issues.

It only focuses on generating samples 
that represent humans, leaving a 
large part of the field unstudied.
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As we can see, this survey has a number of advantages over other 
published reviews of the field. Firstly, it is the first work to focus 
exclusively on synthetic sample generation techniques, which also 
provides a list of datasets published in recent years. It also analyses 
the approaches with which researchers are tackling the problem of 
detecting these synthetic samples.

III. AI Image Generation and Detection

In this section, we will focus on the generation of images with AI 
techniques, as well as on the main approaches for their detection. As 
mentioned above, AI, more specifically Deep Learning (DL) has shown 
significant progress in the fields of image generation and detection.

Advanced models have greatly improved the ability to generate 
synthetic images, focusing on enhancing aspects such as image 
quality and realism. Recent developments have led to improved 
training stability and higher-quality generated images, addressing 
common challenges and allowing for the creation of diverse and 
realistic outputs. Innovations in model architectures have also 
provided greater control over the image generation process, resulting 
in even more varied and convincing synthetic images. Fig. 2 illustrates 
a subset of AI-generated image and video techniques, specifically 
focusing on generative models that rely on text or prompts to create 

the samples. While this figure highlights key models used in text-to-
image or text-to-video synthesis, other generative approaches are 
discussed in the subsequent sections.

Models for synthetic images detection have also made 
substantial progress. These detection models have become more 
advanced, using deep learning techniques to identify subtle artifacts 
and inconsistencies in generated images. As a result, they are crucial 
in differentiating between real and synthetic images, ensuring the 
integrity of visual content. The ongoing evolution of these models 
indicates the dynamic nature of the field, with continuous research 
efforts focused on improving their precision and resilience [30], [31].

A. Image Generation
Within AI image generation, we will analyse two different 

approaches, see Fig. 3. The first approach, Text-to-image synthesis, 
will focus on generating image samples from text descriptions; while 
the second approach, Image-to-image translation, focuses on 
modifying the original image while preserving some visual properties 
in the final sample. A concise summary of the main image generation 
techniques is presented in Table II.

Women Faces...
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Fig. 2. Overview of the main approaches to image generation with AI.
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1. Text-to-Image Synthesis
In this section, we will look at different approaches to creating 

synthetic images from text. As this is a growing field we can observe 
a variety of different techniques, such as GANs, transformers or 
diffusion models.

Generative Adversarial Networks: Some authors continue 
to focus on GANs which, although not particularly novel, have 
competitive results in the field. For example, Sauer et al. [32] have 
improved the robust StyleGAN architecture to develop StyleGAN-T. 
This model tackles the challenge of producing visually diverse and 
attractive images from textual descriptions at scale, effectively 
speeding up the process while maintaining image fidelity. StyleGAN-T 
is trained on a comprehensive dataset containing various text-image 
pairs, ensuring diverse visual outputs. However, one limitation is the 
potential for reduced accuracy in rendering complex scenes due to 
the inherent challenges of text ambiguity and the current limitations 
of GANs in understanding nuanced textual descriptions. Kang et al. 
[33] proposed GigaGAN’s, an architecture that includes an improved 
generator and discriminator that efficiently handle large-scale data, 
allowing for the creation of diverse and visually compelling images. 
However, like other large-scale GANs, GigaGAN requires significant 
computational resources for training and has the potential to overfit 
precise textual descriptions if the training data lacks diversity. Despite 
these limitations, GigaGAN’s image synthesis capability is a powerful 
tool in AI-driven creative image generation, expanding the boundaries 
of machine understanding and visualization of textual content. The 
model TextControlGAN [34] introduces an innovative method 
to improve text-to-image synthesis by modifying the Generative 
Adversarial Network (GAN) architecture. This modification aims 
to enhance control and precision in generating images from textual 

descriptions, by integrating specific control mechanisms within the 
GAN framework. This capability is essential for applications that 
require high fidelity between textual inputs and visual outputs, such 
as in digital media creation and automated content generation.

Other authors have explored the option of a combination 
between GAN with other types of techniques such as the CLIP 
model, such as Ming Tao et al. [35] have applied the pre-trained CLIP 
model to Generative Adversarial Networks (GANs) to transform 
the process of text-to-image synthesis. This innovative approach 
enhances the efficiency and quality of the images created from 
textual descriptions. By integrating CLIP into both the discriminator 
and generator, the model achieves strong scene understanding and 
domain generalization using fewer parameters and less training data. 
By leveraging diverse and extensive datasets, this method enables 
the generation of a broad range of intricate and visually appealing 
images. This approach accelerates the synthesis process and ensures 
a smoother and more controllable latent space, thereby significantly 
reducing the computational resources typically required for high-
quality image synthesis.

Ahmed et al. [36] proposed a novel approach that involves 
simultaneously generating images and their corresponding 
foreground-background segmentation masks. This is achieved by using 
a new Generative Adversarial Network (GAN) architecture named 
COS-GAN, which incorporates a spatial co-attention mechanism to 
improve the quality of both the images and segmentation masks. The 
innovative aspect of COS-GAN lies in its ability to handle multiple 
image outputs and their segmentations from textual descriptions, 
thereby enhancing applications such as object localization and image 
editing. It was extensively tested on diverse datasets, including CUB, 
Oxford-102, and COCO. However, it faces challenges, such as the 

TABLE II. Comprehensive Overview of a Few Synthetic Image Generation Techniques

Models Year Technique Target Outcome Data Used Open Source

NVAE [66] 2020 Hierarchical VAE High-fidelity images CelebA, FFHQ No

CogView [41] 2021 Transformer-based Text-to-image synthesis Diverse text and images Yes

StyleGAN3 [59] 2021 GAN-based High-quality images FFHQ, CelebA Yes

BigGAN [73] 2021 GAN-based Large-scale image synthesis ImageNet Yes

GLIDE [2] 2021 Diffusion-based Generate images from text prompts DALL-E's dataset Yes

DALL-E 2 [1] 2022 Transformer-based Text-to-image synthesis Custom, diverse content Yes

DiVAE [38] 2022 VQ-VAE with diffusion High-quality reconstruction ImageNet No

VQ-VAE-2 [65] 2022 VA E -based High-resolution images Large-scale datasets Yes

EfficientGAN [61] 2022 GAN-based Efficiency and quality Custom datasets Partial

Latent Diffusion [43] 2023 Diffusion-based Photorealistic images Various Yes

DALL-E 3 [51] 2023 Enhanced Transformer Improved prompt following
Custom image captioner 

dataset
No

Imagen [4] 2023 Transformer-based High-fidelity image synthesis Open Images, ImageNet No

Imagen2 [50] 2023 Style-conditioned diffusion Lifelike images with context Diverse dataset No

Muse [40] 2023 Transformer T5-XXL High-fidelity zero-shot editing CC3M, COCO No

SDXL [48] 2023 Stable Diffusion High-resolution image synthesis Custom dataset Yes

StyleGAN-T [32] 2023 GAN-based High-quality image synthesis
Comprehensive dataset with 

various text-image pairs
Yes

GALIP [35] 2023 GAN-based, utilizing CLIP Efficient quality image creation from text Diverse datasets Yes

GigaGAN [33] 2023 Advanced GAN
High-resolution, detailed image generation 

from text
Extensive datasets with 
diverse image-text pairs

Yes

UFOGen [37] 2024 GAN and diffusion High-quality fast generation - No

RAPHAEL [49] 2024 Diffusion with MoEs Artistic images from text Subset of LAION-5B Yes

Ahmed et al. [36] 2024 GAN with spatial co-attention Enhanced image generation CUB, Oxford-102, COCO No
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high computational demand required for training and potential biases 
embedded within the large-scale datasets used. These limitations could 
impact the generalizability and ethical deployment. By contrast, Xu 
et al. [37], chose to combine these GAN with diffusion models. They 
proposed UFOGen, that offers a novel approach to generating high-
quality images from text quickly. Combining elements of Generative 
Adversarial Networks (GANs) and diffusion models efficiently creates 
images in a single step, eliminating the need for slower, multi-step 
processes used by standard diffusion models. UFOGen’s training 
process is greatly improved by utilizing pre-trained diffusion models, 
which enhances efficiency and reduces training times. However, 
similar to other generative models, UFOGen also faces limitations. 
It depends on large-scale datasets that may contain biased or 
inappropriate content, potentially leading to biased generated images, 
which raises ethical concerns and affects the fairness and diversity of 
the output.

Autoencoder models: Another approach we have seen in the 
generation of images from text is autoencoder models. For example, 
Saharia et al. [4] introduced Imagen, a text-to-image model using 
classifier-free guidance (CFG) and a pre-trained T5-XXL encoder to 
improve computational efficiency. The model’s key innovation is 
using large language models to enhance image quality and text-image 
alignment. Imagen generates images starting at 64×64 resolution, then 
upscales to 256×256 and 1024×1024 using super-resolution models. 
Despite achieving a strong FID score of 7.27 on COCO, the model 
faces challenges with dataset biases, high computational demands, and 
difficulties in generating realistic human images. On the other hand Shi 
et al. [38] developed DiVAE, which combines a VQ-VAE architecture 
with a denoising diffusion decoder to create highly realistic images, 
excelling in image reconstruction and text-to-image synthesis 
tasks. Using a CNN encoder, the model first compresses images into 
latent embeddings and then reconstructs them into high-quality 
images through a diffusion-based decoder. Trained on the ImageNet 
dataset, DiVAE delivers superior performance in terms of FID scores 
compared to models like VQGAN. However, the diffusion process is 
computationally intensive, requiring many steps, and the model is 
restricted by the fixed image size determined by the training data.

Contrastive learning: it has also been shown that this type of 
learning is a good technique for tackling this type of task using AI 
models. The CLIP model [39], created by OpenAI, has attracted the 
attention of a large number of researchers. This model is able to 
relate images and text by using contrastive learning, training on large 
multimodal datasets to align visual and linguistic representations in 
a shared space, allowing tasks such as image generation, search and 
classification to be performed without the need for specific supervised 
training. As a result, it is one of the most widely used approaches for 
researchers to generate synthetic images from text.

Tranformer: We have also analysed different research that has 
used transformers for the generation of synthetic images. Muse [40] 
is a Transformer designed for text-to-image generation. It utilizes a 
pre-trained T5-XXL language model to predict masked image tokens. 
Trained on 460 million text-image pairs from CC3M and COCO 
datasets, this model excels in generating high-fidelity images and 
supports zero-shot editing, such as inpainting and outpainting. Muse’s 
efficiency exceeds that of diffusion and autoregressive models due 
to its discrete token space and parallel decoding. However, it faces 
challenges in rendering long phrases, handling high object cardinality, 
and managing multiple cardinalities in prompts. Ming Ding et al. [41] 
have introduced CogView. This model harnesses a 4-billion-parameter 
Transformer architecture in combination with a VQ-VAE tokenizer. 
CogView operates by encoding text into discrete tokens, which the 
Transformer processes to forecast corresponding visual tokens. These 
visual tokens are then transformed into high-quality images using the 

VQ-VAE decoder. CogView underwent training on extensive datasets, 
incorporating image-text pairs from diverse sources. Despite its 
remarkable capabilities, CogView does have limitations. The model 
demands substantial computational resources for training owing to its 
expansive parameter size. Similar to numerous text-to-image models, 
it encounters challenges with intricate or ambiguous text prompts, 
leading to less precise image generation. Additionally, dependence 
on extensive datasets can introduce biases within the training data, 
impacting the variety and impartiality of the generated images. 
CogView2 [42] used a sophisticated Transformer architecture to 
quickly generate high-quality images from text. The model begins by 
producing low-resolution images and then progressively refines them 
using super-resolution modules, ensuring detailed and consistent 
results. With a foundation built on a 6-billion-parameter Transformer, 
the model is trained on diverse datasets of text-image pairs, allowing it 
to handle tasks such as text-to-image generation, image infilling, and 
captioning in multiple languages. Nevertheless, CogView2 requires 
substantial computational resources and careful tuning to balance 
local and global coherence in the generated images.

Diffusion models. This is one of the topics that has attracted the 
most researchers. Latent Diffusion Models (LDMs) [43] are a major step 
forward in high-resolution image synthesis, see Fig. 4. They achieve 
this by using diffusion models within the latent space of pre-trained 
autoencoders. This reduces the computational requirements typically 
associated with diffusion models operating in pixel space while 
maintaining high visual fidelity. Incorporating cross-attention layers 
within the UNet backbone is a significant advancement in LDMs. It 
enables the generation of high-quality outputs based on various 
input conditions, such as text prompts and bounding boxes. This 
architecture supports high-resolution synthesis using a convolutional 
approach. The model is trained to predict a less noisy version of the 
latent variable by focusing on essential semantic features rather than 
on high-frequency details that are often imperceptible.
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Fig. 4. Latent Diffusion Models architecture from Rombach et al. [43].

Anton et al. [44] present a new method for synthesizing images 
from a text by combining image-prior models with latent diffusion 
techniques. The model utilizes CLIP to map text embeddings to image 
embeddings and incorporates a modified MoVQ implementation as 
the image autoencoder. After training on the COCO-30K dataset, 
Kandinsky achieves high-quality image generation with a competitive 
FID score. Despite the need for further improvements in the 
semantic coherence between text and generated images, Kandinsky’s 
versatility in supporting text-to-image generation, image fusion, and 
inpainting represents a significant advancement in AI-driven image 
synthesis. EmoGen [45] marks a significant leap forward in text-to-
image models. It centers on producing images that capture distinct 
emotions, solving the difficulty of linking abstract emotions with 
visual representations. This model excels at creating images that are 
semantically clear and resonate emotionally. It accomplishes this 
by aligning the emotion-specific space with the powerful semantic 
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capabilities of the CLIP model. This alignment is established through 
a mapping network that interprets abstract emotions into concrete 
semantics, guaranteeing that the generated images faithfully reflect 
the intended emotional tones. The model has undergone training and 
validation using EmoSet, a comprehensive visual emotion dataset 
with detailed attribute annotations, aiding in optimizing the model 
for diverse and emotionally accurate image generation. Despite its 
advancements, EmoGen faces challenges akin to other generative 
models, including reliance on potentially biased large datasets and the 
substantial computational resources needed for training and inference, 
limiting its accessibility and applicability across different research 
groups and practical uses.

Latent Diffusion Models (LDMs) also have their limitations. One 
significant challenge is the use of large-scale, often uncurated datasets, 
which can introduce biases and ethical concerns. While LDMs are 
more computationally efficient than traditional pixel-based diffusion 
models, they still require substantial computational resources for 
training and inference, which may be prohibitive for smaller research 
groups. LDMs also struggle with generating realistic images of people, 
leading to lower preference rates in evaluations. Additionally, these 
models can reflect societal biases, highlighting the importance of 
robust bias mitigation strategies and the need for more ethically curated 
datasets in future research. Hang Li et al. [46] present an innovative 
approach focusing on the ethical implications of AI-generated content 
and introduce a self-supervised method for identifying interpretable 
latent directions within diffusion models. The objective is to mitigate 
the generation of inappropriate or biased images, thus enhancing 
control over the generated images and ensuring they align with 
ethical standards while avoiding perpetuating harmful stereotypes. 
The model has been trained on diverse datasets, allowing it to handle 
a broad scope of concepts sensitively and responsibly. However, the 
extensive reliance on datasets may introduce potential biases, while 
the high computational demand for processing these datasets presents 
challenges for accessibility and scalability.

Some researchers have chosen to combine the CLIP model with 
diffusion models. For example, Nichol et al. [2] introduced GLIDE, 
a text-to-image diffusion model that replaces class labels with text 
prompts. It uses classifier guidance, with a CLIP model in noisy 
image space, and classifier-free guidance [47], which integrates text 
features directly into the diffusion process. GLIDE’s 3.5B parameter 
model encodes text through a transformer to generate high-quality 
images. While effective in photorealism and caption alignment, 
GLIDE struggles with complex prompts and requires substantial 
computational power. Ramesh et al. [1] introduced DALL·E 2, a model 
leveraging CLIP and diffusion techniques for generating realistic 
images from text descriptions. DALL·E 2 operates in two stages: 
a prior model creates a CLIP image embedding from text, followed 
by a diffusion-based decoder that generates the final image. This 
architecture ensures both diversity and realism in the output. The 
model’s use of CLIP embeddings captures semantic and stylistic 
nuances, enabling high-quality image generation and manipulation. 
Although trained on a vast dataset, DALL·E 2 faces challenges with 
complex prompts and fine-grained attribute accuracy, highlighting 
areas for further improvement.

Furthermore, Podell et al. [48] developed SDXL, which is a major 
step forward in high-resolution image synthesis, expanding on the 
foundational work of Stable Diffusion models. It utilizes a significantly 
larger UNet backbone, about three times larger than its predecessors, 
with more attention blocks and a larger cross-attention context. This 
enhanced architecture enables SDXL to tackle complex text-to-image 
synthesis tasks effectively. Additionally, SDXL incorporates multiple 
innovative conditioning schemes and is trained on various aspect 
ratios, enhancing its versatility in producing images of different 

resolutions and aspect ratios. Firstly, it generates initial 128×128 
latents. Then, a specialized high-resolution refinement model is 
applied to improve these latents to higher resolutions. The SDXL 
training involved utilising an improved autoencoder from previous 
Stable Diffusion versions. It exceeded its predecessors in all assessed 
reconstruction metrics, ensuring improved local and high-frequency 
details in the generated images. The final training stage included 
multi-aspect training with different aspect ratios, further boosting the 
model’s capabilities. Despite its progress, SDXL has some limitations. 
The model’s reliance on large-scale datasets can lead to biases and 
ethical concerns due to potentially inappropriate content such as 
pornographic images, racist language, and harmful social stereotypes. 
SDXL also struggles to create realistic images of people, often resulting 
in lower preference rates. Furthermore, the model perpetuates existing 
social biases, favouring lighter skin tones. Xue et al. [49] presents 
Raphael, an innovative method for generating images from text. 
It aims to create highly artistic images that closely match complex 
textual prompts. The model stands out for its mixture-of-experts 
(MoEs) layers, incorporating both space-MoE and time-MoE layers, 
allowing for billions of unique diffusion paths. This distinct approach 
enables each path to function as a "painter," translating individual 
parts of the text into corresponding image segments with high fidelity. 
RAPHAEL has outperformed other state-of-the-art models like Stable 
Diffusion and DALL-E 2. It excels in generating images across diverse 
styles, such as Japanese comics and cyberpunk, and has achieved 
impressively low zero-shot FID scores on the COCO dataset. Training 
on a combination of a subset of LAION-5B and some internal datasets 
has ensured a broad and diverse range of training images and text for 
RAPHAEL.

Several tools based on diffusion models have also emerged, such as 
the following:

• Imagen2 [50]: this model can generate realistic images by 
improving the way it pairs images with captions in its training 
data. The model is adept at understanding context and can edit 
images, including inpainting and outpainting. It also offers 
style conditioning, allowing for the use of reference images to 
guide style adherence, providing greater flexibility and control. 
However, it struggles with complex object placement and specific 
detail generation, and there is a possibility of biased content, 
so safety measures are essential. Trained on a large and diverse 
dataset, Imagen2 achieves high-quality, contextually aligned 
image generation.

• Dall-E3 [51]: has made significant strides in text-to-image 
generation through the use of improved image captions to enhance 
prompt following. By developing a custom image captioner 
to generate detailed, synthetic captions, the model has greatly 
improved its ability to follow prompts, coherence, and the overall 
aesthetics of the generated images. However, DALL-E 3 still 
grapples with issues such as spatial awareness, object placement, 
unreliable text rendering, and the tendency to hallucinate specific 
details like plant species or bird types. The model’s training 
consists of a mix of 95% synthetic captions and 5% ground truth 
captions, which helps regulate inputs and prevent overfitting. 
This thorough training process allows DALL-E 3 to produce high-
quality images with improved prompt following and coherence.

As we have seen in this section, we have analysed the different 
approaches that are currently being researched within the domain of 
text-to-image synthesis. The most commonly used techniques have 
been GANs, Transformers, Diffusion Models and the CLIP model. This 
shows that there are a large number of synthetic image generation 
techniques that will allow the creation of large datasets created with 
many different techniques. This will allow the creation of detection 
models that are able to generalise better to real situations.
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2. Image-to-Image Translation
Recent advances in image-to-image translation have introduced 

several cutting-edge models that enhance generated images’ quality, 
efficiency, and versatility.

Computer vision is one of the most important fields where GANs 
are applied, and realistic image generation is the most widely used 
application of these techniques. For example, Augmented CycleGAN 
[52] builds on the traditional CycleGAN architecture to handle 
more complex image-to-image translation tasks, improving domain 
adaptation, style transfer, and reducing artifacts. DualGAN++ 
[53] introduces advanced regularization techniques and optimized 
training strategies, resulting in higher fidelity and fewer distortions 
in synthetic images. CUT++ [54] refines the original CUT model 
with contrastive learning techniques and enhanced loss functions for 
generating higher-quality synthetic images, especially in scenarios 
with limited data availability. SPADE++ [55] incorporates new 
strategies for better handling spatial inconsistencies and enhancing 
the realism of high-resolution synthetic images, particularly effective 
for images with complex structures. SSIT-GAN [56] leverages self-
supervised learning techniques to generate high-quality synthetic 
images with self-supervised loss functions, useful for applications with 
limited annotated data. UMGAN [57] proposes a unified approach for 
multimodal image-to-image translation, enabling the generation of 
diverse synthetic images from multiple input modalities across various 
applications. Zero-shot GANs [58] aim to generate images without 
extensive labelled data, enhancing the zero-shot learning capabilities 
of GANs. This approach allows for the creation of diverse and high-
quality images even with minimal training data.

Recent advancements in GAN-based synthetic image generation 
have been focused on enhancing image quality, efficiency, and 
usability across different domains. StyleGAN3 tackles the issue of 
"texture sticking" in generated images by introducing architectural 
revisions to eliminate aliasing, ensuring that image details move 
naturally with depicted objects. The new design interprets all signals 
continuously, achieving full equivariance to translation and rotation 
at subpixel scales. This results in images that maintain the high 
quality of StyleGAN2 but with improved internal representations, 
making StyleGAN3 more suitable for video and animation generation. 
The model was trained using high-quality datasets such as FFHQ, 
METFACES, AFHQ, and a newly collected BEACHES dataset. 
However, the architecture assumes specific characteristics of the 
training data, which can lead to challenges when these assumptions 
are not met, such as with aliased or low-quality images. Additionally, 
further improvements might be possible by making the discriminator 
equivariant and finding ways to reintroduce noise inputs without 
compromising equivariance [59], [60]. EfficientGAN [61] focuses 
on optimizing computational efficiency while maintaining high-
quality image generation. This model aims to reduce the resource 
requirements for training GANs without compromising the generated 
images’ visual quality. It introduces novel architectural modifications 
and training strategies that balance performance and efficiency.

Other authors have explored how to combine GANs with 
other types of techniques such as Latent Diffusion Models, which 
combine GANs with diffusion models to achieve high-resolution 
image synthesis. The integration of latent diffusion models helps in 
generating detailed and high-quality images while maintaining the 
robustness of GANs [62]. In contrast, Torbunov et al. [63] chose to 
combine them with Transformers. They introduced UVCGAN, an 
advanced model designed for image-to-image translation, focusing on 
synthetic image generation. This model improves upon the traditional 
CycleGAN framework by integrating a Vision Transformer (ViT) 
into the generator, enhancing its ability to learn non-local patterns. 
UVCGAN is highly effective for unpaired image-to-image translation 

tasks, making it a valuable tool for applications in fields such as art, 
design, and scientific simulations. ViT enables more complex and 
nuanced image transformations, pushing the boundaries of synthetic 
image generation possibilities.

Recently, significant developments have been made in Variational 
Autoencoders (VAEs) for synthetic image generation. These 
advancements have resulted in the creation of innovative models 
that enhance the quality, efficiency, and versatility of the images 
generated. For instance, Conditional VAEs [64] have improved 
inpainting results and training efficiency by utilizing pre-trained 
weights and datasets such as CIFAR-10, ImageNet, and FFHQ. VQ-
VAE-2 employs hierarchical latent representations to capture high-
resolution details, leading to a notable improvement in image fidelity 
and diversity [65]. NVAE [66], with its hierarchical architecture and 
advanced regularization techniques, has enabled high-resolution, 
realistic image generation. Another example is StyleVAE [67], which 
integrates VAEs with style transfer techniques to produce visually 
appealing images with stylistic consistency. Additionally, FHVAE 
has enhanced the disentanglement of latent factors, allowing for 
better control over image attributes [68]. EndoVAE [69], developed by 
Diamantis et al., introduces a fresh approach for producing synthetic 
endoscopic images using a Variational Autoencoder (VAE). This novel 
technique addresses the drawbacks of traditional GAN-based models, 
particularly in the domain of medical imaging where maintaining data 
privacy and diversity is crucial. EndoVAE is specifically designed to 
generate a diverse set of high-quality synthetic images, which can 
be used in lieu of real endoscopic images. This aids in the training 
of machine learning models for medical diagnosis. The outcomes 
illustrate that EndoVAE adeptly creates realistic endoscopic images, 
positioning it as a promising tool for advancing medical image 
analysis and circumventing the challenges stemming from limited 
data availability.

Furthermore, Dos Santos et al. [70] have introduced a Synthetic 
Data Generation System (SDGS) that utilizes Variational Autoencoders 
(VAEs) to produce synthetic images. Their system aims to automate 
the creation of synthetic datasets by using the Linked Data (LD) 
paradigm to collect and merge data from multiple repositories. 
The SDGS framework incorporates advanced feature engineering 
methods to enhance the quality of the dataset before training the 
VAE model. This results in synthetic images that closely mimic real-
world data, making them extremely useful for training machine 
learning models, especially in scenarios where actual data is scarce. 
The system’s efficacy has been confirmed through various case 
studies, demonstrating that the generated synthetic data achieves 
high accuracy and closely resembles the original datasets in crucial 
characteristics. Seunghwan et al. [71] have introduced a new method 
for creating synthetic data using Variational Autoencoders (VAEs). 
Their approach overcomes the limitations of the typical Gaussian 
assumption in VAEs by incorporating an infinite mixture of asymmetric 
Laplace distributions in the decoder. This advancement provides 
more flexibility in capturing the underlying data distribution, which 
is crucial for generating high-quality synthetic data. Their model, 
known as "DistVAE," has demonstrated exceptional performance in 
generating synthetic datasets that maintain statistical similarity to the 
original data and also ensures privacy preservation. The effectiveness 
of the approach was confirmed through experiments on various real-
world tabular datasets, indicating that DistVAE can generate accurate 
synthetic data while allowing for adjustable privacy levels through a 
tunable parameter. This makes it particularly valuable in situations 
where data privacy is a concern.

Finally, we can see how the use of diffusion models in image-
to-image translation is also beginning to be explored. For example, 
Parmar et al. [72] proposed pix2pix-zero, a method for image-to-image 
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translation without relying on text prompts or additional training. This 
approach utilizes cross-attention guidance to maintain image structure 
and automatically discovers editing directions in the text embedding 
space. The architecture leverages pre-trained Stable Diffusion models 
for tasks like object type changes and style transformations. The 
model’s performance is assessed using real and synthetic images from 
the LAION 5B dataset. However, some limitations include the low 
resolution of the cross-attention map for fine details and challenges 
with atypical poses and fine-grained edits.

In this section we have analysed the latest work in the field of 
Image-to-Image translation, focusing on image alterations while 
maintaining some visual features. Within this domain we have looked 
at three main approaches: GANs, AutoEncoders and diffusion models. 
We can observe that this domain although it has been widely explored, 
still presents a wide range of possibilities.

B. Detection of AI-Generated Images
The development of generative models requires the creation of 

detection models to differentiate between AI-generated and real 
images. Detection methods can be split into two main types: those 
focused solely on improving detection performance and those that 
enhance detectors with additional features such as generalizability, 
robustness, and interpretability while maintaining accurate and 
effective detection capabilities. An overview of techniques for 
detecting AI-generated images is provided in Table III, summarizing 
various methods and their key features, including the application areas 
and datasets used. For example, the Deep Image Fingerprint (DIF) [74] 
method is specifically designed to detect low-budget synthetic images. 
It can identify images generated by both Generative Adversarial 
Networks (GANs) and Latent Text-to-Image Models (LTIMs). The 
method utilizes datasets from various models, including CycleGAN, 

ProGAN, BigGAN, StyleGAN, Stable Diffusion, DALL·E-2, and GLIDE, 
and achieves high detection accuracy with minimal training samples. 
While it excels in detecting synthetic images, it may encounter some 
challenges with models like GLIDE and DALL·E-2 due to their weaker, 
less distinct fingerprints.

Some authors still opt for more traditional techniques, such as 
the Fourier Transform for the detection of artefacts left in the 
image samples. For example, the AUSOME (AUthenticating SOcial 
MEdia) [75] method is focused on identifying AI-generated images 
on social media. It achieves this by utilizing frequency analysis 
techniques, such as the Discrete Fourier Transform (DFT) and 
Discrete Cosine Transform (DCT), to compare the spectral features 
of AI-generated images, like those produced by DALL-E 2, with 
legitimate images from the Stanford image dataset. AUSOME can 
distinguish between AI-generated and real images by examining 
differences in frequency responses. Although it demonstrates high 
accuracy, it may encounter difficulties when dealing with images 
where semantic content is essential for determining authenticity. 
Nevertheless, this method presents a promising approach for 
verifying social media images, particularly in light of the increasing 
prevalence of AI-generated content. Synthbuster [76] is a technique 
developed to identify images created by diffusion models by 
analyzing frequency artifacts in the Fourier transform of residual 
images. This method is effective at spotting synthetic images, even 
when they are slightly compressed in JPEG format, and it works 
well with unknown models. It analyzes real images from the RAISE 
and Dresden datasets and synthetic images from various models 
such as Stable Diffusion, Midjourney, Adobe Firefly, DALL·E 2, 
and DALL·E 3. While Synthbuster is generally effective, it may 
encounter challenges when dealing with different compression 
levels and diverse image categories.

TABLE III. Overview of Techniques for Detecting AI-Generated Images

Authors Year Technique Target Outcome Data Used Open Source

Shiohara et al. [19] 2022 Self-blended images Detect fake or synthetic images Self-blended image data Yes

Wang et al. [79] 2023
Diffusion 

Reconstruction Error
Detect difusión model-generated images DiffusionForensics dataset Yes

Ma et al. [80] 2023
Deterministic reverse and 

denoising computation errors
Detect images from difusión models

CIFAR-IO, TinyImageNet, 
CelebA

Yes

Zhong et al. [78] 2023 Texture patch analysis Identify Al-generated images
Datasets from 17 generative 

models
Yes

lorenz et al. [82] 2023
Intrinsic Dimensionality-

based
Detect artificial images from deep diffusion 

models
CiFake, ArtiFact, DiffusionDB, 

LAION-5B, SAC
Yes

Alzantot et al. [77] 2023
Wavelet-packet representation 

analysis
Differentiate real and synthetic images

FFHQ, CelebA, LSUN, Face 
Forensics++

Yes

Poredi et al. [75] 2023 Frequency analysis Identify Al-generated images on social media Stanford image dataset Yes

Bammey et al. [76] 2023 Frequency artifacts analysis Detect images generated by diffusion models Raise and Dresden datasets Yes

Guarnera et al. [83] 2023 Hierarchical classification Identify deepfake images CelebA, FFHQ, ImageNet Yes

Ojha et al. [85] 2023 Universal fake image detector Enhance detection of synthetic or fake images
Images generated by various 

models
Yes

Mathys et al. [86] 2024
CNN-based pixel-level 

analysis
Identify synthetic images

Diverse dataset with real and 
synthetic images

No

Coccomini et al. [84] 2024
Visual and textual feature 

classification
Detect synthetic images from diffusion 

models
MSCOCO and Wikimedia 

datasets
Yes

Tan et al. [87] 2024
Category Common Prompt 

in CLIP
Enhance detection of deepfakes

Images generated by various 
models

Yes

Sinitsa et al. [74] 2024 Fingerprint-based
Detect synthetic images with low-budget 

models
Various models datasets Yes

Keita et al. [88] 2024
Vision-language model with 

dual LORA mechanism
Detect synthetic images using vision-language 

model
Various datasets Yes
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Other authors focus on taking advantage of textures, in order 
to exploit all available information. For instance, Alzantot et al. [77] 
proposed multi-scale wavelet-packet representations. Their deepfake 
image analysis and detection technique aims to differentiate real 
from synthetic images by analyzing their spatial and frequency 
information. This method has undergone evaluation using various 
datasets, including FFHQ, CelebA, LSUN, and FaceForensics++. It has 
shown strong capabilities in identifying GAN-generated images, such 
as those created by StyleGAN. However, it may face challenges when 
analyzing complex images where semantic information is crucial, 
and its effectiveness may be limited to the detection of image-based 
synthetic media. PatchCraft [78] introduces a fresh approach to 
identifying synthetic AI-generated images. Instead of relying solely 
on global semantic information, this method focuses on analyzing 
texture patches within the images for more effective detection. To 
enhance detection, the method employs a preprocessing step called 
Smash&Reconstruction, which removes global semantic details and 
amplifies texture patches, thereby utilizing the contrast between rich 
and poor texture regions to boost performance. Tested on datasets 
from 17 common generative models, including ProGAN, StyleGAN, 
BigGAN, CycleGAN, ADM, Glide, and Stable Diffusion, the method 
has shown superior adaptability and resilience against previously 
unseen models and image distortions. Nevertheless, it may encounter 
challenges when dealing with images in which semantic information 
is critical for accurate detection.

An analysis on the error inserted in generated images has also 
been a productive research line. For example, the DIRE (DIffusion 
REconstruction Error) [79] method is utilized to identify images 
created through diffusion processes by comparing the reconstruction 
error between an original image and its reconstructed version using a 
pre-trained diffusion model. This technique is based on the idea that 
diffusion-generated images can be accurately reconstructed using 
diffusion models, unlike genuine images. DIRE has been evaluated 
using the DiffusionForensics dataset, encompassing images from 
various diffusion models, including ADM, DDPM, and iDDPM. 
It has demonstrated notable accuracy in detecting images and is 
resilient to unseen diffusion models and alterations. Nonetheless, it 
may encounter difficulties with the intricate features of real images. 
Shiohara et al. [19] has introduced an innovative approach for 
detecting fake or synthetic images, specifically deepfakes. They utilize 
self-blended images (SBIs) as synthetic training data to enhance the 
robustness of detection models. This allows the models to effectively 
identify various types of deepfake manipulations by scrutinizing 
inconsistencies and artifacts in the images. Consequently, this method 
provides a robust tool for preserving the authenticity of digital 
media in the face of increasingly advanced generative techniques. 
The SeDID [80] method utilizes deterministic reverse and denoising 
computation errors found in diffusion models. This approach includes 
two branches: the statistical-based SeDIDStat and the neural network-
based SeDIDNNs. SeDID was evaluated on various datasets like 
CIFAR-10, TinyImageNet, and CelebA and demonstrated superior 
detection accuracy and robustness against unseen diffusion models 
and perturbations. However, the method may encounter challenges 
when dealing with the complex features of real images. Nevertheless, 
SeDID underscores the importance of selecting the optimal timestep to 
enhance detection performance.

As expected, another approach widely used by state-of-the-
art researchers is Convolutional Neural Networks, which have 
demonstrated excellent performance on numerous similar classification 
problems [81], making it one of the most explored techniques. Some 
authors continue to rely on classical architectures such as ResNet. It 
continues to perform competitively on many classification problems. 
Among them, The multi-local Intrinsic Dimensionality (multiLID) 

[82] method is developed to identify artificial images produced 
by deep diffusion models. This method utilizes the local intrinsic 
dimensionality of feature maps extracted by an untrained ResNet18, 
making it efficient and not relying on pre-trained models. It has been 
evaluated on various datasets like CiFake, ArtiFact, DiffusionDB, 
LAION-5B, and SAC, demonstrating high accuracy in detecting 
artificial images from models including Glide, DDPM, Latent Diffusion, 
Palette, and Stable Diffusion. However, multiLID may have limitations 
in its ability to perform well on unfamiliar data from different datasets 
or models within the same domain. Guarnera et al. [83] developed a 
hierarchical multi-level approach for detection and identification of 
deepfake images produced by GANs and Diffusion Models (DMs). 
This method utilizes ResNet-34 models at three levels of classification: 
distinguishing genuine images from AI-generated ones, discerning 
between GANs and DMs, and identifying specific AI architectures. 
Their dataset comprises authentic images from CelebA, FFHQ, and 
ImageNet, as well as synthetic images from nine GAN models (e.g., 
AttGAN, CycleGAN, ProGAN, StyleGAN, StyleGAN2) and four 
diffusion models (e.g., DALL-E 2, GLIDE, Latent Diffusion), totalling 
42,500 synthetic and 40,500 real images. With an accuracy of over 97%, 
the method demonstrates strong performance, but it may encounter 
challenges related to real-world robustness, such as JPEG compression 
and complex image features.

However, other authors have opted for different architectures 
rather than CNNs. Coccomini et al. [84] investigate the detection of 
synthetic images generated by diffusion models, such as those created 
with Stable Diffusion and GLIDE. Their approach involves using 
classifiers like multi-layer perceptrons (MLPs) and convolutional 
neural networks (CNNs) to distinguish synthetic images from real 
ones. The model is trained on datasets like MSCOCO and Wikimedia, 
focusing on leveraging visual and textual features for effective 
detection. A notable limitation of the study is the challenge of cross-
method generalization, where models trained on one type of synthetic 
image struggle to detect images generated by different methods. This 
work underscores the complexities of detecting AI-generated images, 
particularly as diffusion models become more sophisticated. Ojha et al. 
[85] have introduced a method to enhance the detection of synthetic 
or fake images generated by various models, including GANs and 
diffusion models. Their approach aims to create a universal fake image 
detector that performs well across different generative models. This 
is achieved through a combination of convolutional neural networks 
(CNNs) and advanced training techniques to identify subtle anomalies 
commonly found in AI-generated images. The model is trained on 
diverse datasets, incorporating images generated by various models 
to improve its reliability. However, the study highlights a challenge in 
maintaining high detection accuracy when faced with new generative 
models not included in the training set, indicating the need for further 
improvements to achieve universal detection capabilities. Mathys et al. 
[86] present a method for identifying synthetic images produced by AI 
models. The focus is on spotting subtle artifacts and inconsistencies 
that are indicative of AI-generated content. Their proposed architecture 
utilizes a convolutional neural network to scrutinize pixel-level details 
and capture the distinct markers left by generative models. Training 
the model on a diverse dataset containing both real and synthetic 
images from various sources makes it adept at generalizing across 
different types of AI-generated content. This method significantly 
boosts the accuracy of detecting fake images, effectively tackling 
the challenges brought about by the increasingly lifelike outputs of 
modern generative models. This research holds particular significance 
in upholding the authenticity and integrity of digital content in an age 
where synthetic media is increasingly prevalent.

Lastly, we will analyse some research that has chosen other novel 
approaches such as the use of models like CLIP or vision-language 
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models. Tan et al. [87] introduce C2P-CLIP, a novel approach 
designed to enhance the detection of AI-generated images, specifically 
deepfakes, by injecting a Category Common Prompt (C2P) into the 
CLIP model. CLIP (Contrastive Language-Image Pre-training) is a 
powerful model trained on various image-text pairs, which allows 
it to understand and match images and text descriptions effectively. 
However, its application to deepfake detection has been limited by 
its generalization capability across different types of manipulations. 
The C2P-CLIP method addresses this limitation by incorporating a 
category-specific prompt that captures standard features across related 
deepfakes, improving the model’s ability to generalize beyond the 
specific types of manipulations seen during training. This technique 
leverages the extensive pre-training of CLIP while fine-tuning its 
capacity to identify subtle inconsistencies and artifacts introduced by 
deepfake generation techniques. Through comprehensive experiments, 
the authors demonstrate that C2P-CLIP significantly outperforms 
existing methods on several benchmark datasets, showing superior 
performance in detecting a wide range of AI-generated manipulations. 
Keita et al. [88] present Bi-LORA, a vision-language approach designed 
to detect synthetic images. Bi-LORA effectively captures the unique 
features and artefacts of AI-generated images by leveraging a dual Low-
Rank Adaptation (LORA) mechanism within a vision-language model. 
The method integrates visual and textual information, enhancing 
its ability to differentiate between real and synthetic content more 
accurately. Through extensive experiments, Bi-LORA demonstrates 
significant improvements in detection performance over traditional 
methods, highlighting its potential as a robust tool for identifying AI-
generated images across various datasets.

Lastly, we have analysed the most recent research into the detection 
of synthetic image. This field is highly dependent on the previous 
one, as quality datasets will be needed, i.e. with intra-class variability, 
enough quality and resolution, and representativeness, allowing the 
creation of models that can be used in real situations. In this domain 
we have seen that the main approaches explored by researchers are 
CNNs, and vision-language models, although other more traditional 
approaches are still used.

IV. Video Generation and Detection

In recent years, the field of video generation has attracted 
significant attention, due to advancements in artificial intelligence, 
machine learning, and the emergence of diffusion models (see Fig. 5), 
this has forced researchers to develop new techniques to detect these 
synthetic samples. This section provides an overview of the current 
state of video generation methods, which are increasingly being used 
to create high-quality, realistic videos across different applications. 
Additionally, it explores the challenges and methods associated with 
detecting AI-generated videos, an area of growing importance as 
these technologies become more sophisticated. The aim of this section 

is to provide a comprehensive understanding of the methods and 
techniques involved in future video content creation and analysis.

A. Video Generation
In video content creation, generative models are beginning to 

revolutionize production and consumption by automating the generation 
of realistic and high-quality videos. Recently, a surge of generative 
video models capable of various video creation tasks has emerged. In 
this section we are going to analyse five different approaches: Text-to-
video, deep learning techniques that generate synthetic video samples 
from text descriptions; image-to-video techniques that transform static 
images to dynamic video; video-to-video, a set of techniques focused 
on the generation of realistic video sequences by transforming or 
translating visual information from one video domain to another; Text-
Image-to-Video which generates synthetic video samples from a real 
image and a text description; Multimodal video generation, this field 
focuses not only on the generation of the visual part of the video but 
also on the audio part of the video, from different inputs, such as text, 
image, video or audio. Deep learning-based generative models such as 
GANs, Variational Autoencoders (VAEs), autoregressive, and diffusion-
based models have remarkably succeeded in generating realistic and 
diverse content. By training on large datasets, these models learn 
the underlying data distribution, enabling them to generate samples 
that closely resemble the original data. Fig. 6 illustrates the various 
categories of video generation.

Video-to-Video
(V2V)

Image-to-Video
(I2V)

Text-to-Video
(T2V)

Text-Image-to-Video
(TI2V)

Fig. 6. Categories of video generation methods.

1. Text-to-Video Synthesis
Generating photo-realistic videos presents significant challenges, 

particularly when it comes to maintaining high fidelity and continuity 
of motion over extended sequences. Despite these difficulties, recent 
advancements have utilized diffusion models to enhance the realism of 
video generation. Text, being a highly intuitive and informative form 
of instruction, has become a central tool in guiding video synthesis, 
leading to the development of Text-to-video (T2V) generation 
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Fig. 5. Overviewof the main approaches to video generation with AI.
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models. This approach focuses on creating high-quality videos based 
on text descriptions, acting as a conditional input for the video 
generation process.

To address the challenges in text-to-video synthesis, existing 
methods primarily extend Text-to-image models by incorporating 
temporal modules, such as temporal convolutions and temporal 
attention, to establish temporal correlations between video frames. 
A notable example is the work by Ho et al. [89], who introduced 
Video Diffusion Models (VDM). This model extends text-to-image 
diffusion models to video generation by training jointly on both 
image and video data. Their approach utilizes a U-Net-based 
architecture, which integrates joint image-video denoising losses, 
ensuring temporal coherence by conditioning on both past and 
future frames, thus resulting in smoother transitions and more 
consistent motion. Building on this foundation, Ho et al. [90] 
proposed Imagen Video, a novel approach for generating high-
definition videos using diffusion models. Imagen Video employs 
a cascaded video diffusion model approach, adapting techniques 
from text-to-image generation, such as a frozen T5 text encoder and 
classifier-free guidance, to the video domain. It uses a hierarchical 
approach, beginning with a low-resolution video to capture the 
overall structure and motion, which is then progressively refined to 
higher resolutions. Temporal dynamics are managed by conditioning 
each frame on previous frames, ensuring consistency throughout 
the video. Super-resolution techniques are subsequently applied to 
enhance the detail and quality of each frame.

In a different approach, Singer et al. [91] introduced Make-A-Video, 
which generates videos from textual descriptions without relying 
on paired text-video data. This methodology builds upon a text-to-
image synthesis model and incorporates spatio-temporal layers to 
extend it into the video domain. The approach integrates pseudo-3D 
convolutional and attention layers to manage spatial and temporal 
dimensions efficiently. Additionally, super-resolution networks 
are employed to improve visual quality, and a frame interpolation 
network is used to increase the frame rate and smooth out the 
video output. Meanwhile, Zhou et al. [92] presented MagicVideo, a 
framework designed to generate high-quality video clips from textual 
descriptions. Instead of directly modeling the video in visual space, 
MagicVideo leverages a pre-trained Variational autoencoder (VAE) 
to map video clips into a low-dimensional latent space, where the 
distribution of videos’ latent codes is learned via a diffusion model. 
This approach optimizes computational efficiency and improves video 
synthesis by performing the diffusion process in the latent space. 
Further pushing the boundaries of video generation, Dan Kondratyuk 
et al. [5] proposed VideoPoet, an advanced language model for zero-
shot video generation. This model integrates the MAGVIT-v2 [93] 
tokenizer for images and videos and the SoundStream [94] tokenizer 
for audio, enabling the processing and generation of multimedia 
content within a unified framework. VideoPoet employs a prefix 
language model with a decoder-only architecture as its backbone, 
facilitating the creation of high-quality videos from textual prompts, 
along with interactive editing capabilities. VideoPoet is trained on a 
diverse set of tasks without needing paired video-text data, allowing it 
to learn effectively from video-only examples. It can generate videos 
based on textual descriptions, animate static images, apply styles [95] 
to videos through optical flow and depth prediction, and even extend 
video sequences by iteratively predicting subsequent frames.

In another innovative approach, Girdhar et al. [96] introduced 
EMU VIDEO, a two-stages Text-to-video generation model: first, 
it generates an image from text, and then it produces a video using 
both the text and the generated image. This method simplifies video 
prediction by leveraging a pretrained text-to-image model and freezing 
spatial layers while adding new temporal layers for video generation. 

EMU VIDEO efficiently achieves high-resolution video generation, 
maintaining the conceptual and stylistic diversity learned from large 
image-text datasets. Similarly, Wang et al. [97] proposed LaVie, a 
cascaded framework for Video Latent Diffusion Models (V-LDMs) 
conditioned on text descriptions. LaVie is composed of three networks: 
a base T2V model for generating short, low-resolution key frames, 
a Temporal interpolation (TI) model for increasing the frame rate 
and enriching temporal details, and a Video super-resolution model 
(VSR) for enhancing the visual quality and spatial resolution of the 
videos. The base T2V model modifies the original 2D UNet to handle 
spatio-temporal distributions and utilizes joint fine-tuning with both 
image and video data to prevent catastrophic forgetting, resulting in 
significant video quality improvements. The TI model uses a diffusion 
UNet to synthesize new frames, enhancing video smoothness and 
coherence, while the VSR model adapts a pre-trained image upscaler 
with additional temporal layers, enabling efficient training and high-
quality video generation.

Further developments include the work by Menapace et al. [98], 
who proposed a method to generate high-resolution videos by 
modifying the Efficient diffusion model (EDM) [99] framework 
for high-dimensional inputs and developing a scalable transformer 
architecture inspired by Far-reaching interleaved transformerss (FITs) 
[100]. They adjust the EDM framework to handle high SNR in videos 
with a scaling factor for optimal denoising. This method addresses the 
scarcity of captioned video data by jointly training the model on both 
images and videos, allowing for more effective learning of temporal 
dynamics. The video generation uses FITs, transformer models that 
reduce complexity by compressing inputs with learnable latent tokens 
and employing cross-attention and self-attention to focus on spatial 
and temporal information. The approach includes conditioning 
tokens for text and metadata and uses a cascade model: the first stage 
generates low-resolution videos, and the second stage refines them 
into high-resolution outputs. During training, variable noise levels are 
introduced to the second-stage inputs to improve upsampling quality, 
aiming for effective high-quality video generation. In addressing 
data scarcity, Chen et al. [101] designed VideoCrafter2, a model that 
improves spatio-temporal consistency in video diffusion models 
through a data-level disentanglement strategy. This approach separates 
motion aspects from appearance features, leveraging low-quality 
videos for motion learning and high-quality images for appearance 
learning. This design strategy eases a targeted fine-tuning process 
with high quality images, with the aim of significantly increasing the 
visual fidelity of the generated content without compromising the 
precision of motion dynamics. Importantly, synthetic images with 
complex concepts are used for finetuning, rather than real images, to 
enhance the concept composition ability of video models.

Furthermore, Ma et al. [102] introduced Latte, a simple and general 
video diffusion method that extends Latent diffusion models 
(LDMs) for video generation by employing a series of transformer 
blocks to process latent space representations of video data obtained 
from a pre-trained variational autoencoder. Latte specifically 
addresses the inherent disparities between spatial and temporal 
information in videos by decomposing these dimensions, allowing 
for more efficient processing. The method includes four efficient 
Transformer-based model variants, designed to manage the large 
number of tokens extracted from input videos, thereby improving the 
overall performance and scalability of video generation. Li et al. [103] 
introduced VideoGen, a text-to-video generation method that produces 
high-definition videos with strong frame fidelity and temporal 
consistency using reference-guided latent diffusion. In their approach, 
an off-the-shelf T2I model like Stable diffusion (SD) generates a high-
quality image from a text prompt, which then serves as a reference 
for video generation. This process involves a cascaded latent diffusion 
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module conditioned on both the reference image and text prompt, 
followed by a flow-based temporal upsampling step that enhances 
temporal resolution. Finally, a video decoder maps the latent video 
representations into high-definition videos, improving visual fidelity 
and reducing artifacts while focusing on learning video dynamics. 
The training process benefits from high-quality unlabeled video data, 
using the first frame of a ground-truth video as the reference image to 
enhance motion smoothness and realism.

Building on the VQ-VAE architecture, Godiva et al. [104] 
proposed GODIVA, an open-domain text-to-video model pre-trained 
on the HowTo100M [105] dataset. This model generates videos 
in an auto-regressive manner using a three-dimensional sparse 
attention mechanism. Initially, a VQ-VAE auto-encoder represents 
continuous video pixels as discrete video tokens. Subsequently, the 
three-dimensional sparse attention model utilizes language input 
alongside these discrete video tokens to generate videos, effectively 
considering temporal, column, and row information. Similarly, 
Ding et al. [106] advanced the field by introducing CogVideo, a 
9B-parameter transformer built upon the pretrained text-to-image 
model CogView2 [42] for video generation. CogVideo employs a 
multi-frame-rate hierarchical training strategy, which aligns text with 
video clips by controlling frame generation intensity and ensuring 
accurate alignment between text and video content. This is achieved 
by prepending text prompts with frame rate descriptions, which 
significantly enhances generation accuracy, particularly for complex 
semantic movements. Additionally, CogVideo’s dual-channel attention 
mechanism improves the coherence of generated videos by focusing 
on both textual and visual cues simultaneously. This approach allows 
CogVideo to efficiently adapt a pretrained model for video synthesis 
without the need for costly full retraining.

Expanding on the capabilities of earlier models, Wu et al. [107] 
developed NUWA, a unified multimodal pre-trained model 
designed for generating and manipulating visual data, including images 
and videos, across various visual synthesis tasks. NUWA utilizes a 3D 
transformer encoder-decoder framework to process 1D text, 2D 
images, and 3D videos. This model introduces a 3D nearby attention 
(3DNA) mechanism that efficiently handles visual data, reduces 
computational complexity, and enables high-quality synthesis with 
notable zero-shot capabilities. Further advancing this work, Wu et al. 
[108] introduced NUWA-Infinity, a groundbreaking model for infinite 
visual synthesis capable of generating high-resolution images or long-
duration videos of arbitrary size. The model features an autoregressive 
over autoregressive generation mechanism, with a global patch-level 
model managing inter-patch dependencies and a local token-level 
model handling intra-patch dependencies. To optimize efficiency, 
NUWA-Infinity incorpores a Nearby context pool (NCP) to reuse 
previously generated patches, minimizing computational costs while 
maintaining robust dependency modeling. Additionally, an Arbitrary 
direction controller (ADC) enhances flexibility by determining optimal 
generation orders and learning position embeddings tailored for 
diverse synthesis tasks. NUWA-Infinity thus transcends the limitations 
of fixed-size approaches, enabling comprehensive and efficient content 
creation on a variable scale. In contrast to these approaches, Yan et al. 
[109] proposed VideoGPT, a simpler and more efficient architecture 
for scaling likelihood-based generative modeling to natural videos. 
By employing VQ-VAE with 3D convolutions and axial self-attention, 
VideoGPT learns downsampled discrete latent representations of raw 
videos. These representations are then autoregressively modeled by 
a GPT-like architecture with spatio-temporal position encodings to 
generate videos. This method involves training a VQ-VAE with an 
encoder that downsamples space-time and a decoder that upsamples 
it, sharing spatio-temporal embeddings across attention layers. 
Furthermore, a prior over the VQ-VAE latent codes is learned using 

an Image-GPT-like architecture with dropout for regularization, 
which enables conditional sample generation via cross attention and 
conditional norms. Blattmann et al. [110] introduced a novel approach 
to efficient high-resolution video generation through Video LDMs, by 
adapting pre-trained image diffusion models into video generators. 
They achieve this by temporal fine-tuning with alignment layers, 
which maintains computational efficiency. Initially, an LDM is pre-
trained on images and then transformed into a video generator by 
adding a temporal dimension and fine-tuning on video sequences. 
Additionally, diffusion model upsamplers are temporally aligned for 
consistent video super resolution, allowing the efficient training of 
high-resolution, long-term consistent video generation models using 
pre-trained image LDMs with added temporal alignment.

Building on these advancements, Chen et al. [111] introduced two 
diffusion models for high-quality video generation: T2V and Image-to-
video (I2V). The T2V model, based on SD 2.1, incorporates temporal 
attention layers to ensure temporal consistency and employs a joint 
image and video training strategy. The VideoCrafter T2V model 
further leverages a Latent Video Diffusion Model (LVDM) with a 
video VAE and a video latent diffusion model, where the VAE reduces 
sample dimensions to improve efficiency. Video data is encoded into a 
compressed latent representation, processed through a diffusion model 
with noise added at each timestep, before being decoded by the VAE 
to generate the final video. He et al. [112] expanded on the concept of 
video generation by introducing a hierarchical LVDM framework that 
extends videos beyond the training length. Their method addresses 
performance degradation with conditional latent perturbation and 
unconditional guidance. Their lightweight video diffusion models use 
a low-dimensional 3D latent space, significantly outperforming pixel-
space models with limited computational resources. By compressing 
videos into latents using a video autoencoder and utilizing a unified 
video diffusion model for both unconditional and conditional 
generation, their approach generates videos autoregressively 
and improves coherence and quality over extended lengths with 
hierarchical diffusion.

To further advance video generation, Wang et al. [113] proposed 
ModelScope Text-to-Video (ModelScopeT2V), a simple yet 
effective baseline for video generation. This model introduces two key 
technical contributions: a spatio-temporal block to model temporal 
dependencies in text-to-video generation, and a multi-frame training 
strategy with both image-text and video-text paired datasets to 
enhance semantic richness. ModelScopeT2V evolves from a text-to-
image model (stable diffusion) and includes spatio-temporal blocks to 
ensure consistent frame generation and smooth transitions, adapting 
to varying frame numbers during training and inference. In the 
realm of scalable and efficient video generation, Gupta et al. [114] 
proposed W.A.L.T, a simple yet scalable and efficient transformer-
based framework for latent video diffusion models. Their approach 
consists of two stages: an autoencoder compresses images and videos 
into a lower-dimensional latent space, allowing for efficient joint 
training on combined datasets. Subsequently, the transformer employs 
window-restricted self-attention layers that alternate between spatial 
and spatio-temporal attention, reducing computational demands and 
supporting joint image-video processing. This method facilitates 
high-resolution, temporally consistent video generation from textual 
descriptions, offering an innovative approach to T2V synthesis. Villegas 
et al. [115] contributed to the field by proposing Phenaki, a unique 
C-ViViT encoder-decoder structure for generating variable-length 
videos from textual inputs. This model compresses video data into 
compact tokens, allowing for the production of coherent and detailed 
videos. By utilizing a bidirectional masked transformer to translate 
text tokens into video tokens, the model can generate long, temporally 
coherent videos from both open-domain and sequential prompts. It 
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also improves video token compression by 40% by exploiting temporal 
redundancy, enhancing reconstruction quality and accommodating 
variable video lengths, while the causal variation of ViViT manages 
temporal and spatial dimensions in an auto-regressive manner.

Previous methods of text-to-video generation face high 
computational costs with pixel-based VDMs or struggle with text-
video alignment with latent-based VDMs. To marry the strength 
and alleviate the weakness of pixel-based and latent-based VDMs, 
Zhang et al. [117] proposed Show-1, a hybrid model that combines 
both pixel-based and latent-based VDMs to overcome the limitations 
of previous methods. By employing pixel-based VDMs to create low-
resolution videos with strong text-video correlation, and then using 
latent-based VDMs to upsample these to high resolution, Show-1 
ensures precise text-video alignment, natural motion, and high visual 
quality with reduced computational cost. Khachatryan et al. [118] 
built upon the Stable diffusion T2I model to develop Text2Video-
Zero, a zero-shot T2V synthesis model. This approach enriches 
latent codes with motion dynamics to ensure temporal consistency 
and employs a cross-frame attention mechanism to maintain object 
appearance and identity across frames. Although Text2Video-Zero 
enables high-quality, temporally consistent video generation from 
textual descriptions without additional training, leveraging existing 
pre-trained T2I models, there is still potential for improvement. It 
struggles to generate longer videos with sequences of actions.

Furthermore, FuWeng et al. [119] introduced ART•V, an efficient 
framework for autoregressive video generation using diffusion 
models. ART•V generates frames sequentially, conditioned on 
previous frames, by focusing on simple, continuous motions between 
adjacent frames, which helps to avoid the complexity of long-range 
motion modeling. This approach retains the high-fidelity generation 
capabilities of pre-trained image diffusion models with minimal 
modifications and can produce long videos from diverse prompts, 
such as text and images. To address the common issue of drifting in 
autoregressive models, ART•V incorporates a masked diffusion model 
that draws information from reference images rather than relying 
solely on network predictions, thereby reducing inconsistencies. By 
conditioning on the initial frame, ART•V enhances global coherence, 
which is particularly useful for generating long videos. The framework 
also employs a T2I-Adapter for conditional generation, ensuring high 
fidelity with minimal changes to the pre-trained model, matching the 
inference speed of one-shot models, and supporting larger batch sizes 
during training. In summary, ART•V effectively reduces drifting issues 
in video generation by incorporating masked diffusion, anchored 
conditioning, and noise augmentation to better align training with 

testing. Shi et al. [120] introduced BIVDiff, a training-free video 
synthesis framework that integrates frame-wise video generation, 
mixed inversion, and temporal smoothing. This framework bridges 
the gap between specific image diffusion models (e.g., ControlNet, 
Instruct Pix2Pix) and general text-to-video diffusion models (e.g., 
VidRD, ZeroScope). The process begins with frame generation using 
an image diffusion model, followed by Mixed Inversion to adjust latent 
distributions, which balances temporal consistency with the open-
generation capability of video diffusion models. Finally, video diffusion 
models are applied for temporal smoothing. This method effectively 
addresses issues of temporal consistency and task generalization that 
are common in previous training-free approaches.

Finally, Xing et al. [116] proposed a parameter-efficient video 
diffusion model called Simple Diffusion Adapter (SimDA), see Fig. 
7, which fine-tunes the large T2I model (i.e., Stable Diffusion) for 
enhanced video generation. SimDA generates videos from textual 
prompts through efficient one-shot fine-tuning of pre-trained 
Stable Diffusion models, focusing on a parameter-efficient approach 
by fine-tuning only 24 million out of the 1.1 billion parameters. The 
model employs an adapter with two learnable fully connected layers, 
incorporating spatial adapters to capture appearance transferability 
and temporal adapters to model temporal information, utilizing 
GELU activations and depth-wise 3D convolutions. Additionally, 
SimDA introduces Latent-shift attention (LSA) to replace the 
original spatial attention, enhancing temporal consistency without 
adding new parameters. More recently, Qing et al. [121] presented 
HiGen, a diffusion-based model that improves video generation by 
decoupling spatial and temporal factors at both the structure and 
content levels. At the structural level, HiGen splits the T2V task 
into spatial reasoning, which involves generating spatially coherent 
priors from text, and temporal reasoning, which creates temporally 
coherent motions from these priors using a unified denoiser. On 
the content side, HiGen extracts cues for motion and appearance 
changes from input videos to guide training, thereby enhancing 
temporal stability and allowing for flexible content variations. 
Despite its strengths, HiGen faces challenges in generating 
detailed objects and accurately modeling complex actions due to 
computational and data quality limitations.

As we have seen in this section, for the generation of video from text, 
the main approaches used are the application of T2I techniques together 
with temporal modules, attention mechanisms, transformers and 
autoencoder. However, in recent years many researchers are focusing 
on diffusion models, which are becoming more and more widely used 
and are expected to increase in popularity in the coming years.
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2. Image-to-Video Synthesis
Generating videos from static images poses significant challenges, 

particularly in preserving temporal consistency and achieving realistic 
motion across frames. Despite these difficulties, advancements in 
image-to-video synthesis have leveraged sophisticated modeling 
techniques to transform still images into dynamic video sequences. 
This area has become increasingly important for various applications, 
ranging from content creation to enhanced video editing tools.

Recent methods in image-to-video synthesis focus on generating 
high-quality videos by incorporating temporal dynamics into the 
transformation process. Techniques like temporal modeling and 
attention mechanisms are employed to ensure smooth transitions 
between frames, thus maintaining coherence and realism in the 
generated videos. A noteworthy contribution to this field is the 
work by Wu et al. [122], which introduces LAMP, a few-shot-based 
tuning framework for Text-to-video generation, leveraging a first-
frame-attention mechanism to transfer information from the initial 
frame to subsequent ones. This approach, which focuses on fixed 
motion patterns, is constrained in its ability to generalize across 
diverse scenarios. LAMP utilizes an off-the-shelf text-to-image 
model for content generation while emphasizing motion learning 
through expanded pre-trained 2D convolution layers and modified 
attention blocks for temporal-spatial motion learning. A first-frame-
conditioned pipeline ensures high video quality by retaining the 
initial frame’s content and applying noise to subsequent frames 
during training. During inference, high-quality first frames generated 
by SD-XL enhance video performance. Despite its promise, LAMP 
faces challenges with complex motions and background stability, 
suggesting areas for future improvement. Guo et al. [123] introduced 
the I2V-Adapter, a lightweight and plug-and-play solution designed 
for text-guided Image-to-video generation. The key innovation of this 
adapter lies in its cross-frame attention mechanism, which preserves 
the identity of the input image by propagating the unnoised image 
to subsequent noised frames. This approach ensures compatibility 
with pretrained Text-to-video models, maintaining their weights 
unchanged while seamlessly integrating the adapter. By introducing 
minimal trainable parameters, the I2V-Adapter not only reduces 
training costs but also ensures smooth compatibility with community-
driven models and tools. Moreover, the authors incorporated a Frame 
Similarity Prior, which provides adjustable control coefficients to 
balance motion amplitude and video stability, thereby enhancing both 
the controllability and diversity of the generated videos.

Futhermore, Zhang et al. [124] proposed MoonShot, a video 
generation model that leverages both image and text as conditional 
inputs. MoonShot addresses limitations in controlling visual 
appearance and geometry by employing the Multimodal video block 
(MVB) as its core component. This module integrates spatial-temporal 
layers for comprehensive video feature representation and utilizes 
a decoupled cross-attention layer to condition both image and text 
inputs effectively. Notably, MoonShot reuses pre-trained weights 
from text-to-image models, allowing for the integration of pre-trained 
image ControlNet modules to achieve geometry control without 
necessitating additional training. The model’s architecture, which 
includes spatial-temporal U-Net layers and decoupled multimodal 
cross-attention layers, ensures high-quality frame generation and 
temporal consistency. As a result, MoonShot is versatile, supporting 
tasks like image animation and video editing without the need for 
fine-tuning, while also enabling geometry-controlled generation 
through the effective integration of ControlNet modules. Gong 
et al. [125] proposed AtomoVideo, a high-fidelity Image-to-video 
generation framework that transforms product images into engaging 
promotional videos. AtomoVideo achieves superior motion intensity 
and consistency compared to existing methods and can also perform 

Text-to-video generation by combining advanced text-to-image 
models. The approach involves using a pre-trained T2I model with 
added temporal convolution and attention modules, training only the 
temporal layers, and injecting image information at two positions: 
low-level details via VAE encoding and high-level semantics via CLIP 
image encoding and cross-attention. Long video frames are predicted 
iteratively, using initial frames to generate subsequent ones. The 
framework is trained using Stable Diffusion 1.5 and a 15M internal 
dataset, employing zero terminal SNR and v-prediction techniques for 
stability. During inference, classifier-free guidance with image and text 
prompts significantly enhances the stability of the generated output.

Other researchers have explored diffusion models for the creation 
of videos from images. For example, Shi et al. [126] proposed Motion-
I2V, a novel framework for consistent and controllable text-guided 
image-to-video generation. Unlike previous methods, Motion-I2V 
factorizes the process into two stages with explicit motion modeling. 
The first stage involves a diffusion-based motion field predictor to 
deduce pixel trajectories of the reference image. The second stage 
introduces motion-augmented temporal attention to enhance the 
limited 1-D temporal attention in video latent diffusion models, 
effectively propagating reference image features to synthesized 
frames guided by predicted trajectories. By training a sparse trajectory 
ControlNet for the first stage, Motion-I2V enables precise control over 
motion trajectories and regions, also supporting zero-shot Video-to-
video translation. Although Motion-I2V provides fine-grained control 
of I2V generation through sparse trajectory guidance, region-specific 
animation and zero-shot Video-to-video translation, it is limited in 
handling occlusions, brightness uniformity and complex motion.

Expanding on the idea of temporal consistency, Ren et al. [127] 
proposed ConsistI2V, a diffusion-based method for I2V generation, 
designed to enhance visual consistency by using spatiotemporal 
attention over the first frame to maintain spatial and motion coherence. 
They introduced FrameInit, an inference-time noise initialization 
strategy that uses the low-frequency band from the first frame to 
stabilize video generation, which supports applications such as long 
video generation and camera motion control. The approach leverages 
cross-frame attention mechanisms and local window temporal layers 
to achieve fine-grained spatial conditioning and temporal smoothness. 
The ConsistI2V’s architecture, based on a U-Net structure adapted 
with temporal layers, employs a latent diffusion model to generate 
videos that closely align with the first frame and follow the textual 
description. To address motion consistency and efficiency, Shen et 
al. [128] proposed a novel approach to Conditional image-to-video 
(cI2V) generation by disentangling RGB pixels into spatial content 
and temporal motions. Using a 3D-UNet diffusion model, they predict 
temporal motions, including motion vectors and residuals, to improve 
consistency and efficiency. The approach begins with Decouple-Based 
Video Generation (D-VDM) to predict differences between consecutive 
frames and is further refined with Efficient Decouple-Based Video 
Generation (ED-VDM), which separates content and temporal 
information using motion vectors and residuals extracted via CodeC. 
The model employs Gaussian noise and a diffusion model to learn the 
video distribution score and generate a video clip from the initial frame 
and text condition. The approach includes Decoupled Video Diffusion 
Model using DDPM to estimate video distribution scores and a ResNet 
bottleneck module to encode the first frame, improving spatial and 
temporal representation alignment. Efficient representation is 
achieved using I-frames and P-frames, with compression via a Latent 
Diffusion autoencoder, optimizing video generation through a learned 
joint distribution of motion vectors and residuals.

Facing the challenge of maintaining temporal coherence while 
preserving detailed information about the characters in the image-video 
synthesis for character animation is difficult. Hu et al. [129] proposed 
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a novel framework using diffusion models for character animation, see  
Fig. 8, addressing the challenges of maintaining temporal consistency 
with detailed character information in image-to-video synthesis. They 
designed ReferenceNet to merge intricate appearance features from a 
reference image via spatial attention, and introduced a Pose Guider to 
ensure controllability and continuity in character movements, along 
with an effective temporal modeling approach for smooth inter-frame 
transitions. The method extends Stable Diffusion (SD) by reducing 
computational complexity through latent space modeling and includes 
an autoencoder. The network architecture includes ReferenceNet for 
appearance feature extraction, Pose Guider for motion control, and a 
temporal layer for continuity of motion. The training strategy consists 
of two stages: first, training on individual video frames without the 
temporal layer, and second, introducing and training the temporal layer 
using a 24-frame video clip. Despite its advancements, the model faces 
limitations in generating stable hand movements, handling unseen 
parts during character movement, and operational efficiency due to 
DDPM. Moreover, Xu et al. [130] proposed MagicAnimate, a novel 
diffusion-based human image animation framework that integrates 
temporal consistency modeling, precise appearance encoding, and 
temporal video fusion to synthesize temporally consistent human 
animation of arbitrary length. They address the challenges of existing 
methods, which struggle with maintaining temporal consistency 
and preserving reference identity, by developing a video diffusion 
model that encodes temporal information with temporal attention 
blocks and an innovative appearance encoder that retains intricate 
details of the reference image. MagicAnimate employs a simple video 
fusion technique to ensure smooth transitions in long animations by 
averaging overlapping frames. The framework processes animations 
segment-by-segment to manage memory constraints while leveraging 
a sliding window method to improve transition smoothness and 
consistency across segments. This comprehensive approach enables 
MagicAnimate to produce high-fidelity, temporally consistent 
animations that faithfully preserve the appearance of the reference 
image throughout the entire video.

In cases where no motion clue is provided, videos are generated 
stochastically, constrained solely by the spatial information in the 
input image. Dorkenwald et al. [131] proposed an approach to I2V 
synthesis by framing it as an invertible domain transfer problem 
implemented through a Conditional invertible neural network 

(cINN). To bridge the domain gap between images and videos, they 
introduced a probabilistic residual representation, ensuring that 
only complementary information to the initial image is captured. 
The method allows sampling and synthesizing novel future video 
progressions from the same start frame. They utilized a separate 
conditional variational encoder-decoder to compute a compact video 
representation, facilitating the learning process. Their model captures 
the interplay between images and videos, explaining video dynamics 
with a single image and residual information, and supports controlled 
video synthesis by incorporating additional factors such as motion 
direction. However, this kind of stochastic video generation can only 
handle short dynamic patterns in the distribution. Ni et al. [132] 
proposed a method for cI2V generation that synthesizes videos from 
a single image and a given condition, such as an action label. They 
introduced Latent flow diffusion models (LFDM), which generate an 
optical flow sequence in the latent space to warp the initial image, 
thereby improving the preservation of spatial details and motion 
continuity. The method involves a two-stage training process: an 
unsupervised Latent flow auto-encoder (LFAE) to estimate latent 
optical flow between video frames, and a conditional 3D U-Net-based 
Diffusion model (DM) to produce temporally-coherent latent flow 
sequences based on the image and condition. During inference, the 
image is encoded to a latent map, the condition to an embedding, and 
the trained DM generates latent flow and occlusion map sequences. 
During inference, the image is encoded to a latent map, the condition 
to an embedding, and the trained DM generates latent flow and 
occlusion map sequences. These sequences warp the latent map to 
create a new latent map sequence, which is then decoded into video 
frames. The proposed method, with its decoupled training strategy 
and efficient operation in a low-dimensional latent flow space, reduces 
computational cost and complexity while ensuring easy adaptation to 
new domains.

Wang et al. [133] proposed a high-fidelity image-to-video generation 
method, named DreamVideo, which addresses issues of low fidelity 
and flickering in existing methods by employing a frame retention 
branch in a pre-trained video diffusion model. The approach preserves 
image details by perceiving the reference image through convolution 
layers and integrating these features with noisy latents. The model 
incorporates double-condition classifier-free guidance, allowing a 
single image to generate videos of different actions through varying 
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prompts, enhancing controllable video generation. DreamVideo’s 
architecture includes a primary T2V model and an Image Retention 
block that infuses image control signals into the U-Net structure. 
During inference, the model combines text and image inputs to 
generate contextually consistent videos using CLIP text embeddings 
and a U-Net-based generative process. Additionally, the Two-Stage 
Inference method extends video length and creates varied content by 
using the final frame of one video as the initial frame for the next, 
showcasing the model’s strong image retention and video generation 
capabilities. Zhang et al. [134] proposed I2VGen-XL, a method utilizing 
two stages of cascaded diffusion models to achieve high semantic 
consistency and spatiotemporal continuity in video synthesis. The 
approach addresses challenges in semantic accuracy, clarity, and 
continuity by decoupling semantic and qualitative factors, using static 
images as guidance. The base stage ensures semantic coherence and 
preserves content at low resolution with two hierarchical encoders—a 
fixed CLIP encoder for high-level semantics and a learnable content 
encoder for low-level details. The refinement stage enhances video 
resolution and refines details using a brief text input and a separate 
video diffusion model. Training involves initializing the base model 
with pre-trained SD2.1 parameters and moderated updates, while the 
refinement model undergoes high-resolution training and fine-tuning 
on high-quality videos. Inference employs a noising-denoising process 
and DDIM/DPM-solver++ to generate high-resolution videos from 
low-resolution outputs.

To create more controllable videos, various motion cues like 
predefined directions and action labels are used. Blattmann et al. [135] 
proposed an approach for generating videos from static images by 
learning natural object dynamics through local pixel manipulations. 
Their generative model learns from videos of moving objects without 
needing explicit information about physical manipulations and infers 
object dynamics in response to user interactions, understanding the 
relationships between different object parts. The goal is to predict 
object deformation over time from a static image and a local pixel 
shift, using two encoding functions: an object encoder for the current 
object state and an interaction encoder for the pixel shift. They utilize a 
hierarchical recurrent model to understand complex object dynamics, 
predicting a sequence of object states in response to the pixel shift. 
Object dynamics are modeled using a flexible prediction function based 
on Recurrent Neural Networks (RNN), with higher-order dynamics 
captured by introducing a hierarchy of RNN predictors operating 
on different spatial scales. The decoder generates individual image 
frames from the predicted object states using a hierarchical image-to-
sequence UNet structure. Instead of ground-truth interactions, dense 
optical flow displacement maps are used to simulate training pokes, 
minimizing the perceptual distance between predicted and actual 
video frames. Training involves pretraining the encoders and decoder 
to reconstruct image frames, then refining the model to predict object 
states and synthesize video sequences. Their interactive I2V synthesis 
model allows users to specify the desired motion through the manual 
poking of a pixel.

In addition, Menapace et al. [136] proposed a novel framework for 
the Playable video generation (PVG) task, which generates videos 
from the first frame and a sequence of discrete actions. While the 
PVG task reduces user burden by not requiring detailed motion 
information, it struggles with generating videos involving complex 
motions. An unsupervised learning approach is adopted that allows 
users to control video generation by selecting discrete actions at 
each time step, similar to video games. The framework, named 
Clustering for Action Decomposition and DiscoverY (CADDY), learns 
semantically consistent actions and generates realistic videos based 
on user input using a self-supervised encoder-decoder architecture 
driven by a reconstruction loss on the generated video. CADDY 

discovers distinct actions via clustering during the generation 
process, employing an encoder-decoder with a discrete bottleneck 
layer to capture frame transitions without needing action label 
supervision or a predefined number of actions. The action network 
estimates action label posterior distributions by decomposing actions 
into discrete labels and continuous components, ensuring meaningful 
action labels by preventing direct encoding of environment changes 
in the variability embeddings.

Within the generation of dynamic videos from static images presents 
a trend very similar to the previous section, Text-to-Video Synthesis, 
where we can see how attention mechanisms, autoencoders and 
diffusion models stand out. As we can see, GANs are not as frequent 
as in synthetic image generation. This approach to video generation 
can raise more ethical concerns than the previous one, as it can use 
images of real people and generate videos that can potentially harm 
them; whereas in the previous section, it involves content generated 
completely from scratch.

3. Video-to-Video Synthesis
Video-to-video (V2V) synthesis is an advanced field focused on 

generating realistic video sequences by transforming or translating 
visual information from one video domain to another. The main goal 
is to create high-quality, temporally consistent videos that adhere to 
specific input conditions, such as text, pose, style, or semantic maps. 
Recent advancements in this area have introduced several techniques 
to enhance the quality, efficiency, and consistency of video synthesis, 
thus pushing the boundaries of what is possible in video generation. 
Wang et al. [137] proposed a three-stage framework for human pose 
transfer in videos, focusing on transferring dance poses from a source 
person in one video to a target person in another. The process begins 
with the extraction of frames and pose masks from both source and 
target videos. Subsequently, a model synthesizes frames of the target 
person in the desired dance pose, followed by a refinement phase to 
enhance the quality of these frames. The model comprises several 
key components, including pose extraction and normalization, a 
GAN-based synthesis using Cross-domain correspondence network 
(CoCosNet), and a coarse-to-fine strategy with two GANs for detailed 
face reconstruction and smooth frame sequences. Their approach 
involves visualizing keypoints to create pose skeleton labels, adjusting 
for differences in body proportions, learning the translation from 
pose domain to image domain, and matching features for coherent 
synthesis. Although their method outperforms existing approaches, 
it still encounters challenges with large pose variations and domain 
generalization, which suggests potential areas for future improvement.

Furthermore, Zhuo et al. [138] introduced Fast-Vid2Vid, a spatial-
temporal compression framework designed to reduce computational 
costs and accelerate inference in Video-to-Video synthesis (Vid2Vid). 
While traditional Vid2Vid generates photorealistic videos from semantic 
maps, it suffers from high computational costs due to the network 
architecture and sequential data streams. Zhuo et al. addressed this by 
introducing Motion-aware inference (MAI) to compress the input data 
stream without altering network parameters and developing Spatial-
temporal knowledge distillation (STKD) to transfer knowledge from a 
high-resolution teacher model to a low-resolution student model. Their 
approach incorporates Spatial knowledge distillation (Spatial KD) for 
generating high-resolution frames from low-resolution inputs and 
Temporal knowledge distillation (Temporal KD) to maintain temporal 
coherence in sparse video sequences. Additionally, they utilize a 
part-time student generator for sparse frame synthesis and a fast 
motion compensation method for interpolating intermediate frames, 
thereby reducing computational load while maintaining visual quality. 
Further advancing the field, Yang et al. [139] introduced a zero-shot 
text-guided video-to-video translation framework that adapts image 
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models for video applications. This framework is composed of key 
frame translation and full video translation. Key frames are generated 
using an adapted diffusion model with hierarchical cross-frame 
constraints to ensure coherence in shapes, textures, and colors. These 
frames are then propagated to the rest of the video using temporal-
aware patch matching and frame blending, achieving both global style 
and local texture temporal consistency without requiring re-training 
or optimization. A key innovation of this approach is the use of optical 
flow for dense cross-frame constraints, ensuring consistency across 
different stages of diffusion sampling. However, the method’s reliance 
on accurate optical flow can lead to artifacts if the flow is incorrect, 
and significant appearance changes may disrupt temporal consistency, 
limiting the ability to create unseen content without user intervention.

Following the trend of previous researchers but focusing on zero-
shot techniques, Wang et al. [140] presented vid2vid-zero, a zero-
shot video editing method that leverages pre-trained image diffusion 
models without requiring video-specific training. Their method 
introduces a null-text inversion module for text-to-video alignment, a 
cross-frame modeling module for temporal consistency, and a spatial 
regularization module to preserve the fidelity of the original video. 
Vid2vid-zero addresses the issue of flickering in frame-wise image 
editing by ensuring temporal consistency through a Spatial-temporal 
attention (ST-Attn) mechanism, which balances bi-directional temporal 
information and spatial alignment using pre-trained diffusion models. 
While effective in video editing tasks, the method’s reliance on pre-
trained image models limits its capacity to edit actions in videos 
due to the absence of temporal and motion priors. Expanding on the 
idea of zero-shot video editing, Qi et al. [141] proposed FateZero, a 
zero-shot text-based editing method for real-world videos that does 
not require per-prompt training or user-specific masks. To achieve 
consistent video editing, FateZero utilizes techniques based on pre-
trained models, capturing intermediate attention maps during DDIM 
inversion to retain structural and motion information and fusing these 
maps during editing. A blending mask, derived from cross-attention 
features, minimizes semantic leakage, while the reformed self-attention 
mechanism in the denoising UNet enhances frame consistency. Despite 
its impressive performance, FateZero faces challenges in generating 
entirely new motions or significantly altering shapes. 

Other authors have opted for the use of diffusion models, due to their 
performance in similar tasks. Molad et al. [142] proposed Dreamix, a 
text-driven video editing method that uses a text-conditioned video 
diffusion model (VDM). Dreamix preserves the original video’s fidelity 
by initializing with a degraded version of the input video and then fine-
tuning the model. This mixed fine-tuning technique enhances motion 
editability by incorporating individual frames with masked temporal 
attention. Dreamix achieves text-guided video editing by inverting 
corruptions, downsampling the input video, corrupting it with noise, 
and then upscaling it using cascaded diffusion models aligned with 
the text prompt. This approach effectively preserves low-resolution 
details while synthesizing high-resolution outputs. Focusing on 
motion guidance, Hu et al. [143] introduced VideoControlNet, a 
motion-guided video-to-video translation framework using a diffusion 
model with ControlNet. Inspired by video codecs, VideoControlNet 
leverages motion information to maintain content consistency and 
prevent redundant regeneration. The first frame (I-frame) is generated 
using the diffusion model with ControlNet, mirroring the structure of 
the input frame. Key frames (P-frames) are then generated using the 
motion-guided P-frame generation (MgPG) module, which employs 
motion information for consistency and inpaints occluded areas using 
the diffusion model. The remaining frames (B-frames) are efficiently 
interpolated using the motion-guided B-frame interpolation (MgBI) 
module. This framework produces high-quality, consistent videos by 
utilizing advanced inpainting methods alongside motion information.

Adding to the discussion of temporal consistency, Liang et al. 
[144] introduced FlowVid, a V2V synthesis framework that ensures 
temporal consistency across frames by leveraging spatial conditions 
and temporal optical flow clues from the source video. Unlike previous 
methods, FlowVid uses optical flow as a supplementary reference to 
handle imperfections in flow estimation. The model warps optical 
flow from the first frame and uses it in a diffusion model, enabling the 
propagation of edits made to the first frame throughout subsequent 
frames. FlowVid extends the U-Net architecture to include a temporal 
dimension and is trained using joint spatial-temporal conditions, such 
as depth maps and flow-warped videos, to maintain frame consistency. 
During generation, the model edits the first frame with prevalent 
Image-to-image (I2I) models and propagates these edits using a trained 
model, incorporating global color calibration and self-attention feature 
integration to preserve structure and motion, thus achieving effective 
video synthesis with high temporal consistency. In a similar pursuit 
of enhancing temporal coherence, Wu et al. [145] proposed Fairy, a 
minimalist yet robust adaptation of image-editing diffusion models 
for video editing. Fairy improves temporal consistency and synthesis 
fidelity through anchor-based cross-frame attention, which propagates 
diffusion features across frames. To handle affine transformations, 
Fairy employs a unique data augmentation strategy, enhancing the 
model’s equivariance and consistency. The anchor-based model 
samples K anchor frames to extract and propagate diffusion features, 
ensuring consistency by aligning similar semantic regions across 
frames. While Fairy excels in maintaining temporal consistency, its 
strong focus on this aspect reduces its accuracy in rendering dynamic 
visual effects, such as lightning or flames.

Lastly, several other methods offer significant contributions to the 
video-to-video synthesis domain. Ku et al. [146] proposed AnyV2V, see  
Fig. 9, a training-free video editing framework that simplifies video 
editing into two steps: editing the first frame with any image editing 
model and using an image-to-video generation model to create the 
edited video through temporal feature injection. AnyV2V is compatible 
with various image editing tools, allowing for diverse edits such as style 
transfer, subject-driven editing, and identity manipulation, without 
the need for fine-tuning. The framework uses DDIM inversion for 
structural guidance and feature injection to maintain consistency in 
appearance and motion, enabling accurate and flexible video editing. 
Additionally, it supports long video editing by handling videos beyond 
the training frame lengths of current I2V models, outperforming 
existing methods in user evaluations and standard metrics. Ouyang 
et al. [147] introduced I2VEdit, a video editing solution designed to 
extend the capabilities of image editing tools to videos. This approach 
achieves this by propagating single-frame edits throughout an entire 
video using a pre-trained Image-to-video model. Notably, I2VEdit 
adapts to the extent of edits, preserving visual and motion integrity 
while handling various types of edits, including global, local, and 
moderate shape changes. The method’s core processes, coarse motion 
extraction and appearance refinement, play crucial roles in ensuring 
consistency. Coarse motion extraction captures basic motion patterns 
through a motion LoRA and employs skip-interval cross-attention to 
mitigate quality degradation in long videos.

Meanwhile, appearance refinement uses fine-grained attention 
matching for precise adjustments and incorporates Smooth area random 
perturbation (SARP) to enhance inversion sampling. To achieve its 
results, I2VEdit segments the source video into clips, processes each clip 
for motion and appearance consistency, and refines appearances using 
EDM [99] inversion and attention matching. Building on this, Ouyang 
et al. [148] further proposed Content deformation field (CoDeF), a 
novel video representation, emphasizing its application in Video-to-
video translation. CoDeF introduces a canonical content field for static 
content aggregation and a temporal deformation field for recording 
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frame transformations. This approach optimizes the reconstruction 
of videos while preserving essential semantic details, such as object 
shapes. In the context of Video-to-video translation, CoDeF employs 
ControlNet on the canonical image, which significantly enhances 
temporal consistency and texture quality compared to state-of-the-
art zero-shot video translations using generative models. By avoiding 
the need for time-intensive inference models, this process becomes 
more efficient. The canonical image, optimized through CoDeF, serves 
as a basis for applying image algorithms, ensuring consistent effect 
propagation across the entire video via the temporal deformation field.

A different approach to video editing with VideoSwap was presented 
by Gu et al. [149], focusing on customized video subject swapping. 
Unlike methods relying on dense correspondences, VideoSwap utilizes 
semantic point correspondences, allowing the replacement of the 
main subject in a video with a target subject of a different shape and 
identity, all while preserving the original background. The approach 
includes encoding the source video, applying DDIM inversion, and 
using semantic points to guide the subject’s motion trajectory. The 
process also involves extracting and embedding semantic points, 
registering these points for motion guidance, and enabling user 
interactions to refine motion and shape alignment. Recently, Bai et 
al. [150] proposed UniEdit, a tuning-free framework for video motion 
and appearance editing. This framework leverages a pre-trained Text-
to-video generator in an inversion-then-generation pipeline. UniEdit 
addresses content preservation by using temporal and spatial self-
attention layers to encode inter-frame and intra-frame dependencies. 
Additionally, it introduces auxiliary reconstruction and motion-
reference branches to inject the desired source and motion features 
into the main editing path. For content preservation, the auxiliary 
reconstruction branch injects attention features into the spatial self-
attention layers. Motion injection, on the other hand, is achieved 
by guiding the main path with a motion-reference branch during 
denoising, utilizing temporal attention maps for alignment with the 
target prompt. In appearance editing, UniEdit maintains structural 
consistency by implementing spatial structure control while omitting 
the motion-reference branch. Despite its robust capabilities, UniEdit 
faces challenges, particularly when addressing motion and appearance 
editing simultaneously.

In this section we have analyzed the latest research related to video-
to-video synthesis. Within this field we have seen how the most used 

technique is the diffusion model, as we have seen in other sections of 
this survey. This is in line with expectations due to all the attention 
they are receiving in recent years. However, we can also see that other 
methodologies such as GANs or attention mechanisms are also used. 
We have also noted that several papers use a zero-shot approach to 
address the problem.

4. Text-Image-to-Video Synthesis
Text-image-video synthesis (TI2V) is a growing field of research 

focused on generating dynamic video content from static images 
and text descriptions. Given a single image I and text prompt T, text-
image-to-video generation aims to synthesize I new frames to yield 
a realistic video, I = 〈I0, I1, ..., IM〉 y starting from the given frame I0 and 
satisfying the text description T . This field aims to bridge the gap 
between different modalities to create coherent and contextually 
accurate videos. Several approaches have been developed to address 
the challenges in this domain, ranging from aligning visual and 
textual information to ensuring temporal consistency and control 
over generated content. Hu et al. [151] proposed a novel video 
generation task called Text-Image-to-Video (TI2V) generation, which 
creates videos from a static image and a text description, focusing 
on controllable appearance and motion. They introduced the Motion 
Anchor-based video GEnerator (MAGE) to address key challenges 
such as aligning appearance and motion from different modalities and 
handling text description uncertainties. MAGE uses a Motion anchor 
(MA) structure to store aligned appearance-motion representations 
and incorporates explicit conditions and implicit randomness to 
enhance diversity and control. The framework employs a VQ-VAE 
encoder-decoder architecture for visual token representation and uses 
three-dimensional axial transformers to recursively generate frames. 
Training involves a supervised learning approach to approximate the 
conditional distribution of video frames based on the initial image 
and text. The motion anchor aligns text-described motion with visual 
features, ensuring consistent and diverse video output through auto-
regressive frame generation.

Complementing this, Guo et al.  [152] proposed AnimateDiff, a 
practical framework for animating personalized T2I models without 
requiring model-specific tuning. The core of the framework is a 
plug-and-play motion module, trained to learn transferable motion 
priors from real-world videos, which can be integrated into any 
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personalized T2I model. The training process involves three stages: 
fine-tuning a domain adapter to align with the target video dataset, 
introducing and optimizing a motion module for motion modeling, 
and using MotionLoRA, a lightweight fine-tuning technique, to 
adapt the pre-trained motion module to new motion patterns with 
minimal data and training cost. AnimateDiff effectively addresses 
the problem of animating personalized T2Is while preserving their 
visual quality and domain knowledge, demonstrating the adequacy of 
Transformer architecture for modeling motion priors and offering an 
efficient solution for users who desire specific motion effects without 
bearing the high costs of pre-training. In contrast, Yin et al.  [153] 
proposed NUWA-XL, a novel "Diffusion over Diffusion" architecture 
for generating extremely long videos. Unlike traditional methods that 
generate videos sequentially, leading to inefficiencies and a training-
inference gap, NUWA-XL uses a "coarse-to-fine" process where a 
global diffusion model generates keyframes and local models fill in 
between, allowing parallel generation. The architecture incorporates 
Temporal KLVAE to compress videos into low-dimensional latent 
representations and Mask temporal diffusion (MTD) to handle both 
global and local diffusion processes using masked frames. Although 
NUWA-XL is currently validated on cartoon data due to the lack of 
open-domain long video datasets, it shows promise in overcoming 
data challenges and improving efficiency, albeit requiring substantial 
GPU resources for parallel inference.

Esser et al.  [154] proposed a structure and content-guided video 
diffusion model that edits videos based on user descriptions. They 
resolved conflicts between content and structure by training on 
monocular depth estimates with varying detail levels and introduced 
a novel guidance method for temporal consistency through joint 
video and image training. The approach extends latent diffusion 
models to video by incorporating temporal layers into a pre-trained 
image model, adding 1D convolutions and self-attentions to residual 
and transformer blocks. The encoder downsamples images to a latent 
code, improving efficiency, while depth maps and CLIP embeddings 
are used for structure and content conditioning, respectively. This 
approach allows full control over temporal, content, and structure 
consistency without requiring per-video training or pre-processing, 
showing improved temporal stability and user preference over 
related methods. Expanding on the concept of control, Yin et al.  
[155] proposed DragNUWA, an open-domain diffusion-based video 
generation model that integrates text, image, and trajectory inputs 
to provide fine-grained control over video content from semantic, 
spatial, and temporal perspectives. They address the limitations 
of current methods, which focus on only one type of control 
and struggle with complex trajectory handling, by introducing 
advanced trajectory modeling techniques: a Trajectory sampler 
(TS) for arbitrary trajectories, Multiscale fusion (MF) for controlling 
trajectories at different granularities, and an Adaptive training 
(AT) strategy for generating consistent videos. DragNUWA can 
generate realistic and contextually consistent videos by leveraging 
the combined inputs of text, images, and trajectories during both 
training and inference.

Further enhancing controllability, Wang et al.  [156] proposed 
VideoComposer, a system for enhancing controllability in video 
synthesis through the use of temporal conditions like motion vectors. 
They introduced a Spatio-temporal condition encoder (STC-encoder) 
to integrate spatial and temporal dependencies, ensuring inter-frame 
consistency. The system decomposes videos into textual, spatial, and 
temporal conditions, and uses a latent diffusion model to recompose 
videos based on these inputs. Textual conditions provide coarse-
grained visual content, while spatial conditions offer structural and 
stylistic guidance. Temporal conditions, including motion vectors 
and depth sequences, allow detailed control of temporal dynamics. 

Recently, Ni et al.  [157] proposed TI2V-Zero, a zero-shot, tuning-free 
method for text-conditioned Image-to-video (TI2V) generation that 
leverages a pretrained T2V diffusion model. This approach avoids 
costly training, fine-tuning, or additional modules by using a "repeat-
and-slide" strategy to condition video generation on a provided image, 
ensuring temporal continuity through a DDPM inversion strategy and 
resampling techniques. The method uses a 3D-UNet-based denoising 
network and modulates the reverse denoising process to generate 
videos frame-by-frame, preserving visual coherence and consistency, 
thus enabling the synthesis of long videos while maintaining high 
visual quality.

In this section where we have analyzed the techniques to generate 
videos from static images and textual descriptions, we have seen again 
a main focus, which are the diffusion models, i.e. a trend is observed, 
which seems to show that it will be the most used technique in the 
coming years. In addition, we also continue to observe other approaches 
such as attention mechanisms or autoencoders. The greatest danger of 
this set of techniques, like the previous one, is that they can use images 
of people to create complete videos, which can cause serious damage. 
However, not all applications of these techniques are negative.

5. Multi-Modal Video Generation
Multi-Modal Video Generation (MMVG) refers to a versatile field in 

which video content is synthesized based on different forms of input, 
such as text, images, or existing videos. Although models like Sora and 
Genie can accept various types of input, they typically process one 
modality at a time—either generating videos from text descriptions, 
animating static images, or transforming existing video footage. These 
approaches leverages the strengths of different data modalities to 
produce highly realistic and contextually coherent videos. The core 
objective of MMVG is to create coherent, high-fidelity, temporal 
consistent videos by leveraging the strengths of each input type. 
Recent advancements in this field have led to the development of 
sophisticated models capable of interpreting and synthesizing complex 
scenes by concurrently analyzing textual descriptions, visual cues, 
and pre-existing video footage. These models push the boundaries of 
video generation, offering versatile applications in content creation, 
entertainment, and beyond.

More recently, OpenAI [6] introduced Sora, a diffusion model that 
represents a significant advancement in T2V generation by training 
a model from scratch rather than fine-tuning pre-trained models. 
Drawing from transformer architecture scalability, Sora replaces the 
conventional U-Net with a transformer-based structure, effectively 
managing large-scale video data for complex generative tasks. Sora can 
generate high-fidelity videos up to a minute long, maintaining visual 
quality and narrative consistency across multiple shots. It leverages 
a patch-based approach, turning visual data into spacetime patches, 
which enhances its ability to handle videos and images of varying 
durations, resolutions, and aspect ratios. Sora excels in linguistic 
comprehension, accurately following detailed prompts to generate 
coherent video content. However, it faces challenges in rendering 
realistic interactions and comprehending complex scenes with 
multiple active elements. Despite these limitations, Sora’s capabilities 
in video-to-video editing, image animation, and extending generated 
videos mark a significant step toward building general-purpose 
simulators of the physical world. Bruce et al. [7] introduced Genie, a 
generative interactive environment model trained unsupervised from 
unlabelled Internet videos. Genie uses spatiotemporal transformers, 
a novel video tokenizer, and a causal action model to create diverse, 
action-controllable virtual worlds from various inputs such as text, 
images, and sketches. It generates video frames autoregressively, 
enabling interaction on a frame-by-frame basis without ground-truth 
action labels.
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As we can see, this section, multimodal video generation, is the least 
explored of all the approaches analyzed, see Table IV, and possibly the 
most complex, since we not only have to generate the visual part of the 
videos, but also the audio. In addition, we must ensure that both are 
matched and do not generate easily detectable artifacts. The techniques 
analyzed in this field are diffusion models and transformers. Possibly 
this area will be explored in more detail in the coming years.

B. Detection of AI-Generated Videos
In the rapidly evolving landscape of Generative AI (Gen AI), 

significant progress has been made in developing techniques to detect 
AI-generated synthetic images. Given that a video can be viewed as a 
sequence of images, one might reasonably expect that synthetic image 
detectors would also be effective at identifying AI-generated synthetic 
videos. Surprisingly, Vahdati et al.  [159] reveal that current synthetic 
image detectors fail to reliably detect synthetic videos. Their study 
demonstrates that the forensic traces left by synthetic video generators 

are markedly different from those produced by image generators. This 
issue is not due to the degradation effects of H.264 compression but 
rather to the distinct characteristics of video generation. Therefore, 
their findings underscore the urgent need for detection methods 
tailored specifically to synthetic video content. Table V provides an 
overview of the techniques used for detecting AI-generated videos, 
highlighting key approaches and their application to various datasets. 
Despite the growing concerns, research into detecting synthetic 
videos has been relatively limited. Video generation technology is still 
in its early stages compared to image generation, and as a result, fewer 
detection methods are available. However, recent efforts have started 
to address this gap (see Fig. 10).

One early approach comes from, He et al.   [160] who proposed a novel 
detection method for identifying AI-generated videos by analyzing 
temporal defects at both local and global levels. The method is based 
on the assumption that AI-generated videos exhibit different temporal 
dependencies compared to real videos due to their distinct capturing 

TABLE IV. Comprehensive Overview of a Few Synthetic Video Generation Techniques

Models Year Technique Target Outcome Data Used Open Source

Make-A-Video [91] 2023 Transformer-based Text-to-video synthesis Various No

Video Diffusion [89] 2023 Diffusion-based High-quality video synthesis Video datasets No

VideoPoet [5] 2023 Transformer-based Generate poetic video narratives Web-collected dataset No

Godiva [104] 2023 GAN-based Generate dynamic video content High-resolution video datasets No

CogVideo [106] 2023 Transformer-based Extend CogView into video Diverse text and video datasets Yes

NUWA [107] 2023 Transformer-based Synthesize coherent video clips Diverse content from web datasets No

NUWA-Infinity [108] 2023 Transformer-based Generate endless video streams Extended NUWA dataset No

VideoGPT [109] 2023 GPT-based Utilize GPT architecture Various video datasets Yes

Video LDMs [110] 2024 Latent Diffusion Models Implement latent space techniques Various No

Text-to-Video (T2V) 
[158]

2023 Transformer-based Synthesize video from static images Diverse image and video datasets No

ModelScope Text-to-
Video [113]

2024 Transformer-based Scalable text-to-video model
Large-scale web-collected video 

datasets
Yes

W.A.L.T [114] 2023 Diffusion Models Enhance video synthesis Various No

C-ViViT [115] 2023 VAE-based Create detailed videos from categories Category-labeled video datasets No

Text2Video-Zero [118] 2023 Zero-Shot Learning Generate videos without explicit training General video datasets Yes

ART•V [119] 2024 AI Rendered Textures Artistic video creation Artistic style datasets No

BIVDiff [120] 2023 Bi-directional Diffusion Bidirectional control over video generation Various Yes

Simple Diffusion 
Adapter [116]

2024 Diffusion Models Simplify diffusion processes Various Yes

HiGen [121] 2024 Hierarchical Generation Layered approach to video scenes Multi-layer video datasets Yes

TABLE V. Overview of Techniques for Detecting AI-Generated Videos

Authors Year Technique Target Outcome Data Used Open Source

Vahdati et al. [159] 2024
Synthetic video detection by 

forensic trace analysis
Detect Al-generated synthetic videos Synth-vid-detect No

He et al. [160] 2024 Temporal defects analysis Identify temporal defects in Al-generated videos ExposingAI-Video No

Chen et al. [162] 2024
Detail Mamba for spatial-

temporal artifacts detection
Enhance detection of Al-generated videos GenVideo Yes

Bai et al. [163] 2024 Spatio-temporal CNN analysis
Detect Al-generated videos using motion 

discrepancies
GVD Yes

Ma et al. [164] 2024 Temporal artifact focus Focus on temporal artifacts in video detection GVF Yes

Ji et al. [165] 2024 Dual-Branch 3D Transformer
Integrate motion and visual appearance for fake 

video detection
GenVidDet No

Liu et al. [167] 2024
Diffusion-generated video 

detection
Capture spatial and temporal features in RGB 

frames and DIRE values
TOINR No
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and generation processes. Real videos, which are captured by cameras, 
have high temporal redundancy, whereas AI-generated videos control 
frame continuity in the latent space, leading to defects at different 
spatio-temporal scales. To address local motion information, the 
method uses a frame predictor trained on real videos to measure inter-
frame motion predictability. Fake videos show larger prediction errors 
because they have less temporal redundancy. Temporal aggregation is 
employed to maintain long-range information and reduce the impact 
of diverse spatio-temporal details. The aggregated error map is then 
processed by a 2D encoder to obtain local motion features. For global 
appearance variation, the method extracts visual features using a 
pre-trained BEiT v2 [161] image encoder. These features are fed into 
a transformer to model temporal variations, identifying abnormal 
appearance changes across frames. Finally, a channel attention-based 
fusion module combines the local motion and global appearance 
features to enhance detection reliability. This module adjusts channel 
significance to extract more generalized forensic clues.

Furthermore, Chen et al. [162] proposed a plug-and-play module 
named Detail Mamba (DeMamba), designed to enhance the detection 
of AI-generated videos by identifying spatial and temporal artifacts. 
DeMamba builds upon the Mamba framework to explore both 
local and global spatial-temporal inconsistencies, addressing the 
limitation of models that consider only one aspect, either spatial or 
temporal. Using vision encoders like CLIP and XCLIP, it encodes 
video frames into a sequence of features, groups them spatially, and 
applies the DeMamba module to model intra-group consistency. 
Aggregated features from different groups help determine video 
authenticity. The DeMamba module introduces a novel approach to 
spatial consolidation by splitting features into zones along height 
and width, performing a 3D scan for spatial-temporal input. Unlike 
previous mechanisms, DeMamba’s continuous scan aligns spatial 
tokens sequentially, enhancing the model’s ability to capture complex 
relationships. For classification, DeMamba averages input features to 
obtain global features and pools processed features into local features, 
concatenating them with the global ones for classification via a simple 
MLP, ensuring robust video authenticity detection.

Based on the assumption that low-quality videos show abnormal 
textures and physical rule violations, while high-quality videos, 
indistinguishable to the naked eye, often manifest temporal 
discontinuities in optical flow maps, Bai et al.   [163] proposed 
an effective AI-generated video detection (AIGVDet) scheme 
by capturing forensic traces with a two-branch spatio-temporal 
Convolutional Neural Network (CNN). This scheme employs two 

ResNet sub-detectors to identify anomalies in the spatial and optical 
flow domains. The spatial detector examines the abnormality of 
spatial pixel distributions within single RGB frames, while the optical 
flow detector captures temporal inconsistencies via optical flow. The 
model uses RGB frames and optical flow maps as inputs, with the 
two-branch ResNet50 encoder detecting abnormalities and a decision-
level fusion binary classifier combining this information for the final 
prediction. AIGVDet effectively leverages motion discrepancies for 
comprehensive spatio-temporal analysis to detect AI-generated 
videos. Ma et al.  [164] found that detectors based on spatial artifacts 
lack generalizability. Hence, they proposed DeCoF, a detection model 
that focuses on temporal artifacts and eliminates the impact of spatial 
artifacts during feature learning. DeCoF is the first method to use 
temporal artifacts by decoupling them from spatial artifacts, mapping 
video frames to a feature space where inter-feature distance is inversely 
correlated with image similarity, and detecting anomalies from inter-
frame inconsistency. The method reduces computational complexity 
and memory requirements, needing only to learn anomalies between 
features. However, DeCoF may experience significant performance 
degradation or be inapplicable in the face of tampered video, such as 
Deepfake and malicious editing.

Traditional video detection models often overlook specific 
characteristics of downstream tasks, particularly in fake video 
detection where motion discrepancies between real and generated 
videos are significant, as generators tend to excel in appearance 
modeling but struggle with accurate motion representation. Ji et al.  
[165] proposed the Dual-Branch 3D Transformer (DuB3D) to address 
this issue by integrating motion information with visual appearance 
using a dual-branch architecture that fuses raw spatio-temporal data 
and optical flow. The spatial-temporal branch processes original 
frames to capture spatial-temporal information and identify anomalies, 
while the optical flow branch uses GMFlow [166] to estimate and 
capture motion information, and these features are combined using 
a Multi-layer perceptron (MLP) for classification. Built on the Video 
Swin Transformer backbone, DuB3D effectively enhances fake video 
detection by emphasizing motion modeling and demonstrating strong 
generalization across various video types. More recently, Liu et al.  [167] 
proposed a novel approach for DIffusion-generated VIdeo Detection 
(DIVID). DIVID uses CNN+LSTM architectures to capture both spatial 
and temporal features in RGB frames and DIRE values. Initially, the 
CNN is fine-tuned on original RGB frames and DIRE values, followed 
by training the LSTM network based on the CNN’s feature extraction. 
This two-phase training enhances detection accuracy for both in-

Temporal
Artifacts

Spatial and 
Temporal Artifacts

Motion
Discrepancies

Local and global defects

Spatial and temporal features

Temporal artifacts,
excluding spatial artifacts

Spatial-temporal
inconsistencies

Spatial anomalies and
temporal inconsistencies

Motion with
visual appearance

He et al. [160]

DeCoF [164]

DeMamba [162]

DIVID [167]

AIGVDet [163]

DuB3D [165]

A
l-

G
en

er
at

ed
 V

id
eo

s 
D

et
ec

ti
on

Fig. 10. AI-Generated videos detection methods overview.



Regular Issue

- 195 -

domain and out-domain videos. Diffusion Reconstruction Error 
(DIRE) is calculated as the absolute difference between an original 
image and its reconstructed version from a pre-trained diffusion 
model, capturing signals of diffusion-generated images. By training 
the CNN+LSTM with DIRE and RGB frame features, DIVID improves 
detection accuracy for AI-generated videos.

Detecting AI-generated videos is an emerging challenge, distinct 
from synthetic image detection due to unique forensic traces in video 
content. While promising methods have begun to address this gap, 
leveraging spatio-temporal analysis and novel fusion techniques, the 
field is still evolving, see Table V. Continued innovation is essential to 
stay ahead of rapidly advancing video generation technologies.

V. Datasets

One of the most important aspects of DL model development is 
the availability of quality datasets. These datasets have to have some 
fundamental properties to be able to create robust models: to be 
representative, intra-class variability, balance between classes and a 
minimum quality. This will allow us to create suitable new generative 
and detection models. In this section we will focus on image and video 
datasets generated with AI.

The development of AI-generated images relies heavily on the 
availability of diverse and comprehensive datasets. These datasets 
provide the essential training material for models to learn from, 
enabling them to generate realistic and varied images. Ranging from 
large-scale collections of image-text pairs to datasets specifically 
designed for detecting synthetic content, these resources play a 
pivotal role in advancing the field. Regarding detection, we need 
representative and varied datasets that include different generation 

techniques and models. This will allow the development of robust 
models capable of being applied in real situations.

A. Image Datasets
In this section, we highlight some of the key image datasets that 

have significantly contributed to state-of-the-art AI-generated 
imagery. These datasets not only differ in size and content but 
also cater to various research needs, from general-purpose image 
generation to specialized tasks like AI-generated images detection 
and multimodal learning. For a detailed comparison, refer to Table VI, 
which summarizes the features and scope of these datasets.

Conceptual Captions 12M (CC12M) [185] is a large-scale dataset 
of 12.4 million image-text pairs derived from the Conceptual Captions 
3M (CC3M) dataset [186]. CC12M was created by relaxing some of the 
filters used in CC3M to increase the recall of potentially useful image-
alt-text pairs. The relaxed filters allow for more diverse and extensive 
data, though this results in a slight drop in precision. Unlike CC3M, 
CC12M does not perform hypernymization or digit substitution, 
except for substituting person names to protect privacy. This dataset’s 
larger scale and diversity make it well-suited for vision-and-language 
pre-training tasks.

WIT [187] introduced to facilitate multimodal, multilingual 
learning, contains 37.5 million entity-rich image-text examples and 
11.5 million unique images across 108 Wikipedia languages. It serves 
as a pre-training dataset for multimodal models, particularly useful 
for tasks like image-text retrieval. WIT stands out due to its large size, 
multilingual nature with over 100 languages, diverse concepts, and a 
challenging real-world test set. It combines high-quality image-text 
pairs from curated datasets like Flickr30K and MS-COCO with the 
scalability of extractive datasets. WIT’s creation involved filtering 

TABLE VI. AI-Generated Image Detection Datasets

Dataset Year Content Real Source Generator #Real #Generated Available

LSUN Bed [168] 2022 Bedroom LSUN GAN/DM 420,000 510,000 

DFF [169] 2023 Face IMDB-WIKI DM 30,000 90,000 

RealFaces [170] 2023 Face - DM - 25,800 

DiffusionForensics [79] 2023 General LSUN ImageNet DM 134,000 481,200 

Synthbuster [76] 2023 General Raise-1k DM - 9,000 

DDDB [171] 2023 Art LAION-5B DM 64,479 73,411 

DE-FAKE [172] 2023 General
MSCOCO 
Flickr30k

DM - 191 946 

AI-Gen [173] 2023 General ALASKA DM 20,000 40,000 

ArtiFact [174] 2023 General
Various sources including AFHQ,  

CelebAHQ, COCO, etc.
GAN/DM 964,989 1,531,749 

AutoSplice [175] 2023 General Visual News DM 2,273 3,621 

HiFi-IFDL [176] 2023 General
Various sources including AFHQ, CelebAHQ, LSUN, 

Youtube face etc.
GAN/DM ~ 600,000 1,300,000 

M3DSYNTH [177] 2023 CT LIDC-IDRI GAN/DM 1,018 8,577 

DIF [74] 2023 General Laion-5B GAN/DM 168,600 168,600 

DGM4 [178] 2023 General
News: The Guardian, BBC,  

USA TODAY, Washington Post
GAN/DM 77,426 152,574 

COCOFake [179] 2023 General COCO DM ~ 1,200,000 ~ 1,200,000 

DiFF [180] 2024 Face VoxCeleb2 CelebA DM 23,661 537,466 

CIFAKE [181] 2024 General CIFAR-10 DM 60,000 60,000 

GenImage [182] 2024 General ImageNet GAN/DM 1,331,167 1,350,000 

Fake2M [183] 2024 General CC3M GAN/DM - 2,300,000 

WildFake [184] 2024 General Various sources including COCO, FFHQ Laion-5B, etc. GAN/DM 1,013,446 2,680,867 
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low-information associations and ensuring image quality. The dataset 
provides multiple text types per image (reference, attribution, and alt-
text), offers extensive cross-lingual text pairs, and supports contextual 
understanding with 120 million contextual texts.

RedCaps [188] is a large-scale dataset introduced in 2021, consisting 
of 12 million image-text pairs collected from Reddit. This dataset 
includes images and captions depicting a variety of objects and scenes, 
sourced from a manually curated set of subreddits to ensure diverse 
yet focused content. The data collection process involves three steps: 
subreddit selection, image post filtering, and caption cleaning. Images 
are primarily photographs from 350 selected subreddits, excluding any 
NSFW, banned, or quarantined content. Filtering techniques are used 
to maintain high-quality captions and mitigate privacy and harmful 
stereotypes, resulting in a robust and extensive dataset.

Laion-5b [189] is a large-scale vision-language dataset derived 
from Common Crawl, containing nearly 6 billion image-text pairs. 
Images with alt-text were extracted and processed to remove low-
quality and malicious content. Filtering based on cosine similarity with 
OpenAI’s ViT-B/32 CLIP model reduced the dataset size significantly. 
The dataset is divided into three subsets: 2.32 billion English pairs, 
2.26 billion multilingual pairs, and 1.27 billion pairs with undetected 
languages. Metadata includes image URLs, text, dimensions, similarity 
scores, and NSFW tags.

DiffusionDB [190] is the first large-scale prompt dataset totaling 
6.5TB, containing 14 million images generated by Stable Diffusion 
using 1.8 million unique prompts. Constructed by collecting images 
shared on the Stable Diffusion public Discord server. Most prompts 
are between 6 to 12 tokens long, with a significant spike at 75 tokens, 
indicating many users exceed the model’s limit. 98.3% of the prompts 
are in English, with the rest covering 34 other languages. DiffusionDB 
provides unique research opportunities in prompt engineering, 
explaining large generative models, and detecting deepfakes, serving 
as an important resource for studying prompts in text-to-image 
generation and designing next-generation human-AI interaction tools.

DiffusionForensics [79] is a dataset designed for evaluating 
diffusion-generated image detectors. It includes 42,000 real images from 
LSUN-Bedroom, 50,000 from ImageNet, and 42,000 from CelebA-HQ. 
Generated images are produced by various models, with unconditional 
models like ADM, DDPM, iDDPM, and PNDM generating 42,000 
images each from LSUN-Bedroom. Text-to-image models LDM, SD-
v1, SD-v2, and VQ-Diffusion also generate 42,000 images each, while 
IF, DALLE-2, and Midjourney produce fewer images. For ImageNet, 
50,000 images each are generated by a conditional model ADM and 
a text-to-image model SD-v1. CelebA-HQ includes 42,000 images 
generated by SD-v2 and smaller sets by IF, DALLE-2, and Midjourney.

LSUN Bedroom [168] dataset contains images center-cropped to 
256×256 pixels. Samples are either downloaded or generated using 
code and pre-trained models from original publications. The dataset 
includes samples from ten models (e.g. ProGAN, Diff-StyleGAN2, Diff-
ProjectedGAN, DDPM, IDDPM,LDM). For each model, 51,000 images 
were sampled, and the real part is sourced from lsun bedroom dataset 
[191].

DeepFakeFace (DFF) [169] is a dataset designed to evaluate 
deepfake detectors, featuring 120,000 images, with 30,000 real images 
sourced from the IMDB-WIKI dataset and 90,000 fake images. To 
generate these fake images, three models were used: Stable Diffusion 
v1.5, Stable Diffusion Inpainting, and InsightFace, each producing 
30,000 images. The dataset includes high-resolution images of 512 
× 512 pixels. Real images were matched by gender and age, using 
prompts like "name, celebrity, age" for generation. Discrepancies in 
facial bounding boxes were corrected using the RetinaFace detector to 
ensure accuracy before generating deepfakes.

RealFaces [170] consists of 25,800 images generated using Stable 
Diffusion, incorporating prompts for photorealistic human faces. 
It includes 431 images filtered by an NSFW filter, mainly depicting 
women and young people.

Deepart Detection Database (DDDB) [171] is designed for 
detecting deepfake art. It includes high-quality conventional art 
from LAION-5B and deepfake art from models like Stable Diffusion, 
DALL-E 2, Imagen, Midjourney, and Parti. Conart images are sourced 
from LAION-5B, while deeparts are generated using state-of-the-
art models or collected from social media. DDDB consists of 64,479 
conventional art images (conart) and 73,411 deepfake art images 
(deepart). It supports research in deepart detection, continuously 
updating to incorporate new deeparts and addressing privacy and 
storage constraints.

SynthBuster [76]. Due to the scarcity of diffusion model-
generated images, SynthBuster addresses this by providing a new 
dataset with images from models like Stable Diffusion 1.3, 1.4, 2, and 
XL, Midjourney, Adobe Firefly, and DALL·E 2 and 3. While synthetic 
images are generated from text, SynthBuster uses the existing Raise-
1k database of real images, which is a varied subset of the Raise [192] 
dataset, as a guideline for the generated image. Original images are not 
used as prompts to try to recreate or modify a similar image. They are 
only used as a guideline to create the new prompt for the presentation, 
to ensure that the resulting image is broadly in the same category 
as the original image. For each of the 1000 images, descriptions are 
generated using the Midjourney descriptor [3] and CLIP Interrogator 
[193]. Then, these descriptions were used as the basis for manually 
writing a text prompt to generate a photo-realistic image loosely based 
on the original image.

DE-FAKE [172] is designed for detecting AI-generated images. 
Real images are sourced from the MSCOCO and Flickr30k datasets. 
To create a corresponding set of fake images, prompts from these real 
images were used to generate 191,946 synthetic images through four 
different image generation models: Stable Diffusion, Latent Diffusion, 
GLIDE, and DALLE-2.

AI-Gen [173] dataset consists of 20,000 uncompressed 256 × 256 
PG images from the ALASKA [194] database, which are used to 
construct the T2I dataset. Specific spots and objects are extracted 
from these Photographs (PG) images, and 5,000 prompts are generated 
with ChatGPT. Two AI systems, DALL·E2 [195] and DreamStudio, 
are used to generate four images per prompt, creating two databases: 
DALL·E2 [195] and DreamStudio [196]. Each database contains 20,000 
Photographs (PG) images and corresponding T2I images. The images 
are resized to 256 × 256, 128 × 128, and 64 × 64, and JPEG compression 
is applied with a quality factor between 75 and 95. The datasets are 
divided into training (12,000 pairs), validation (3,000 pairs), and testing 
(5,000 pairs).

AutoSplice [175] is a image dataset containing 5,894 manipulated 
and authentic images, designed to aid in developing generalized 
detection methods. The dataset consists of 3,621 images generated 
by locally or globally manipulating real-world image-caption pairs 
from the Visual News dataset. The DALL-E2 generative model was 
used to create synthetic images based on text inputs. AutoSplice 
construction involved pre-processing with object detection and text 
parsing, human annotations to select and modify object descriptions, 
and post-processing to filter out images with visual artifacts. The final 
dataset includes 3,621 high-quality manipulated images and 2,273 
authentic images, with versions in both lossless and gently lossy JPEG 
compression formats.

ArtiFact [174] is a large-scale dataset designed to evaluate the 
generalizability and robustness of synthetic image detectors by 
incorporating diverse generators, object categories, and real-world 
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impairments. It includes 2,496,738 images, with 964,989 real and 
1,531,749 fake images. The dataset covers multiple categories such 
as Human/Human Faces, Animal/Animal Faces, Places, Vehicles, and 
Art, sourced from 8 source datasets (e.g., COCO, ImageNet, AFHQ, 
Landscape) . It features images synthesized by 25 distinct methods, 
including 13 GANs (e.g., StyleGAN3, StyleGAN2, ProGAN), 7 Diffusion 
models (e.g., DDPM, Latent Diffusion, LaMA), and 5 other generators 
(e.g., CIPS, Palette). To ensure real-world applicability, images undergo 
impairments like random cropping, resizing, and JPEG compression 
according to IEEE VIP Cup 2022 standards.

CIFAKE [181] consists of 120,000 images, split evenly between real 
and synthetic images. The real images are taken from the CIFAR-10 
[197] dataset, comprising 60,000 32x32 RGB images across ten classes: 
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck, 
with 50,000 images used for training and 10,000 for testing. The 
synthetic images are generated using the CompVis Stable Diffusion 
model (version 1.4), which is trained on subsets of the LAION-5B 
[189] dataset. The generation process involves reverse diffusion from 
noise to create 6,000 images per class, mimicking the CIFAR-10 [197] 
dataset. Similar to the real images, 50,000 synthetic images are used for 
training and 10,000 for testing, with labels indicating their synthetic 
nature.

GenImage [182] is designed to evaluate detectors’ ability to 
distinguish between AI-generated and real images. It includes 2,681,167 
images, with 1,331,167 real images from ImageNet and 1,350,000 fake 
images generated using eight models: BigGAN, GLIDE, VQDM, Stable 
Diffusion V1.4, Stable Diffusion V1.5, ADM, Midjourney, and Wukong. 
The images are balanced across ImageNet’s 1000 classes, with specific 
allocations for training and testing. Each model generates a nearly 
equal number of images per class, ensuring no overlap in real images. 
The dataset features high variability and realism, particularly in 
animals and plants, providing a robust basis for developing detection 
models.

Fake2M [183] dataset is a large-scale collection of over 2 million 
AI-generated images. These images are created using three different 
models: Stable Diffusion v1.5, IF, and StyleGAN3. The dataset aims to 
investigate whether models can distinguish AI-generated images from 
real ones.

DiFF [180] comprises over 500,000 images synthesized using 
thirteen distinct generation methods under four conditions, leveraging 
30,000 textual and visual prompts to ensure high fidelity and semantic 
consistency. The dataset includes pristine images from 1,070 celebrities, 
curated from sources like VoxCeleb2 and CelebA, totaling 23,661 
images. Prompts, derived from these pristine images, include original 
and modified textual prompts as well as visual prompts. The dataset 
covers four categories of diffusion models: Text-to-Image (T2I), Image-
to-Image (I2I), Face Swapping (FS), and Face Editing (FE), employing 
methods like Midjourney, Stable Diffusion XL, DreamBooth, DiffFace, 
and others to generate the forged images.

WildFake [184] is designed to assess the generalizability and 
robustness of fake image detectors. Developed with diverse content 
from open-source websites and generative models, it provides a 
comprehensive set of high-quality fake images. It includes images 
from DMs, GANs, and other generators, with categories such as 
"Early" and "Latest" models. The dataset also features nine kinds of 
DMs generators and various fine-tuning strategies for SD-based 
generators. Images were collected using a generation pipeline from 
platforms like Civitai and Midjourney, ensuring a representative 
sample of real-world quality. Real images were sourced from datasets 
like COCO, FFHQ, and Laion-5B. WildFake contains 3,694,313 images, 
with 1,013,446 real and 2,680,867 fake images, split into training and 
testing sets in a 4:1 ratio.

B. Video Datasets
In this section, we review key video datasets that have been pivotal 

in advancing state-of-the-art AI models. These resources Offer diverse 
video-text pairs, high-resolution clips, and specialized content, each 
contributing uniquely to the progress of Al-driven video technology. 
For a detailed comparison, refer to Table VII, which summarizes the 
characteristics and scope of these datasets. 

YT-Tem-180M [198] was collected from 6 million public YouTube 
videos, totaling 180 million clips, and annotated by ASR. It includes 
diverse content such as instructional lifestyle vlogs, and auto-
suggested videos on topics. Videos were filtered to exclude those an 
English ASR track, over 20 minutes long, in 'ungrounded" categories, or 
with thumbnails to contain objects. Each video was split into segments 
of an image frame and corresponding spoken words, resulting in 180 
million segments.

WebVid-2M [199] is a large-scale video-text pretraining dataset 
consisting of 2.5 million video-text pairs. The average length of each 
video is 18.0 seconds, and the average caption length is 12.0 words. 
The raw descriptions for each video are collected from the Alt-text 
HTML attribute associated with web images. This dataset was scraped 
from the web using a method similar to Google Conceptual Captions 
(CC3M), which includes over 10% of images that are video thumbnails. 
WebVid-2M captions are manually generated, well-formed sentences 
aligned with the video content, contrasting with the HowTo100M 
[105] dataset, which contains incomplete sentences from continuous 
narration that may not be temporally aligned with the video.

CATER-GEN-v1 [151] is a synthetic dataset set in a 3D 
environment, derived from CATER [210], featuring two objects (cone 
and snitch) and a large table plane. It includes four atomic actions: 
"rotate", "contain", "pick-place", and "slide", with each video containing 
one or two actions. Descriptions are generated using predefined 
templates, with a resolution of 256x256 pixels. The dataset includes 
3,500 training pairs and 1,500 testing pairs.

CATER-GEN-v2 [151] is a more complex version of CATER-
GEN-v1, containing 3 to 8 objects per video, each with randomly chosen 
attributes from five shapes, three sizes, nine colors, and two materials. 
The actions are the same as in CATER-GEN-v1, but descriptions are 
designed to create ambiguity by omitting certain attributes. The video 
resolution is 256x256 pixels, and the dataset includes 24,000 training 
pairs and 6,000 testing pairs.

Internvid [202] is a video-centric multimodal dataset created 
for large-scale video-language learning, featuring high temporal 
dynamics, diverse semantics, and strong video-text correlations. It 
includes 7 million YouTube video-text correlations. It includes 7 million 
YouTube videos with an average duration of 6.4 minutes, covering 
16 topics. Videos were collected based on popularity and action-
related queries, ensuring diversity by including various countries 
and languages. Each video is segmented into clips, resulting in 234 
million clips from 2s to more than 30s duration, which were captioned 
using a multiscale method focusing on common objects and actions. 
InternVid emphasizes high resolution, with 85% of videos at 720P, and 
provides comprehensive multimodal data including audio, metadata, 
and subtitles. The dataset is notable for its action-oriented content, 
containing significantly more verbs compared to other datasets, and 
includes 7.1 million interleaved video-text data pairs for in-context 
learning. 

FlintstonesHD [153] is a densely annotated long video dataset 
created to promote the development of long video generation. The 
dataset is built from the original Flintstones cartoon, containing 
166 episodes with an average of 38,000 frames per episode, each at 
a resolution of 1440 × 1080 pixels.  Unlike existing video datasets, 
FlintstonesHD addresses issues such as short video lengths, low 
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TABLE VII. Video Datasets. Datasets With Grey Background Are Used in A AI-generated Videos Detection

Dataset Year Source Size Domain Resolution Text Avg len 
(sec)

Duration 
(hrs) Unique Features

YT-Tem-180M 
[198]

2021
YouTube,  

HowTo100M
180M Videos
180M Text

Open - ASR - -
Filters to exclude non-English 

ASR and visuall «ungrounded» 
categories

WebVid-2M [199] 2021 Web
2.5M Videos
2.5M Text

Open 360p Manual 18.0 13K
Manually generated captions, 

aligned with video content

WebVid-10M 
[199]

2021 Web
10M Videos 
10M Text

Open 360p Alt-Text 18.0 52K
Manually generated captions, 

aligned with video content

CATER-GEN-v1 
[151]

2022 Synthetic 3D objects
5K Video
5K Text

Geometric 256p
Predefined 
template

- -
Synthetic, simple scenes with 

atomic actions

CATER-GEN-v2 
[151]

2022 Synthetic 3D objects
30K Video
30K Text

Geometric 256p
Predefined 
Template

- -
Increased complexity with more 

objects and attributes

CelebV-HQ [200] 2022 Web
35,666
Videos

Face 512p Manual 3 to 20 65
High-quality, detailed text 

descriptions

HD-VILA-100M 
[201]

2022 YouTube
103M Videos 
103M Text

Open 720p ASR 13.4 371.5K
High-quality alignment of 
videos and transcriptions

Internvid [202] 2023 YouTube
7.1M Videos 
234M clips

Open
360p
512p
720p

Generated 11.7 760.3K
Action-oriented, diverse 

languages, and high video-text 
correlation

FlintstonesHD 
[153]

2023 Flintstones cartoon 166 episodes Cartoon 1440x1080 Generated - -
Densely annotated for long 

video generation

Celebv-text [203] 2023 Web
70K Videos
1.4M Text

Face 512p+
Semi-Auto
Generated

 <5s 279
High-quality, detailed text 

descriptions

HD-VG-130M 
[204]

2023 YouTube
130M Videos
130M Text

Open 720p Generated ~ 5.1 184K
High-definition, single-scene 

clips

Youku-mPLUG 
[205]

2023 Youku platform
10M Videos
10M Text

Open - - 54.2 150K
Focused on advancing Chinese 

multimodal LLMs

VidProM [206] 2024 Pika Discord
1.67M 

prompts 
6.69M Videos

Open - Manual -
Extensive prompts with 

semantic uniqueness

MiraData [207] 2024
YouTube, Videvo, 

Pixabay, Pexels HD-
VILA-100M

Open 720p Generated 72.1 16K
High visual quality, detailed 

captions

GenVideo [162] 2024
Kinetics-400 Youku-
mPLUG MSR-VTT
Video Gen Methods

~ 2.31M 
Videos

Open - Automatic 2 to 6
Balance of real and fake videos 

across diverse scenes

ExposingAI-
Video [160]

2024
MSVD, Potat1 Ali-

vilab,ZScope T2V-zero
2K Videos Open - Automatic - -

H. 265 compression and quality 
degradation simulation

Synth-vid-detect 
[159]

2024
MIT, Video-ACID Gen 

Video Methods
18.75K Videos Open - Automatic - -

H. 265 compression Out-of-
distribution test set

GVD [163] 2024
GOT, Youtube_vos2 
Gen Video Methods

- Open - Automatic - -
Collection from various SOTA 

models

GVF [164] 2024
MSVD, MSR-VTT

Gen Video Methods
964 Videos
964 Text

Open - Automatic - -
Diversity in forgery targets, 

scenes, and behaviors

GenVidDet [165] 2024
InternVid, HD-VG-
130M Gen Video 

Methods

~2.66M 
Videos

Open
256p
512p
720p

Automatic - 4442
Large-scale dataset cover diverse 

content

TOINR [167] 2024
VidVRD, SVD-XT 

YouTube
SORA, Pika, GEN-2

~2.826K 
Videos

Open - Automatic - -
Out-domain testing with various 

generation tools

Panda-70m [208] 2024 HD-VILA-100M
70.8M Videos
70.8M Text

Open 720p Automatic 8.5s 166.8K
High-quality captions with 
significant improvements in 

downstream tasks

VAST-27M [209] 2024 HD-VILA-100M
27M Videos
297M Text

Open - Generated
5 to 30 

sec
-

Comprehensive with vision, 
audio, and omni-modality 

captions
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resolution, and coarse annotations. The image captioning model 
GIT2 [211] was used to generate dense captions for each frame, with 
manual filtering to correct errors, thus providing detailed annotations 
that capture movement and story nuances. This dataset serves as a 
benchmark for improving long video generation. 

Celebv-text [203] is a large-scale facial text-video dataset aimed 
at providing high-quality video samples with relevant, diverse text 
descriptions. Constructed through data collection and processing, 
data annotation, and semi-auto text generation, it features 70, 000 
video clips totaling around 279 hours. Videos were sourced from the 
internet, using queries like human names and movie titles, excluding 
low-resolution and short clips, and processed to maintain high 
quality without upsampling or downsampling. Annotations include 
static attributes like general appearance and light conditions, and 
dynamic attributes like actions and emotions, with both automatic 
and manual methods used for accuracy. Texts were generated using 
a combination of manual descriptions and auto-generated templates 
based on common grammar structures, resulting in longer and more 
detailed text descriptions compared to other datasets. CelebV-Text 
surpasses existing datasets like MM-Vox [212] and CelebV-HQ [200] in 
scale, resolution, and text-video relevance, offering a comprehensive 
resource for facial video analysis.

VidProM [206] is a large-scale dataset for text-to-video diffusion 
models, collected from Pika Discord channels between July 2023 and 
February 2024.It includes 1,672,243 unique text-to-video prompts, 
embedded with 3072-dimensional embeddings using OpenAI’s text-
embedding-3-large API. The dataset includes NSFW probabilities 
assigned using the Detoxify model, with less than 0.5% of prompts 
flagged as potentially unsafe. It features 6.69 million videos generated 
by Pika, VideoCraft2, Text2Video-Zero, and ModelScope, involving 
significant computational resources. After filtering for semantic 
uniqueness, VidProM retains 1,038,805 unique prompts. Compared to 
DiffusionDB, VidProM has 40.6% more semantically unique prompts 
and supports longer, more complex prompts due to its advanced 
embedding model. VidProM includes videos generated by four state-
of-the-art models, resulting in over 14 million seconds of video content. 
VidProM’s extensive video content and complex prompts, requiring 
dynamic and temporal descriptions, make it a valuable resource for 
developing text-to-video generative models.

MiraData [207] is a large-scale text-video dataset with long 
durations and detailed structured captions. The dataset, finalized 
through a five-step process, sources videos from YouTube, Videvo, 
Pixabay, and Pexels to ensure diverse content and high visual quality. 
From YouTube, 156 high-quality channels were selected, resulting in 
68K videos and 173K clips post-processing. Additional videos were 
sourced from HD-VILA-100M, Videvo (63K), Pixabay (43K), and Pexels 
(318K). Video clips were split and stitched using models like Qwen-
VL-Chat and DINOv2, ensuring semantic coherence and content 
continuity. MiraData provides five versions of filtered data based on 
video color, aesthetic quality, motion strength, and NSFW content, 
with 788K to 9K clips. Captions were generated using GPT-4V, 
resulting in dense and structured descriptions with average lengths of 
90 and 214 words respectively. MiraData surpasses previous datasets 
in visual quality and motion strength, making it ideal for text-to-video 
generation tasks.

GenVideo [162] is a large-scale dataset developed to evaluate 
the generalizability and robustness of AI-generated video detection 
models. The training set contains 2, 294, 594 video clips, including 1, 
213, 511 real and 1, 081, 083 fake videos, while the testing set includes 
19, 588 video clips, with 10, 000 real and 8, 588 fake videos. The dataset 
features high-quality fake videos sourced from open-source websites 
and various pre-trained models, covering a wide range of scenes 
such as landscapes, people, buildings, and objects. Video duration’s 

range from 2 to 6 seconds, with diverse aspect ratios. Real videos are 
sourced from datasets like Kinetics-400, Youku-mPLUG, and MSR-
VTT [213]. Fake videos are generated using diffusion-based models, 
auto-regressive models, and other methods such as VideoPoet, Emu, 
Sora, VideoCrafter, latent flow diffusion models, masked generative 
video transformer, and autoregressive models. Additionally, sources 
include external web scraping and service-based methods like the Pika 
website. This diverse and comprehensive collection aims to enhance 
the understanding and detection of AI-generated videos across 
numerous real-world contexts.

ExposingAI-Video [160] is composed of 1,000 natural videos 
sourced from the MSVD [214] dataset, paired with 1,000 fake videos 
generated using four advanced diffusion-based video generators, 
resulting in 96,000 fake frames. The dataset offers diverse content 
driven by text prompts, featuring rich motion information distinct from 
static images. It includes videos generated by models such as ali-vilab, 
zeroscope, potat1, and a zero-shot text-to-video model, each providing 
unique configurations. Additionally, the dataset incorporates three 
video post-processing operations—H.265 ABR compression, H.265 
CRF compression, and Bit Error—to simulate quality degradation for 
robustness evaluation.

Synth-vid-detect [159] consists of both real and synthetic videos 
for training and evaluation. It includes 7,654 real videos for training, 
784 for validation, and 1,661 for testing, sourced from the Moments 
in Time (MIT) [215] and Video-ACID [216] datasets. The synthetic 
videos, totaling 6,197 for training, 624 for validation, and 1,429 for 
testing, were generated using Luma, VideoCrafter-v1, CogVideo, and 
Stable Video Diffusion, with diverse scenes and activities represented. 
All videos were compressed using H.264 at a constant rate factor of 23. 
For testing, an exclusive set of prompts and videos was used to avoid 
overlap with the training data. Additionally, the dataset includes an 
out-of-distribution, test-only set of 401 synthetic videos generated by 
Sora, Pika, and VideoCrafter-v2.

Generated Video Dataset (GVD) [163] includes 11,618 video 
samples produced by 11 different state-of-the-art generator models. 
These models generate videos using either T2V or I2V techniques. The 
dataset was primarily collected from the Discord platform, where users 
share videos generated by various models. For training and validation, 
550 T2V-generated videos from Moonvalley [217] and 550 real videos 
from the YouTube_vos2 [218] dataset were used. All generated videos 
not used in training and validation are designated for testing, with real 
test videos sourced from the GOT [219] dataset.

GeneratedVideoForensics (GVF) [164] dataset consists of 964 
triples, each containing a real video, a corresponding text prompt, and 
a video generated by one of four different open-source text-to-video 
generation models: Text2Video-zero, ModelScopeT2V, ZeroScope, 
and Show-1. These models cover various forgery targets, scenes, 
behaviors, and actions, ensuring the dataset’s diversity. The real 
videos and prompts were collected from MSVD [214] and MSR-VTT 
[213] datasets, with a focus on simulating realistic video distributions 
across spatial and temporal dimensions. It also includes vidoes from 
most popular commercial models like OpenAI’s Sora, Pika, Gen-2 and 
Google’s Veo.

GenVidDet [165] is a large-scale video dataset created for AI-
generated video detection, comprising over 2.66 million clips with 
more than 4442 hours of content. It includes real videos sourced from 
the InternVid [202] and HD-VG-130M [204] datasets, totaling over 
1.46 million clips, and AI-generated videos from the VidProM dataset 
using four different models, adding approximately 1.12 million clips. 
Additionally, new AI-generated videos were created using the latest 
models like Open-Sora, StreamingT2V and DynamiCrafter to enhance 
the dataset’s diversity.



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 9, Nº1

- 200 -

Turns Out I’m Not Real (TOINR) [167] dataset was constructed 
to evaluate a method using public video generation tools, including 
Stable Video Diffusion (SVD), Pika, Gen-2, and SORA. The dataset 
includes 1,000 real video clips from the ImageNet Video Visual 
Relation Detection (VidVRD) [220] dataset and 1,000 fake video clips 
generated with SVD-XT [89]. It also comprises an additional real and 
fake clips for out-domain testing: 107 real (VidVRD) and 107 fake clips 
generated with Pika, 107 (VidVRD) real and 107 fake clips generated 
with Gen-2, and 207 real and 191 fake clips sourced from YouTube and 
SORA website.

HD-VILA-100M [201] is a high-resolution and diversified video-
language dataset designed to overcome limitations in existing datasets. 
Introduced to aid tasks such as Text-to-video retrieval and video 
QA, it comprises 103 million video clip and sentence pairs from 3.3 
million videos, totaling 371.5K hours. Sourced from diverse YouTube 
content, including professional channels like BBC Earth and National 
Geography, HD-VILA-100M emphasizes quality and alignment 
of videos and transcriptions. Only videos with subtitles and 720p 
resolution were included, resulting in a final set of 3.3 million videos, 
balanced across 15 categories. For video-text pairing, the dataset 
utilizes video transcriptions instead of manual annotations, offering 
richer information. Subtitles, often generated by ASR, were split into 
complete sentences using an off-the-shelf tool. Sentences were aligned 
with video clips using Dynamic Time Warping, producing pairs 
averaging 13.4 seconds in length and 32.5 words per sentence.

HD-VG-130M [204] is a large-scale dataset for Text-to-video 
generation, comprising 130 million text-video pairs from the open 
domain. Created to address limitations in existing datasets, it 
features high-definition (720p), widescreen, and watermark-free 
videos. Collected from YouTube, the videos were processed using 
PySceneDetect for scene detection, resulting in single-scene clips of less 
than 20 seconds each. Captions were generated using BLIP-2, ensuring 
that descriptions, typically around 10 words, are representative of the 
visual content. Covering 15 categories, HD-VG-130M provides diverse 
and high-quality data for training video generation models.

Youku-mPLUG [205] is the first Chinese video-language 
pretraining dataset, released in 2023 and collected from the Youku 
video-sharing platform. It comprises 10 million high-quality Chinese 
video-text pairs filtered from 400 million raw videos, covering 45 
diverse categories with an average video length of 54.2 seconds. This 
dataset was created to advance Vision-language pre-training (VLP) 
and multimodal Large language models (LLMs) within the Chinese 

community. Strict criteria for safety, diversity, and quality were 
applied, involving multi-level risk detection to eliminate high-risk 
content and video fingerprinting to ensure a balanced distribution. 
Additionally, the dataset includes 0.3 million videos for downstream 
benchmarks, designed to assess video-text retrieval, video captioning, 
and video category classification tasks.

Panda-70m [208] is a large-scale video dataset created for video 
captioning, video and text retrieval, and text-driven video generation. 
It consists of 70 million high-resolution, semantically coherent video 
clips with captions. The dataset was developed from 3.8 million long 
videos collected from HD-VILA-100M [201]. To generate accurate 
captions, a two-stage semantics-aware splitting algorithm was 
used, followed by multiple cross-modality teacher models to predict 
candidate captions. A subset of 100,000 videos was manually annotated 
to fine-tune a retrieval model, which then selected the best captions 
for the entire dataset. Panda-70M addresses the challenge of collecting 
high-quality video-text data and shows significant improvements in 
downstream tasks. The dataset primarily contains vocal-intensive 
videos such as news, TV shows, and documentaries.

VAST-27M [209] consists of a total of 27 million video clips 
covering diverse categories, each paired with 11 captions (5 vision, 
5 audio, and 1 omni-modality). The average lengths of vision, audio, 
and omni-modality captions are 12.5, 7.2, and 32.4 words respectively. 
The dataset bridges various modalities including vision, audio, and 
subtitles in videos. The clips were selected from the HD-VILA-100M 
dataset [201], ensuring each clip is between 5 and 30 seconds long and 
contains all three modalities. Vision captions were generated using a 
model trained on corpora such as MSCOCO, VATEX, MSRVTT, and 
MSVD [214], while audio captions were generated using VALOR-1M 
and WavCaps datasets. An LLM, Vicuna-13b, was used to integrate 
these captions into a single omni-modality caption. VAST-27M spans 
over 15 categories, including music, gaming, education, entertainment, 
and animals. its comprehensiveness, the dataset may inherit biases 
from the corpora and models used in its creation, highlighting the 
need for more diverse and larger-scale omni-modality corpora.

VI. Challenges and Future Trends

Throughout this state-of-the-art review we have analysed the most 
recent approaches and methodologies for the generation and detection 
of synthetic video and image samples. This has given us a global view 
of the area, as well as a glimpse of current research trends and the 
challenges researchers will have to face in the coming years, see Fig. 11.
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Fig. 11. Overview of trends and challenges in the generation and detection of AI-generated image and video samples.
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First of all, we will focus on analysing the trends that will drive 
research in the area in the coming years, based on the results obtained 
from this analysis.

1. Sample generation with diffusion models, where the diffusion 
process in these models involves iterating over the input data 
and gradually refining the generation to fit a target distribution 
or to achieve the desired effect. As we have been able to observe 
throughout the different sections related to the generation of 
samples, whether video or image, the diffusion models seem to 
be predominating over the rest of the generation techniques, such 
as autoencoders or GANs. Taking into account all the research 
being carried out in this domain, it would not be surprising to see 
it monopolises multimedia content generation techniques in the 
coming years.

2. Zero-Shot Learning. This learning approach is a game changer, 
as it allows generative models to create content in new domains, 
even with entirely new features, without needing to be trained with 
data from those exact situations. This makes it possible, within 
generative techniques, to generate a wide range of content, even 
when a large amount of labelled data is not available. But it remains 
difficult to develop models capable of accurately understanding 
and generating content in completely new contexts. Regarding 
detection, zero-shot learning has the potential to help identify AI-
generated content in many different data types and formats, even 
in the absence of huge curated datasets. However, the wide variety 
of synthetic content creation methods makes it difficult to create 
perfectly adapted detection models. Further research is needed to 
determine how to improve the generalisability of these models.

3. Interpretability and Transparency. As the content generated 
by AI becomes more sophisticated, it becomes increasingly 
important to ensure that detection models are not only effective, 
but also easy to understand. Users need to be convinced that the 
model is making the right decisions, which means that the model 
needs to provide clear and understandable reasons for why it has 
identified something as synthetic. In addition, these techniques 
allow us to understand whether the features that the models 
are using to achieve at the output are adequate or whether the 
system has deficiencies or biases. Therefore, the application of 
explainability techniques has many advantages.

4. Multimodal data generation. As we have seen in Section V, 
multimodal sample generation techniques are the least explored 
of all. The main reason may be their complexity, as a very precise 
synchronisation between video and audio has to be achieved. 
However, it is quite possible that this approach will start to become 
more relevant, due to the opportunities it presents. Regarding 
synthetic multimodal data detection techniques, research will 
be extremely limited until quality datasets are available to train 
robust models, capable of being applied to real situations.

5. Model robustness. Detection models must be able to robustly 
withstand various transformations and adversarial attacks, such 
as image compression, blurring or text paraphrasing, which 
can significantly degrade detection performance. The ability 
to withstand such manipulations is crucial for the reliable 
identification of synthetic content in various real-world scenarios. 
These types of distortions can effectively compromise a model’s 
ability to correctly identify synthetic content. So being able to 
overcome these challenges is essential to ensure that the model 
works reliably in all kinds of scenarios.

Finally, we are going explore the different challenges that the 
field of video and image generation is likely to face. This review 
has highlighted several weaknesses that must be addressed, as they 
represents significant obstacles for future research in this domain.

1. Temporal Consistency. One of the main problems in the 
generation of synthetic video samples is the formation of 
artefacts or inconsistencies between the created frames. Smooth 
and realistic motion patterns are essential for video sequences, 
however generative models may find it difficult to maintain this 
from frame to frame. In addition, inconsistent frame transitions 
can lead to visual artifacts such as flicker, which affect the realism 
of the generated content. Although advances in techniques such 
as Implicit Neural Representations (INR), interplacing of multiple 
temporal attention layers, fully fine tuning on video datasets, as 
well as hierarchical discriminators have shown promise, further 
research is necessary to achieve smooth and realistic video 
sequences.

2. Computational Requirements. Video generation and detection 
involves processing high dimensional data, which significantly 
increases the computational requirements for training and 
inference, which can be an obstacle for small organizations. 
Developing more efficient algorithms and parallelization 
techniques for video generation is an ongoing challenge.

3. Constant adaptation: as we have seen in this survey, there are 
two main lines of research: the generation of synthetic samples 
and their detection techniques. Every day there are new, more 
sophisticated generation techniques that generate more realistic 
samples, so new detection models that are capable of distinguishing 
these synthetic samples from the real ones have to be constantly 
developed, i.e. it is a race. As well as the development of new 
quality datasets that will be the starting point of the detection 
systems. Another approach may be the periodic retraining of 
models. Whether to simply re-train a model from scratch or 
continue to update it through continuous learning is an ongoing 
challenge that researchers are still working on.

4. Generalizability of Detection Models. A key challenge for 
detection models is to be able to handle new data and new models. 
Generative AI models (GAIMs) evolve rapidly and if a detection 
model is too focused on the specific data it has been trained on, 
it tends to struggle with new, unseen data and updated models. 
To remain relevant and effective, detection models must be 
able to generalise to different datasets and types of generative 
architectures.

5. Ethical Aspects. The realistic nature of AI-generated content 
raises serious ethical questions, particularly when it comes to 
potential misuse. Deepfakes, fake news and other misleading 
content can cause real harm. To combat this, it is not enough 
to develop effective detection methods. We also need ethical 
guidelines, regulations and access controls to prevent AI 
technology from being used in harmful ways.

VII.   Conclusions

Generative AI has witnessed exponential growth in recent years, 
exemplified by tools like ChatGPT that showcase its advancing 
capabilities. Multimedia content generation models have achieved 
remarkable performance across a variety of tasks, offering 
substantial benefits to domains such as entertainment, education, 
and cybersecurity. However, these advancements also introduce risks 
that cannot be ignored. Alongside the development of new generative 
AI models for producing high-quality multimedia content, there is a 
critical need to create detection systems that can be effectively applied 
in real-world situations.

This review aims to address these dual objectives by providing a 
comprehensive analysis of synthetic image and video generation 
techniques, as well as the methods used for their detection. It also 
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examines the principal datasets available in the current state of the art 
and explores future trends and challenges faced by researchers in the 
field. By critically evaluating the existing technologies for generating 
and detecting multimedia content, we seek to define the research 
directions that should be pursued in the coming years. The insights 
gathered from this survey are intended to facilitate and stimulate 
further research on generative AI techniques for multimedia content, 
ultimately contributing to both the advancement of the field and the 
mitigation of associated risks.
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