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Abstract

This study aims to devise a traffic electronic information signal acquisition system employing Internet of Things 
and artificial intelligence technologies, offering a novel approach to address prevailing challenges related to 
traffic congestion and safety. Initially, the hardware circuit for the high-speed signal acquisition control core 
is developed, leveraging Field-Programmable Gate Array technology. This facilitates wireless monitoring of 
signal acquisition. Subsequently, a comprehensive time signal acquisition system is formulated, encompassing 
modules for communication, acquisition, storage, adaptive measurement, and signal analysis. The geomagnetic 
acquisition module within this system is utilized for collecting geomagnetic signals, which are then translated 
into switch signals indicating the presence or absence of vehicles. These signals are subsequently transmitted 
to the geomagnetic signal processor. Experimental results pertaining to the signal acquisition system reveal 
a notable peak storage speed of 200KB/s, considering the utilization of one million sampling points. Across 
a series of tests, the maximum relative error of the obtained results ranges from 2.2% to 2.7%, underscoring 
the consistency and reliability of the measurements. In comparison to existing testing devices, the system 
exhibits heightened accuracy in test results, rendering it more apt for traffic signal acquisition applications. In 
conclusion, this study accomplishes the collection and dissemination of diverse traffic information, furnishing 
robust support for traffic control and ensuring safe operations.

DOI:  10.9781/ijimai.2024.08.002

Design of Traffic Electronic Information Signal 
Acquisition System Based on Internet of Things 
Technology and Artificial Intelligence
Hongling Wang

Harbin University Key Laboratory of Heilongjiang Underground Engineering Technology, Harbin 
University, Harbin, 150086 (China)

* Corresponding author: wanghongling@hrbu.edu.cn

Received 14 April 2023 | Accepted 3 May 2024 | Early Access 20 August 2024 

I. Introduction

PRESENTLY, urban transportation has faced significant and urgent 
challenges, including inadequate transportation infrastructure 

development, escalating traffic congestion, frequent traffic accidents, 
and a fundamentally flawed travel structure. These challenges 
profoundly impact the quality of life for urban inhabitants and 
hinder the sustainable advancement of cities. Traditional approaches, 
however, have limitations in effectively addressing these complexities. 
For example, conventional methods of acquiring traffic information 
rely predominantly on stationary sensor apparatus, restricting both 
the scope and immediacy of data collection. Additionally, established 
vehicle positioning technologies, such as the global positioning system 
(GPS), provide positional precision but are hindered by elevated 
energy consumption and cost, limiting their extensive integration 
within intelligent transportation systems (ITSs). However, vehicle 
positioning remains a crucial supporting technology for intelligent 
traffic information acquisition, holding vital practical significance [1].

Traffic information collection is a pivotal aspect of urban ITSs 
and the broader traffic domain. Effective traffic management and 
control heavily depend on acquiring precise and up-to-the-minute 
traffic information [2]-[4]. By leveraging contemporary digital 
technologies, such as the Internet of Things (IoT) and wireless sensor 
networks (WSNs), enables the automated acquisition, amalgamation, 
and transmission of critical data like vehicle positioning, traffic flow, 
and road occupancy. This technological integration facilitates the 
provision of more accurate and timely data, empowering urban traffic 
management and control endeavors. Furthermore, this technological 
approach plays a pivotal role in addressing persistent challenges 
related to traffic congestion and vehicular accidents. A WSN is a novel 
form of an intelligent application network capable of autonomously 
collecting, fusing, and transmitting data. It assumes a significant role 
in urban ITS, effectively addressing urban traffic problems [5]-[7]. 
The communication tree tracking method solves the target tracking 
challenge in the sensor network, ensuring efficient target tracking and 
minimal node communication costs.
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WSNs play a crucial role in acquiring traffic information, 
encompassing data on vehicle speed, traffic flow, road occupancy rates, 
and intersection traffic conditions [8]. Overcoming the limitations of 
traditional monitoring sensors, which hinder system scalability and 
network efficiency, WSNs offer enhanced information acquisition 
accuracy. The integration of multi-source traffic information 
further augments the efficiency of monitoring and management 
tasks, including parking management, electronic toll collection, 
energy conservation, and emission reduction. In certain scenarios, 
sensor nodes deployed randomly within an area can obtain location 
information through positioning technology [9], [10]. While the Global 
Positioning System (GPS) is the prevailing positioning technology, GPS 
receivers are unsuitable for sensor networks due to their high energy 
consumption and cost. Locating vehicles via WSN presents several 
advantages. Firstly, it ensures high tracking accuracy, as WSN nodes 
are widely distributed, providing a clear understanding of changes 
in the target’s geographic location. Secondly, the tracking is reliable, 
allowing system configurations to be fine-tuned for detailed, accurate, 
and reliable motion information during target tracking. Thirdly, it 
offers efficient tracking, as existing WSNs can simultaneously monitor 
and track various sensors within a specified range. Lastly, it is easy 
to implement, as sensor nodes are cost-effective, compact, and easily 
portable, facilitating concealment [11]-[13]. Therefore, WSN target 
tracking offers significant concealment and feasibility.

This study attempts to deploy WSNs across various stages of 
information collection, transmission, processing, and feedback within 
ITS to modernize and elevate the current traffic electronic information 
signal collection. Initially, an analysis is conducted on the characteristics 
and requisites of intelligent transportation in the IoT environment. 
Building upon this analysis, a high-speed signal acquisition control 
core, based on a Field Programmable Gate Array (FPGA), is designed 
to enable wireless monitoring of signal acquisition. Subsequently, a 
real-time signal acquisition system is formulated to effectively gather 
and process signals, comprising communication, acquisition, storage, 
adaptive measurement, and signal analysis modules. Additionally, 
the geomagnetic acquisition module’s key technology is thoroughly 
examined and designed. Anticipated outcomes include enhancing 
traffic electronic information signal collection effectiveness and 
elevating traffic information service quality within ITSs.

This study aims to design and implement a traffic electronic 
information signal acquisition system utilizing IoT and AI 
technologies. The primary aim is to address existing challenges related 
to urban traffic congestion and traffic safety. Specifically, the study 
seeks to achieve wireless monitoring and acquisition of traffic signals 
through the innovative application of geomagnetic signal acquisition 
and processing techniques. This initiative targets the enhancement 
of signal acquisition speed, precision, and efficiency to provide 
robust information support for traffic control, management, and safe 
operations. The overarching goal is to optimize traffic flow, alleviate 
congestion, elevate traffic safety, and offer pioneering resolutions 
for urban traffic issues. The devised traffic electronic information 
signal acquisition system is constructed based on IoT technology and 
artificial intelligence. The distinctiveness of this approach emerges 
from the fusion of IoT and AI to facilitate intelligent data collection 
and processing for accurate traffic signal monitoring, transcending the 
limitations of conventional methodologies. Furthermore, the system 
employs geomagnetic signal acquisition and conversion to acquire 
precise vehicle presence or absence information, thereby enabling 
high-precision vehicle monitoring and furnishing dependable data 
for traffic control and management. The system caters to a wide 
spectrum of traffic information, thereby furnishing robust information 
backing for traffic control and safety operations. Consequently, it 
contributes to optimizing traffic flow, mitigating traffic congestion, 

and enhancing overall traffic safety. The integration and application 
of IoT and AI technologies empower the proposed traffic electronic 
information signal acquisition system to accommodate diverse 
scenarios and environments, showcasing commendable applicability 
and adaptability.

The structure of this study unfolds in the following sections: Section I, 
designated as the introduction, provides an overview of prevalent issues 
and challenges in urban transportation. It emphasizes the limitations 
of conventional approaches, underscores the significance of employing 
IoT and AI technologies to address transportation predicaments, and 
outlines the research objectives. Section II, comprising the literature 
review, conducts an examination of pertinent research domains. 
It delves into the application of IoT technology within intelligent 
transportation and scrutinizes the constraints inherent in existing 
methodologies. Section III, encompassing the research methodology, 
expounds upon the pivotal methodologies and technologies leveraged 
to tackle urban transportation issues. This section covers topics such 
as IoT-supported intelligent transportation, FPGA-based high-speed 
signal acquisition, the underpinning principles of geomagnetic signal 
acquisition, and the design of an adaptive, real-time signal acquisition 
system for traffic. It culminates in the formulation and design of a real-
time signal acquisition system. Section IV, titled “Experimental Design 
and Performance Evaluation,” delineates the orchestrated experimental 
procedures, including data acquisition and performance assessment. 
It further elucidates the test outcomes and the system’s performance 
prowess. Section V, denominated as “Conclusion,” provides a synthesis 
of the research content and methodologies encapsulated in the thesis. 
This segment culminates in overarching conclusions, and avenues for 
future research are envisaged.

II. Literature Review

A. Research Progress and Applications of AI
With the rapid evolution of AI technology, its integration into 

intelligent transportation has grown steadily. Akhtar and Moridpour 
(2021) provided a comprehensive synthesis of existing research on 
traffic congestion anticipation, incorporating various AI approaches 
with a prominent focus on diverse machine learning models. The 
authors meticulously categorized these models, offering a succinct 
overview of their merits and drawbacks [14]. Abduljabbar et al. (2019) 
elucidated the swift progress of AI within the transportation domain, 
highlighting its versatile applications in overcoming transportation 
challenges. The study specifically underscored AI’s potential in 
data analysis, predictive modeling, and optimized decision-making, 
thereby enhancing transportation system efficiency, reliability, 
and sustainability [15]. Wu et al. (2022) explored AI’s role in the 
context of smart city construction, particularly its current standing 
in intelligent transportation infrastructure. The research delved into 
scrutinizing diverse dimensions such as spatial typology, functional 
classifications, and facility utilization. The findings illuminated 
the substantial advantages of AI technology in classifying and 
administrating transportation infrastructure [16]. In summary, 
numerous AI methodologies have found widespread application in 
fields encompassing traffic flow projection, signal optimization, and 
accident forewarning. These methodologies possess the capability to 
refine and elevate transportation systems. Their potency lies in their 
adeptness at scrutinizing extensive traffic datasets, distilling pertinent 
features, and executing astute decisions.

B. Research Progress and Applications of IoT
Recently, the rise of IoT technology has opened new avenues 

for advancing ITSs. Wang and Ma (2022) conducted a focused 
investigation on the recognition and classification of stationary 
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vehicles and seat belts within intelligent IoT-based traffic management 
systems. An innovative identification algorithm was introduced 
for the surveillance of stationary vehicles, leading to a substantial 
enhancement in detection accuracy compared to conventional 
background differential algorithms. Moreover, a proficient driver 
localization algorithm was formulated for driver seatbelt detection, 
uniting a target detection algorithm with a streamlined network 
structure, effectively elevating localization precision [17]. Ushakov 
et al. (2022) gathered insights from multiple European transportation 
agencies concerning public transportation. Through a comprehensive 
case study, they probed the far-reaching effects of IoT on the global 
transportation system. The study illuminated IoT’s expansive 
potential within transportation, foreseen to amplify both system 
efficiency and safety [18]. Muthuramalingam et al. (2019) underscored 
the pivotal role of IoT solutions within the worldwide ITS, particularly 
in the domain of intelligent transportation marked by vehicle-to-
vehicle communication. The authors delineated how IoT-based ITS 
can automate transport across railways, roadways, airways, and 
oceans, augmenting the logistics of cargo transportation, monitoring, 
and delivery, consequently enhancing customer experiences [19]. By 
interconnecting sensors, devices, and networks, real-time aggregation, 
transmission, and analysis of transportation data can be effectively 
achieved. IoT technology seamlessly amalgamates various facets of 
the transportation system, fostering comprehensive data utilization 
and augmenting traffic management intelligence.

C. Research Review
The aforementioned studies exemplify the utilization of AI and IoT 

technologies in intelligent transportation, approaching the subject 
from diverse vantage points. However, a dearth of research specifically 
focuses on the traffic signal acquisition system in isolation. Drawing 
from the principles of fuzzy control, this study introduces a fresh 
methodology to refine the traffic information acquisition system, 
aiming to enhance both the efficiency and the intelligence of traffic 
management.

III. Research Methodology

A. Intelligent Transportation Supported by IoT Technology
Entities need to communicate with each other, giving rise to 

the necessity for machine-to-machine (M2M) communication. 
Utilizing wireless short-range communication technologies is a 
viable approach, such as Wi-Fi, Bluetooth, and ZigBee, or large-scale 
mobile communication technologies, including World Interoperability 
for Microwave Access, Long Range, Sigfox, CAT M1, NB-IoT, 
Global System for Mobile Communications, General Packet Radio 
Service, the 3rd Generation Telecommunication, the 4th Generation 
Telecommunication, Long Term Evolution, and the 5th Generation 
Telecommunication  [20]. Maintaining the affordability of IoT 
devices is paramount, especially considering their extensive usage 
across various daily life applications. Furthermore, IoT devices must 
possess the capability to fulfill basic tasks such as data collection, 
M2M communication, and even pre-processing data according to 
application requirements.

Intelligent traffic research represents a promising avenue for 
addressing urban traffic challenges. Advanced urban rail transit 
systems play a crucial role in providing residents with access to 
both dynamic traffic data and static information [21], [22]. Public 
transportation offers significant advantages, including substantial 
passenger capacity, enhanced transportation efficiency, minimal 
energy consumption, and low transportation costs. Consequently, 
urban informatization becomes a vital focus of research. IoT serves 
as a robust platform for intelligent transportation, facilitating the 

exchange of vehicle information through the network without human 
intervention. This enables intelligent transmission and sharing among 
vehicles. Navigation and route optimization stand out as pivotal 
aspects of intelligent transportation. Applications can leverage data 
from a user’s mobile device or a roadside unit at a designated location 
to estimate traffic congestion and propose optimal route options. This 
approach minimizes travel time, thereby mitigating vehicle emissions 
and reducing energy consumption. Furthermore, a proposal is made 
for the introduction of smart streetlights equipped to detect traffic 
conditions and adjust illumination accordingly, aiming to contribute 
to energy conservation [23]-[25].

Fig. 1 shows the architecture of the IoT-based ITS.
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Fig. 1. IoT-based ITS architecture.

Intelligent transportation WSN is a purpose-driven wireless 
self-organizing network system, typically composed of multiple 
data convergence points and an array of sensor nodes dispersed 
throughout the ambient surveillance region. These nodes incorporate 
radio transponders, sensors, embedded processors, and more, enabling 
them to acquire, process, and transmit traffic data [26]. Network 
simulation software is employed to make these models functional, 
allowing a vehicular ad hoc network to utilize vehicle motion models 
[27]. Different scenarios are generated prior to the simulation, and the 
emulation program analyzes these scenarios based on a predefined 
path layout. Special applications in vehicular communication impose 
essential interaction requirements, facilitating communication 
between the two domains. Fig. 2 illustrates an isolated method of 
interaction between the transportation emulation program and the 
network simulation software.

Tra�ic So�ware
Simulation  

Vehicle Track
Generator 

Network Simulation
So�ware 

Communication
Generator

Fig. 2. An isolated method of interaction between traffic simulation software 
and network simulation software.

The two simulators are seamlessly integrated into a unified system 
to facilitate comprehensive interaction between the network and 
traffic simulation software. A straightforward collaboration between 
the web and mobile domains compensates for the absence of a protocol. 
The embedded approach provides the advantage of a streamlined and 
efficient interaction between the network and mobility models. This 
method utilizes validated vehicle motion models and strictly adheres 
to standard protocols.
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B. FPGA-Based High-Speed Signal Acquisition
While high-resolution imagery is not obligatory for traffic sign 

detection, it does enhance the detection range in the Advanced Driver 
Assistance System (ADAS). Contemporary high-end processors boast 
sufficient computing power for executing these tasks, albeit at the cost 
of significant energy consumption [28]-[30]. Nevertheless, low power 
consumption and reliability are paramount for embedded systems like 
ADAS. In this context, FPGAs emerge as a potential solution to this 
challenge, as they can dynamically adjust their hardware to meet the 
current requirements of the application.

Information collection and manipulation systems have broad 
applications in metering and regulating systems. The information 
collection process involves measuring diverse electrical phenomena, 
including sound, pressure, temperature, current, or voltage. Various 
types of sensors are employed to measure heterogeneous parameters, 
such as velocity, viscosity, pressure, temperature, friction level, and 
vibration [31]. Chip-integrated information collection systems 
efficiently consolidate extensive functionalities onto a single compact 
chip, resulting in cost reduction, size diminution, and enhanced 
performance. Utilizing an FPGA network to govern the design module 
enables multi-channel data processing, which minimizes hardware 
requirements and enhances reconfigurability.

The NI LabVIEW FPGA Module extends the capabilities of the 
LabVIEW graphical development platform, making it particularly 
suitable for FPGA programming due to its explicit representation 
of parallelism and data streams. The modules responsible for 
multi-channel data collection and processing are executed within a 
dedicated NI cRIO device featuring an embedded FPGA. The design 
and implementation of the FPGA are carried out using the Project 
Explorer window. It involves creating FPGA target.vi and Host.vi, as 
well as configuring the relevant hardware before initiating the project 
implementation. The Target.vi serves as the FPGA target, accessing 
the desired number of inputs and selecting the input ports of the block. 
It determines the data type, memory size, and procedures for data 
reading and writing. Once compiled, it generates the bit file, which 
can be loaded into Host.vi. Fig. 3 illustrates the six-step FPGA design 
process, culminating in the transference of generated files to the FPGA 
for test verification in the final stage of the design.
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Fig. 3. FPGA design process.

C. Realization Principle of Geomagnetic Signal Acquisition
Geomagnetic detection represents an innovative vehicle detection 

technology involving the sensing of the magnetic field within the 
geomagnetic field using an anisotropic magneto-resistive sensor to 

ascertain the vehicle’s condition. Currently, geomagnetic vehicle 
detectors predominantly rely on wireless transmission, offering 
advantages such as high detection accuracy, stability, reliability, and 
ease of installation and maintenance, making them highly sought after 
in the market. Integrating WSN and geomagnetic sensors, the traffic 
flow acquisition system collects vehicle induction data through these 
sensors. Users can access real-time road traffic flow information in the 
background through centralized management. Geomagnetic sensor 
detection technology is widely recognized as one of the most effective 
traffic data collection methods.

The presence of ferromagnetic substances within the vehicle 
influences the geomagnetic signal in the surrounding area, causing a 
distortion in the earth’s magnetic field lines [32], [33]. When a vehicle 
passes near the sensor of the vehicle detector, the sensor sensitively 
perceives the signal change and extracts relevant information 
about the detected target through signal analysis. The WSN-based 
geomagnetic signal acquisition system offers ease in construction and 
maintenance, enabling real-time monitoring of traffic flow conditions 
[34]-[36]. Within geomagnetic signal acquisition, the anisotropic 
magnetoresistance effect demonstrates directionality. Equation (1) 
describes the relationship between the magnitude of the resistance 
value of a metal with anomalous reluctance effects between the bias 
current and the direction of the magnetic field.

 (1)

In Equation (1), θ stands for the angle between the magnetic field 
and the current direction; R1 and R2 represent the resistance values of 
the metal when the magnetic field direction and the current direction 
are parallel and perpendicular to each other, respectively. Fig. 4 
illustrates the principle of the magnetoresistance effect.
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Fig 4. Principle of the magnetoresistance effect.

The geomagnetic signal collector is employed to capture 
geomagnetic signals and transform them into switch signals, 
indicating the presence or absence of a vehicle. These signals are then 
transmitted to the geomagnetic signal processor. Vehicle induction 
data is conveyed through the multi-hop transmission mechanism 
of the WSN, and the geomagnetic sensor is utilized for collecting 
the vehicle induction data. Real-time road traffic flow information 
is accessible to users through centralized background management. 
Compared with traditional traffic flow collection systems, the WSN-
based traffic flow monitoring system is advantageous for its ease of 
construction and maintenance, facilitating real-time monitoring of 
traffic flow conditions. Fig. 5 illustrates the network topology of the 
geomagnetic data acquisition system.

The geomagnetic data acquisition system is built around an 
optimized single-chip microcomputer (SCM), serving as the hardware 
core. Discrete components are replaced with integrated circuit chips 
to enhance the operational reliability of the system. The core is the 
SCM P89C668, and its peripheral devices are configured to form a 
comprehensive hardware structure. This structure includes a liquid 
crystal display, keyboard, communication interface, non-volatile data 
memory, 16-bit A/D conversion, clock chip, GPS receiving module, 
and wireless modem. The communication interface employs the 
MAX202 chip for TTL and RS232 level conversion. On the transmitter 
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side, the interface connects to the data acquisition unit, collects 
data, processes it, and transmits it to a modem via a microcontroller. 
At the receiving end, the port receives remote data through the 
modem. Subsequently, the SCM transmits the processed data to the 
computer. While the actual local geomagnetic field may vary with 
the environment, positional differences and surrounding structures 
have minimal impact on the magnetic field length in the short range 
and can be disregarded. Assessing the geomagnetic field distribution 
is necessary for determining variations in magnetic field length over 
long distances. Disparities between the calibration environment 
and operating environments have the most significant effect on the 
true local geomagnetic field. Over the long term, the geomagnetic 
vehicle detector industry is expected to continue improving, with 
signaling and parking management serving as key drivers for future 
development.
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Fig 5. Network topology of the geomagnetic data acquisition system.

D. Adaptive Measurement of the Traffic Real-Time Signal 
Acquisition System

Transportation control plays a pivotal role as a technological tool in 
alleviating traffic congestion, managing traffic volumes, and reducing 
emissions. Its advancement is closely intertwined with progress in 
system science, information technology, and computer technology. 
The self-adaptive control system stands out by adjusting signal 
timing parameters in real-time, aligning with the manager’s control 
objectives and the characteristics of intersection transportation flow. 
In comparison to timing and driving control methods, this system more 
effectively utilizes the entire road network’s throughput, enhancing 
transportation efficiency. Current transportation management 
systems, employing inductive loop detectors and other sensing devices, 
are constrained in the extent of transportation information they collect. 
However, with the ongoing development of wireless communication 
technologies and vehicle-to-vehicle/vehicle-to-infrastructure systems 
(referred to as vehicle-to-everything), the optimization of urban 
transportation networks through the collaboration of traffic signal 
control and driving behavior regulation has become feasible [37]. 
This study introduces an optimization method that adjusts the vertical 
position of the oscilloscope over time using classic fuzzy control 
theory based on the measured traffic signal amplitude. This approach 
facilitates adaptive signal measurement.

The fundamental concept behind fuzzy control is to employ a 
computer to replicate human control experiences, often conveyed 
through language using fuzzy control rules [38], [39]. The primary 
factor contributing to the substantial success of the fuzzy controller 
(FC) is its rule-based nature. It directly applies language-based 
control rules and does not necessitate the development of a precise 
mathematical model of the controlled object during the design 
phase. Consequently, its control mechanism and strategy are easily 
comprehensible and accessible.

Firstly, the fuzzy set is defined. Given a domain of discourse, the 
mapping from U to the unit interval [0, 1] can be referred to as a fuzzy 
set on U, which can be expressed as in Equation (2).

 (2)

The membership function of each fuzzy set A on U is μA (u𝑖). A can 
be expressed as Equation (3).

 (3)

Equation (4) indicates the arbitrary fuzzy set of U.

 (4)

Several membership functions commonly used in FCs are described 
as the followings.

(1) Trapezoidal membership function in Equation (5) and (6):

 (5)

 (6)

(2) Triangular membership function in Equation (7) and (8):

 (7)

 (8)

(3) Gaussian membership function in Equation (9):

 (9)

where c refers to the midpoint position of the Gaussian function, 
and the width of the Gaussian function depends on the value of σ.

This study leverages the concepts and techniques of fuzzy control 
to optimize the vertical positioning of the oscilloscope, enabling 
adaptive measurement of traffic signals to suit varying signal 
amplitudes. Initially, a set of fuzzy sets is defined, encompassing 
categories like “small,” “medium,” and “large” to signify distinct signal 
amplitude ranges. Subsequently, a corresponding collection of fuzzy 
rules is devised for each fuzzy set, delineating how adjustments to the 
oscilloscope’s vertical position should be enacted in response to signal 
amplitudes within specific ranges. These rules can be formulated 
based on domain experts’ insights, accrued knowledge, and signal 
acquisition requisites. The activation level of each fuzzy set is then 
ascertained through a fuzzy inference process, which hinges on real 
signal amplitude values. This inference entails employing fuzzy 
rules that map actual signal amplitudes to the activation degree of 
the corresponding fuzzy set. Lastly, the fuzzy output derived from 
the fuzzy reasoning process is transformed into a definitive control 
operation, specifically the manipulation of the oscilloscope’s vertical 
position. This step may involve employing defuzzification techniques 
inherent to fuzzy control, such as using the average or maximum value 
of the fuzzy output as the ultimate control operation.

Based on the above analysis, this study formulates an effective 
digital model. The input to the FC consists of the first and second 
significant digits of the signal amplitude. The effective digit denoted 
as f(𝑥) of the signal amplitude can be expressed as Equation (10).

 (10)



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº7

- 102 -

Table I lists the effective figures obtained through function 
calculation.

TABLE I. Relationship Between Input Effective Figures and Signal 
Amplitude

Serial number Signal amplitude (v) Effective number
1 35.4 3.5
2 1.64 16
3 0.893 9.0
4 0.430 4.3
5 0.133 1 3
6 0.068 6.8

Fig. 6 reveals the relationship between the digital gear and the 
significant digits of the signal amplitude.

1
2

2

5

5

10

10 20

Vertical Digital Gear

Significant Figure of 
Signal Amplitude

Fig 6. Relationship between the digital gear and the effective figure of the 
signal amplitude.

This study employs a set of representative signal parameter 
test data to assess and validate the program’s output results. The 
computed results are displayed in Table 2, clearly demonstrating that 
the program has successfully achieved its intended functionality. This 
outcome confirms the feasibility and effectiveness of the fuzzy control 
algorithm.

TABLE II. Relationship Between Signal Amplitude and Vertical Scale

Signal 
amplitude (V)

Digital 
gear

Range gear 
(V)

Vertical gear 
(V/div)

Range (V)

0.010 5 0.001 0.005 0.02
0.016 5 0.001 0.005 0.02
0.4 1 0.1 0.1 0.4
1.63 5 0.1 0.5 2
1.92 10 0.1 1 4
2.5 1 1 1 4
7.22 2 1 2 8
22.5 1 10 10 40

IV. Experimental Design and Performance Evaluation

A. Experimental Materials
The principal aim of this experiment is to empirically validate the 

performance and efficacy of the proposed system. A comprehensive 
set of experiments has been carefully designed to scrutinize the 
system’s performance across diverse scenarios, with a particular focus 
on temporal aspects related to acquisition tasks and storage velocity. 
Throughout the experimental process, the time required for signal 
transmission and code execution has been emulated to reflect real-
world conditions. The system’s storage speed has been rigorously 
assessed using a finely calibrated oscilloscope set to a resolution of 1ms/
div to minimize potential testing inaccuracies. A meticulous approach 

has been adopted, synthesizing the final performance evaluation 
results by averaging outcomes from multiple experimental trials.

The experimental data used here consists of authentic signal 
data, including information about acquisition task duration, storage 
velocity, and the system’s relative error. This empirical data serves a 
dual purpose: conducting a comprehensive assessment of the system’s 
performance across varied scenarios and substantiating the system’s 
dependability and precision.

B. Experimental Environment
The experiment is conducted within the premises of a high-

speed railroad technical test station, replicating a real-world testing 
environment. In this setting, the test station is tasked with capturing 
equipment signals while potentially facing instances of high-amplitude 
transient pulse interference. These challenges serve as rigorous tests 
for evaluating the system’s performance robustness and stability.

C. Parameters Setting
During the experimental phase, the oscilloscope’s sampling rate 

is set at 1GSa/s to ensure an ample number of sampling points for 
proficient signal acquisition. In alignment with distinct testing 
scenarios, the system’s adaptive parameters are systematically tuned 
through diffusion control, stepping control, and the dichotomous search 
algorithm, thus achieving the objective of adaptive measurement. 
Simultaneously, an assessment of the system’s maximum relative 
errors is conducted across varying vertical resolutions using multiple 
sets of experimental data, facilitating an evaluation of the system’s 
measurement accuracy and stability.

D. Performance Evaluation

1. System Verification and Index Analysis
The time required for the test system to complete a data collection 

task includes the time consumed during signal transmission to 
the PC and the time spent executing specific code instructions 
(adaptive adjustment). The system’s storage speed is assessed at the 
oscilloscope’s 1ms/div setting to prevent test inaccuracies, and the 
average of multiple test results is considered the final outcome. The 
test outcomes are depicted in Fig. 7. It is observable that the system’s 
individual acquisition time increases as the oscilloscope’s sampling 
points increase. The system’s peak storage speed can reach 200KB/s 
when the number of sampling points reaches 1M. In the research 
conducted by Jin and Ma (2019) [40], a Constrained Markov Decision 
Process model is utilized to depict agent decisions, thereby optimizing 
multiple strategic objectives. The outcomes of their study closely align 
with the results presented in this study.
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2. Analysis of System Errors
Currently, high-speed railway technology test stations require 

digital recorders to capture equipment signals. Typically, the test 
subject installs the equipment at a designated test location, and 
personnel departs the area after configuring various parameters. 
The test equipment must achieve long-term continuous acquisition 
and automated signal storage. Given the presence of high-amplitude 
transient pulse interferences on railways, measurement parameters 
must be dynamically adjusted based on emergency conditions to 
ensure measurement accuracy and adaptive measurement of burst 
signals. It is recognized that digital oscilloscopes can achieve sampling 
rates of up to 1GSa/s. In this context, sufficient sampling points can be 
captured; hence, the test system’s sampling rate is set to 1GSa/s. For 
signals being tested within the oscilloscope’s current testing apparatus, 
adaptive parameters of the testing device are adjusted through diffusion 
control. Conversely, when the signal to be tested is not within the 
current testing device, the adaptive parameters are established using 
step control and a binary search algorithm. The maximum relative 
error of the system across multiple test configurations is computed 
through numerous sets of experiments. Table 3 presents a summary 
of the specific outcomes. After several tests, it is apparent that the 
maximum relative error of the test outcomes remains below ± 2.7%. 
This system attains more precise test outcomes in comparison to 
existing testing equipment, rendering it better suited for application in 
the collection of traffic signals. Chen and Zhang (2022) [41] developed 
a traffic flow prediction model utilizing the Deep Belief Network 
(DBN) algorithm. By collecting and pre-processing historical traffic 
flow data and incorporating multiple Restricted Boltzmann Machines 
in the DBN, they established a generative model for training. This 
procedure adds further validation to the reliability of the results 
presented in this study.

TABLE III. Maximum Relative Error at Different Vertical Gears

Vertical 
gear (V/

div)

Minimum 
voltage 

increment 
(mV)

Current 
range (V)

Measuring range 
(V)

Maximum 
relative error 

(±)

0.002 0.08 0.008 0.0035~0.0075 2.2%
0.005 0.2 0.02 0.0075~0.018 2.6%
0.01 0.4 0.04 0.018~0.036 2.2%
0.02 0.8 0.08 0.036~0.075 2.7%
0.05 2 0.2 0.075~0.176 2.3%
0.1 4 0.4 0.176~0.362 2.2%
0.2 8 0.8 0.362~0.745 2.6%
0.5 20 2 0.745~1.73 2.3%
1 40 4 1.73~3.60 2.2%
2 80 8 3.60~7.45 2.2%
5 200 20 7.45~17.3 2.7%

V. Discussion

This study successfully designed and implemented a traffic electronic 
information signal collection system based on IoT technology and 
artificial intelligence. By leveraging FPGA technology, the hardware 
circuitry for the high-speed signal acquisition control core was 
developed, enabling wireless monitoring of signal collection. This 
innovative design achieves wireless monitoring of signal collection and 
imparts efficient data processing capabilities to the system, ensuring 
stable operation even in complex traffic environments. As detailed in 
this study, the time signal acquisition system encompasses multiple 
modules: communication, acquisition, storage, adaptive measurement, 
and signal analysis. The magnetic field acquisition module stands out 
for its effective collection of magnetic field signals and their conversion 

into switch signals, indicating the presence or absence of vehicles. This 
design enhances not only the practicality of the system but also its 
adaptability to dynamically changing traffic conditions.

The experimental results demonstrate the excellent performance 
of the system designed in this study in data storage and processing, 
achieving a significant peak storage speed of 200KB/s. Considering 
the substantial volume of data the system needs to handle, this 
achievement undoubtedly showcases the system’s outstanding 
capabilities. In a series of tests, the maximum relative error of the 
obtained results ranged from 2.2% to 2.7%, further emphasizing the 
consistency and reliability of the measurements. Compared to existing 
testing devices, the system designed in this study exhibits higher 
accuracy in test results, rendering it more suitable for collecting traffic 
signals. It is noteworthy that the designed system can collect and 
process traffic information in real-time and be able to self-adjust and 
optimize based on changes in traffic conditions. This feature grants 
the designed system strong adaptability and flexibility, allowing it to 
maximize utility in various traffic environments.

In conclusion, the incorporation of AI technology, specifically 
fuzzy control, into traffic signal acquisition systems has proven to be 
a valuable strategy for enhancing system precision. A comprehensive 
literature review conducted by Ranyal et al. (2022) on road condition 
monitoring, spanning from 2017 to 2022, explored various approaches, 
innovative contributions, and limitations in the field. The authors 
underscored the importance of smart sensors and data acquisition 
platforms while addressing challenges in AI technology development. 
Their analysis provided valuable insights outlined directions and 
perspectives for future research in the realm of road condition 
monitoring [42]. In summary, a growing body of evidence suggests 
that the integration of AI into intelligent transportation and smart 
cities holds the potential to significantly optimize road conditions, 
thereby advancing the overall transportation system.

The algorithm proposed in this study facilitates the development of 
the hardware circuit for the high-speed signal acquisition control core, 
employing FPGA technology. This innovative design enables the system 
to achieve wireless monitoring of signal acquisition and demonstrates 
efficient data processing capabilities. Distinguished from other state-
of-the-art algorithms, the proposed algorithm greatly emphasizes 
hardware-level optimization and innovation, thereby enhancing the 
system’s overall performance and stability. The proposed algorithm 
incorporates a geomagnetic collection module that effectively gathers 
geomagnetic signals, transforming them into switch signals indicating 
the presence or absence of vehicles. This design allows the system 
to dynamically adapt to changing traffic environments, thereby 
increasing its practicality. In contrast to other advanced algorithms 
that typically rely on traditional sensors or cameras for data collection, 
the algorithm presented here is characterized by its innovation and 
adaptability. The study successfully achieves the collection and 
sharing of various traffic information, providing robust information 
support for traffic control and safe operations. However, the system 
still possesses certain limitations, such as potential performance 
bottlenecks when dealing with large-scale complex data. Future 
research directions will focus on optimizing system performance and 
enhancing data processing capabilities to achieve more efficient and 
accurate traffic information collection and processing.

VI. Conclusion

1. Research Contribution
Deploying various intelligent technologies and equipment 

to advance the digitization, interconnection, and intelligence of 
transportation defines intelligent transportation. Network connectivity 
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emerges as a critical application integral to the evolution of intelligent 
transportation, with the IoT playing a pivotal role in seamlessly 
connecting all components of transportation. This technology has the 
potential to revolutionize the traffic industry by optimizing the efficient 
utilization and management of traffic information, reinforcing traffic 
oversight, and elevating traffic services. It encompasses information 
collection, policy control, output execution, data transmission, 
and communication between subsystems. Experimental results 
demonstrate that, with a sampling point count of 1M, the system 
achieves a maximum storage speed of up to 200KB/s. Throughout 
numerous tests, the peak relative error in test outcomes ranges from 
2.7% to a mere 2.2%. Notably, the test results from this system showcase 
enhanced accuracy compared to existing testing equipment, making 
it more suitable for traffic signal acquisition applications. This study 
affirms that the real-time signal acquisition system within the IoT 
environment can promptly gather, analyze, and process collected 
signals. An intelligent traffic signal optimization control system is 
established through the integration of the intelligent collection system 
and the comprehensive analysis of big data.

2. Future Works and Research Limitations
This study introduces the design and experimentation of a traffic 

electronic information signal acquisition system based on IoT and AI 
technologies. However, several limitations should be acknowledged. 
The experiments primarily focus on validating the performance of the 
signal acquisition system, particularly regarding storage speed and 
relative error. Nevertheless, the experimental scenarios and datasets are 
relatively limited, potentially not capturing the entirety of real-world 
traffic situations and intricacies. The study predominantly emphasizes 
the design and performance evaluation of signal acquisition systems 
without comprehensive integration within the broader context of ITSs. 
Actual ITS scenarios often involve additional factors such as traffic flow 
management and incident prediction. Future research endeavors could 
explore the integration of this traffic electronic information signal 
acquisition system with other ITS components, such as traffic flow 
management and vehicle behavior prediction. This integration could 
lead to more comprehensive traffic management and optimization, 
addressing a broader spectrum of challenges in the field. Although this 
study successfully attains a noteworthy peak storage speed of 200KB/s, 
the system can face performance bottlenecks when confronted with 
extensive and intricate datasets. The design and optimization strategies 
are primarily tailored to specific traffic scenarios, necessitating further 
validation of the system’s adaptability to diverse contexts. Subsequent 
research endeavors should prioritize augmenting the algorithm’s 
generalization capabilities, thereby enabling it to adeptly accommodate 
a broader spectrum of traffic scenarios.
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