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Abstract

Game theory has been studied extensively in recent centuries as a set of formal mathematical strategies for 
optimal decision making. This discipline improved its efficiency with the arrival, in the 20th century, of digital 
computer science. However, the computational limitations related to exponential time type problems in digital 
processors, triggered the search for more efficient alternatives. One of these choices is quantum computing. 
Certainly, quantum processors seem to be able to solve some of these complex problems, at least in theory. For 
this reason, in recent times, many research works have emerged related to the field of quantum game theory. In 
this paper we review the main studies about the subject, including operational requirements and implementation 
details. In addition, we describe various quantum games, their design strategy, and the used supporting tools. We 
also present the still open debate linked to the interpretation of the transformations of classical algorithms in 
fundamental game theory to their quantum version, with special attention to the Nash equilibrium.
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I. Introduction

The application areas of quantum computing cover disciplines 
such as chemistry, physics, artificial intelligence and data mining, 

among others. Currently, the most relevant studies are related to the 
field of cybersecurity, with the aim of verifying if classic cryptographic 
systems are robust enough to face quantum computer attacks. 
However, other applications in economics, finance, geopolitics, 
psychology, and even human behaviour, are drawing the attention 
of the research community. In these disciplines, it is common to use 
classic algorithms for decision-making and payment strategies, which 
are intrinsically associated with game theory. 

Game theory, or interactive decision theory, is considered the 
formal technique for decision making. Although previously, some 
authors began their research around its formal outline, it was not 
until 1944 when Von Neumann and Morgenstern [1] proposed a 
mathematical structure based on set theory, prepositional logic, 
matrix algebra, linear geometry and group theory. The incipient study 
on the transformation of classical to quantum algorithms, and their 
potential entanglement in multiple strategies, has also been involved 
in the advancement of quantum game theory. However, the difficulty 
of these transformations sometimes resides in the design restrictions 
of quantum circuits, defined by DiVincenzo in his article [2]. These 
restrictions not only force the initialization of the game scenarios in 
a different way compared to their classic version, but they also affect 
the way the game is played as time evolves. During the game, there are 
player-related movements that are difficult to reproduce. In the real 

world, any given environment or scenario is continuously changing as 
the pursued strategies evolve. 

In this work, we review some of the main studies related to quantum 
game theory algorithms and the different interpretations in its 
transformation from its classical orchestration. In addition, we address 
the main techniques and procedural background used in this area 
of knowledge. In this context, the present work complements other 
review efforts on the subject, such as that carried out by Guo et al. [3].

A. The Game Theory and Computer Science  
Game theory, or the discipline associated to the search for optimal 

decision strategies to maximize profits, has shaped other areas of 
knowledge, mainly Mathematics and military strategy. Originally, 
games were adapted to the latter, since choosing an appropriate 
strategy provides an advantage over other opponents. The origins 
of games such as chess in the 18th century in Prussia, served as a 
means of teaching future army officers concepts assimilable to 
military tactics [4]. Throughout the centuries, we find examples of 
these tools such as the Scytale used during the war between Athens 
and Sparta 431 BC, the Caesar cipher used 100 BC, or Enigma used in 
WWII by the German army. However, the best example of a military 
communication instrument is, perhaps, Arpanet, created by the United 
States Department of Defense in the middle of the Cold War with the 
Soviet Union, which forged the foundations of the current Internet. 
That is why, through the centuries, we observe that the application of 
game theory has been supported with the cutting-edge technological 
tools and knowhow of each era.
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In the 20th century, the first programmable processors were also 
applied to game theory given the increase in calculation speed. For 
instance, C. Shannon proposed chess as a testing ground for the 
development of artificial intelligence in 1950  [5]. In 1996, G. Kasparov, 
the world’s best chess player at that time, was defeated by the Deep 
Blue supercomputer. This piece of technology, created by IBM, was 
capable of forecasting 100 million plays per second.

Nevertheless, it is widely known that classical Turing Machines 
(TM) suffer from computational limitations [6],[7]. Currently, TM is 
accepted as the correct formalization of the algorithm concept. An 
algorithm is a sequence of executable logical steps that allow solving 
a problem. It must also meet two properties: have a finite description 
and be made up of discrete operations that can be mechanically 
executed [8]. Briefly, we will define TM as a theoretical concept with a 
series of deterministic mechanical execution steps on an infinite tape 
on both sides with read/write head. These execution steps are defined 
and collect all the computational finite automaton processing of the 
input string. The TM continues to perform execution steps until it 
reads a symbol for which no action is defined. Whenever a TM accepts 
an input string the machine stops. However, a string is not accepted 
if it is stopped in a non-accepting state or by infinite looping (it never 
stops). In the latter case we cannot know if TM rejects the chain. A TM 
computes f, where f is a decision problem (not a function problem), in 
time T(n), where n ≥ 0 finite if its computation in each input string 𝑥  
needs at most T(|𝑥|) steps. 

That is why this hypothetical machine serves as a measurement tool 
to determine the limitations and complexities that can be addressed 
by classical computers. There are variations to the original TM for 
solving problems such as the multitrack variation, with bounded 
memory register, multi-tape, non-deterministic, or the quantum TM.  
All of them measure the computational limitation of an algorithm, in 
time and resources. 

B. Decision Problems in Classical Vs. Quantum Computers
Decision problems belong to the formal mathematical realm of 

game theory. That is why any algorithm with the aim of solving this 
type of problem can be said to belong to game theory or interactive 
decision theory. As stated above, the execution of an algorithm has 
computational limitations, therefore, the algorithms for solving games 
or making decisions will also have them.

 The theory of complexities or computational limitations were 
introduced in several articles by Hartmains and Stearns in 1965 [9]. 
Computational complexity is responsible for analysing the resources, 
time, and memory to solve a problem. The main objective of the 
computational complexity theory is to identify the processing limits. 
That is why the analytical comparison between limitations of classical 
and quantum computers is essential. In a classical computer, both 
low-level circuits (hardware) and high-level programs (software) act 
under a structure based on algorithms that solve problems iteratively 
(step by step). Finding the algorithm that efficiently solves a problem 
is synonymous with finding the minimum consumption of time and 
resources. That is why the scientific community has determined that 
algorithms that are solved in polynomial time are efficient and in 
exponential time are intractable. Although some intractable decision 
problems, it seems that they are possible to be solved by quantum 
processors. The mathematical notation for representing spatial and 
temporal complexity when 𝑛 → ∞ in the worst case is defined as O 
(big O-notation). The scale of complexities is defined as (1):

 (1)

TABLE I. Response Time for Two Values of the Size and Complexities 𝑛 3 
and 2𝑛  for A Step Value = 0.1 Millisecond

Complexity 𝑛  = 32 𝑛  = 64
𝑛 3 3 secs 26 secs
2𝑛 5 days 25 * 106 years

If 𝘖(𝑔)  is the asymptotic upper bound of the complexity of 
any algorithm and 𝑐 is a positive constant of factors external to the 
algorithm, such as the machine to be executed. We have, as it is shown 
in Fig. 1, the polynomial time is the temporal complexity function f (𝑥) , 
where 𝑥 is the number of algorithm step value instructions. Therefore, 
the function f belongs to the complexity class of 𝑔 ( f ∈ 𝘖(𝑔)  if there 
exists a 𝑐 and an 𝑥0 such that for all 𝑥 ≥ 𝑥0 we have | f (𝑥) ≤ 𝑐 | 𝑔(𝑥) | [10]. 

size

T
i

m
e

Fig. 1. Generic graphical representation of the comparison of functions in 
the calculation of complexities of any algorithm [11], including the problems 
generated by game theory.

Therefore, thanks to set theory, the characteristics common to 
all those decision problems with resolution in polynomial time and 
common characteristics can be grouped. The grouping of this type of 
mathematical problems according to their computational complexity 
or computational limitational are called classes, and their interrelation 
can be clearly seen in Fig. 2. In this way, we define some of the 
classes of fundamental decision-type problems based on their level of 
computational complexity:

P problems can be solved in polynomial time (linear, quadratic, 
cubic, etc.) in a deterministic MT. That is, the total time required by 
a processor to solve a problem that is bounded by a polynomial as a 
function of the size of the input and the number of configurations of 
its output.

NP problems are defined in a polynomial time. NP problems can 
be found in graph theory such as isomorphism or Hamiltonian paths.

PP The problems are solved in probabilistic polynomial time 
measured in a probabilistic MT. That is, the result obtained has an 
error with a probability of less than ½ for all cases. An example of an 
algorithm solved under probabilistic polynomial time is the Solovay-
Strassen test [12]. 

BQP are problems that can be solved in polynomial time in a 
quantum TM. That is, the total time required by a quantum processor 
to solve a problem based on the size of the input (number of qubits), 
the number of configurations of its output and a maximum 1/3 
probability of error for all instances and, therefore a success of 2/3. 
For example, we can find Shor’s integer factorization algorithm in this 
class of problems [13].

BPP problems can be solved in probabilistic polynomial time 
measured in a probabilistic TM. That is, the result obtained has 
an error with a probability 1/3 and a success of 2/3. This type of 
problem is opposed to the Knapsack problem (KP) of combinatorial 
organization [14] solved by BQP, and all its elements must be included 
in the proposal for its resolution.
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There are more kinds of decision problems such as NP-Complete, 
EXPTIME, L or NL, although we will not address them in this work. 
The class PH  was determined by Larry Stockmeyer [15], and it unifies 
all the classes of hierarchical polynomial complexity. The potential of 
quantum computing is that, according to Aaronson [16], there is some 
evidence that BQP is not contained in PH. This entails that we could be 
approaching the resolution of exponential problems, intractable until 
now by classical computing.

PP

NP

P

BPP

PH
BQP

Fig. 2. Diagram of relationships between the different classes of complexities 
[17]. The BQP class can solve some problems in polynomial time that are not 
contained in PH.

C. Decision Strategies in Game Theory 
Game theory has its own defined and structured decision problems 

according to its peculiarities. The types of games, their decision 
strategies, the format of the scenario and the number of participants 
are some of the characteristics of classical modelling. These strategy 
models correspond to a specific mathematical problem included 
in polynomial or exponential classes. Therefore, the correct initial 
definition of the classical strategy will be transformed into a class of 
computational complexity or limitation defined by both the quantum 
and the classical realms. Some of these strategies and payoff models 
are essential for understanding the transformation from classical to 
quantum algorithms.

Cooperatives and Non-Cooperatives strategies are characterized 
by the realization of alliances between the players with the objective 
of intensifying the maximum common benefit. These types of 
strategies can be found applied in common population resources such 
as a recycling plant, desalination plants, fire brigades, etc. Where 
the contribution of each player amplifies the benefit obtained by all 
participants. These cooperative strategies can also be used in areas 
such as politics, geopolitics, economics, armed conflicts, national and 
international markets. On the contrary, non-cooperative strategies are 
defined as those used by each player with the objective of satisfying 
individual benefit.

Sum 0 is closely linked to the interdependence between payments. 
Taking as the absolute factor payment to be distributed among all the 
players, a 0-sum game is understood to be one that the benefit of one 
player affects the losses of all the others. In other words, what a player 
has won necessarily comes from what another player or players have 
lost. This concept is very widespread in the financial world since the 
pie to be shared is finite and whenever an investor in the stock market 
gains the profit is associated with the loss of another individual. The 
opposite concept is non-zero-sum games. They are defined as those in 
which the cooperation between the participants of the game generates 
an equal and common benefit or loss.

Nash equilibrium was theorized by John. F Nash, who was later 
awarded the Nobel Prize in Economics in 1994 for his equilibrium 
analysis in non-cooperative game theory developed in 1950 [18]. The 
Nash equilibrium in game theory is becoming the most prominent 
unifying theory in the social sciences as indicated in his article [19]. Nash 
introduced the concept based on the relationship between the strategic 
equilibrium of the players and their maximum profit [20], which reads: 
“any n-tuple of strategies, one for each player, may be regarded as a point 
in the product space obtained by multiplying the 𝑛  strategy spaces of the 
players. One such 𝑛 -tuple counters another if the strategy of each player 
in the countering 𝑛 -tuple yields the highest obtainable expectation for its 
player against the 𝑛 − 1 strategies of the other players in the countered 
𝑛 -tuple”. A self-countering 𝑛 -tuple is called an equilibrium point. In this 
strategy, it is assumed that all players know each other’s strategies and 
do not cooperate with each other. In addition, the best strategy of a 
player is not synonymous with maximum payout but with less loss or 0 
losses. Other essential concepts for understanding the Nash equilibrium 
are pure or mixed strategies. The pure strategies are those that each 
player chooses with probability 1, as an example we have the game of 
rock, paper, and scissors. In this game, each player selects his strategy 
based on a single payment. However, if we assign to each pure strategy 
a probability on the payout, we will be defining the mixed strategies. 
Mixed strategies are a generalization of pure strategies, therefore, in each 
one we can find a pure one. Nash showed that any finite rectangular 
game has at least one Nash equilibrium in mixed strategies [20]. 

Pareto optimal is one of the fundamental theories of welfare 
economics and was introduced by Vilfredo Pareto in 1896 [21]. And 
it is currently applied in different areas such as operations research, 
decision making, optimization with multiple objectives or cost-benefit 
analysis. It consists in that, given an initial allocation of earnings 
among a set of players, a change towards a new allocation that at least 
improves the situation of one individual without making the situation 
of the others worse is called improvement. An allowance is defined 
as Pareto optimal when no further improvements can be achieved. 
Therefore, it is no longer possible to benefit more individuals in a 
system without harming others. The Pareto frontier is identified with 
the function f (𝑥) , where when expanding its domain, the gain of an 
individual is a consequence of the decrease of another participant. We 
formally define the concept as: let 𝑃 be a multi-objective optimization 
problem, then a solution 𝑃𝑖 is the Pareto optimal when there is no other 
solution 𝑃𝑗 such that it improves on one objective without worsening 
at least one of the others.

Stochastics games were originally devised by Shapley [22]. They 
consist of achieving different states of the game system in time. That is, 
over time the choice of strategies of the players are conditioned to the 
current state or set of variables. Fundamental examples of these games 
are dice-based. They could be treated as games where the chance or 
different variables change the players’ choice of strategies and payout 
over time. This game model has its application in market economies, 
such as the stock market. Furthermore, stochastic games can be 
approached from different perspectives, such as finite or unlimited 
in time, with partial information to the players, non-cooperative or 
0-sum, among others. 

D. Characteristics of Quantum Computers
Quantum computing is a different computing paradigm from digital 

computing. The internal logic architecture of a classical computer 
works with electrical pulses that are translated into high voltage 1 
and low voltage 0, with deterministic input and output. However, in 
a quantum computer the conceptual change of its internal structure 
is based on quantum mechanics, not deterministic. Therefore, it is 
essential to review some of these concepts to get closer to this new 
computational model.
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The main characteristic of quantum processors lies in the ability to 
manipulate quantum bits, known as qubits. Qubits can be represented 
by subatomic particles like electrons or photons with the intrinsic 
characteristics of quantum mechanics. That is why quantum computers 
use the properties of entanglement, superposition, and parallelism 
to optimize computational processing. The concept of qubit is not 
associated with a specific physical system, and they are described as 
a unit module vector in a complex two-dimensional vector space. The 
two basic states are are |0⟩ and |1⟩, but qubits can also be found in a 
state of superposition [23]. 

The superposition is associated with each physical system, where 
there is a Hilbert space (H) known as the state space of the system. 
The system is completely described by its state vector (represented in 
(2)), which is a unit vector in that state space. The states of the qubit 
represent a vector of states in a vector of states in the Hilbert 2-D 
space (H2) with an orthonormal base. 

 (2)

Therefore, a qubit represents the conjugated states with the 
complex numbers α and β, defined as (3): 

 (3)

If 𝛼 and 𝛽 are not null, we could describe these factors as the 0 or 1 
probability of the state representing a superposition as (4):

 (4)

This means that unlike the classic bits, qubits can have both states 
at the same time (0 and 1). On the other hand, quantum entanglement 
only occurs between two or more qubits generating a unique state 
of the system. This intrinsic characteristic of the particles, without 
similarities in classical theories, is known as the ERP paradox due 
to its prediction in 1935 by Einstein, Podolsky and Rosen [24]. For 
our interest in this work, we will only focus on the characteristic of 
the combination of the quantum states of one or more qubits. The 
maximum entanglement between two qubits is called the Bell state 
[25] and its mathematical notation is (5):

 (5)

where, the possible states of |𝜓⟩ are {𝛼  | 00⟩, 𝛽 | 01⟩, 𝛾 | 10⟩, 𝛿 | 11⟩}, 
and 𝛼 , 𝛽, 𝛾, 𝛿 are the probabilities each state. This quantum capacity 
probably increases to infinity depending on the number of entangled 
qubits. One of the singularities of this formulation is the capacity for 
the continuity of entanglement of the particles even when they are 
separated by millions of kilometres. Furthermore, with the feature of 
parallelism there is the possibility of simultaneously representing the 
values 0 and 1. Quantum algorithms that operate on superposition 
states, simultaneously perform operations on all combinations of the 
inputs. This is where the potential of quantum computers resides.

Another fundamental question in the characteristics of quantum 
computers is the transformation of the states of the qubits. 
Currently the technologies used for handling qubits are based on 
superconducting circuits, ion traps or photonic circuits. These complex 
physical structures have as their fundamental objective to deliberately 
modify the states of the qubits. These changes generate the algorithms 
programmed to yield the desired results of the quantum processors.

The evolution of a closed quantum system is described by a unit 
transformation [26]. This is that state |𝜓⟩ from the system to time t1 
is linked to the state |𝜓'⟩ at the time t1 by a unitary operator U that 
depends only on t1 and t2 such that |𝜓'⟩ = U |𝜓⟩. A unitary operator U 
is neither more nor less than a matrix, therefore, applying U on a state 

is to operate the system by the matrix U. It follows that the state |𝜓'⟩ 
will be determined by the application of a unitary operator (a matrix). 
As can be seen in Fig. 3, Uf is the unitary operator applied to the state 
|𝜓⟩ and throws us as a result |𝜓'⟩:

Fig. 3. Unitary operator. Graphical representation of the transformation of 
states |𝜓⟩ on timeline t, when applying a unitary operator Uf .

Therefore, like classical logic gates, state operators modify the 
states of the qubits, although with some differentiating characteristics 
over the classical ones. Basically, a quantum gate is a unitary matrix, 
which, when applied to the qubits, performs a state transformation. 
The combination of the quantum gates together with the control 
artifacts generates the unit operators that make up the quantum 
circuits. Next, we detail the generator of entanglements.

The Hadamard gate can only be applied to a qubit, and its main 
function on the application of a qubit is for state 0, , 
and for state 1, . It is also defined in matrix form as (6):

 (6)

We can observe in (8) the internal states of a qubit by applying 
the Hadamard gate to a state |0⟩ and |1⟩. These states (7) are not 
maintained in the measurement of the qubit, but collapse to 0 or 1.

 (7)

This represents the quantum Fourier transformation [27] rotating 
𝜋 about the 𝑧 axis followed by a rotation of  about the 𝑦 axis. In 
addition to having the characteristic of generating a Bell state, that is, 
interlacing and deinterlacing qubits in the way described in (8).

 (8)

where gate 𝐻4 becomes 4 × 4 matrix represented in (9): 

 (9)

There are different quantum gates with different objectives or 
functionalities. For example, the Pauli gate X will exchange the states 
of a qubit, like the binary NOT gate, that is, if initially the state is 
|0⟩  it will transform it to a state |1⟩. On the contrary, the Pauli gate 
Z involves the state |1⟩ exchanging it for -1, leaving the amplitude 
(probability) of the state |0⟩ untransformed (Fig. 4).

Fig. 4. Graphical representation of quantum gates. H - Hadamard, X - 
corresponds to a 90° rotation on the 𝑥 axis, Z corresponds to a 90° rotation on 
the 𝑧 axis, Y - corresponds to a 90° rotation on the y axis. In addition to the 
representation of CNOT.

However, one of the negative characteristics of quantum processors 
is their fragile stability in state conservation. This conservation of 
states in a processor is known as quantum coherence, and it can be 
defined as the conservation of the state of a system in superposition 
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with time. This coherence is physically sensitive to interference from 
the environment, and can be destroyed by vibrations, electromagnetic 
disturbances, and other circumstantial disturbances such as sounds, 
earth vibrations or adverse weather effects. That is, the particle 
collapses in a state as if it were being measured, losing the multistate 
characteristic. The destruction of quantum coherence is what is 
known as decoherence.

The coherence time in a quantum computer is essential for the 
correct implementation and obtaining the expected results. That is why 
scientific research in the field of quantum computer implementation is 
vital in advancing in this area. Hadamard gates enhance the intrinsic 
characteristics of qubits entanglement, therefore, not using them 
makes a quantum computer become a reversible classical processor.

II. Design of Quantum Games

The conceptual paradigms of quantum computing have been 
formalized and the parameters established in classical game theory. In 
addition to demonstrating the potentiality in quantum computational 
efficiency. Therefore, we are now able to unify both concepts to know 
the theory of quantum games.

The decision-making strategy is related to the environment and the 
actors involved. If, on the one hand, on the environment model we 
can differentiate symmetric and asymmetric games, zero sum, with or 
without Nash equilibrium and Pareto optimal, combinatorial, perfect 
information, stochastic or differential. On the other hand, according to 
its actors, we find cooperative, non-cooperative or multiplayer games, 
among others. However, not all these classic game theory models can 
be applicable to the design of circuits and quantum algorithms, given 
their complexity and lack of research. Consequently, a little explored 
field of research opens here.

A. Requirements in the Design of Quantum Games
According to DiVincenzo, quantum circuits must have the following 

requirements for their construction:

• a scalable physical system with well characterized qubits,

• the ability to initialize the state of qubits to 0,

• long relevant decohere times,

• a universal set of reversible quantum gates, and

• a specific measurement capability of the qubit.

We will not discuss requirements 3 and 5, since we consider 
theoretically that the circuit is stable and without decoherence, in 
addition to generating an appropriate final measurement. But we will 
add some specific characteristics of quantum circuits, essential for 
understanding their design:

• A quantum algorithm is iterative, it is not possible to develop 
loops.

• Quantum states cannot be cloned, there are no FANOUT circuits 
that can replicate qubits.

• Quantum circuits are inherently parallel, allowing a function f (𝑥)   
to be evaluated for multiple values of 𝑥 simultaneously.

On the other hand, we will need a valid justification for the 
transformation from classical to quantum algorithms. Well, according 
to Wu et al. [28], it must be considered that a quantum computer 
without Hadamard gates is essentially a reversible classical computer 
and therefore, we cannot consider significant the circuits implemented 
without these unit matrices of game theory classics. Furthermore, if we 
add to these requirements and characteristics the three principles of 
quantum games that they develop [29], we have a technical challenge 
and an unknown computational complexity, since it is currently 
unknown how BQP compares with BPP.

Even so, there are laudable attempts to debate the classical 
models of game theory applied to quantum algorithms, such as the 
Nash equilibrium, that deserve all the attention given that they are 
generating the theoretical basis for the evolution of this area.

B. Quantum Nash Equilibrium
The historical example to define the Nash equilibrium in a classical 

system has been the Prisoner’s Dilemma [30] where the desertion of 
each of the players implies the maximum individual benefit. This game 
also has the characteristic of establishing an example of pure strategies 
for each player, since chance does not intervene, and probability is not 
established. The concept of pure strategy was extensively studied by 
Antoine Cournot in his work on oligopolies [31] and we can consider 
it as a particular case of mixed strategies.

However, when implementing the Prisoner’s Dilemma game in 
quantum format according to Van Enk Wu et al. [32],    individualistic 
strategies are eliminated, transforming the game from non-cooperative 
to cooperative given their retrospective contemplation of both players 
of their strategies. That is, given the reversibility of the unit matrices, 
it would be possible to go back and optimize the strategy of both 
players to obtain the maximum payout. Furthermore, entanglement 
tends to be considered as a mediated communication [33] or a 
requirement function according to the theory of abstract economics 
[34], which does not correspond to the original classical game. The 
EWL quantification protocol [35] has so far been the most accepted 
for the quantum transformation of the Nash equilibrium. However, 
Van Enk Wu contradicts the idiosyncrasy of not preserving the non-
cooperative game condition and therefore the elimination of the Nash 
equilibrium. There is an interesting discussion on this topic in  [36].

C. Actors and Their Game Decision Strategies
In a non-cooperative game there are players, the setting and the 

rules of the game that comprise the strategies and the payouts. These 
components are defined in standard classical game theory [37] and 
quantum notation as a tuple ⟨𝑁, Ω, P⟩ where 𝑁 is the number of players, 
Ωj with 1 ≤  𝑗 ≤ 𝑁 are the strategies of each player, and Pj the payoff 
function P: Ωj → 𝑅𝑁 on each of the strategies. Therefore, the interaction 
between classical and quantum strategies is hypothetically possible.

This interaction can be seen with the payoff matrix in Table 2. 
Meyer demonstrated with the Penny-Flip game of two players with 
the zero-sum strategy, that a quantum strategy will always win over 
a classical one [38].

TABLE II. Matrix of Payments Between Quantum and Classic Strategies

Type of Actors Classic Quantum

Classic (0,0) (0,1)

Quantum (1,0) (1,1)

At first it might seem that a quantum strategy versus a classical one 
is always the winner, but Anand and Benjamin [39] demonstrated that 
a particular classical algorithm, such as the one proposed by Meyer, 
can beat a quantum one in the Penny-Flip game if it is generalized.

Despite everything argued so far, even in the predictive results of 
any classical game model, human behaviour breaks the mathematical 
formalism. Well, game theory assumes unrealistic levels of rationality 
of its players according to Chen and Hogg.  If we translate this reality to 
the probabilistic results of quantum computers, then the initial payout 
matrix will change for each strategic decision of the players. The 
similarity in the decision making of a human player with the results of 
a quantum computer is demonstrated in their work. Where it seems to 
be verified that quantum entanglement is a rational human cooperative 
behaviour with the objective of obtaining the maximum benefit.
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III. Quantum Games Implementation Techniques  

The transformation from classical to quantum algorithms is 
a real effort given the requirements seen in Section 2. The applied 
implementation techniques stand out for their originality as the 
insertion of tertiary qubits – qutrits [40]. Although the debate centres 
on the insertion of Hadamard doors. The Hadamard unit matrices 
entangle the states of the qubits generating multiple overlays if they 
apply to more than one qubit. It is here where the power of quantum 
computers lies, and its parallelism seen in Section 3. Therefore, the 
techniques and results to design quantum games open the interpretive 
debate of the correct implementation.

Considering the limitations of computers and the types of classes 
of decision strategy problems seen in Section 1, we can affirm, looking 
at Fig. 2, that all decision strategy problems of type P can be solved 
by BPP which in turn are integrated into BQP. Therefore, in principle 
it seems that all decision strategies in game theory can be solved by 
a quantum computer. Consequently, there will be a computationally 
quantum resolution that satisfies the best game strategy for each 
participant or participants. However, the construction and design of 
these functions in a quantum computational architecture has yet to be 
solved for all decision strategy problems.

A summary of implemented quantum games can be found in 
[3] where the game and the quantum contributions that have been 
made are defined. In Table III, we expand some of these definitions 
of [3], including some of the technical characteristics used in their 
implementations. Some interesting techniques applied to other games 
are listed as well.

TABLE III. Structure and Implementation of Some Quantum Games

Game Structure Implementation

Prisoner’s 
dilemma

Hadamard, without 
Hadamard, Multiplayer

Mathematical notation, Qiskit 
(IBM), Various unknown 
computers

Penny flip 
Hadamard, without 
Hadamard

Mathematical notation,  
Various unknown computers

Five in a Row - 
Gomoku

Qutrits Mathematical notation

Sudoku Without Hadamard Python

Poker TH Hadamard, Multiplayer Qiskit (IBM)

Bingo Without Hadamard Qiskit (IBM)

Monty Hall
Hadamard
Qutrits

Mathematical notation

Battle of sexes Hadamard Mathematical notation

Rock–scissors–
paper

Hadamard Mathematical notation

Prisoner’s Dilemma comprises different variants of the game. 
However, the most classic one is described by Albert W. Tucker who 
formalized the game on prison rewards [4]. It belongs to the group 
of zero-sum non-cooperative games, where the Nash equilibrium is 
determined according to the Pareto optimal strategy. The original 
game describes the situation of two participants where they ignore 
the decisions made by both. Two thieves (Alice and Bob) are caught 
by the police. Since the police do not have enough evidence to convict 
them, they propose a deal (summarized in Table IV):

• Alice and Bob confess to the crime -> Alice and Bob are sentenced 
to 6 years in prison.

• Alice or Bob confess the crime -> Whoever does not confess is 
sentenced to 10 years in prison and the one who has confessed to 
1 year.

• Alice and Bob do not confess the crime -> Alice and Bob are 
sentenced to 1 year in prison.

TABLE IV. Matrix of Payments Classic Game Prisoner’s Dilemma

Confess No Confess
Confess (3, 3) (-5, 5)

No Confess (5, -5) (-1, -1)

All the works on this game are implemented in mathematical 
notation, although it is worth highlighting the comparison made [30] 
on human strategies and quantum computers, or in [41] the duality 
map comparison. Others, such as [42] and [43], focus on classical 
transitions after analysing quantum decoherence and the null wave 
function. In addition, in the work [44], the multiplayer version is 
analysed. And in [44] the Hadamard entanglement gates are not used, 
although they are used in [45] [46] and [47] where the latter also 
analyses the applied unit matrices. 

Penny flip is related to the flipping of a coin and obtaining heads 
or tails. However, the quantum strategy is added in player Q. It consists 
of player P placing a coin head up in an opaque box. After that, they 
will take turns (Q, then P, then Q) shaking the box or not. P wins when 
the coin is upside down when the box is opened [38].  This is a zero-
sum strategy game for two that could be traditionally analysed using 
the following matrix reward (Table V). 

TABLE V. Matrix of Payments Penny Flip

NN NF FN FF

N -1 1 1 -1

F 1 -1 -1 1

The most outstanding works on its implementation and debate are 
[38] and [45].  However, it is worth highlighting the work [46] where 
an experiment is carried out intertwining four coins.

Five in a Row is original from Japan and known by different 
names in other countries. It consists of a 15 × 15 or 19 × 19 matrix 
where the players alternate in placing their chips on the squares. The 
winner is the player who manages to form a row, column, or diagonal 
with 𝑘 of his chips, where 𝑘 is the number of cells. The generalization 
or scalability of the game can be described as (𝑚, 𝑛 , 𝑘) , where 𝑚 × 𝑛 
will be the dimension of the matrix and k the number of continuous 
lines to get. In these typical games of the five in a row and Weiqi we 
can highlight the exotic implementation of [26] with qutrits [38].

Sudoku was popularized in Japan in 1986, although it is proven that 
the original creator was Leonhard Euler (1707-1783), by establishing 
the guidelines for the calculation of probabilities to represent a series 
of numbers without repeating incorporated in The Greco-Latin Square, 
Euler’s Square or Orthogonal Latin Square. This game consists of a 9 × 9 
matrix where the decimal numbers except 0 are placed in rows and 
columns. The challenge is not to repeat any decimal in the same row 
or column or 3 × 3 sub-matrix. The original matrix is initialized with 
some numbers that offer clues to start filling in the boxes. This is a 
single player game, and its initialization tracks must be at least 17 to 
have a single solution. This popular game is implemented in the high-
level Python language without quantum entanglement.

Poker-TH is a multiplayer card game in addition to a mediator 
player. The mediator player exposes his cards, and the other players 
must decide the best combination between their cards and those of 
the mediator. The winning card combination is established from the 
beginning in a hierarchical range. However, the payoff matrix varies 
depending on the independent strategies. Each player in his turn bets 
on his combination, and the other players must accept the bet and 
continue the game or abandon and win nothing. Therefore, the payoff 
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matrix varies according to the rational independent strategies. It is a 
game of sum greater than 0, however, in the individual strategies the 
Nash equilibrium is established, although not in the global game. This 
game has several variations and the most relevant are based on the 
number of cards to be dealt between the players and the limitations in 
the payout matrix. In [48], this game is implemented in IBM quantum 
computers, with the didactic goal of teaching quantum computing. In 
addition, it demonstrates decoherence and error mitigation techniques.

Bingo is a very popular game of chance. Players have numbered 
boxes, and the mediator randomly draws a number from the initially 
established range. The winning player must own all the numbers 
in his box from the previously drawn numbers. In this game, the 
combinatorics, and the number of boxes that each player has intervenes 
directly. The calculation through the hypergeometric distribution 
determines the probability (10) of the player to win:

 (10)

where 𝑘 is the number of the box, 𝑥 the value of the variable or 
number of hits in each extraction, 𝑁 the size of the sample and 𝑛  the 
number of each extraction. Therefore, in a range of 90 numbers, the 
probability of winning on draw 65 is 0.45% for each box. This game is 
implemented without Hadamard gates of entanglement in the work of 
[49] on IBM quantum computers.

Monty Hall is taken from the 1975 US television contest Let’s Make 
a Deal and has become a real mathematical problem of probability. 
The name was assigned referring to the presenter of this program and 
we can also find it as the Monty Hall paradox. The game consists of 
offering the player the choice of opening three doors. Only one of 
them hides the desired payment such as a car, a house, money, etc 
... depending on the version of the game. Once the door has been 
chosen by the player, the moderator reduces the choice possibilities to 
2 by eliminating a door and again offers the player a new choice. The 
debate on the game’s payout probabilities began in 1990 through the 
journalistic columns written by Marilyn vos Savant [50], solving and 
demonstrating the theory that Steve Selvin introduced in 1975 [51]. 
The controversy lies in the change or not of probabilities. That is, at 
the beginning the payment of the game has a probability of 1/3 over 
the 2/3 of losing. However, by eliminating one of the gates we would 
understand that the probability is now ½ pay and ½ lose. Although 
if we consider the probabilities assigned at the beginning of the 
game, the best strategy is to select a new door since the probability of 
payment continues to be 2/3 (Fig. 5).

Rock
beats

scissors

Scissors
beats
paper

Paper
beats
rock

1

??
2

??
  1/3 2/3

Fig. 5. From left to right: graphical representation of the games Rock-Scissors-
Paper, Sudoku, and Monty Hall.

One of the proposals for the implementation of the game in 
quantum format by [52] is to take the beginning of the game as a 
three-dimensional Hilbert space where only the moderator reacts in 
a quantum way leaning on an interlaced Notepad or not, with the 
aim of saving the information. However, [53] they show that where 
both participants, contestant and moderator, have access to quantum 
strategies, the maximum entanglement of the initial states produces 
the same benefits as the classical game.

Battle of sexes is like the Prisoner’s Dilemma, although in this case 
both participants have full information about payouts and strategies. 
It consists of selecting the best desired strategy and achieving 
the greatest benefit individually, therefore, it complies with Nash 
equilibrium. The initial approach consists of making leisure decisions 
for a couple (Alice, Bob) with the premise that they both want to be 
together currently. However, Alice prefers to go to the theatre and 
Bob wants to go to the movies. The payment matrix according to their 
preferences is shown in Table VI.

TABLE VI. Matrix of Payments Classic Game Battle of Sexes

Bob

Theatre Movie
Alice Theatre (2,1) (0,0)

Movie (0,0) (1,2)

In their article [54], Marinatto and Weber demonstrated that the 
use of entangled quantum strategies by both players does not improve 
the classic payoff matrix of the game and therefore generates the same 
resolution as the classic version of the game. However, a later article by 
Du et al., [55] discusses [54] approach, proposing a different structure. 
Thus, Du implemented the game by applying mixed strategies for both 
players, where each player can freely choose his strategy. That is, they 
can apply entanglement or not, therefore, the transformation from 
classical to quantum game seems to demonstrate its efficiency.

Rock-Scissors-Paper was designed in China centuries ago. Today, 
it is an internationally famous game, and its rules are easy to learn. 
The game consists of two players simultaneously and in a single 
movement they determine their non-cooperative strategy. In this case, 
they determine their weapon which can be rock, paper or scissors. The 
payoff matrix is represented in Table VII.

TABLE VII. Matrix of Payments Classic Game Rock-Scissors-Paper

Rock Paper Scissors
Rock (0, 0) (-1, 1) (1, -1)
Paper (1, -1) (0, 0) (-1, 1)

Scissors (-1, 1) (1, -1) (1, 1)

The original game ends in a single action and therefore a Pareto 
optimal strategy model results. Given that, if one player gets paid, the 
other gets nothing. However, there is the interpretation of the game 
with n repetitions. In this case, the game has only one Nash equilibrium 
and in each round the probability of payout becomes 1/3. Iqbal, in his 
article [56] studies this game in its repetition format, in an attempt to 
stabilize the evolutionary sequence (EES) on the Nash equilibrium by 
applying entanglement to strategies. However, he shows that the odds 
of winning if both players use quantum strategies are the same as in 
their classical form.

IV. Conclusion

The implementation of classical quantum algorithms [57] in game 
theory does not seem to stand solely on the computational techniques 
used. Quite the contrary, there is a broad debate about changes in 
strategic models and payment results. Furthermore, in a real decision-
making scenario, the intervention of the human being discredits the 
formulated mathematical formality. Consequently, the predictions of 
quantum computers seem to be closer to real life scenarios.

It should be considered that the study of the quantum 
implementation of classical game theory only takes two decades of 
research. With few published works if we compare them with other 
disciplines. Therefore, debate and interpretation are still open to great 
scientific contributions.
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Future work will comprehensively address the implementation of 
binding cooperative and mixed strategy quantum games that include 
combinatorics.
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