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Abstract

Drug discovery is a key process, given the rising and ubiquitous demand for medication to stay in good shape 
right through the course of one’s life. Drugs are small molecules that inhibit or activate the function of a 
protein, offering patients a host of therapeutic benefits. Drug design is the inventive process of finding new 
medication, based on targets or proteins. Identifying new drugs is a process that involves time and money. 
This is where computer-aided drug design helps cut time and costs. Drug design needs drug targets that 
are a protein and a drug compound, with which the interaction between a drug and a target is established. 
Interaction, in this context, refers to the process of discovering protein binding sites, which are protein pockets 
that bind with drugs. Pockets are regions on a protein macromolecule that bind to drug molecules. Researchers 
have been at work trying to determine new Drug Target Interactions (DTI) that predict whether or not a given 
drug molecule will bind to a target. Machine learning (ML) techniques help establish the interaction between 
drugs and their targets, using computer-aided drug design. This paper aims to explore ML techniques better 
for DTI prediction and boost future research. Qualitative and quantitative analyses of ML techniques show that 
several have been applied to predict DTIs, employing a range of classifiers. Though DTI prediction improves 
with negative drug target pairs (DTP), the lack of true negative DTPs has led to the use a particular dataset 
of drugs and targets. Using dynamic DTPs improves DTI prediction. Little attention has so far been paid to 
developing a new classifier for DTI classification, and there is, unquestionably, a need for better ones.
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I. Introduction

Discovering new drugs is critical and driven by the need 
for medication in daily life, partly brought on by changing 

environmental conditions. Nevertheless, drug discovery is not easy, 
it demands time as well as money, and the drug success rate is 
usually low. Computer-Aided Drug Design (CADD) is considered a 
computational discipline that aims to discover, design, and develop 
therapeutic chemical targets. There are 3 phases in drug design - 
discovery, development, and registry. 

  In the first phase, discovery, the focus is on identifying a new drug 
and its targets, based on binding sites. The second phase, development, 
involves pre-clinical research, where the drug is tested on animals for 
safety. Successful research means that human trials are set in motion. 
In the third phase, registry, the Food and Drug Administration (FDA) 
thoroughly reviews all the submitted drug-related data and decides on 
its approval or otherwise. Initiating an efficient computational model 
that finds potential Drug Target Interaction (DTI) from biological data 

helps understand the biological process, recognize novel drugs, and 
offer improved therapeutic medicine for illnesses of all sorts. Drug 
development has three trial phases, each of which is more expensive 
than the others. As of today, the cost of drug development has risen 
from US$3.4 million to US$8.6 million and US$21.4 million for phase 
I, phase II and phase III trials, respectively [1]. A new drug could fail 
to pass the test in any of the three drug development trial phases, 
notwithstanding the expense, effort and time involved. 

II. State of the Art Methods

DTI is the process of finding new drugs and targets for drug 
development. Drug and target molecules are discovered through their 
interactions. Drug discovery methods are ligand-based, docking-based 
and chemogenomics-based, and involve parameters like biomarker 
identification, structure unavailability, physique and condition, and 
environmental factors. Current research is focused on maximizing 
interactions so the drugs formulated can successfully treat disease. 
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The new drugs developed today, though based on knowledge of 
existing ones, could still have adverse side effects. Incidentally, a drug 
developed for a particular disease may be used, quite unexpectedly, 
to treat another disease with no side effects whatsoever, a process 
referred to as drug repurposing [2], [3]. It is essential in drug discovery 
to establish the interaction between a drug and a target gene. The 
docking-based method needs a 3D structure of the target protein 
or gene for the process to work. The success of a newly developed 
drug depends on how well it fares in the market, particularly in 
terms of whether the purpose for which it was originally designed 
is being fulfilled. The possibility of successfully identifying DTI is 
enhanced by working on binding factors or interacting sites. This is a 
difficult process, given the limited information on drugs and targets. 
Bioinformaticians have tried to draw information from factors driving 
drugs and targets. The automated tools employed to improve the 
success rate by discovering more interactions or binding sites between 
drugs and their targets are intended to actively assist doctors and 
bioinformaticians. Scientists today work in drug development using 
ML predictive analysis techniques to understand drugs and targets, 
thus boosting DTI success prediction.

A. Drug Developing Procedure
Drugs are synthesized chemicals that control, prevent, and cure and 

diagnose illnesses. Disease diagnosis is carried out through reading the 
body’s reactions to drug molecules in the form of positive biological 
responses. In pharmacological terms, the biomolecule whose function 
and activity are modified by a specific drug is termed the drug target. 
Biomolecules can be proteins, nucleic acids, receptors, enzymes, and 
ion channels. The DTI process interacts or binds the drug molecule 
to the active biomolecule site with the same structural or functional 
properties as the drug molecule, culminating in the creation of a new 
product as in Fig.1. The human body assimilates the product, resulting 
in a cure.

Compound

Active site
Binding site

Biomolecule Biomolecule

Biomolecule binds with
compoundin active site

Integrates in active site
to create a new product

New product

Biomolecule

Fig.1. Drug Developing Procedure.

Drugs are developed in three phases. In the first phase, a drug and 
its target are discovered by means of the interacting or binding site, 
using substrate on the active site of protein. In the second phase, the 
drug is subjected to animal testing for safety’s sake. In the third phase, 
the drug has human trials, following which it is marketed.

B. In-Silico Approaches in Drug Discovery
 In-vitro is a technique where the process of drug discovery takes 

place in a controlled environment but not within a living organism. 
Here a pool of potential compounds is identified and narrowed down 
to find most reliable compound for treatment. In-vivo is a technique 
where the process of drug discovery takes place within a living 
organism by giving the reliable compounds to the human trials. Both 
the data collected from in-vitro and in-vivo are given as input features 
to the in-silico methods for drug prediction, which is a computational 
method. The computational DTI prediction method is categorized into 
the three approaches [4].

1. Docking-Based Approach
A docking-based approach in DTI prediction requires a 3D structure 

for simulation. Consequently, it is not applicable where a large number 

of proteins is involved, as in, for instance, the G-Couple Protein 
Receptor and ion channel, whose structures are far too complex to be 
obtained. The simulation is significant in regard to the time taken and 
its overall efficiency.

2. Ligand-Based Approach
A ligand-based approach works on the premise that a drug can be 

predicted without the 3-Dimensional structure of targets and with the 
existing knowledge of drugs and its targets.

3. Chemogenomics-Based Approach
A chemogenomics-based approach integrates both the chemical 

space of drugs and the genomic space of targets into a single 
pharmacological space. The challenge here is that there are too few 
DTI pairs and too many unknown interaction pairs. 

C. Motivation and Justification
The in-vitro prediction of DTI from biological data calls for a lot of 

effort in the search for new drugs and targets. Identifying potential 
drugs and targets is a painstaking step in initiating drug discovery. 
Despite the plethora of research on DTI prediction in the recent 
past, prediction is still material-intensive and protracted. Predicting 
interaction between DTPs continues to challenge researchers. 
The motivation for this review is to help researchers in the drug 
development domain access state-of-the-art methods used in ML for 
DTI predictions, and so enhance the quality of research. To this end, 
several insightful articles on DTI procedures and methods that help 
discover new drugs and targets differently are reviewed. The machine 
learning (ML) techniques used to predict DTIs are studied, each with 
its strengths and limitations.  The research is categorized, based on the 
ML techniques used in the prediction. Thereafter, it is qualitatively and 
quantitatively analyzed to understand ML and DTI better so the latter 
can be improved.

The contributions of this paper are as follows, Articles related to 
ML and DTI in drug development are studied in detail and categorized, 
based on the machine learning techniques deployed as in section III. 
The feature selection techniques used in DTI prediction suggest the 
best features for use. Articles on DTI prediction using ML techniques 
have described how ML manages datasets from miscellaneous 
databases, balances imbalanced data, handles large-scale datasets and 
features and, finally, examines at length the ML algorithms used in DTI 
prediction. Articles that are qualitatively analysed in section V based 
on ML techniques to understand their strengths and weaknesses. A 
quantitative analysis in section VI follows to find the most appropriate 
classifiers for DTI predictions.

D. Organization of the Paper
The paper is organized as follows. Section II provides an overview 

of state of the art methods involved in DTI prediction using ML 
techniques. In Section III, Machine learning techniques used for DTI 
prediction are summarized. In Section IV, databases used for DTI 
prediction are discussed. In Section V, a qualitative analysis of the 
ML techniques used for DTI is presented. In Section VI, a quantitative 
analysis of DTI prediction methods is offered. Section VII discusses 
DTI prediction. Section VIII concludes the study and offers new 
directions for future research.

III. Machine Learning (ML) Techniques Used for DTI 
Prediction

Computational models use ML techniques for prediction because 
they optimize data better and perform better as well. ML techniques, 
which learn data without relying on previously defined formulas, are 
grouped into two – supervised and unsupervised learning. Supervised 
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learning predictions are based on observed existing knowledge from 
known data, while unsupervised learning predictions do the same 
without. Predictions are guesses based on existing knowledge from 
the data at hand. On the other hand, Classification refers to the 
process of differentiating between known and unknown labels. 
The objective of this paper is to explore ML techniques involved 
in improving DTP identification to find DTIs. The identification 
of a new drug involves the drug and its target. Because of large 
number of features of both drugs and targets manually extracting 
them would be a time taking process, so the researchers use only 
tools like ChemCPP, EDragon, CDK, Open Babel, RDkit, PADEL for 
extracting the features from drugs and Protr, SPICE, Propy, ProtDcal, 
ProtParam for extracting features from targets. Drug and target 
features are extracted and concatenated with each other to form 
DTPs. The pairs are analyzed for interaction prediction; specifically, 
to observe whether or not the DTPs interact. The ML techniques 
analyzed are explained qualitatively and quantitatively and the 
classifier used for DTI prediction is found. The DTI prediction 
here mainly uses a static database. Prediction can be improved 
when there are more targets and drugs with the interaction 
between them yet to be ascertained. In recent times, CADD has 
been used to develop drugs for immunodeficiency syndrome, 
influenza virus infection, glaucoma and lung cancer [5]. CADD 
helps in pharmacological, Pharmacodynamics and in-silico toxicity 
prediction, which   identifies or filters inactive or toxic molecules 
[6] and naturally gets ML involved in DTI prediction strategies [7]-
[10]. Thus to improve drug development various methods based on 
drugs and targets are developed using ML techniques. Fig.2 shows 
DTI prediction through ML techniques with targets and drugs taken 
from diverse databases. Drug and target features are extracted using 
a slew of tools or web servers. Subsequently, the most influential 
features alone are selected and used for DTI prediction with several 
ML classifiers to complete the process.

Drugs

Feature Extraction

Feature Selection

Drug Target Pairs

Classifier

Training Set Testing Set

Targets

Prediction of DTI

Fig.2. Flow of DTI Prediction.

In-silico methods include Machine learning, Data mining, Network 
analysis tool and data analysis tool, Quantitative Structure Analysis 
Relationship (QSAR), pharmacophores, homology modeling, Here 
Machine learning technique is more feasible than all other methods 
for working with drug discovery data for analysis. The trending 
research in drug discovery is “Identification of screening hits 
(compounds)” which helps in finding the particular compounds target 
with more potency at different level like binding, reducing the side 
effects, efficiency, and also increases the life of patients by changing 
the function of the biomolecule.

A. Chemogenomics-Based Machine Learning (ML) Techniques for 
DTI Prediction 

The chemogenomics-based prediction approach is computationally 
predicted using ML-based, graph-based or network-based methods. 
ML-based methods are explained below in Fig 3.

Similarity based Methods

Matrix based Methods

Feature based Methods
Chemogenomics

based ML
techniques

Network based Methods

Deep Learning based Methods

Fig.3. Chemogenomics based ML Techniques.

1. Similarity-Based Methods
The most commonly used DTI prediction methods use drug and 

target similarity measures in tandem with the distance between each 
pair of drugs and its targets [11]-[18]. These methods use the drug, 
target and drug-target interaction similarity scores based on prior 
knowledge of their interaction similarity. The similarity is obtained 
using a distance function like the Euclidean. For instance, if the 
following function is employed for the nearest neighbor algorithm, 
assuming two vectors x1 and x2, the distance between the vectors is 
found using equation (1) as D(x1, x2) where 

 (1)

and the same dimension and distance are calculated using the 
Euclidean norm and the inner product. The similarity between a 
drug and a target is given through the pharmacological similarity 
of the drug, the genomic similarity of the protein sequence, and the 
topological properties of a multipartite network of previously known 
drug-target interaction knowledge. The disadvantage of these methods 
is that they use knowledge drawn from a small quantum of labelled 
data, while there exist large quanta of unlabeled data.

2. Matrix-Based Methods
Several studies [19]-[24] have shown that matrix-based methods 

outperform the rest in DTI prediction. The interaction matrix is

 (2)

For i=1: m and j=1: n,

The first move in DTI prediction is to break down matrix Xmxn into 
two matrices, Ymxk and Znxk, where X ~ YZT with k < m, n, and where ZT 
denotes the swapped matrix of Z. This process of factorizing matrices 
in lower order makes it easier for matrix-based approach to deal with 
the missing data. With these methods, however, the distance between 
the drug and target appears to be the same and establishes the 
strength of the interaction between them, embedding them in a low-
dimensional matrix. The reliability of these methods is affected when 
the drug and target data increase in volume, impacting the capacity to 
find their interaction.
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3. Feature-Based Methods
Feature-based prediction methods largely use the support vector 

machine to find drug-target interaction [25]-[33]. Any pair of targets 
and drugs may be represented with features, leading to binary 
classification or two-class clustering with positive or negative 
interactions. Features are represented as F

F=  {d + t},  d=  d1,  d2, d3, ….da and t = t1,  t2,  t3,  …. tb (3)

where d denotes the drug features of length a and t the target 
features of length b, respectively. 

4. Network-Based Methods 
Network-based methods [34]-[40], which use graph-based 

techniques to predict DTI, are considered simple and reliable 
interaction prediction methods. Here, the drug-drug similarity, target-
target similarity and known interactions between DTI are integrated 
into a heterogeneous network, operating on the simple logical 
principle that similar drugs interact with similar targets. 

5. Deep Learning-Based Methods
Deep learning-based approaches can reduce the loss of feature 

information in predicting DTIs. However, they need adequate 
information to predict interaction and drug repurposing [41]-[45]. 
The two steps of deep learning include generating feature vectors and 
predicting interaction. The target property and drug property generate 
a features matrix for prediction.

IV. Databases Used in DTI Prediction 

Interaction prediction demands the twin data items of drugs and 
targets, and a working knowledge of their interaction. The popular 
databases used in this study fall into two categories, drug-centered and 
target-centered. More than 20 databases associated with interaction 
prediction are not directly involved in DTI prediction, though the data 
contained therein maybe used as input for prediction. The popular 
database, KEGG, used here for prediction, is divided into the sub-
databases of KEGG BRITE [46] and KEGG DRUG [47], incorporating a 
mass of biological data from genes and proteins. 

A. Chemical European Molecular Biology Laboratory (ChEMBLdb)
The data gathered is a chemical database of bioactive molecules 

[48] which are collected from numerous literature studies. With 
millions of chemical compounds, 10,000 drugs and 12000 targets, the 
ChEMBLdb was established by the EMBL – European Bioinformatics 
Institute in 2002.

B. Chemical – Protein Annotation Resource (ChemProt)
ChemProt [49] has Chemical-Protein interactions data that 

integrates data from multiple databases of chemical protein annotations. 
It comprises data from the PDSP, DrugBank, PharmGKB, PubChem 
and STITCH databases. ChemProt also integrates therapeutic effects, 
adverse drug reactions and chemical-biological disease data.

C. Drug Gene Interaction Database (DGIdb)
This database has information on Druggable targets with their 

effects and drug-gene interaction data [50].

D. DrugBank
DrugBank is one of the most well-known databases in DTI study, 

with details about drug-like compounds, their different forms, target 
genes and side effects brought on by drug intake. The DTI data in this 
database that have been collected from an array of literature studies 
has extensive commercial uses [51].

E. Kyoto Encyclopedia of Genes and Genomes (KEGG)
KEGG is an out-of-the-box database with exhaustive details of 

genes and genome sequences [52]. The KEGG databases are divided 
into four categories. The first has three numbers of databases KEGG 
- BRITE, PATHWAY and MODULE. The second has four databases 
that carry genomic information– KEGG-GENOME, KEGG-GENE, 
KEGG-SSDB and KEGG ORTHOLOGY. The third has five databases 
with chemical information KEGG- COMPOUNDS, KEGG-REACTION, 
KEGG-RCLASS, KEGG-ENZYME and KEGG-GLYCAN. The fourth has 
four databases carrying health information– KEGG-DISEASE, KEGG-
DRUG. The comprehensive KEGG has a wealth of DTI information 
and outclasses others.

F. Library of Integrated Network-Based Cellular Signatures (LINCS)
This database holds information on the KINOME scan. Kinases are 

small molecule-binding assays that help study the interaction between 
drug compounds for testing purposes. The database consists of 398 
datasets on fluorescence imaging, ELISA and ATAC-sequence data [53].

G. PROMISCUOUS
The database has network-based drug repositioning data with 

information on drugs, proteins and the side effects of every drug. The 
information on protein is from the Unitprot database, while details on 
drugs and side effects are from the SuperDrug and Sider databases, 
incorporated into the LINCS [54].

H. Search Tool for Interacting Chemicals (STITCH)
STITCH has information on target or protein interaction with small 

molecules, collected from PubChem databases and literature studies [55].

I. SuperTarget
SuperTarget is a web resource that carries information on DTIs, 

drug metabolic rate, pathways, and Gene Ontology (GO) terms, as well 
as on adverse medical side effects. The DTI information is sourced 
from PubMed, DrugBank, KEGG, PDB and TTD, and potential drug-
target relationships are extracted from Medline [56].

J. Therapeutic Target Database (TTD)
The Target Therapeutic Database has therapeutic information 

on protein and nucleic acid, assimilated from literature studies and 
miscellaneous databases with DTI data [57].

K. BRENDA -The Comprehensive Enzyme Information System 
(BRENDA)

This is an enzyme database with information on enzyme-ligand 
interaction. The data collected is drawn from literature studies based 
on enzyme nomenclature [58].

L. Drug Central
Drug Central is a Food and Drug Association (FDA)-approved drug 

database. The database incorporates relevant information on drugs in 
the form of structure, bioactivity and regulatory records, which are 
categorized as small molecule active ingredients and biological active 
ingredients [59].

M. Protein Drug Interaction Database (PDID)
Protein Drug Interaction Database (PDID) has DTI for all the 

structural proteome for human beings, with predictions made using 
the ILbind, SMAP and eFindSite software[60]. 

N. Pharos
Pharos is the user interface for giving knowledge about Illuminating 

Druggable Genome (IDG) to the knowledge management center for 
three of the protein families like GPCR, Ion Channel and Kinases [61].
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O. PubChem
PubChem [62] has information about chemical substances and 

their biological activity. The PubChem database incorporates three 
databases–Substances, Compounds and BioAssay. The first stores data 
on chemical information, the second has exclusive chemical structures 
obtained from substances, while the third holds biological information 
on the extracted substances.

P. Super Drug
Super Drug [63] offers information on all drug features collected 

from several databases and incorporated here. The database has 
2-Dimensional and 3-Dimensional structure information on small 
molecule drugs, side effects and drugs pharmacokinetics specifications.

Q. FDA Adverse Event Reporting System (FAERS)
The FDA Adverse Event Reporting System (FAERS) is a database 

with information obtained from adverse events and medication error 
reports submitted to the FDA on side effects, as well as keywords for 
drugs [64].

R. SIDe Effect Resource (SIDER)
SIDER is a database [65] that holds data on marketed medicines and 

their side effect information, including frequency of side effects, and 
also drug and its side effect classification.

S. International Union of Basic and Clinical Pharmacology 
(IUPHAR) / British Pharmacological Society (BPS) -The IUPHAR/
BPS Guide to Pharmacology

The IUPHAR/BPS is considered as a guide to pharmacology [66] 
is an open access knowledge website that provides information 
on licensed drugs and their targets and holds information on small 
molecule drugs.

T. Cancer Drug Resistance Database (CancerDR)
CancerDR offers elaborate information on anti-cancer drugs 

and their pharmacological profiling. CancerDR helps in effective 
personalized cancer therapies and identifies gene-encoding drug 
targets, based on genetic and residual resistance [67].

U. Binding Database (DB)
Binding DB is a binding database that holds the DTI of small 

molecules as well as all the interaction data collected from an array 
of literature studies. This is an extensive database for protein ligand 
binding affinity [68].

V. ZINC is not Commercial (ZINC)
ZINC is the largest database [69] comprising every drug needed 

for new ligand discovery. Information on drugs and the targets they 
can interact with are collected here. ZINC is a major database for 
researchers looking for the chemical composition of their biological 
targets.

W. Psychoactive Drug Screening Program (PDSP)
The Psychoactive Drug Screening Program (PDSP) [70] screens 

compounds with previous reports of pharmacological, biochemical 
and behavioural activity. It is chiefly used to identify novel targets in 
the treatment of mental disorders.

X. A Summary of Databases
Table I, summarizes the general statistical information on every 

database.

V. Qualitative Analysis of Machine Learning 
Techniques for DTI Prediction

Qualitative analysis helps in an understanding of the ML techniques 
involved in DTI predictions, based on the quality and characteristics of 
the methods used. Qualitative analysis outcomes are descriptive, and 
inferences are drawn easily from the data obtained and the analysis of 
DTI prediction is shown in Table III-VII. 

The Yaminishi et al. [71] Bench Mark (BM) dataset has been the 
only one used by many of the researchers for the purpose because it 
incorporates diverse drug and target data to create a new DTI dataset. 
The BM dataset is shown in Table II.

A. Review of Literature for Similarity-Based Methods
Similarity-based methods consider similarities between drugs and 

targets to identify DTIs. Perlman et al. [11] proposed a scheme that 
incorporates multiple drugs and targets similarity to predict DTI using 
the logistic regression SITAR (Similarity-based Inference of drug-
TARgets) framework.  Mei et al. [12] proposed a bipartite local model 
(BLM)-based method to handle the candidate problem of baseline 
BLM-NII (BLM with Neighbor-based Interaction profile Inferring). Van 
Laarhoven and Marichiori [13] developed a weighted nearest neighbor 
(WNN)algorithm that directly uses the GIP (Gaussian interaction 
profile) kernel by drawing up a profile of the interaction score for a 
new drug (WNN-GIP). Shi et al. [14] proposed a method to handle 
missing interactions using a cluster of similar targets that is Super 

TABLE I. Databases Involved in Dti Prediction

S. No Databases No. of 
Targets No. of Drugs No. of 

Interactions
1 ChEMBL 12482 1879206 15504603
2 ChemProt 20000 170000 -
3 DGI db 41100 9495 29783
4 DrugBank 5175 13338 26932
5 KEGG 19711 4948 260000
6 LINCS 1469 41847 -
7 PROMISCUOUS 6548 5258 23702
8 STITCH 9600000 430000 -
9 SuperTarget 6000 196000 330000
10 TTD 3101 34019 -
11 BRENDA 84000 20500 -
12 Drug Central - 4543 -
13 PDID 3746 5100 -
14 Pharos 20244 130166 -
15 PubChem 79622 96157016 -
16 Super Drug 4456 4605 -
17 FAERS - 24842 -
18 SIDER 1430 140064 -
19 IUPHAR/BPS 1396 1105 443
20 Cancer Dr - 148 -
21 Binding DB 7020 489416 1132739
22 Zinc - 20 million -
23 PDSP 738 7449 -

TABLE II. Dataset Used in Dti Prediction

Dataset Targets Drugs DTI
Enzyme 664 445 2926

Ion Channel 204 210 1476
GPCR 95 223 635

Nuclear Receptor 26 54 90
GPCR- G-Protein Coupled Receptor
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TABLE III. Qualitative Analysis of the Articles Using Similarity-Based Methods

Source ML Tech Dataset
Pre processing/ 

Feature 
Extraction

Feature 
Selection Validation Strength Weakness Outcome

Reference  
[11] (2011)

Logistic 
Regression 

(LR)

250 
Proteins, 

315 Drugs
-

Wrapper 
Feature 

Selection
10 Fold CV

Lists the selected 
features

Only 10 features are 
considered

Targets of 307 
drugs are predicted

Reference 
[12] (2012)

Bipartite 
Local 

Model-NII
(BLM-NII)

BM Dataset - -
LOOCV and 
10 Fold CV

NII procedure for 
finding drugs and 

targets

Whenever new drug or 
target is given as input 
it is not considered as 

there is no training data

57 % of DTI has 
been predicted

Reference 
[13] (2013)

Weighted 
Nearest 

Neighbor 
(WNN)

BM Dataset - -
LOOCV and  
5 Fold  CV

Uses regularized least 
square algorithm to 
find the new drug 
based on the old 

drugs

No difference between 
indirect and direct 

targets. These are not 
measured to interact 

with drugs.

Prediction of  
DTI interaction 

which show top 5 
prediction for each 

dataset.

Reference 
[14] (2015)

Super 
Target 

Clustering 
(STC)

BM Dataset - - 5 Fold CV
Finds missing 

interaction using 
cluster of targets.

Considers only about 
missing interaction not 
more about existing DTI

Finds new drugs 
and  targets 

and potential 
interaction

Reference 
[15] (2016)

K-Nearest 
Neighbor 

(KNN)
BM Dataset

Finger print 
extraction for 

drugs
-

5 Fold CV, 
LOOCV

Hubness awareness 
and ensemble size 

gives high accuracy

LOOCV over fits and 
then shifted to 5 Fold 

CV

Improved 
prediction of  

DTIs around 12 
prediction is found

Reference 
[16] (2017)

LPLNI BM Dataset - - LOOCV
Integrating 

similarities of 
different features

Considers only 
fingerprint as features 

for drugs

A promising tool 
for DTI prediction

Reference 
[17] (2017)

Multi-View 
DTI

1253drugs, 
887 targets 

- -
20 trials of 5 

Fold CV
Enrichment analyzes 
of drugs and targets

No details of  
experiments

56 newly identified 
clusters

Reference 
[18]

(2018)

K-Nearest 
Neighbor 

(KNN)
BM Dataset - -

5 trials of 10 
Fold CV

Calculating 
probability based 

weight and similarity 
based  weight for 

targets

Considers only 
Ranking of top several 

integrations of drug and 
targets

34 % better 
prediction than 

previous methods

BM Dataset - Bench Mark dataset, CV- Cross Validation, LOOCV-Leave One Out Cross Validation.

TABLE IV. Qualitative Analysis of the Articles Using Matrix-Based Methods

Source ML Tech Dataset
Pre processing/ 

Feature 
Extraction

Feature 
Selection Validation Strength Weakness Outcome

Reference 
[19] (2009)

BRDTI BM Dataset - -
5 Trials of 
10 Fold CV

Incorporates target 
bias and context 

alignment for drug 
and target similarities

More survey based on 
DTI is to be done for 

better prediction.

DTI leads to Drug 
repurposing and 

adverse drug 
reaction prediction

Reference 
[20] (2012)

KBMF BM Dataset - - 5 Fold CV
Interaction score 

is generated  using 
factorization methods

Better for only 12 low 
dimensional projection

Similarity based 
DTIs.

Reference 
[21] (2017)

MLRE

608 protein, 
326 

drugs, 114 
interactions

Structural view 
and chemical 

view of drug  are 
extracted

- 5 Fold CV
Preserving the point 

wise linear regression
Noisy observation leads 

to disagreement data

Predict interaction 
based on chemical 

view with SVM 
and graph based 

methods

Reference 
[22] (2017)

VB-MK-
LMF

BM Dataset - -
5 Trials of 
10 Fold CV

DTI matrices 
are linked to 

weighted common 
observations

Works well for mid-
sized datasets

DTI predicted

Reference 
[23] (2018)

Pseudo 
SMR

BM Dataset
Extraction of 
Pseudo AAC

- 5 Fold CV

Uses extremely 
randomized tree 
methods and it is 
computationally 
more efficient

Uses only Pseudo AAC 
Descriptors.

Predicted 15 
Potential DTIs.

BM Dataset - Bench Mark Dataset,  CV- Cross Validation, AAC –Amino Acid Composition.
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Target Clustering (STC). Buza K [15] proposed a K-nearest neighbor 
(KNN)-based method with hubness-aware classification and error 
correction to maximize the detrimental effect of bad hubs (EcKNN-
KNN with error correction). Zhang et al. [16] posited a framework that 
develops a drug-drug linear neighbourhood, calculates the similarities, 
and predicts drug-target interaction profile and label propagation 
(LPLNI-Label Propagation with Linear Neighbourhood Information). 
Zhang et al. [17] developed a clustering algorithm by incorporating 
drug and target data from structural and chemical viewpoints with 
existing knowledge of interactions (MDTI- Multiview DTI). Shi and Li 
[18] advanced an improved Bayesian ranking DTI method that adds 
weights for unknown drugs and targets using weighted neighboring 
drugs and targets (WBRDTI–Weighted Bayesian Ranking DTI).

B. Review of Literature for Matrix-Based Methods
Matrix-based methods use matrix similarity for DTI prediction. 

Rendle et al. [19] proposed an algorithm based on the Bayesian 
Personalized Ranking (BPR) matrix factorization which incorporates 
drug and target similarities to predict DTIs (BPRDTI). Gonen [20] 
proposed a method to factorize the matrices with interaction score 
matrix so as to find new drugs and targets and determine their 
interaction using kernelized Bayesian matrix factorization (KBMF). Li 
et al. [21] introduced an algorithm to find a low-rank representation 
embedding (LRE) technique and fix errors in point wise linear 
reconstruction. This was done to obtain a different view of the 
structural and chemical features of drugs and targets as Single view 

TABLE V. Qualitative Analysis of the Articles Using Feature-Based Methods

Source ML Tech Dataset
Pre processing/ 

Feature 
Extraction

Feature 
Selection Validation Strength Weakness Outcome

Reference 
[25] (2011)

Regularized 
Least Square

BM Dataset - -

LOO CV 
and 5 Trials 
of 10 Fold 

CV

Combining GIP with 
target kernel and 

drug kernel

Increase kernel with 
more information about 

DTI

15 known 
interaction was 

predicted

Reference 
[26] (2016)

Krons-
Regularized 
Least Square

BM Dataset
Replaced missing 

values with 
mean of data

- 5 Fold CV

Incorporates both 
known and unknown 
interaction and make 

a general purpose 
learner

Balancing the data is 
not considered

Prediction of 
interval as measure 

of confidence

Reference 
[27] (2016)

Weighted 
SVM

BM Dataset

Structural 
similarity, 

Gene Function 
similarity was 

extracted

- 5 Fold CV

Finds some unlabeled 
sample as negative 

sample and also 
considers positive 
samples beneath 

unlabeled samples

Asks for using structure 
but we cannot get 

structure for all the 
targets

Predicts Interaction 
and listed 3 top 

known interaction

Reference 
[28] (2016)

Ensemble 
learning

5877Drugs
3348Targets
12674DTI

PROFEAT for 
Target

and
Rcpi for Drug

- 5 Fold CV
Ensemble learning to 
address issues of class 

imbalance

Oversampling is done 
which increases noise

Predicted more 
than 20 Known DTI

Reference 
[29] (2017)

Discriminate 
Vector 

Machine
BM Dataset

AAC feature 
were Extracted

Principal 
Component 

Analysis 
(PCA)

5 Fold CV

Uses LBP histogram 
vectors which 

retains evolutionary 
information of amino 

acid

Only AAC information 
is used for prediction

Not listed the 
predicted DTI

Reference 
[30] (2017)

Support 
Vector 

Machine
BM Dataset - - 10 Fold CV

Multiple Kernel 
combination is used 

for prediction
GIP based prediction

Compound-Protein-
Interaction

Reference 
[31] (2017)

REP Tree 
Algorithm

2719 E
1372 IC

630 GPCR
86 NR

- - 10 Fold CV

Considers different 
families of proteins 

by using various 
learning rate

No cross validation is 
done

DTI prediction

Reference 
[32] (2017)

Adaboost BM Dataset

PSSM for target 
and SMILE  

for drug were 
extracted

Sequential 
Forward 
Feature 

Selection 
(SFFS)

5 Fold CV
Balanced Data 

using RUS and CUS 
techniques

Not considered domain 
features

Listed top 10 
known interaction

Reference 
[33] (2018)

Bagging 
based 

ensemble

5877Drugs
3348Targets
12674 DTI

PROFEAT for 
Target

and
Rcpi for Drug

- 10 Fold CV

Considered class 
imbalance and used 

Neighbourhood 
balanced bagging for 

balancing the data 
and active learning 

strategy is used

Not discussed about 
Features

14 out of 16 known 
interactions have 

been detected.

BM dataset - Bench Mark dataset, CV- Cross Validation, LOOCV-Leave One Out Cross Validation, PROFEAT-PROtein FEATures, AAC- Amino Acid Composition, 
Rcpi-R package for extracting features for compound protein interaction..
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LRE and Multiview LRE, respectively (LRE). Bolgar et al. [22] developed 
a method integrating multiple kernels, weights, and graphs, all 
regularized to model the probability of DTI prediction (VB-MK-LMF). 
Huang et al. [23] propounded an extension of the structure activity 
relationship classification by implementing the extremely randomized 
tree (ERT) using the pseudo substitution matrix representation (SMR) 
of the target (Pseudo-SMR). Marta et al. [24] proposes a local model-
agnostic for interaction prediction.

C.  Review of Literature for Feature-Based Methods
Feature-based methods consider drug and target features for DTI 

prediction. Van Laarhoven et al. [25] proposed an algorithm that 
integrates the DTI network information with the Gaussian Interaction 
Profile kernel using the Regularized Least Square (RLS). Ezzat et al. 
[26] developed a framework for DTI prediction using the voting of 
the decision tree, random forest, STACK and Laplacian Eigen base 
classifiers, and also considered imbalanced classes for prediction. 
Nascimento et al. [27] advanced a method that incorporates both 
known and unknown interaction data using the RLS. Lan et al [28] 
developed a framework for DTI prediction by taking unlabeled 
samples using the weighted SVM (PUDT-Positively Unlabeled Drug 
Targets). Li et al. [29] proposed a method to find DTIs as a structure 
activity relationship (SAR) classification with the principal component 
analysis (PCA), using the Discriminative Vector Machine (DVM). 
Ohue et al. [30] proposed an approach that uses virtual screening 
and the Pairwise Kernel Method (PKM). Zhang et al. [31] proposed 

an ensemble-based approach for a random projection ensemble (RPE) 
of the REP tree algorithm (Drug RPE). Rayhan et al. [32] developed a 
model using targets in the form of a matrix (position-specific scoring 
matrix - PSSM) and drug molecules features for DTI prediction 
using the AdaBoost classifier (iDTI-EsBoost). Sharma and Rani [33] 
proposed an ensemble (Bagging-Ensemble) model that uses active 
learning methodology to predict DTIs (BE-DTI). 

D. Review of Literature for Network-Based Methods
These methods use networks of similar drugs and targets for DTI 

prediction. Cheng et al. [34] proposed a bipartite Network Based 
Inference (NBI) method for DTI prediction. Chen et al. [35] developed an 
RWR framework to get potential DTIs using a bipartite graph network 
(NRWRH-Network-based Random Walk with Restart on Heterogenous 
network). Chen et al. [36] used this method for both labelled and 
unlabeled data DTI prediction (NETCBP-Network Consistency-based 
Prediction). Peng et al. [37] proposed a method that incorporates the 
PCA to reduce dimensions and integrate data from multiple drug and 
target sources for DTI prediction (NMIF-Normalized Multi-Information 
Fusion). Seal et al. [38] proposed a model that needs matrix inversion 
and score of relevance between two nodes in a weighted graph of 
DTIs (RWR-Random Walk with Restart). Huang et al. [39] proposed 
a 2-network-based rank algorithm that involves the random walk and 
bipartite graph (IN-RWR-intra network with Random Walk). Ban et al. 
[40] developed a method based on improving the NRLMF algorithm by 
calculating the NRLMF scores as the expected beta distribution values. 

TABLE VI. Qualitative Analysis of the Articles Using Network-Based Methods

Source ML Tech Dataset
Pre processing/ 

Feature 
Extraction

Feature 
Selection Validation Strength Weakness Outcome

Reference 
[34] 

(2012)

Network based 
Inference (NBI)

BM 
Dataset

- - 10 Fold CV
Used a bipartite 

graph  for 
prediction

Imbalanced data is used
5 new DTI were 

predicted

Reference 
[35] 

(2012)

Network-based 
Random Walk 
with Restart on 

the Heterogeneous 
network (NRWRH)

BM 
Dataset

- - LOOCV

Used RWR to get 
potential DTI 
using bipartite 
graph network

Leaves the target 
which has no drug it 
is considered ass zero 

matrix

29  new DTI were 
predicted

Reference 
[36] 

(2013)

Network-
Consistency-based  
Prediction Method 

(Net CBP)

BM 
Dataset

- -
Not 

discussed 
Properly

DTI predicted 
using bipartite 
graph network

Considered as zero 
matrix

Listed out several 
DTI

Reference 
[37] 

(2015)

Normalized  
Multi information 

Fusion

BM 
Dataset

- -
Not 

discussed 
properly

Integrates 
robust PCA 

with biological 
information

In order to improve 
performance more 
negative dataset to 
be built to find the 

interactions.

Predicts 
interaction

Reference 
[38] 

(2015)

Random Walk 
Restart (RWR)

467Targets 
544Drugs

- - -

RWR on 
heterogeneous 
network using 

chemical features

Considered only 
fingerprints features for 

drugs

110 drugs 
predicted for 3419 

targets

Reference 
[39] 

(2018)

IN - Random Walk 
with Restart (RWR)

12015 Drug  
1895445 
Target

-

Principal 
Component 

Analysis 
(PCA)

5 Fold CV
Used both labelled 
and unlabeled data 

for prediction
Data is imbalanced

Predicts 
interaction 

between drug and 
targets

Reference 
[40] 

(2019)

Neighbourhood 
Regularized Logistic 
Matrix Factorization 

(NRLMF)

BM 
Dataset

Calculates 
similarities 

of drugs and 
targets

- 10 Fold CV
Improved using 
rescoring matrix

Not more parameters 
are considered

Predicts 
interaction but 

not listed

BM Dataset - Bench Mark Dataset, CV- Cross Validation, LOOCV-Leave One Out Cross Validation.
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Beta distribution value is calculated using the interaction information 
and NRLMF score (NRLMF-beta).

E.  Review of Literature for Deep Learning-Based Methods
Deep learning-based methods use the drug and target features for 

DTI prediction. Wen et al. [41] proposed a method that takes raw target 
and drug features using a deep belief network (DBN) and predicts DTI 
in drugs approved by the Food and Drug Association (DeepDTIs). 
Ozturk et al. [42] proposed a DTI prediction model using target 
sequences and drug molecule to predict drug target binding affinity 
(DeepDTA). Wang et al [43] developed a computational model using a 
stacked auto encoder for DTI prediction (AUTO-DNP). You et al. [44] 
presented a method based on protein and drug features with LASSO 
regression model in tandem with the deep neural network (DNN) to 
predict DTI (LASSO-DNN). Lee et al. [45] proposed a DTI prediction 
model using local protein residue patterns in DTI (DeepConv-DTI).

VI. Quantitative Analysis of Machine Learning 
Techniques in DTI Prediction

Quantitative analysis is applied to determine the best prediction 
performance method, using different ML techniques with appropriate 
metrics. The prediction method must deal with the steps of data pre-
processing and feature selection, as well as drug and target integration. 
The best machine learning prediction method includes the hyper 
parameters and association index for DTI prediction. Of the various 
ML techniques [11]-[44] available, the best is chosen for prediction. 
Tables X-XIV depict the quantitative analysis of the results of several 
ML methods in DTI prediction that help enhance performance.

A. Performance Metrics
A confusion matrix is used to calculate performance measures from 

test set values in terms of true positives, true negatives, false positives 
and false negatives among classes that are to be classified as integrates 
or not integrates. Table VIII shows the confusion matrix for DTI and 

Table IX the performance metrics used. Integrates here refers to drugs 
that produce a positive DTP result, that is, the integrating drug can be 
used to treat a target it integrates with.  The converse is true with non 
integrates, which refers to drugs that produce a negative DTP result, 
that is, the non integrating drug cannot be used to treat a target it does 
not integrate with. 

TABLE VIII. Confusion Matrix

Integrates Non Integrates
Integrates True Positive False Positive

Non integrates False Negative True Negative

TABLE IX. Performance Metrics Used in DTI Prediction

S. 
No

Metrics 
Used Formula Metrics Description

1. Accuracy (TP+ TN)/(TP+TN+FP+FN)

Accuracy is the ratio 
of correct prediction 

out of total number of 
predictions

2.
Sensitivity/ 

Recall
TP/(TP+FN) Measure of quantity

3. Precision TP/(TF+FP) Measure of quality

4. AUC False Positive vs. True Positive

Curve shows the 
relation between False 

Positive and True 
Positive

5. AUPR Precision vs. Recall
Curve shows the 

relationship between the 
Precision and Recall

6. MCC
Mathew’s Correlation 

Coefficient

7. F1 Score TP/(TP+1/2+TP/(FP+FN)) Harmonic average of 
Precision and Recall

TABLE VII. Qualitative Analysis of the Articles Using Deep Learning-Based Methods

Source ML Tech Dataset
Pre processing/ 

Feature 
Extraction

Feature 
Selection Validation Strength Weakness Outcome

Reference 
[41] 

(2017)
Deep DTI

1520 Targets 
1412 Drugs 

12524 samples
- - 10 Fold CV

Uses DBN and 
Fine tune RBM in 

greedy way.

Only known 
interaction are used

DTI probability 
which are useful for 

drug repurposing

Reference 
[42] 

(2018)
Deep DTA

442 Targets 68 
Drugs 30056 

DTI
- -

Concordance 
index

Creating CNN 
blocks of targets, 

drugs

Predefined features 
are considered for 

CNN blocks of protein

Predicts binding 
affinity

Reference 
[43] 

(2018)
AUTO DNP BM Dataset 

PSSM for Target 
and PubChem 
fingerprint has 
taken for drugs

- 5 Fold CV
Uses Auto encoder 

blocks to create 
Deep NN

Only CTD descriptors 
are considered.

Predicts interaction

Reference 
[44] 

(2019)

LASSO – 
DNN

3546 Proteins 
5834 Drugs 
14792 DTI

- - 10 Fold CV

Considers 
Tripeptide 

composition 
feature of proteins

More number of 
functions are used.

Diseases treated 
by drug and its 

association with 
breast cancer is listed

Reference 
[45] 

(2019)

Deep 
Convolution-

DTI

3675Targets 
11950Drugs 
32,568 DTI

-

t-distributed  
stochastic 
neighbor 

embedding    
(t-SNE) 

5 Fold CV 
Similarity acts 

as a informative 
descriptors

Considers only CTD 
descriptors of targets

Predicts interaction

BM Dataset - Bench Mark Dataset, CV- Cross Validation, CTD – Composition, Transition and Distribution, PSSM - Position Specific Scoring Matrix,  PubChem 
– PubChem is a Chemical Information database.
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TABLE X. Quantitative Analysis of the Similarity-Based Methods Used in DTI Prediction

Similarity Based Methods

S. No ML Tech.
Accuracy Sensitivity/ Recall Precision/nDCG AUC AUPR/MAP

E IC G N E IC G N E IC G N E IC G N E IC G N

1. LR - - - - - - - - - - - - 92.2 92.7 94.6 86.3 87.7 88.9 93.9 85.1

2. BLM-NII - - - - - - - - - - - - 98.8 99.0 98.4 98.1 92.9 95.0 86.5 86.6

3. WNN - - - - - - - - - - - - 81.9 75.5 84.8 78.8 29.9 24.9 30.8 43.4

4. STC - - - - - - - - - - - - 81.2 81.1 87.5 87.1 38.5 36.7 41.4 53.3

5. KNN - - - - - - - - - - - - 95.4 97.2 97.2 - 83.7 85.5 62.8 -

6. LPLNI - - - - - - - - - - - - 97.0 97.6 99.4 99.1 90.6 94.6 96.8 94.9

7.
Multi-

view DTI
- - - - - - - - - - - - 86.9 - - - -

8. KNN - - - - - - - -
nDCG

98.3 98.4 96.2 94.8
MAP

90.8 95.9 94.0 94.5 88.0 94.2 91.5 92.7

E-Enzyme, IC-Ion Channel, G-G-Protein Coupled Receptor (GPCR), N-Nuclear Receptor, AUC-Area Under Curve, AUPR-Area Under Precision Recall, nDCG-
normalized Discounted Cumulative Gain PPV-Positive Predicted Values, MCC-Mathew’s Correlation Coefficient, MAP-Mean Average Precision.

TABLE X. Quantitative Analysis of the Matrix-Based Methods Used in DTI Prediction

Matrix based Methods

S. 
No ML Tech.

Accuracy Sensitivity/Recall Precision/nDCG AUC AUPR/MCC

E IC G N E IC G N E IC G N E IC G N E IC G N

1. BRDTI - - - - - - - -
nDCG

98.1 98.2 95.5 92.3 - - - -
89.7 95.3 92.9 94.8

2. KBMF - - - - - - - - - - - - 83.2 79.9 85.7 82.4 - - - -

3. MVLRE - - - - - - - - - - - - 65.0 51.4   61.7 - - - - -

4. VB-MK LMF - - - - - - - - - - - - 98.7 98.9 97.6 95.7 89.0 91.0 80.0 77.0

5.
Pseudo 
SMR

89.4 87.8 82.9 83.3 89.5 87.9 82.1 95.2 90.2 87.8 82.1 76.3 96.0 93.8 90.5 96.3
MCC

81.8 78.7 71.8 71.6

E-Enzyme, IC- Ion Channel, G- G-Protein Coupled Receptor (GPCR), N- Nuclear Receptor, AUC-Area Under Curve, AUPR- Area Under Precision Recall, PPV- 
Positive Predicted Values, MCC- Mathew’s Correlation Coefficient, nDCG-normalized Discounted Cumulative Gain.

TABLE XII. Quantitative Analysis of the Feature-Based Methods Used in DTI Prediction

Feature Based Methods

S. 
No ML Tech.

Accuracy/PPV/MCC/
F1 Score Sensitivity/Recall Precision AUC AUPR/MCC/ F1 Score

E IC G N E IC G N E IC G N E IC G N E IC G N

1. RLS - - - - - - - - - - - - 98.2 98.5 94.5 88.7 88.1 91.8 70.0 60.4

2. Krons-RLS - - - - - - - - - - - - 97.9 98.7 95.1 92.4 - - - -

3.
Weighted 

SVM
PPV

24.0 14.0 16.0 7.0 99.0 99.0 94.0 97.0 88.4 83.1 87.8 88.5 - - - -
36.0 74.0 58.0 64.0

4.
Ensemble 
Learning

- - - - - - - - - - - - 90.0 - - - -

5. DVM 93.1 91.7 89.3 92.2 92.9 92.6 89.2 96.6 93.1 90.9 89.4 88.6 92.8 91.7 88.56 93.00
MCC

86.3 83.4 78.77 84.80

6. REP Tree 94.0 91.0 88.0 88.0 92.0 89.0 81.0 87.0 90.0 86.0 83.0 79.0 98.0 97.0 94.0 93.0
F1 Score

91.0 88.0 82.0 83.0

7. Adaboost

MCC

85.0 84.0 84.0 87.0 85.0 78.0 80.0 92.0 96.0 93.0 93.0 92.0 68.0 48.0 50.0 79.0
18.0 29.0 26.0 22.0

F1 Score
10.0 20.0 19.0 24.0

8. BE-DTI - 88.0 - 92.7 88.6

E-Enzyme, IC- Ion Channel, G- G-Protein Coupled Receptor (GPCR), N- Nuclear Receptor, AUC-Area Under Curve, AUPR- Area Under Precision Recall, PPV- 
Positive Predicted Values, MCC- Mathew’s Correlation Coefficient.
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TABLE XIII. Quantitative Analysis of the Network-Based Methods Used in DTI Prediction

Network Based Methods

S. 
No ML Tech.

Accuracy Sensitivity/Recall Precision AUC AUPR

E IC G N E IC G N E IC G N E IC G N E IC G N

1. NBI - - - - 93.5 98.1 94.8 85.1 97.5 97.6 94.6 83.8 - - - - - - - -

2. NRWRH - - - - 85.0 - - - 99.0 - - - - - - - - - - -

3. Net CBP - - - - - - - - - - - - 82.5 80.3 82.3 83.9 - - - -

4. NMIF - - - - - - - - - - - - 83.0 82.0 82.0 80.0 81.0 78.0 74.0 71.0

5. RWR - - - - - - - - - - - - 70.9 - - - -

6.
IN-RWR/
Corank

82.2 - - - - - - - - 95.1 - - - -

7. NRLMF-beta - - - - - - - - - - - - 99.0 99.0 97.5 96.4 89.7 91.3 75.5 75.5

E-Enzyme, IC- Ion Channel, G- G-Protein Coupled Receptor (GPCR), N- Nuclear Receptor, AUC-Area Under Curve, AUPR- Area Under Precision Recall, PPV- 
Positive Predicted Values, MCC- Mathew’s Correlation Coefficient.

TABLE XIV. Quantitative Analysis of the Deep Learning-Based Methods Used in DTI Prediction

Deep Learning based Methods

S. 
No ML Tech.

Accuracy Sensitivity/Recall Precision AUC AUPR/MCC

E IC G N E IC G N E IC G N E IC G N E IC G N

1. Deep DTI 85.8 82.2 - 91.5 -

2. Deep DTA - - - - - - - - - - - - - - - - 71.4

3. AUTO DNP 94.1 91.1 86.6 80.5 95.5 95.6 81.6 76.2 92.9 87.7 91.0 84.1 94.2 91.0 87.4 81.7
MCC

88.3 82.7 73.9 61.8

4. LASSO-DNN 81.0 - - - - - - - - 89.0 - - - -

5.
Deep 

Convolution 
DTI

75.0 85.0 70.0 80.0 - - - -

E-Enzyme, IC- Ion Channel, G- G-Protein Coupled Receptor (GPCR), N- Nuclear Receptor, AUC-Area Under Curve, AUPR- Area Under Precision Recall, PPV- 
Positive Predicted Values,  MCC- Mathew’s Correlation Coefficient.

VII. Discussion

The analysis shows that the chemogenomics-based approach to 
DTI prediction is ideally suited to interaction prediction. A review 
of the qualitative and quantitative analyses offers an overview of the 
dataset, preprocessing, feature selection techniques, validation and 
ML classification techniques used in DTI prediction, all of which are 
discussed in this section.

A. The Dataset 
The benchmark Yaminishi et al. dataset [71] is invariably used in 

DTI prediction, with its four enzyme (E), ion channel (IC), G-protein 
coupled receptor (GPCR) and nuclear receptor (NR) classes and the 
DTI positive pairs of each class. Apart from the benchmark dataset 
above, others are used as well [11], [17], [21], [26], [31]. Deep learning-
based prediction works with more dynamic data. An attempt has been 
made in [44] to construct a negative DTI dataset, which is significant 
in that it facilitates the assimilation of targets not taken into the 
prediction process. The number of instances used, which ranges from 
250 to 5500, may be increased or decreased, depending on the purpose 
of the research.

B. Preprocessing and Balancing Techniques
Major issues in DTI prediction are brought on by the data obtained 

from miscellaneous sources, which may have a different range of 
values or none at all. Missing values from known data are inferred, 
based on the observed values in the data structure. Preprocessing 

techniques are, generally speaking, not used on the data because they 
are curated when collected from different sources. When the data are 
incorporated, however, values may go missing or are replaced, and 
there is thus a need for preprocessing. The preprocessing employed 
in [26] to replace missing values uses the mean values of the data. 
Employing preprocessing techniques like data cleaning enhances the 
quality of the data for further processing.

From the qualitative analysis tables III-VII, it is found that the 
dataset used in the prediction process is unbalanced and may affect 
the performance of the classifiers. Balancing techniques include 
balancing the data using oversampling [26], [32], [33], though it 
increases negative outcomes. For DTI prediction, undersampling can 
be suggested to improve the positive outcomes.

C. Feature Extraction Methods
Feature Extraction is done to reduce the dimensionality of the input 

features by creating a new set of features from the original features 
which gains the important features of the data and also reduces the 
dimension of the features, which increases the speed of learning 
and generalization of machine learning. It can also be done through 
various tools available for it. In drug discovery researchers use several 
tools for feature extraction, the trending tools are PROFEAT and 
Protr for protein feature extraction, Rcpi and PADEL Descriptor for 
drug feature extraction. The research work which uses these tools for 
feature extraction are [28], [33]. 
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D. Feature Selection Methods
Feature selection is of fundamental importance, because the 

extracted features increase data dimensions and result in problems 
with over fitting. Feature selection techniques reduce the number of 
features by selecting the most important ones from the given input. It 
is clear from the analysis that target features can be categorized into 
three –structural, evolutionary and sequence. While the drug feature 
is structural, the number of target features considered varies from 
1080 to 1498. Likewise, drug features vary, depending on whether they 
are 1D or 2D and on the fingerprint of the drugs selected. Tables III-
VII in [11]-[18] that showcase similarity-based methods only consider 
similarities between drug-drug, target-target and drug-target for DTI 
prediction, which means that only similar drugs interact with similar 
targets. So in similarity based methods, drug-based and target-based 
features are considered unimportant for DTI prediction. Further, 
similarity-based methods do not handle large-scale datasets. Matrix-
based methods [19]-[23] consider only drug and target similarities, and 
no other features are taken for prediction. Also, matrix-based methods 
only handle small-scale datasets. Of the feature-based methods used in 
[25]-[33], the Sequential Forward Feature Selection (SFFS) technique 
is applied in [33], where the different feature sets considered are 
added sequentially, one by one, to evaluate the dataset. It is observed 
that the structural feature, which is one of the most influential target 
features, plays a significant role in DTI prediction, and may vary with 
the dataset taken. Finding the most influential features is important 
to feature selection. The network-based methods in [34]-[40] take 
different sets of features and handle them appropriately by selecting 
the most important drug and target features. Compact feature learning 
is undertaken in [39] by applying the Diffusion Component Analysis 
(DCA), which constructs a low-dimensional vector representation for 
each drug and target using diffusion distribution. It helps find the best 
interpretable features. The deep learning-based methods discussed 
[41]-[45] use the t-distributed Stochastic Neighbor Embedding (t-SNE) 
technique to reduce input feature dimensionality. Deep learning-
based methods consider dynamic data and dynamic features. The 
Convolution Neural Network (CNN) used in [45] handles features 
with ease and finds the most potent ones. Given that deep learning-
based methods deal with large-scale datasets well, future research that 
applies deep learning will execute DTI prediction better. 

E. Validation Methods
The qualitative analysis depicts that the 10-fold Cross-Validation 

(CV) and 5-fold cross-validation offer better results than other CV 
techniques like the Leave-One-Out CV (LOOCV) and jackknife. 
Approaches using the LOOCV have problems with over fitting. DTI 
predictions are evaluated using AUC and AUPR values. The AUC 
values of the classifiers show better results when the 10-fold CV is 
used to validate the methods. AUC is chosen because it distinguishes 
between classes and validates the model’s capacity even when the 
dataset is imbalanced.

F. ML Techniques Engaged in DTI Prediction
The qualitative analysis table III-VII, depicts the various classifiers 

used, one outclasses the rest at DTI prediction.  Ranking algorithms 
like Bayesian ranking are used to rank DTI [20]. The SVM [19], [22] 
classifier, which handles target and drug features by calculating them 
separately and reducing prediction complexity  cannot determine the 
relationship between the features and may produce a large number 
of false positives. The KNN [18], [20] falls short, performance-wise, 
in its inability to handle features and large-scale datasets. Ensemble 
learning [27] handles large-scale and high-dimensional data. The 
Adaboost classifier separates the data and classifies them to get the 
most appropriate features [32]. The decision tree manages missing 
data thoroughly and uses diversity to learn features based on instances 

for improved accuracy [33]. Logistic regression [11], [16] operates data 
integration strategies effectively. The DVM [29] influences features 
strongly in its handling of outliers. As far as feature-based methods 
are concerned, the random forest outperforms the rest, while the 
regularized least square (RLS) performs well in tandem with more 
influential features.  In terms of performance, the WBR-DTI, VB-MK-
LMF, NRLMF-beta and CNN find the best features for DTI prediction. 

From the quantitative analysis table X-XIV, the progress made is 
evaluated using AUC values, with marked improvements in the SVM 
from 61.7% [19] to 96.34% [22], the KNN from 92.3% [18] to 95.4% [20], 
and LR from 85.1% [11] to 95.32% [16]. Among the classifiers used 
in DTI prediction, the SVM gives the best prediction results with an 
improvement of 34.64%. The random forest and decision tree used in 
ensemble learning give an AUC value of 90%. Adaptive Boosting and 
RLS give AUC values of 88.7% and 97%, respectively.  The WBR-DTI 
and VB-MK-LMF give an AUC value of 98%, while the NRLMF-beta 
gives 96%. 

However, the results are based on the data given as input. The 
new model developed may perform poorly, with imbalanced data 
and missing values. The qualitative analysis tables III-VII show that 
the dataset has more negative than positive predictions, owing to the 
nature of the dataset used for DTI prediction. The quantitative analysis 
tables X-XIV depict that matrix factorization-based methods perform 
best for DTI prediction, though deep learning-based methods handle 
large-scale data and find the most influential features and some of the 
papers gives light to other process like detecting adverse reaction of 
drugs [72]. This review has thus laid out a thorough understanding 
of datasets, feature selection methods and validations, as well as a 
comparison of the classifiers used for DTI prediction 

VIII. Conclusion and Future Scope

It is concluded from the review that much research has focused 
chiefly on chemogenomics, and this is because DTI based on drug and 
target features and similarities may be found without their structures. 
The method works well by finding the most influential features 
using a range of classifiers for DTI prediction. The classifiers use 
only known static interaction for training the model, given that the 
interaction data is static. Though static data has largely been used as 
a benchmark dataset for interaction prediction, dynamic data may be 
considered so the problem of new DTI is resolved. Several studies have 
only considered target features (like the AAC, CTD and pseudo AAC) 
and the PubChem fingerprint for drugs. There are, therefore, plenty of 
research opportunities to predict drugs using the influence of all the 
features. Influential features may vary from one technique to another. 
There is, however, a delay in finding influential features, since one 
feature may not be as important for prediction as another. More data 
are to be considered for finding the most influential features, which 
is possible with the introduction of big data for prediction. The ML 
techniques used by the deep learning-based and matrix-based methods 
were found to predict DTI better than others. It is recommended, 
considering the above, that future researchers focus on building a 
negative dataset for interaction prediction. Feature scaling or feature 
engineering techniques may be applied to enhance the dataset. New 
databases can be created by collecting data from numerous sources 
and incorporating appropriate parameters or influential features for 
future research. Further, future models developed for DTI prediction 
must consider every feature for drug prediction. The model developed, 
based on ML techniques, should be able to update information on 
drugs and targets constantly for new interaction prediction. Thus, the 
model must be able to predict interaction, based on prior knowledge, 
without having to be trained on every occasion. Such a model is likely 
to offer the best interaction prediction.
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