
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº6

- 120 -

Please cite this article as:
M. Deore, M. Tarambale, J. R. R. Kumar, S. Sakhare, “GRASE: Granulometry Analysis With Semi Eager Classifier to Detect Malwareˮ, International Journal
of Interactive Multimedia and Artificial Intelligence, vol. 8, no. 6, pp. 120-134, 2024, http://dx.doi.org/10.9781/ijimai.2023.12.002

Keywords

Granulometry Analysis,
Malware, Semi Eager
Classification (Semi-E),
Static and Dynamic
Analysis.

Abstract

Technological advancement in communication leading to 5G, motivates everyone to get connected to the internet
including ‘Devices’, a technology named Web of Things (WoT). The community benefits from this large-scale
network which allows monitoring and controlling of physical devices. But many times, it costs the security as
MALicious softWARE (MalWare) developers try to invade the network, as for them, these devices are like a ‘backdoor’
providing them easy ‘entry’. To stop invaders from entering the network, identifying malware and its variants
is of great significance for cyberspace. Traditional methods of malware detection like static and dynamic ones,
detect the malware but lack against new techniques used by malware developers like obfuscation, polymorphism
and encryption. A machine learning approach to detect malware, where the classifier is trained with handcrafted
features, is not potent against these techniques and asks for efforts to put in for the feature engineering. The paper
proposes a malware classification using a visualization methodology wherein the disassembled malware code is
transformed into grey images. It presents the efficacy of Granulometry texture analysis technique for improving
malware classification. Furthermore, a Semi Eager (SemiE) classifier, which is a combination of eager learning and
lazy learning technique, is used to get robust classification of malware families. The outcome of the experiment is
promising since the proposed technique requires less training time to learn the semantics of higher-level malicious
behaviours. Identifying the malware (testing phase) is also done faster. A benchmark database like malimg and
Microsoft Malware Classification challenge (BIG-2015) has been utilized to analyse the performance of the system.
An overall average classification accuracy of 99.03 and 99.11% is achieved, respectively.

DOI: 10.9781/ijimai.2023.12.002

GRASE: Granulometry Analysis With Semi Eager
Classifier to Detect Malware
Mahendra Deore1*, Manoj Tarambale2, Jambi Ratna Raja Kumar3, Sachin Sakhare4

1 Department of Computer Engineering, MKSSS’s Cummins College of Engineering for Women, Pune-411052 (India)
2 Electrical Engineering Department, PVG’s COET and GKP IOM, Pune- 411009 (India)
3 Department of Computer Engineering, Genba Sopanrao Moze College of Engineering, Pune-411045 (India)
4 Department of Computer Engineering, Vishwakarma Institute of Information Technology, Pune
411048 (India)

* Corresponding author. mdeore83@gmail.com

Received 26 February 2023 | Accepted 13 November 2023 | Early Access 12 December 2023

I. Introduction

Malicious software is baleful to all the devices connected to an
internet, irrespective of the platform i.e., windows on laptop

or android in a mobile. Presently android applications are growing
exponentially to the scale of approximately 5 million apps in Google
play as of May 2021 surpassing 2.99 million in the year 20201. In
parallel, malicious apps are also increasingly creating threats to mobile
based financial transactions, taking control over mobile cameras,
and misusing the same. According to the survey done by AV-TEST
institute, there are approximately 1214.76 million malicious apps in
the year 2021. Everyday AV-TEST registers approximately 350,000 new

1 https://www.statista.com/statistics/266210/number-of-available-applications
-in-the-google-play-store/

malicious apps and potentially unwanted applications2. To cope with
the security threats various techniques for malware detection have
been proposed by the researchers. It has been found that Machine
Learning (ML) based detection technique is one of the efficient
methods to opt for Malware Detection System (MDS). ML based MDS
is comprehensive, detects malware accurately and less dependency
on human experts which is normally required in traditional MD
techniques. Thus, ML techniques are found to be more suitable for
present scenarios where malicious software is increasing day by day.

Traditionally, the ML technique is feature vector based in which
important characteristics of malware are extricated and used for
identifying the same in a real time system. Static and dynamic are the
two primary feature sources which describe malware characteristics.

2 https://www.av-test.org/en/statistics/malware/

Regular Issue

- 121 -

Both the analysis techniques can be applied to various kinds of
executable files like PE, ELF, DEX etc., of different processors and
operating systems (OS) such as Microsoft Windows, Linux, Android, etc.

The Static Analysis (SA) of malware software is done without the
code being executed [1]. In SA, features are extracted after unpacking
the executable in advance. Examples of static features are, OPCODE
(Operation CODE) frequency distribution, control or data flow graph,
syntactic library call, byte-sequence n-grams, string signature etc.
Static features can be extracted from an image, sound, native code,
and byte code.

In Dynamic Analysis (DA) run time behavior of malware executable
is monitored. Due to this code is executed by using controlled
environments like sandbox, emulator, simulator, virtual machine, etc.
Dynamic features are extracted from sensitive function calls, variable
value tracking, code execution path, log records and other behavior of
the code when the same is being executed. Normally, analysis of the
code is done by different tools like Process monitor (.pmon), Capture
Bat, poison IVY, etc. The report generated from the tool is extensive
and in depth, requiring human interpretation. Automated analysis of
the report can be achieved but with huge computational complexities.
Therefore, it is time consuming [2].

SA is preferred due to reliable detection efficiency, full code
coverage, unperceived by malware code and simplicity to generate
generic fingerprint of the malware code. In MDS one can extract
SA features which will be input to machine learning algorithms
for training the system. But due to the introduction of Deep Neural
Network (DNN) architecture, huge amounts of data, maybe a vector
matrix or an image, can be given as an input for training the network.
The next section discusses MDS approach based on an image.

A. Visual Analytic Technique to Solve Challenges in MDS
The malware executable is a binary file, and it can be represented

as strings of ones and zeros. A string being an array of hexadecimal
values can be reshaped in matrix form and can be viewed as a grayscale
image. The technique is Visual Analytic Techniques (VAT) and thus,
MD can be put into an image recognition problem. VAT is mostly used
for documents where the files are huge and for image analysis where
the data is massive. Therefore, the technique is suitable to be used for
computer security, as malware attacks are almost always in thousands
at any given time.

There are four motivational factors to select VAT. Firstly, the image
classification techniques are mature and furthermore it is faster [3].
The second point deals with the mindset of a malware developer. They
work hard to hide the code and simultaneously come up with variants of
malware; normally they just utilize the old code. Meghna Dhalaria et al.
[4] use a robust set of features from static and dynamic malware analysis
for creating two datasets i.e., binary, and multiclass (family) classification
datasets. In such conditions, for a single malware family, the deviation
between two or more gray scale images will be very less which opens
a huge number of algorithms based on Similarity Mining Machine
Learning (SMML). Thirdly, neither disassembly nor code execution is
required for classification based on visualization. Finally, VAT for MD
does not require code analysis and it is resilient to obfuscation techniques
like polymorphism, packing and section encryption. Samples of malware
images are given in Fig. 4. From the images we can conclude that the
texture of images of malware families is different. So, texture-based
analysis will be a more suitable solution for MD. The next section
describes a texture-based approach which is explored in this paper.

B. Granulometry Based Texture Analysis of a Gray Scale
Malware Image

Granularity is the random optical texture of an image. In an image,
pixels are considered as ‘Grains’. Extracting spatial features such as

shape and size from the image is more complex as compared to extracting
textural features which does not require any type of segmentation.
Researchers have proved that classification accuracy significantly
increases if only textural information of an image is taken into
consideration. Texture analysis methods are grey level co-occurrence
matrix (GLCM), Markov random fields, Laplace filters, discrete wavelet
transformation, fractal analysis and GRanulometric Analysis (GRA).

GRA is lesser known, but its significance was proved by Kupidura [5]
and Skullmowska [6]. Morphological closing and opening operations
as well as measuring the difference between successive images is the
base of GRA. This characteristic permits the quantification of different
size particles in an image [7]. Haas et al. [8] introduced this technique.
Dougherty et al. [9] introduced methods of local analysis which allows
assignment of texture values to individual pixels. This feature motivated
researchers to use this technique for satellite image analysis. On the
similar line we used GRA because in the gray scale malware image,
each and every pixel is a malware code byte which is important for
the malware family analysis. Thus, GRA provides pixel level analysis.

To the best of our knowledge GRA has not been used till date for
analyzing malware images therefore motivating us to work on the
same. In ML, feature extraction block and classifier block, both are of
utmost importance. Therefore, after finalizing the textural feature for
the proposed work the next part describes the classifier used for MDS.

C. Semi Eager (SemiE) Classifier
The task of the classifier is to accurately predict a malware family

group of the malware input captured by the system. The learning
process is the base of the classifier. Lazy and Eager learning are two
types of techniques used in machine learning.

Conditional Random Field (CRF), Support Vector Machine (SVM)
and Artificial Neural Network (ANN) are Eager Learning (EL)
algorithms. The disadvantages of EL are as follows. The first is the
high training time cost e.g., training time for SVM is O(n3), where n
is the number of training instances. The second is the drifting and
information loss, leading to over fitting or under fitting risk. The
reason is that it computes global models after analyzing prediction
query. Finally, there is impact of global distribution on full dataset
instead of local behavior of unpredicted targets.

Lazy Learning (LL) or delayed learning is instance based where it
memorizes present training examples and waits for the new instance
to occur. Thus, in this method instead of estimating the entire instance
space it estimates only the different and local instances. Locally Weighted
Regression (LWR) and KNN calculate distance to each training example
for predicting new instances, thus it follows LL approach. A. Zakai et al.
[10] put forth that for the convergence of ML models, local behavior is
important. LL can commit a plentiful set of hypotheses. The drawback
of LL is, despite no training overhead, prediction time complexity is
more i.e., O(n), where n is the number of training examples. The SemiE
learning algorithm overcomes the disadvantages of both the training
techniques without any compromise of the advantages.

This paper proposes a GRASP MDS architecture consisting of a
SemiE learning network for accurate detection and classification of
malware families making use of image-based approaches. A benchmark
database from Kaggle and malimg is utilized to assess the performance
of the system. Features will be extracted from the greyscale image of
different malware families and will be trained using SemiE learning.

The primary contribution of the research work is as follows:

1. To provide critical overview of related work based on VAT (image-
based).

2. To introduce and extract texture-based feature i.e., GRanulometric
Analysis (GRA).

3. To compute Similarity based statistical parameters.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº6

- 122 -

4. Consideration of prominent static features e.g., string signature,
byte-sequence, N-grams, OPCODE.

5. To introduce and apply SemiE based classifier.

6. To integrate feature and classifier to present proposed GRASE
model which combines texture-based analysis with SemiE
classifier for MD.

The above specified combination i.e., granulometric analysis with
SemiE classifier, to the best of our knowledge, has not been assessed
by the researchers.

This part provides the structured organization of the paper. Section
II describes related work to the paper topic as well as GRA techniques
used by other researchers in different domains. It also introduces the
SemiE classifier. The section also explores varieties of techniques
proposed by researchers which will help in formulating the problem
statement. In Section III GRASE, the model of the proposed work, has
been presented. Feature vector formation of granulometry feature
and SemiE classifier mathematical model is described in this section.
Section IV provides details about the experimental setup. Section
V elaborates experimental results. The system performance of the
proposed model is presented in Section VI. The overall conclusion is
presented in Section VII.

II. Related Work

This section discusses various features and classification methods
investigated by researchers in image-based techniques. It also describes
the use of GRA for varieties of applications.

A. Image Based Method
Key benefits of representing malware executable as a 2D image

are as follows. Firstly, once the similarity space has been formed, the
data dimension does not affect processing. Secondly, it forms equally
important clusters and finally, for the clear visualization one can
display the similar clusters adjacent to each other [11] - [13].

Malware analysis using VAT with implementation of Self-
Organizing Map (SOM) algorithm was proposed by Yoo [14]. S. Foresti
[15] demonstrated usage of VAT to represent information like time
(‘when’), IP address (‘where’), Data (‘what’) and estimated distances to
other hosts. The first effort in the direction of visualization technique
to visualize binary files for malware detection was done in 2008 [16].
Quist et al. used Ether Hypervisor framework to track and visually
represent overall program flow by performing DA [17]. They named
the DA framework VERA. Brute Force attack on Secure Shell (SSH)
was identified using the VAT by Shiravi et al. [18] and N. Diakopoulos
et al. [19]. They represented details of User IDs, Internet Protocol (IP)
addresses and various anomalies with the help of different colours.
Thus, large network packets were displayed using VAT with which
security analysts were able to identify the minuscule details with
the help of zoom option. Trinius et al. [20] proposed a novel concept
of Malware Instruction SeT (MIST) for monitoring malware. They
proposed the use of CW Sandbox for collecting information regarding
performed actions and API calls. They used VAT to represent distance
matrices of the features for the five malwares.

Further improvement in malware detection was observed when
researchers started presenting binary executable sections as grayscale
images. These images were used to present detailed structure of
malware and even capable of showing small changes in the code. L.
Nataraj et al. [21] put forth that the texture of a grey scale malware
image can be used to identify similar patterns of the binary code.

Conti et al. [22] presented ‘Byte view’ visualization where each
byte corresponds to a ‘single’ pixel of an image. The idea is feasible
as image pixel and code byte value has the same range i.e., 00 to FF

hexadecimal corresponding to different levels of gray scale. So, if the
base malware code sequence is the same then it will produce similar
images. They also introduced ‘Dot Plot’ visualization for comparing
two images. This presentation helps to identify the presence of similar
byte sequences. L. Nataraj et al. [21] visually observed that malware
grey scale images were distinct for the different malware families and
there was similarity in images for single malware families. Therefore,
they extracted image texture-based features (GIST) and used KNN
classifiers to classify different malware families. They achieved good
average accuracy along with increased speed of malware detection. On
a similar line Kancherla et al. [23] used byte plot (image of executable)
and achieved 95% accuracy using SVM classifier. Vasanet. al. [24]
classified malware images using Convolutional Neural Network
(CNN) and Narayan et. al. [25] used Deep Neural Network (DNN).

To detect Trojan, Tian et al. [26] proposed Function Length
Frequency (FLF) algorithm. Variable Length Instruction Sequences
(VLIS) with ML for malware detection was proposed by Zolkipli [27].
Static Analyzer for Vicious Executable (SAVE) and Disassembled
Code (MEDiC) were the two models suggested by Shankarapani et
al. [28] for malware detection. The techniques were robust to code
obfuscation; thus, results were promising.

Kong et al. [29] used L1 regularized technique to select the best
feature from the set of features like PE header, disassembly code and
n-gram. They evaluated system performance by using varieties of
classifiers like KNN, SVM, Naïve Bayes (NB) and decision tree. They
also figured out that PE header features are more prominent in MD.

Santos et al. [30] worked specifically on OPCODE. They tried to
relate each OPCODE and calculated OPCODE sequence frequency.
They used the same four classifiers used by Kong [29] to evaluate
system performance.

Based on the work done by Trinius [20], shaid et al., [98] proposed
DA based MDS by observing behavior of malware. They collected
behavioral patterns for the operating system resources and API call
sequences; and presented the same using color map. They found
similarities between these color images using statistical methods. But
collecting behavioral patterns is time consuming. K. han et al. [31]
proposed hybrid MDS which extracts API calls and OPCODE sequences
only. Image matrices were prepared from OPCODE sequences and
further given to the classifier for the training purpose. Execution
traces were extracted dynamically to avoid binary transformation
strategies. However, the method was good for the small-scale MD.

For large-scale malware detection, researchers focused on similarity.
According to [32]-[33] similarity should be calculated between all
the pairs of points based on Euclidean distance. Maximum similarity
corresponds to minimum distance. Normally, similarity patterns can be
checked using 2D VAT like projection and semantic orientation [34]-
[36]. Windows PE binary file was converted to grayscale image by Han
et al. [20]. They calculated entropy of each and every row of an image
using the Entropy Graph Generator (EGG). MD was performed based
on similarity of the present file with the original binary file. Arefkhaniet
et al. [37] proposed an image processing technique i.e., Local Sensitive
Hashing for classifying similar malware images having high probability.
Grey scale image was prepared by disassembling binary executable into
OPCODE sequences [38]. They first reduced dimensionality using PCA
and then used KNN to classify the malware images.

S. Rezaei [39] used similarity measurements by comparing
OPCODE strings of malware files and tried to reduce detection
time. Colored based VAT for analyzing malware attack chronology
was used by Venkatraman [40], Zhang [41] and Wylie Shanks [42].
Successful system connection was demonstrated by them. J. Zhang
et al. [9] extracted local texture features of grayscale image as well
as OPCODE instructions of disassembly file, to train Random Forest

Regular Issue

- 123 -

(RF) classification model. Shiqui et al. [43] extracted two features i.e.,
texture of malicious code and the frequency of instructions in the
code. These features were used to train SoftMax classifiers and stacked
auto encoders. Liu et al. [44] proposed enhancement of information
density of malware images, where the ‘.text” section of malware code
is visualized. To improve accuracy Wuechner et al. [45] proposed MDS
based on data compression mining on the data flow graph.

The overall extract from the above discussion is that the malware
grey scale image analysis is not affected by code obfuscation, therefore
opted by many researchers. In addition to that, texture is an important
parameter for the grey scale image which can be used to find out
similarity between malware images.

The next section provides related work done in Granulometry
analysis and shows that the technique is versatile to image processing.

B. Granulometry Analysis
GRA concept was introduced in section I.B. This technique

covers spatial as well as spectral characteristics of the malware grey
scale image. GRA accuracy for classifying satellite images has been
demonstrated by Kupidura et al. [5]. Basic GRA technique is based on
morphological opening and closing. Extension of basic GRA is with a
Multiple Structuring Element (MSE). Basic GRA and GRA with MSE
have slightly different properties. So, it can give different results. GRA
is also used to find the distribution of object sizes of an image [46]. We
are proposing extraction of black patches from the grey scale image
using successive closings by reconstruction.

GRA profiles (morphological profiles) can be used for image
classification [47]. Thus, the technique is useful for malware family
identification. Our main objective is to analyze the retrospective
changes of the malware grey images for the family.

Average grain radius = 125.9297 micron

(a) Colour map of GRA (Kaggle dataset) (b) Grain size frequency plot (Kaggle dataset)

(c) Malimg dataset - Adialer.C malware GRA [48] (d) Malimg dataset - Dontovo. A malware GRA [48]

Equivalent Grain Radius (micron)

R
el

at
iv

e
Fr

eq
ue

nc
y

100
0

0.05

0.1

0.15

0.2

0.25

0.3

200 300 400

100
1000.4

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
1.8

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

20
X-coordinate (Âμm)

X-coordinate (Âμm)

G
ra

in
 s

iz
e,

 d
 -0

.5
 (Â

μm
-0

.5
)

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

G
ra

in
 s

iz
e,

 d
 -0

.5
 (Â

μm
-0

.5
)

G
ra

in
 s

iz
e,

 d
 -0

.5
 (Â

μm
-0

.5
)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

G
ra

in
 s

iz
e,

 d
 -0

.5
 (Â

μm
-0

.5
)

Y-
co

or
di

na
te

 (Â
μm

)

Y-
co

or
di

na
te

 (Â
μm

)

Grain size, d -0.5 (Âμm-0.5)

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

Grain size, d -0.5 (Âμm-0.5)

30 40

10

0

20

30

40

50

20

10

0

Fig. 1. GRA output for Kaggle Malware Family.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº6

- 124 -

As GRA technique is relatively unknown, we are presenting two
advantages of the system. The first advantage is multi-scality which is
more suitable for malware detection. In this, we can obtain information
about the texture grains of different sizes because of the possibility
of successive application of increasing size of morphological opening
and closing operations. Secondly, it is resistant to edge effects. In a
typical texture analysis process, these edges have low texture, but still,
it will provide high value of texture. This is due to the fact that those
methods are based on spatial frequency analysis and imagery edges
have high spatial frequency, resulting in high texture.

But as GRA is not based on this principle, it analyses value and
number of the removed image elements, resulting in normal texture
value of the edges in an image. Thus, the GRA seems to be more
suitable for the MDS. Fig. 1 depicts granulometry output for one
malware family from the Kaggle dataset and two malware families
from the Malimg dataset. It shows a colour map for the different grain
sizes. It also represents the relative frequency of different grain sizes
present in an image. The grain size is measured using a point-sampled
intercept length method. Related information is elaborated in section
– III.A The next section introduces the main block of ML i.e., classifier.

C. Classifier
This section covers the classifier used by researchers for malware

detection. Feature extractions and classification techniques are two
basic blocks of MDS. API calls, system calls, n-gram and OPCODE are
features that are still being used extensively in MDS. Work carried on
by researchers implementing any approach is unique and makes use of
different types of bytes and features related to hex. In addition to that
we are also introducing a GRA feature. Thus, feature vectors extracted
from the malware grey scale image have to be trained using the SemiE
network. After training the SemiE model, system performance is
evaluated by applying real time malware data. The next part elaborates
upon the selection of SemiE.

The role of the classifier is crucial as it lays the groundwork for
precision and accuracy. A research problem must cover the core subject
matter and at the same time it must lead to hitherto undiscovered
knowledge. This goal entails not only an extensive literature survey,
but also mandates interpreting the surveyed information accurately
to attain an appropriate research path. To make it more feasible to
extract the requisite data, we have included graphical presentations
(Refer Fig. 2).

The learning process is either Eager learning or Lazy learning
(instance based). Key extract from the survey is both the techniques
are at par. But the advancement in the Neural Network (NN) technique
led to Deep Neural Network (DNN), which has opened up different
segments altogether. But the major drawback of DNN is that the
network is data hungry. This was the motivational factor where we
thought of combining the advantages of lazy and eager and introduced
Semi Eager learning. SemiE will reduce testing and training time,
which is needed for malware detection methods, as it has to run in
real time even as it detects malware in the fastest ways possible.
This motivates us to choose the SemiE method with considerably
low computational overhead and yet this technique has not yet been
investigated for detection of malware. The next section elaborates the
proposed model of GRASE.

III. Proposed Model: GRASE- GRanulometry Analysis
With Semi Eager Classifier to Detect Malware

Fig. 3 shows the architecture of the GRASE model. The first step
is to provide input to the model which is a malware file. There are
three basic analysis techniques like SA, DA and hybrid, explored by
researchers. While the SA method is the choice of many researchers,
the hybrid technique is not so popular with them.

In step two, Malware Binary File (MBF) is read and features are
extracted. The first feature set is SA based which has HEX dump-based
features and disassembled file features. These features are common
and must be used for malware prediction, therefore the same has been
just specified and focus is given on the proposed technique.

The HEX dump-based features are n-gram, Meta-data (MD1),
entropy [92] [93], Haralick and Local Binary Pattern (LBP) features.
The disassembled file features are Meta-Data (MD2), symbol (SYM)
[94], Register (REG) [97], Operation Code (OPCODE) [53], [95]-[96],
DP and Section (SEC). Miscellaneous (MISC) feature should be done
manually with the identification of keywords from the disassembled
code. The Interactive Disassembler (IDA) tool can also be utilized
for this purpose. Types of features that are extracted are number
of imported DLLs, identifying strings viz. hkey_local_machine (it
specifies access to specific paths of Windows registry), number of
blocks in PE, etc. Hence, it is dependent on how experienced the MD
software development engineer is.

Malware Detection

Classification of Malware Data

Lazy Learning Eager Learning

Decision Tree
[42], [49], [50], [51], [52], [53], [54], [55], [56]

Random Forest
[57], [58], [59], [45], [50], [60], [51], [61]

Logistic Model Tree
[62], [63], [64], [65]

KNN [66], [67], [57], [68], [54], [55], [69]

K-Means Clustering [70]

K-Medoids [71]

Bayesian Network [72], [74]

Gradient Boosting Decision Tree [63], [73]

Naive Bayes [63],[45], [50], [54], [56],[16]

Lazy Learning

Clustering with locality sensitive hashing

 [75], [76], [77]

Clustering with Distance and Similarity
Metrics Euclidean [67], [50]

Hamming/cosine distances [67], [78]

Jaccard similarities [78]

Density-based Spatial Clustering of
Applications with Noise [79]

Hierarchical Clustering [67], [80], [81]

Self-Organizing Maps [82]

Bayes classifier [45], [53]

Eager Learning

Rule-based

[83], [84], [85], [51], [86], [26], [16]

Prototype-based Classification [81]

Multilayer Perceptron Neural Network [68]

SVM

[57], [84], [58], [87], [67], [63], [45], [50], [60], [51],
[68], [74], [88], [54], [56]

ANN [102], [73]

Learning with Local and Global Consistency is
used in [89]

While Belief Propagation [66], [90], [76]

Multiple Kernel Learning [91]

Fig. 2. Classifier based Literature Survey.

Regular Issue

- 125 -

Very few malware programs make use of the packing technique
and hence they do not use API calls. Instead, they contain a few
OPCODEs. Generally, such programs use assembler related directives
like Define Byte (db), Define Word (dw) and Define Double Word (dd).
This feature plays a significant role in the classification of the varieties
of malware families.

In step three, to extract GRanulometry features as well as Image
Similarity based Statistical Parameter (ISSP), MBF is represented as a
grayscale image. ISSP based features are Normalized Cross correlation
(NCC), Average difference (AD), Maximum difference (MaxD),
Singular Structural Similarity Index Module (SSIM), Laplacian Mean
Square Error (LMSE), MSE and PSNR.

Sections III.A, III.B, III.C and III.D describe the proposed model
shown in Fig. 3.

Malware file - InputStep 1

Read Malware binary file dataStep 2

Step 3

Step 4

Step 5

Step 6

Feature extraction

MD Image MISC

DP Entropy Symbol SEC

HEX
features

Disassembled
file features

Im
ages

Granulometry
feature

Feature Integration - Fine tune dimension

SemiEager classifier

Classified Output

Image Similarity based
Statistical Parameter (ISSP)

Training data
set (learning)

Trained
library

Fig. 3. Architecture Diagram: GRASE Model.

A. GRanulometry Analysis (GRA)
Step four is to generate granulometric profiles for each image

pixel. GRA is based on the sequence of morphological opening and
closing operations which are applied to gray scale image using set
of known size and shape called the Structuring Element (SE). SE size
is based on the pattern or a structure one would like to extract from
the image. SE is normally a disk of size λ. In the process of closing by
reconstruction, using SE will erase the dark spots of size less than λ
during dilation process. Erased dark spots will not be recovered with
multiple reconstructions, resulting in extraction of image structure
having different sizes. Equation (1) represents granulometry density
which describes the size of the image structures.

 (1)

where, ∅λ (I) = Closing by reconstruction, λ − Radius of disk (integer
value).

The operations are performed pixel wise. Granulometry profile
may be written as

where, n = Granulometrylevels. This parameter is configurable.

GRA is used to measure the difference between two images by
measuring the quantity of particles having different sizes by calculating
Volume Weighted Average Grain Size (VWAGS). Refer Equation (2).

 (2)

Where, VI is total image size, Vj is the volume of grains corresponding to
the grain size Gj.

VWAGS will always be larger than the average grain size as per Eq.

(1). It has been observed that VWAGS is able to capture the influence
of grain size distribution [48].

Researches have used this technique to analyse satellite images. As
in satellite images each pixel (granule) is important, on similar lines
in malware image analysis each pixel carries important information
of malware property. GRA can also be based on Multiple Structure
Element (MSE). There are two main advantages of GRA. Firstly,
it has a property of multi-scalability. Due to a greater number of
morphological operations the information obtained will have texture
grains of varieties of sizes.

Secondly, the analysis is resistant to edge effect. Edge effect is
observed in fairly all texture analysis techniques where edges of the
object normally have low texture, but it will get high value. This effect
is observed as texture analysis methods are based on spatial frequency
analysis and normally edges have a high spatial frequency, exhibiting
high texture. GRA is not based on this fundamental as analysis is based
on value and number of removed image elements and therefore edges
are not displayed as areas of high texture. This property will help
analyze malware images more accurately.

B. ISSP
Step five focuses on the similarity between two images. A

comparison of malware images from the ‘x’ family with themselves
and the rest of the families is undertaken, and a similarity parameter
matrix is computed based on this. There are two input images,
namely, Reference image (RI) and Input image (II). If RI is from the
‘x’ family then II represents the rest of the images from the ‘x’ family
and the images from the other families. During the entire process of
computing the similarity parameters, RI will remain constant. Since
the number of images for every family is in the thousands their mean
value will be computed [2].

The NCC method is utilized fortemplate matching. This is a
procedure utilized for finding incidences of a pattern or object within
an image. Eq. (3), is used to calculate NCC.

 (3)

where,

AD provides the average [2] of change regarding the input image
and the reference image. AD can be represented as follows:

 (4)

MaxD provides the maximum of the error signal (i.e., the difference
between the processed and reference image). MaxD is defined as
follows:

 (5)

SSIM is based on three factors [2], namely,luminance, contrast, and
structure in order to be more in line with the workings of the human
visual system. It is a perceptual metric that quantifies image quality
degradation. This parameter is chosen as the malware developer
alters the old code and comes up with the modified code. The modified
code can be deemed to be the ‘Noise’ element in an image. SSIM is
defined as follows:

 (6)

where l = luminance, c = contrast, s = structure

The Laplacian error map [2] shows spatial error distribution across
an image. The overall image quality is given by LMSE as follows:

 (7)

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº6

- 126 -

where L((m, n)) is the Laplacian operator

NAE measures [2] the numerical variance between the RI and II .
Additionally, the results that are closer to zero indicate that the image
is highly similar to the original image and the results close to the value
one mean that the quality of the image is very poor. NAE is calculated
as follows:

 (8)

MSE and PSNR are used to compare the quality of image compression
[2]. MSE represents the cumulative squared error between the RI and
II , whereas the PSNR represents a measure of the peak error. The lower
the value of the MSE, the lower the error.

 (9)

 (10)

Once the ISSP has been computed, one more feature vector is
generated which will be utilized to train the classifier.

To compute various statistical parameters, to begin with, all the
malware families were segregated into different folders for the Kaggle
dataset. There are 9 malware families in the Kaggle dataset so 9 folders
were created. Grey images were produced after processing malware
files. These images will be used to compute ISSP parameters. Malimg
dataset is already organized and has grey scale images so it is ready
to act as an input to the following algorithm. Table I presents the
algorithm.

C. SemiE Classification Module
Finally step six corresponds to a SemiE classifier, whose

mathematical model is explained here. In the training process, SemiE
stores only the Centre Point for each class. SemiE training time
complexity is O(n), where n is the number of training instances. O(k)
is the prediction complexity of space and time, where k represents the
number of categories.

1. SemiE algorithm

Let’s say, X = Input space.

It has set of n dimension vector, X ⊂ Rn.

Y = Output space.

It has set of class labels {c1, c2, … … …, ck}, where ci ∈ Z
P(X, Y) = Joint probability distribution over X and Y

Assume that, Feature vector x ∈ X and corresponding label y ∈ Y.

T{(x1, y1) , (x2, y2) , … … … …, (xN, yN) }, is the training data set,

where xi and yi are instances of X and Y, respectively

PS = Partition of set T = {(PS1) ∪ (PS2) ∪ … … … … ∪(PSk) },

Where .

Learning algorithms learns these two probabilities, namely
Conditional Probability Distribution and Prior Probability.

 (11)

The algorithm, while predicting input xi will provide the output
class label based on maximum posterior probability.

As the denominator part is independent of cj , it is constant,
resulting in

 (13)

TABLE I. Statistical Parameter Computation

Input Folder structure is as follows.
Main folder – contains sub folders equal to number of malware
families (i = 9 for this case)

 - Sub-folders (9 malware families)
 - Each sub-folder has different number of images j

RI = Reference image
II = Input image

i = Number of malware families in main directory (folder)
j = Number of malware variants (images) of specific malware
 family in a subfolder

// Initialize empty array
Parameter Array = {∅}
for (β = 0 ; β < i ; β ++)
// Load reference image – first image of malware family
RI = β[ 0 ]
for// select malware families one by one
 (k = 0 ; k < i ; k ++)
// Get number of images present of a specific malware family
 j = size (ksub−folder)
for (localcnt = 0; localcnt < j; localcnt ++)
// Load Input image from malware family
Ii = (k)[localcnt]
// calculate SSIM
SSIM(Ri, Ii)= [l(Ri, Ii)

α . c(Ri, Ii)
β . s(Ri, Ii)

γ]
where l = luminance, c = contrast, s = structure
// Calculate MSE

// calculate PSNR

// calculate Normalized Cross-Correlation (NK)

// calculate Normalized Absolute-Error (NAE)

// calculate Maximum difference

// calculate Laplacian Mean Square Error (LMSE)

where L((m, n)) is Laplacian operator
// Store all the values in an array
end
// Take average of an array an obtain single value
Parameter array(k)= [mean (SSIM); mean (MSE); mean(PSNR);
mean(NCC); mean(NAE);
mean (MaxD); mean (LMSE)]
end
end

Regular Issue

- 127 -

2. Parameter Estimation

The Maximum Likelihood Estimation technique is used to estimate
the parameters, therefore the indicator function and prior probability,
both that may be computed as,

 (14)

j = 1, 2, … …, k, N = number of samples in trianing set

Posterior probability is calculated using Central Limit theorem. In
this theorem whenever a number of samples N crosses a threshold
limit TH, then the input element xi in the data set T generally follows a
normal distribution having mean μ and variance σ2.

Thus, if |PSj| is greater than TH (let TH = 30), then following the
Central limit theorem xi will have normal distribution with variance
σ2 and centred around μj.

∴ conditional probability distribution is given by,

 (15)

By substituting Eq. (14) to Eq. (12), we get

 (16)

After discarding cj independent term and constant values from the
Eq. (15), we get,

 (17)

 (18)

 (19)

 (20)

 (21)

Condition – 1: If all the classes are having the same prior
probabilities, then Eq. (21) can be written as

 (22)

where μj = jth class centre

Classification of instance xi, is based on the class centers of every
class,

Let, , then.

 (23)

Table II presents pseudo code of SemiE algorithm.

Significant properties of SemiE classifier are listed as follows. It
performs incremental learning leading to training time complexity -
O(n) and prediction time complexity - O(k). If the special case where
the data point xi is ready for classification but has equal distance from
all the class labels is given, then the next level of decision making
is done which is based on frequency. A regularization term will be
assigned to the class label having the highest frequency.

TABLE II. SemiE Classifier Pseudo Code

Training Phase

Mean calculation, (24)

Variance calculation,

 (25)

for j = 1 to N
 for i = 1 to k

 (26)

 (27)
 end
end

Testing Phase

Instance xi is to be classified

 (28)

IV. Experimental Setup

The system performance is analyzed on a benchmark database from
Kaggle3 as well as the ‘malimg’ dataset4. Detailed information about
both databases is given in Table III and Table IV. The major difference
between these two datasets is that in ‘malimg’ set directly grey scale
images were given, so, for the Kaggle dataset one additional coding
function is required to convert malware files to grey scale image.

TABLE III. Kaggle and Malimg Datasets Basic Information

Header Kaggle dataset Malimg dataset
Download Microsoft malware

classification challenge
from Kaggle

Vision research Lab

ID Twenty-character
hash value for unique
identification of file

Thirty-two-character
hash value for unique
identification of file

Number of
malware
families / Size

9 / 0.5 Tera byte
uncompressed

25 / 1.09 GB
uncompressed, in image
form

RAW data HEX representation of the
file’s binary content

HEX representation of
the file’s binary content

Class Integer representing
malware family

Integer representing
malware family

Metadata
manifest

Log of various metadata
information e.g. Function
calls, Strings etc. extracted
from the binary using IDA
disassembler tool.

V. Results

This section presents the results achieved throughout the process
of malware analysis. Initially the Kaggle dataset malware files were
converted to grey scale images, as shown in Fig. 4. It has been clearly
noted that the image for each of the families is unique. ‘malimg’ dataset
images are not shown as it is readily available from the website.

3 https://www.kaggle.com/c/malware-classification/
4 https://paperswithcode.com/dataset/malimg

https://www.kaggle.com/c/malware-classification/
https://paperswithcode.com/dataset/malimg

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº6

- 128 -

Fig. 4. Malware images of different malware families from the Kaggle dataset.

The next step was to extract the ISSP feature set from the grey
scale images (refer section III.C). Suppose in the dataset, there are MF
number of malware families For Kaggle dataset set MF is 9 and for Malimg
dataset it is 25. There are S number of samples per malware family. For
ISSP computation we require two images namely ‘Reference Image (RI) '
and ‘Input image (II) ', RI will remain constant through the iteration
and II will change. Initially, RI will be selected from the 1st malware
family, and 1st image in the folder. Remaining all the images from 1st
malware families and all the images of the remaining malware families
will be now ‘II’. RI and II will be used to compute the ISSP parameters.
Computed ISSP parameters per II will be stored in respective array say

for example PSNR_array, NK_array and so on, with respect to malware
family. After iterating through all the images of any one family, the
mean value of an array will be computed. Hence, for every family
there will be just one single mean value. The mean value matrix will
be plotted. The same is illustrated in Fig. 5. Since the ‘malimg’ dataset
is massive and has a large number of malware families we present the
result of this dataset.

Fig. 5(1) shows the MD value. It is 225 for the first family of malware,
but for the rest of the families the value is 255. Therefore, there is high
structural similarity with self-family, but with other families a higher
MD value reflects slower similarity. We can decide a threshold of 145
to 250 for differentiating between malware families. SSIM, PSNR, MSE,
NK and NAE plots are on a similar line to MD i.e., clear bifurcation
between self-family and other families, but the threshold values
will be different. However, for the AD parameter for the self-family
value is near to ‘0’ and for other malware families it is either a high
positive or high negative value (refer Fig. 5(7)), so AD demands for the
hysteresis-based threshold. SC parameter value reflects overlap i.e.,
defining proper threshold is difficult, so we discarded this parameter
for the training purpose (refer Fig. 5(8)). The remaining parameters
can be used to train the SemiE classifier. The grain size selected for
GRA analysis is 5,7,10 and 13 with MSE.

VI. Performance Evaluation

This section presents a confusion matrix and compares the results
obtained from the proposed work with the state-of-the art methods.

TABLE IV. Kaggle and Malimg Datasets Description

Kaggle dataset Malimg dataset

Malware
Family Malware category Sample

size Malware Family Malware category Sample
size Malware Family Malware category Sample

size
Gatak Backdoor 1013 Allaple.L Worm 1591 Alueron.gen! J Trojan 198

Obfuscator. ACY obfuscated malware 1228 Allaple.A Worm 2949 Malex.gen! J Trojan 136

Kelihos_ver1 Backdoor 398 Yuner.A Worm 800 Lolyda.AT PWS 159

Tracur TrojanDownloader 751 Lolyda.AA 1 PWS 213 Adialer.C Dialer 125

Simda Backdoor 42 Lolyda.AA 2 PWS 184 Wintrim.BX Trojan Downloader 97

Vundo Trojan 475 Lolyda.AA 3 PWS 123 Dialplatform.B Dialer 177

Kelihos_ver3 Backdoor 2942 C2Lop.P Trojan 146 Dontovo.A Trojan Downloader 162

Lollipop Adware 2478 C2Lop.gen! G Trojan 200 Obfuscator.AD Trojan Downloader 142

RAmnit Worm 1541 Instantaccess Dialer 431 Agent.FYI Backdoor 116

Swizzor.gen! I Trojan Downloader 132 Autorun.K Worm: AutoIT 106

Swizzor.gen! E Trojan Downloader 128 Rbot! gen Backdoor 158

VB.AT Worm 408 Skintrim.N Trojan 80

Fakerean Rogue 381

TABLE V. Confusion Matrix

Malware
Malware Detection %

Ramnit Lollipop Kelihos_ver3 Vundo Simda Tracur Kelihos_ver1 Obfuscator. ACY Gatak
RAmnit 99.61 0.00 0.06 0.06 0.00 0.06 0.06 0.06 0.06
Lollipop 0.04 99.80 0.00 0.12 0.00 0.00 0.00 0.00 0.04
Kelihos_ver3 0.03 0.00 99.90 0.00 0.00 0.00 0.00 0.07 0.00
Vundo 0.00 0.21 0.21 99.37 0.21 0.00 0.00 0.00 0.00
Simda 0.00 0.00 0.00 0.00 95.24 2.38 2.38 0.00 0.00
Tracur 0.00 0.00 0.00 0.00 0.00 99.73 0.13 0.13 0.00
Kelihos_ver1 0.00 0.25 0.25 0.00 0.25 0.00 99.24 0.00 0.00
Obfuscator.ACY 0.08 0.08 0.08 0.08 0.00 0.00 0.08 99.43 0.16
Gatak 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.20 99.70

Regular Issue

- 129 -

(1) MD Plot (2) SSIM

(3) PSNR (4) MSE

(5) NK (6) NAE

(7) AD (8) SC

0
225 0.0

0.1

0.2

0.3

0.4

0.5

0.6

230

235

240

245

250

255

5 10 15
Number of malware classes

M
D

 v
al

ue

6

8

10

12

14

16

18

20

22

PS
N

R
 v

al
ue

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

N
K

 v
al

ue

SS
IM

 v
al

ue

0.4

0.6

0.8

1

1.4

1.2

1.6

1.8

M
SE

 v
al

ue

0.4

0.6

0.8

1

1.4

1.2

1.6

1.8

0

0.5

1

2

1.5

2.5

3

A
D

 v
al

ue

0.2

0.4

0.6

0.8

1

1.4

1.2

1.6

2

1.8

N
A

E
va

lu
e

St
ru

ct
ur

al
 c

on
te

nt
 v

al
ue

20 25

0 5 10 15
Number of malware classes

20 25 0 5 10 15
Number of malware classes

20 25

0 5 10 15
Number of malware classes

20 25 0 5 10 15
Number of malware classes

20 25

0 5 10 15
Number of malware classes

20 25 0 5 10 15
Number of malware classes

20 25

0 5 10 15
Number of malware classes

20 25

Fig. 5. Parameter plots - (1) MD (2) SSIM (3) PSNR (4) MSE (5) NK (6) NAE (7) AD (8) SC.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº6

- 130 -

The proposed method was validated with the Big 2015 Kaggle and
Malimg datasets and therefore results are compared with those research
techniques that also have been validated with the same datasets.

Accuracy is a significant performance parameter for the MD
system. It specifies accurate classification of malware. Accuracy is
computed on the basis of the following equation:

Table V shows the confusion matrix of the proposed MDS using
Kaggle dataset.

Graphical plots of confusion matrix are illustrated in
Fig. 6 and Fig. 7.

A. State of the Art Comparison
As SemiE classifiers are not used by other researchers, we compared

the results with learning algorithm presented by researchers. Table VI
shows a comparative of the performance of the proposed and other
methods.

Malimg and BIG 2015 datasets are the datasets commonly used by
researchers. It has been observed that researchers work on either of
the datasets, but this paper explores both the datasets. This makes the
proposed work more robust.

CNN technique is also common in researchers. This technique is
the basis for deep learning. Few researchers used variants of CNN i.e.
DenseNet, ResNet-50 etc. Minimum accuracy of 98.23% to maximum
99.3% is achieved for malimg dataset. The proposed technique provides
99.03% accuracy. BIG2015 dataset is from Kaggle. Minimum 96.9% and
maximum 99.73% accuracy achieved for the BIG2015 dataset. The
proposed work provides 99.11% accuracy. Thus, the proposed provides
minimum 99% accuracy for both the dataset.

malimg dataset confusion matrix

Tr
ue

 C
la

ss

Adialer.C 123 1 1

Agent.FYI 114 1 1

Allaple.A 2947 1 1

Allaple.L 1 1590

Alueron.gen1J 196 1 1

Autorun.K 1 104 1

C2Lop.P 144 1 1

C2Lop.gen !G 1 198 1

Dialplatform.B 175 1 1

Dontovo.A 161 1

Fakerean 1 379 1 1

lnstantaccess 431

Lolyda.AA 1 211 2

Lolyda.AA 2 1 1 182

Lolyda.AA 3 1 121 1

Lolyda.AT 1 157 1

Malex.gen !J 136

Obfuscator.AD 1 1 140

Rbot!gen 158

Skintrim.N 1 79

Swizzor.gen ! E 1 1 126 1

Swizzor.gen ! I 1 130

VB.AT 1 407

Wintrim.BX 1 1 95

Yuner.A 2 798

A
di

al
er

.C

A
ge

nt
.F

YI

A
lla

pl
e.

A

A
lla

pl
e.

L

A
lu

er
on

.g
en

1J

A
ut

or
un

.K

C
2L

op
.P

C
2L

op
.g

en
 !G

D
ia

lp
la

tf
or

m
.B

D
on

to
vo

.A

Fa
ke

re
an

 1

ln
st

an
ta

cc
es

s

Lo
ly

da
.A

A
 1

Lo
ly

da
.A

A
 2

Lo
ly

da
.A

A
 3

Lo
ly

da
.A

T

M
al

ex
.g

en
 !J

O
bf

us
ca

to
r.A

D

Rb
ot

!g
en

Sk
in

tr
im

.N

Sw
iz

zo
r.g

en
' E

Sw
iz

zo
r.g

en
 !

I

V
B.

A
T

W
in

tr
im

.B
X

Yu
ne

r.A

Predicted Class

Fig. 7. Confusion Matrix Plot – Malimg data set.

Tr
ue

 C
la

ss
Gatak 1010 2 1 99.7% 0.3%

Kelihos ver1 393 1 1 1 99.2% 0.8%

Kelihos ver3 2939 2 1 99.9% 0.1%

Lollipop 1 2473 1 3 99.8% 0.2%

Obfuscator.ACY 2 1 1 1 1221 1 1 99.4% 0.6%

RAmnit 1 1 1 1 1535 1 1 99.6% 0.4%

Simda 1 40 1 95.2% 4.8%

Tracur 1 1 749 99.7% 0.3%

Vundo 1 1 1 472 99.4% 0.6%

99.6% 99.0% 99.9% 99.9% 99.5% 99.8% 95.2% 99.6% 99.0%

0.4% 1.0% 0.1% 0.1% 0.5% 0.2% 4.8% 0.4% 1.0%

G
at

ak

K
el

ih
os

 v
er

1

K
el

ih
os

 v
er

3

Lo
lli

po
p

O
bf

us
ca

to
r.

A
C

Y

RA
m

ni
t

Si
m

da

Tr
ac

ur

V
un

do

Predicted Class

Fig. 6. Confusion Matrix Plot – Kaggle data set.

Regular Issue

- 131 -

VII. Conclusion

Malware is a common attack on the internet. Developers of
malware detection systems are continuously contending with cyber-
attackers. For maintaining persistent pressure on cyber attackers,
MDS developers should work out new strategies which can capture
malware without any loss to the user and quarantine the same.

In this paper we have described a GRASE model which combines
malware visualization, texture based GRanulometry (GRA) feature and
Semi eager based classifier to classify malware images into different
malware family classes.

System performance was evaluated using malimg and BIG-2015
Kaggle dataset. ‘malimg’ dataset is in the form of grayscale image,
but BIG-2015 dataset required to be converted to gray scale images
from the byte code of malware program. Each pixel in the gray scale
malware image represents a code byte. Therefore, we applied a GRA
technique where Granules’ or pixels are the important input to
compute features.

With GRA additional features like n-gram, MD1, MD2, entropy,
OPCODE, Register, symbols, data define, and Sections were used for
generating feature vectors. This kind of learning approach is more
suited to MDS because both, real time learning can be implemented
with less time, and also testing or generating output in the form of
malware detection is desideratum.

SemiE classifier with image-based visualization of feature vector
resulted in an enhanced performance for classifying nine classes of
malware and offered an overall accuracy of 99.11% with the Kaggle
dataset and 99.03 % accuracy was achieved with the malimg dataset
(refer table VI).

Future scope for the proposed technique will focus on a diverse set
of datasets to verify robustness of an algorithm. Presently a footprint
of malware is available, but the objective of malware detection is
customer security which should not be compromised. So, the task is to
test a model if it can be used for predicting the new malware.

References

[1] G. Ekta, B. Divya, S. Sanjeev, “Malware Analysis and Classification: A
Survey,” Journal of Information Security, vol. 5, no. 2, pp. 56-64, 2014.

[2] M. Deore, U. Kulkarni, “MDFRCNN: Malware Detection using Faster
Region Proposals Convolution Neural Network,” International Journal of

Interactive Multimedia and Artificial Intelligence, vol. 7, no. 4, pp. 146-
162, 2022.

[3] E. Bou-Harb, M. Debbabi, and C. Assi, “Cyber Scanning: A Comprehensive
Survey,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3, Third
Quarter, 2014.

[4] M. Dhalaria, E. Gandotra, “A Hybrid Approach for Android Malware
Detection and Family Classification,” International Journal of Interactive
Multimedia and Artificial Intelligence, vol. 6, no. 6, pp. 174-188, 2021.

[5] P. Kupidura, “Wykorzystanie granulometrii obrazowej w klasyfikacji
treści zdjęć satelitarnych,” Prace Naukowe Politechniki Warszawskiej.
Geodezja, 2015.

[6] P. Kupidura, M. Skulimowska, “Morphological profile and granulometric
maps in extraction of buildings in VHR satellite images,” Archives of
Photogrammetry, Cartography and Remote Sensing, pp. 83–96, 2015.

[7] P. Kupidura, P. Koza, J. Marciniak, “Morfologia Matematyczna w
Teledetekcji,” PWN: Warsaw, Poland, 2010.

[8] A. Haas, G. Matheron, J. Serra, “MorphologieMathématique et
granulométriesen place. Ann. Des Mines,” vol. 12, pp. 768–782, 1967.

[9] E.R. Dougherty, J.B. Pelz, F. Sand, A, Lent, “Morphological Image
Segmentation by Local Granulometric Size Distributions,” Journal of
Electronic Imaging, vol. 1, pp. 46–60, 1992.

[10] A. Zakai and Y. Ritov, “Consistency and localizability,” Journal of Machine
Learning Research (JMLR), vol. 10, pp. 827–856, 2019.

[11] N. Cao and W. Cui, Introduction to Text Visualization, Atlantis Press,
Paris, 2016.

[12] D. Keim, “Information visualization and visual data mining,” IEEE
Transactions on Visualization and Computer Graphics, vol.8, no.1, pp.1–
8, 2002.

[13] S. Few, “Information Dashboard Design - The Effective Visual
Communication of Data, Sebastopol,” CA: O’Reilly, 2006.

[14] I. Yoo, “Visualizing windows executable viruses using self-organizing
maps,” VizSEC/DMSEC ‘04: Proceedings of the 2004 ACM workshop
on Visualization and data mining for computer security, pp. 82-89.
10.1145/1029208.1029222, 2004.

[15] S. Foresti, J. Agutter, Y. Livnat, S. Moon, and R. Erbacher, “Visual
correlation of network alerts,” IEEE Computer Graphics and Applications,
vol. 26, no. 2, pp. 48–59,2006

[16] M. G. Schultz, E. Eskin, F. Zadok, S. J. Stolfo, “Data mining methods
for detection of new malicious executables,” in: Proceedings 2001 IEEE
Symposium on Security and Privacy. S&P 2001, Oakland, CA, USA, pp.
38-49, 2001.

[17] D. A. Quist and L. M. Liebrock, “Visualizing compiled executables for
malware analysis,” 6th International Workshop on Visualization for
Cyber Security, Atlantic City, NJ, pp. 27-32, 2009.

[18] H. Shiravi, A. Shiravi, and A. A. Ghorbani, “A survey of visualization
systems for network security,” IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 8, pp. 1313–1329, 2012.

TABLE VI. Proposed System Comparative Performance

Author Dataset Classifier Accuracy (%)
J. Hemalatha et al., 2021 [99] Malimg Dense Net 98.23

V. Moussas et al., 2021 [100] Malimg Two level ANN 99.13

N. Marastoni et al., 2021 [101] Malimg CNN 98.5

M. Nisa et al., 2020 [102] Malimg CNN (AlexNet, Inception v3) 99.3

Ahmed Bensaoud et al, 2020 [103] Malimg Inception v3 99.24

Danish Vasan et al., 2020 [104] Malimg CNN 98.82

Hui Guo, et al., 2020 [105] BIG 2015 ResNet50 99.73

Xianwei Gao et at., 2020 [106] BIG2015 SSTL (Boost_ RNN) 96.9

S. A Roseline et al., 2020 [107] BIG 2015 Deep random forest 97.2

Danish Vasan et al., 2020 [108] ImageNet CNN 98.82

Yuntao Zhao et al., 2020 [109] BIG 2015 FRCNN with ImageNet 92.8

N. Bhodia et al., 2019[110] malimg DNN 94.8

Duc-Ly Vu et al.,2019 [111] Author prepared dataset Convolutional Transformation Network 99.14

Sung et al., 2021 [112] BIG 2015 CNN 99.2

Proposed technique Kaggle SemiE 99.11
Proposed technique malimg SemiE 99.03

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº6

- 132 -

[19] N. Diakopoulos, D. Elgesem, A. Salway, A. Zhang, and K. Hofland,
“Compare clouds: visualizing text corpora to compare media frames,” in
Proceedings of IUI Workshop on Visual Text Analytics, 2015.

[20] P. Trinius, T. Holz, J. Göbel and F. C. Freiling, “Visual analysis of malware
behavior using tree maps and thread graphs,” 6th International Workshop
on Visualization for Cyber Security, Atlantic City, NJ, pp. 33-38, 2009.

[21] Nataraj, L., Karthikeyan, S., Jacob, G. and Manjunath, B, “Malware
Images: Visualization and Automatic Classification,” Proceedings of the
8th International Symposium on Visualization for Cyber Security, Article
No. 4, 2011.

[22] Conti, G.; Bratus, S.; Shubina, A.; Lichtenberg, A.; Ragsdale, R.; Perez-
Alemany, R.; angster, B.; Supan, M.A,“Visual Study of Binary Fragment
Types,” Black Hat: San Francisco, CA, USA, 2010.

[23] K. Kancherla and S. Mukkamala, “Image visualization-based malware
detection,” IEEE Symposium on Computational Intelligence in Cyber
Security (CICS), Singapore, pp. 40-44, 2013.

[24] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, Q. Zheng, “IMCFN:
Image-based malware classification using fine-tuned convolutional
neural network architecture,”Computer Networks, vol. 171, 107138, 2020.

[25] B.N. Narayanan, V.S.P Davuluru, “Ensemble Malware Classification
System using Deep Neural Networks,”Electronics,vol. 9, no.5, 721, 2020.

[26] R. Tian, L. M. Batten, S. C. Versteeg, “Function length as a tool for malware
classification,” in: Malicious and Unwanted Software, MALWARE 2008.
3rd International Conference on, pp. 69-76,2008.

[27] Z. M. Fadli, A. Jantan, “An approach for malware behavior identification
and classification,” Computer Research and Development (ICCRD) 2011
3rd International Conference on, vol. 1, 2011.

[28] M. Shankarapani, S. Ramamoorthy, R Movva, S. Mukkamala, “Malware
detection using assembly and api call sequences,” Journal of Computing
Virology, vol. 7, pp. 107-119, 2011.

[29] D. Kong, G. Yan, “Discriminant malware distance learning on structural
information for automated malware classification,” in: KDD ‘13:
Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, New York, NY, USA, pp.
1357-1365, 2013.

[30] I. Santos, J. Devesa, F. Brezo, J. Nieves, P.G. Bringas, “OPEM: A Static-
Dynamic Approach for Machine-Learning-Based Malware Detection,” In:
Herrero, Á., et al. International Joint Conference CISIS’12-ICEUTE´12-
SOCO´12 Special Sessions. Advances in Intelligent Systems and
Computing, vol 189. Springer, Berlin, Heidelberg, 2013.

[31] K. Han, J. H. Lim, and E. G. Im, “Malware analysis method using
visualization of binary files,” in Proceedings of the the2013 Research
in Adaptive and Convergent Systems, pp. 317–321, Montreal, Quebec,
Canada,2013.

[32] J. Jacobs and B. Rudis, “Data-driven security analysis, visualization, and
dashboards,” in Indianapolis, John Wiley & Sons, 2014.

[33] N. Cao, L. Lu, Y.-R. Lin, F. Wang, and Z. Wen, “Social Helix: visual analysis
of sentiment divergence in social media,” Journal of Visualization, vol.18,
no.2, pp. 221–235, 2015.

[34] Dübel, Steve &Röhlig, Martin & Schumann, H. & Trapp, Matthias, “2D
and 3D presentation of spatial data: A systematic review,” 2014 IEEE VIS
International Workshop on 3DVis (3DVis), Paris, France, 2014, pp. 11-18,
doi: 10.1109/3DVis.2014.7160094.

[35] T. Songqing, “Imbalanced Malware Images Classification: a CNN based
Approach,” CoRR abs/1708.08042, 2017.

[36] W. B. Balakrishnan, “Security Data Visualization,” SANS Institute Inc,
2014.

[37] M. Arefkhani and M. Soryani, “Malware clustering using image
processing hashes,” 9th Iranian Conference on Machine Vision and
Image Processing (MVIP), Tehran, 2015, pp. 214-218, 2015.

[38] Q. Wu, Z. Qin, J. Zhang, H. Yin, G. Yang, K. Hu, “Android Malware
Detection Using Local Binary Pattern and Principal Component
Analysis,” In: Zou B., Li M., Wang H., Song X., Xie W., Lu Z. (eds) Data
Science. ICPCSEE 2017. Communications in Computer and Information
Science, vol. 727, Springer, Singapore, 2017.

[39] S. Rezaei, A. Afraz, F. Rezaei, M. R. Shamani, “Malware detection using
opcodes statistical features,” in 2016 8th International Symposium on
Telecommunications (IST), pp. 151–155, 2016.

[40] V. Sitalakshmi and M. Alazab, “Use of Data Visualization for Zero-Day
Malware Detection,”Security and Communication Networks, vol. 2018,

pp. 1728303:1-1728303:13, 2018.
[41] T. Y. Zhang, X. M. Wang Li, Z. Z. Li, F. Guo, Y. Ma, and W. Chen, “Survey

of network anomaly visualization,” Science China Information Sciences,
vol. 60, no. 12, 121101, 2017.

[42] W. Shanks, “Enhancing Intrusion Analysis through Data Visualization,”
SANS Institute, Inc, 2015.

[43] L. Shiqi, T. Shengwei, S. Hua, and Y. Long, “Research on malicious code
classification algorithm of stacked auto encoder,” Application Research
of Computers, vol. 35, no. 1, pp. 261–265, 2018.

[44] Y. Liu, Z. Wang, Y. Hou, and H. Yan, “Visualization and automatic
classification of malicious code with enhanced information density,’’ J.
Tsinghua Univ. (Natural Sci. Ed.), vol. 59, no. 1, pp. 914, 2019.

[45] T. Wuchner, M. Ochoa, A. Pretschner, “Robust and effective malware
detection through quantitative data flow graph metrics,” in: Detection
of Intrusions and Malware, and Vulnerability Assessment, Springer, pp.
98-118, 2015.

[46] R.W. Conners, C.A. Harlow, “A Theoretical Comparison of Texture
Algorithms,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-2, no. 3, pp. 204-222, 1980.

[47] S.G. Mallat, “A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 11, no. 7, pp. 674-693, 1989.

[48] Lehto P, Romanoff J, Remes H, Sarikka T. “Characterisation of local grain
size variation of welded structural steel,” Weld World, vol. 60, pp. 673 678,
2016, http://dx.doi.org/10.1007/s40194-016-0318-8

[49] S. Srakaew, W. Piyanuntcharatsr, S. Adulkasem, “On the comparison of
malware detection methods using data mining with two feature sets,”
Journal of Security and Its Applications, vol. 9, no. 3, pp. 293-318, 2015.

[50] D. Uppal, R. Sinha, V. Mehra, V. Jain, “Malware detection and classification
based on extraction of api sequences,” in: ICACCI, IEEE, pp. 2337-2342,
2014.

[51] R. Islam, R. Tian, L. M. Batten, S. Versteeg, “Classification of malware
based on integrated static and dynamic features,” Journal of Network and
Computer Applications, vol. 36, no.2, pp. 646-656, 2013.

[52] S. Nari, A. A. Ghorbani, “Automated malware classification based on
network behavior,” in: Computing, Networking and Communications
(ICNC), 2013 International Conference on, IEEE, pp. 642-647, 2013.

[53] I. Santos, F. Brezo, X. Ugarte-Pedrero, P. G. Bringas, “Opcode sequences as
representation of executables for data-mining-based unknown malware
detection,” Information Sciences, vol. 231, pp. 64-82, 2013.

[54] I. Firdausi, C. Lim, A. Erwin, A. S. Nugroho, “Analysis of machine
learning techniques used in behavior-based malware detection,” in: ACT
‘10, IEEE, pp. 201-203, 2010.

[55] F. Ahmed, H. Hameed, M. Z. Shafiq, M. Farooq, “Using spatio-temporal
information in api calls with machine learning algorithms for malware
detection,” in: Proceedings of the 2nd ACM workshop on Security and
artificial intelligence, ACM, pp. 55-62, 2009.

[56] J. Z. Kolter, M. A. Maloof, “Learning to detect and classify malicious
executables in the wild,” Journal of Machine Learning Research, pp. 2721-
2744, no. 7, pp. 2721-2744, 2006.

[57] M. Ahmadi, G. Giacinto, D. Ulyanov, S. Semenov, M. Tromov, “Novel
feature extraction, selection and fusion for effective malware family
classification,” CoRR abs/1511.04317, 2016

[58] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, T. Dumitras, “The dropper effect:
Insights into malware distribution with downloader graph analytics,” in:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, ACM, pp. 1118-1129, 2015.

[59] W. Mao, Z. Cai, D. Towsley, X. Guan, “Probabilistic inference on integrity
for access behavior-based malware detection,” in: International Workshop
on Recent Advances in Intrusion Detection, Springer, pp. 155-176, 2015.

[60] P. M. Comar, L. Liu, S. Saha, P. N. Tan, A. Nucci, “Combining supervised
and unsupervised learning for zero-day malware detection,” in:
INFOCOM, 2013 Proceedings IEEE, pp. 2022-2030, 2013.

[61] M. Siddiqui, M. C. Wang, J. Lee, “Detecting internet worms using data
mining techniques,” Journal of Systemic, Cybernetics and Informatics,
vol. 6, no. 6, pp. 48-53, 2009.

[62] M. Graziano, D. Canali, L. Bilge, A. Lanzi, D. Balzarotti, “Needles in a
haystack: Mining information from public dynamic analysis sandboxes
for malware intelligence,” in: USENIX Security ‘15, pp. 1057-1072, 2015.

[63] J. Sexton, C. Storlie, B. Anderson, “Subroutine based detection of APT

Regular Issue

- 133 -

malware,” Journal of Computer Virology and Hacking Techniques, vol.
12, pp. 225-233, 2016.

[64] G. E. Dahl, J. W. Stokes, L. Deng, D. Yu, “Large-scale malware classification
using random projections and neural networks,” in: Acoustics, Speech
and Signal Processing (ICASSP), IEEE, pp. 3422-3426, 2013.

[65] S. Palahan, D. Babi_c, S. Chaudhuri, D. Kifer, “Extraction of statistically
significant malware behaviors,” in: Computer Security Applications
Conference, ACM, pp. 69-78, 2013.

[66] E. Raff, C. Nicholas, “An alternative to ncd for large sequences,”
lempel-zivjaccard distance, in: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ACM, pp. 1007-1015, 2017.

[67] A. Mohaisen, O. Alrawi, M. Mohaisen, “Amal: High-fidelity, “behavior
based automated malware analysis and classification,” Computers &
Security, vol. 52, pp. 251-266, 2015.

[68] D. Kong, G. Yan, “Discriminant malware distance learning on structural
information for automated malware classification,” in: ACM SIGKDD ‘13,
nKDD ‘13, ACM, New York, NY, USA, pp. 1357-1365, 2013.

[69] T. Lee, J. J. Mody, “Behavioral classification,” in: EICAR Conference, pp.
1-17, 2006.

[70] K. Huang, Y. Ye, Q. Jiang, “Ismcs: an intelligent instruction sequence-
based malware categorization system,” in: Anti-counterfeiting, Security,
and Identification in Communication, 2009, IEEE, pp. 509-512, 2009.

[71] Y. Ye, T. Li, Y. Chen, Q. Jiang, “Automatic malware categorization using
cluster ensemble,” in: Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, pp. 95- 104,
2010.

[72] M. Eskandari, Z. Khorshidpour, S. Hashemi, “Hdm-analyser: a hybrid
analysis approach based on data mining techniques for malware
detection,” Journal of Computer Virology and Hacking Techniques, vol.
9, pp. 77-93, 2013.

[73] Z. Chen, M. Roussopoulos, Z. Liang, Y. Zhang, Z. Chen, A. Delis,
“Malware characteristics and threats on the internet ecosystem,” Journal
of Systems and Software, vol. 85, pp. 1650-1672, 2012.

[74] J. Yonts, “Attributes of malicious files,” Tech. rep., The SANS Institute,
2012.

[75] J. Upchurch, X. Zhou, “Variant: a malware similarity testing framework,”
in: 2015 10th International Conference on Malicious and Unwanted
Software (MALWARE), IEEE, pp. 31-39,2015.

[76] A. Tamersoy, K. Roundy, D. H. Chau, “Guilt by association: large scale
malware detection by mining file-relation graphs,” in: Proceedings of the
20th ACM SIGKDD, ACM, pp. 1524-1533, 2014.

[77] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, E. Kirda, Scalable,
“behavior-based malware clustering,” in: NDSS, Vol. 9, pp. 8-11, 2009.

[78] M. Polino, A. Scorti, F. Maggi, S. Zanero, “Jackdaw: Towards Automatic
Reverse Engineering of Large Datasets of Binaries,” in: Detection of
Intrusions and Malware, and Vulnerability Assessment, Lecture Notes in
Computer Science, Springer International Publishing, pp. 121-143, 2015.

[79] P. Vadrevu, B. Rahbarinia, R. Perdisci, K. Li, M. Antonakakis, “Measuring
and detecting malware downloads in live network traffic,” in: Computer
Security ESORICS 2013: 18th European Symposium on Research in
Computer Security, Egham, UK, September 9-13, 2013. Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 556-573, 2013.

[80] J. Jang, D. Brumley, S. Venkataraman, “Bitshred: feature hashing
malware for scalable triage and semantic analysis,” in: Computer and
communications security, ACM, pp. 309-320, 2011.

[81] K. Rieck, P. Trinius, C. Willems, T. Holz, “Automatic analysis of malware
behavior using machine learning,” Journal of Computer Security, vol. 19,
no. 4, pp. 639-668, 2011.

[82] S. Attaluri, S. McGhee, M. Stamp, “Profile hidden Markova models and
metamorphic virus detection,” Journal in Computer Virology, vol. 5, pp.
151-169, 2009.

[83] G. Liang, J. Pang, C. Dai, “A behavior-based malware variant classification
technique,” International Journal of Information and Education
Technology, vol. 6, no. 4., pp. 291-295, 2016.

[84] Z. Feng, S. Xiong, D. Cao, X. Deng, X. Wang, Y. Yang, X. Zhou, Y.
Huang, G. Wu, “Hrs.: A hybrid framework for malware detection,” in:
Proceedings of the 2015 ACM International Workshop on Security and
Privacy Analytics, ACM, pp. 19-26, 2015.

[85] M. Ghiasi, A. Sami, Z. Salehi, “Dynamic VSA: a framework for malware

detection based on register contents,” Engineering Applications of
Artificial Intelligence, vol. 44, pp. 111- 122, 2015.

[86] M. Lindorfer, C. Kolbitsch, P. M. Comparetti, “Detecting environment
sensitive malware,” in: Recent Advances in Intrusion Detection, Springer,
pp. 338-357, 2011.

[87] C.T. Lin, N.J. Wang, H. Xiao, C. Eckert, “Feature selection and extraction
for malware classification,” Journal of Information Science and
Engineering, vol. 31, no. 3, pp. 965-992, 2015.

[88] B. Anderson, D. Quist, J. Neil, C. Storlie, T. Lane, “Graph-based malware
detection using dynamic analysis,” Journal in Computer Virology, vol. 7,
no. 4, pp. 247-258, 2011.

[89] I. Santos, J. Nieves, P. G. Bringas, “Ch. Semi-supervised Learning for
Unknown Malware Detection,” International Symposium on Distributed
Computing and Artificial Intelligence, Springer Berlin Heidelberg Berlin,
Heidelberg, pp. 415-422, 2011.

[90] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, C. Faloutsos,
“Polonium: Tera-scale graph mining for malware detection,” in: ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 131-
142, 2010.

[91] B. Anderson, C. Storlie, T. Lane, “Improving malware classification:
bridging the static/dynamic gap,” in: Proceedings of the 5th ACM
workshop on Security and artificial intelligence, ACM, pp. 3-14, 2012.

[92] D. Baysa, R. Low, and M. “Stamp. Structural entropy and metamorphic
malware,” Journal of Computer Virology and Hacking Techniques, vol. 9,
no. 4, pp. 179–192, 2013.

[93] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and
packed malware,” IEEE Security and Privacy, vol. 5, no. 2, pp. 40–45, 2007.

[94] A. Moser, C. Kruegel, and E. Kirda “Limits of static analysis for malware
detection,” In Computer Security Applications Conference, 2007. ACSAC
2007, Twenty-Third Annual, pp. 421–430, 2007.

[95] D. Bilar. “Statistical structures: Finger printing malware for classification
and analysis,” InBlackhat, 2006.

[96] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G.
Giacinto, and F. Roli. “Evasion attacks against machine learning at test
time,” in H. Blockeel, K. Kersting, S. Nijssen, and F. Železný (editors),
Machine Learning and Knowledge Discovery in Databases, vol. 8190
of Lecture Notes in Computer Science, pp. 387–402, Springer Berlin
Heidelberg, 2013.

[97] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant. “Semantics-
aware malware detection,” In Security and Privacy, 2005 IEEE Symposium
on, pp. 32–46, 2005.

[98] S.Z.M. Shaid, M.A. Maarof, “Malware behaviour visualization,” Jurnal
Teknologi, vol. 70, no. 5, 2014.

[99] J. Hemalatha, S.A. Roseline, S. Geetha, S. Kadry, R. Damaševičius, “An
Efficient DenseNet-Based Deep Learning Model for Malware Detection,”
Entropy, vol. 23, no. 3, 344, 2021.

[100] V. Moussas, A. Andreatos, “Malware Detection Based on Code
Visualization and Two-Level Classification,” Information, vol. 12, no. 3,
118, 2021, https://doi.org/10.3390/info12030118

[101] N. Marastoni, R. Giacobazzi, M. Dalla Reda, “Data augmentation and
transfer learning to classify malware images in a deep learning context,”
Journal of Computer Virology Hacking Techniques, vol. 17, no. 279-297,
2021.

[102] M. Nisa, J.H. Shah, S. Kanwal, M. Raza, M.A. Khan, R. Damaševičius, T.
Blažauskas, “Hybrid Malware Classification Method Using Segmentation-
Based Fractal Texture Analysis and Deep Convolution Neural Network
Features,” Applied Sciences, vol. 10, no. 14, 4966, 2020.

[103] A. Bensaoud, N. Abudawaood, J. Kalita, “Classifying Malware Images
with Convolutional Neural Network Models,” ArXiv, abs/2010.16108,
2020.

[104] D. Vasan, M. Alazab, S. Assan, H. Naeem, B. Safaei, Q. Zheng, “IMCFN:
Image-based malware classification using fine-tuned convolutional
neural network architecture,” Computer Networks, Vol. 171, 107138,
2020.

[105] H. Guo, S. Huang, C. Huang, F. Shi, M. Zhang, Z. Pan, “Binary File’s
Visualization and Entropy Features Analysis Combined with Multiple
Deep Learning Networks for Malware Classification,” Security and
Communication Networks, vol. 20, 8881760, 2020.

[106] X. Gao, C. Hu, C. Shan, B. Liu, Z. Niu, H. Xie, “Malware classification for
the cloud via semi-supervised transfer learning,” Journal of Information

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº6

- 134 -

Security and Applications, vol. 55, 102661, 2020.
[107] S. A. Roseline, S. Geetha, S. Kadry and Y. Nam, “Intelligent Vision-

Based Malware Detection and Classification Using Deep Random Forest
Paradigm,” in IEEE Access, vol. 8, pp. 206303-206324, 2020.

[108] D. Vasan, M. Alazab, S. Wassan, B. Safaei, Q. Zheng, “Image-Based
malware classification using ensemble of CNN architectures (IMCEC),”
Computers & Security, Vol. 92, 101748, 2020.

[109] Y. Zhao, W. Cui, S. Geng, B. Bo, Y. Feng and W. Zhang, “A Malware
Detection Method of Code Texture Visualization Based on an Improved
Faster RCNN Combining Transfer Learning,” IEEE Access, vol. 8, pp.
166630-166641, 2020.

[110] N. Bhodia, P. Prajapati, F. Di Troia, M. Stamp, “Transfer Learning for Image-
Based Malware Classification,” doi: 10.5220/0007701407190726, 2019.

[111] D. -L. Vu, T. -K. Nguyen, T. V. Nguyen, T. N. Nguyen, F. Massacci and
P. H. Phung, “A Convolutional Transformation Network for Malware
Classification,” 2019 6th NAFOSTED Conference on Information and
Computer Science (NICS), Hanoi, Vietnam, 2019, pp. 234-239.

[112] K.-S. Sung, W. Na, “A study on the implementation of a system providing
reliable malware information service,” International Journal of Electrical
Engineering & Education, vol. 58, no. 2, pp. 517-530, 2021.

Mahendra Deore

M. Deoreis working as an Asst. Professor in Computer
Engineering Department atMKSSS’s Cummins College
of Engineering for Women, Pune 411051, India. He was
awarded his Master of Technology Degree from Bharati
Vidyapeeth Deemed University College of Engineering,
Dhankawadi, Pune. He received doctoral degree from
Swami Ramanand Teertha Marathwada University,

Nanded, Indiain 20022. His areas of interest are big data, Security, Computer
Networks and Machine learning. He has Fourteen years’ experience in teaching.

Manoj Tarambale

He received graduate degree (B.E.) in Electrical
Engineering from University of Pune (SPPU), India in
1992, post graduate degree (M.E.) in Control System from
Shivaji University, Kolhapur, India in 2002 and completed
research work (PhD) in Electrical – Biomedical Image
Processing from PACIFIC University, Udaipur, India in
2018. He has one-year industrial experience and thirty

years teaching experience. At present, he is Associate Professor of electrical
engineering department and Principal of PVG’s College of Engineering
and Technology & G K Pate Institute of Management, Pune-09, India. His
main research interests are control system engineering, electrical vehicle
technology, robotics & automation, bio-medical image processing, electronic
instrumentation, and medical diagnosis (AI, ML & DS based).

Jambi Ratna Raja Kumar

Prof (Dr) Ratna Raja Kumar Jambi Completed his PhD
(CSE) degree from Maharishi University of Information
Technology, Lucknow, Uttar Pradesh in 2019, Master of
Technology (CSE) from Pondicherry Central University in
2007. He has 17 years of Teaching and Research Work. He
is having Patents at National, international level and has
published Papers in artificial Intelligence and Machine

Learning. He has received the award as “Innovative Leader” form World
Education Summit & Awards in 2019 at New Delhi.

Sachin Sakhare

Dr. Sachin R. Sakhare is working as a Professor and Head
of the Computer Engineering Department at Vishwakarma
Institute of Information Technology, Pune, India. He
has 27 Years of experience in engineering education.
He is recognized as PhD guide by Savitribai Phule Pune
University and currently guiding 8 PhD scholars. He is a
life member of CSI, ISTE and IAEngg. He has Published

51 research communications in national, international journals and conferences,
with around 393 citations and H-index 7. He has authored 6 books which is

published by Springer Nature, CRC Press and IGI Global. He worked as a
reviewer of journals published by Elsevier, Wiley, Hindawi, Springer, Inder
science, and IETE. He worked as a reviewer for various conferences organized
by IEEE, Springer, and ACM. He worked as a member of the Technical and
Advisory Committees for various international conferences. Dr. Sachin has
Delivered invited talks at various Conferences, FDP’s and STTP’s as well as to
PG and PhD students. He has guided 26 PG students. He has filed and published
07 patents out of which 01 Indian, 03 Australian and 02 south African patents
are granted.

