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Abstract

Sequential recommendation aims to predict the user’s next action based on personal action sequences. The 
major challenge in this task is how to achieve high performance recommendation under the data sparsity 
problem. Translation-based recommendations, which learn distance metrics to capture interactions between 
users and items in sequential recommendations, are a promising method to overcome this issue. However, a 
disadvantage of translation-based recommendations is that they capture long-term preferences of the user 
and complex item transitions. In this paper, we propose attentive flexible translation for recommendations 
(AFTRec) to tackle data sparsity problem by capturing a user’s dynamic preferences and complex interactions 
between items in user’s purchasing behaviors. In particular, we first encode semantic information of an item 
related to user’s purchasing behaviors as the user-specific item translation vectors. We also design a transition 
graph and encode complex item transitions as correlation-specific item translation vectors. Finally, we adopt 
a flexible distance metric that considers directions with respect to the translation vectors in the same space 
for predicting the next item. To evaluate the performance of our method, we conducted experiments on four 
sparse datasets and one dense dataset with different domains. The experimental results demonstrate that our 
proposed AFTRec outperforms the state-of-the-art baselines in terms of normalized discounted cumulative 
gain and hit rate on sparse datasets.
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I. Introduction

RECOMMENDER systems (RSs) have received interest on various 
platforms, such as e-commerce, news portals, and social media 

sites. The main purpose of RSs is to suggest the most relevant 
recommendations to users so that they make informed purchasing 
choices. Traditional recommendation systems [1]–[3], such as 
collaborative filtering (CF), make recommendations by analyzing 
historical interactions or preferences based on the similarity of users 
or items in the past. However, following the explosive growth of 
e-commerce, the data sparsity problem, which refers to the difficulty 
in finding sufficient similar users and items due to insufficient user–
item interactions, is the main challenge in RS. To address this issue, 
matrix factorization (MF) [4] models that map both the user and item 
embedding vectors and represent user–item interactions by the inner 
product of the user and item vectors have been proposed. 

To deal with sequential user behaviors (e.g., click and purchase) in 
e-commerce, sequential recommendation systems [5]–[8] have been 
proposed in RS for data sparsity problems. Examples of such models 
include factorized personalized Markov chains (FPMC) [9], which 
combine Markov chains (MCs) [10] and MF to predict the next action 

of the user in sequential data. The FPMC captures both long-term 
user preferences and short-term sequential dynamics by modeling 
the interactions between user-to-item and item-to-item pairs. This 
underlies personalized MCs, where a user-specific transition matrix 
is applied to capture personalized item transitions. Achieving better 
performances on sparse datasets, many researchers have recently 
found new ways to capture interactions between user-to-item and 
item-to-item pairs. 

Translation-based methods [11]–[14], which facilitate knowledge 
graph (KG) completion [15]-based approaches, such as translation-
based recommendation (TransRec) [16], latent relational metric 
learning (LRML) [17], and collaborative metric learning (CML) [18], 
have achieved high performance with sparse datasets for next item 
recommendation. TransRec utilizes KG completion to model users as 
translation vectors from their previously purchased item vectors to 
the vector of the next items in the same translation space. To model 
item-to-item interactions in chronological order, TransRec adopts 
a translational principle, which minimizes the distance between the 
translation vectors. However, these translation-based recommendation 
methods have several drawbacks in sequential recommendations. 
First, they mainly adopt translating embeddings for modeling multi-
relational data (TransE) [19], which is capable of 1-to-1 relations but 
is unable to handle 1-to-N, N-to-1, and N-to-N relations. Second, 
there are few studies that focus on the user’s long-term and short-
term preferences in translation vectors without user and item context 
information, such as category and user profile. 
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In this study, we propose an attentive flexible translation for 
recommendations (AFTRec) to predict the user’s next item in sparse 
sequential recommendation datasets for the data sparsity problem. 
Specifically, unlike existing approaches, which primarily focus on 
the last consumed item, we focus on the sequential behaviors of the 
user and complex interactions between purchased items by users in 
chronological order. To facilitate KG completion in predicting the 
next item, we generate user-specific item translation vectors that 
reflect dynamic user preferences and target item translation vectors 
that represent the user’s next item as entities. We also generated a 
correlation-specific item translation vector that reflects item-to-item 
interactions in user behavior histories as a relation vector. For KG 
completion to predict the next item, we propose a distance function 
that can flexibly handle not only 1-to-1, but also 1-to-N, N-to-1, and 
N-to-N relations. Our AFTRec consists of three modules: a user-specific 
item translation vector embedding module, correlation-based item 
translation vector embedding module, and attentive item translation 
vector embedding module. The model applies KG completion to 
translation vectors for moving the user’s previous item vectors close 
to the user’s next item vectors in the same translation space. First, 
we generated item embeddings based on user behaviors through a 
self-attention mechanism, which is efficient for capturing long-term 
item dependencies with the position information of the item. For the 
correlation-specific item translation vector, we initially designed the 
transaction graph and linked the neighbors of items based on a sliding 
window, which slides the item sequences in a window-by-window 
manner. Then, we learned item-to-item interactions in sequential user 
behaviors by utilizing gated graph neural networks (GGNNs) [20], 
which are capable of representing sophisticated item interactions 
with comprehensive item transitions in user behavior sequences. In 
the final module, we generate the attentive item translation vector 
that aggregates the user’s sequential preferences and relationships 
between items and then embed translation vectors into the same space 
with KG embedding for translation from a previous item to the next 
item. Inspired by the flexible translation (FT) [21] of KG embedding, 
we designed our translational distance function in a new manner to 
model translation vectors. Therefore, unlike other existing translation-
based RSs for sparse sequential datasets, AFTRec can capture not only 
personal item preferences but also sophisticated item interactions 
based on users’ and users’ sequential behaviors. 

Our contributions can be summarized as follows:

1. We propose a novel translation-based sequential recommendation 
model. We adopt the KG embedding technique to encode sequential 
behaviors of a user and item-to-item relationships as entities and 
relations of a KG triple. We model various correlations between 
entities and relations to find the next item with our translational 
distance function, which releases existing translation approaches. 
Using this approach, AFTRec can capture pairwise relations 
between users and items more efficiently.

2. We embed sequential user preferences as a user-specific item 
translation vector as the head entity by applying a self-attention 
mechanism [22] in chronological order to understand long-term 
user preferences. For the secondary head entity of our distance 
function, we define the attentive item translation vector. The 
attentive item translation vector summarizes the item correlations 
related to the purchasing preference of each user through the soft-
attention mechanism. Hence, we consider various perspectives on 
user and item information to translate the previous item into the 
next item.  

3. We represent item-to-item interactions as correlation-specific 
item translation vectors as a relation of the KG triple through 
GGNN. Initially, we design a transaction graph by connecting 
adjacent items in chronological order using a sliding window 

method. In particular, we divide edges into incoming and outgoing 
edges, and thus efficiently represent item interactions with the 
purchase order in terms of the time position. In addition, we utilize 
the GGNN to analyze item interactions. Because the GGNN uses 
a gated recurrent unit (GRU) [23] as an updater, it helps reduce the 
number of parameters for analysis.

4. We conduct extensive experiments using four sparse datasets 
and one dense dataset from different domains to evaluate the 
proposed method. The experimental results demonstrate that 
our method outperforms other existing approaches in solving the 
data sparsity problem. 

The remainder of this paper is organized as follows. Related studies 
are introduced in Section II. Next, we describe our proposed method 
in Section III. In Section IV, we describe the experiments conducted on 
publicly available datasets of several domains, evaluate our proposed 
method in comparison with other approaches, and analyze the 
experimental results. Finally, we conclude the paper in Section V.

II. Related Work

A. Traditional Recommender Systems
RSs aim to predict user preferences and suggest relevant items 

to the users. Traditionally, CF-based methods are used in RSs. CF 
recommends items in which similar users are interested based on 
historical data. For example, MF models the explicit feedback of a user 
with user and item latent factors by calculating the dot product of the 
two latent factors. To address item-based CF, a factored item similarity 
model [24] embeds each item and models the similarity between 
two items using the inner product of their embedding vectors. The 
neural attentive item similarity model [25] assigns an attentive weight 
to each item in the item sequences and shows good results in the 
calculation of the similarity between items. Bobadilla et al. [26] utilize 
neural CF to obtain prediction reliabilities and combine the prediction 
value and the reliability information in user ratings. Bobadilla et al. 
[27] improve fairness in RSs by combining probabilistic MF and multi-
layer network. However, these methods have limitations in handling 
sequential patterns in interactions between users and items.

B. Sequential Recommender Systems
Sequential RSs investigate sequential behaviors of a user to 

recommend the next item. MC-based methods temporarily capture 
item transitions and predict the next item based on the last consumed 
item. FPMC fuses MF and MC to predict the next actions with the 
user’s general interests and short-term item transitions. 

Inspired by the success of neural networks, various neural-network-
based methods have been introduced for sequential RSs. Recurrent 
neural network (RNN)-based recommendations [28], [29] employ 
variations of RNN, such as long short-term memory and GRU, which 
are capable of modeling sequential patterns, to predict the next action 
of the user. However, because RNN-based recommendations contain 
information regarding the final state of the model, they are limited 
in modeling long sequences. To address this problem, attention-based 
RNN methods [30], [31] have been proposed. A neural attentive 
recommendation machine [32] applies an attention mechanism to a 
stacked GRU-based encoder–decoder to model the sequential behavior 
and capture general preferences of the user. Recently, self-attention 
mechanisms have become popular, with promising performance 
in natural language processing (NLP) problems. Accordingly, 
many researchers have utilized self-attention to provide suitable 
recommendations in historical sequences. Self-attentive sequential 
recommendation (SASRec) [33] uses stacked self-attention blocks 
to efficiently consider long-term dependencies. A stochastic shared 



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 58 -

embeddings-personalized transformer (SSE-PT) [34] introduced 
personal information into self-attention by concatenating item 
embedding and embedding it into the self-attention embedding layer. 
Time interval-aware self-attention-based sequential recommendation 
(TiSASRec) [35] utilizes both the absolute positions of the items and 
the time intervals between items in a sequence. It represents the 
relationship between items as a time interval and shows performance 
improvement on a personalized sequential recommendation using two 
types of item positions: sequential and relative time positions. 

However, these methods have several limitations. First, MC-
based approaches predict the next item using only the last consumed 
item; thus, they do not explicitly capture the complex and long-term 
dependencies. Second, convolutional neural networks [36], [37] and 
RNN-based methods involve the risk of missing crucial information on 
previously consumed items and lack explanations for recommended 
items. Third, self-attention-based methods have insufficient ability to 
treat complex item-to-item and user-to-item interactions.

C. Translation-Based Embedding Model in Recommender Systems
The goal of KG completion-based RSs is to learn the relationships 

between users and items by minimizing the distance between 
the translation vectors in the same space. Fig. 1 describes TransE 
embedding and two KG-based approaches in RSs, namely, CML 
and LRML. KG-based recommendation methods initially utilize KG 
embeddings to predict user’s item ratings or implicit next interactions 
between users and items in RSs. CML minimizes the distance between 
the user and item vectors using personalized historical implicit 
feedback. LRML uses a memory-based attention network to represent 
the latent relationships between the user and previous item vectors as 
latent relation vectors. Then, LRML advances the metric learning of 
CML, which operates via p ≈ q to p + r1 ≈ q, where p and q are the user 
and item vectors, respectively, and r1 is a user-to-item relation vector. 
CML and LRML then apply the model’s distance function to find the 
next item vector with the shortest distance from the user vector.

User User

Item

Minimize distance
Latent user-to-item relation

Item

(a) CML (b) LRML

Fig. 1.  Simplified illustration of (a) CML and (b) LRML.

To solve the data sparsity problem in sequential RSs, translation-
based recommendations have been proposed. Translation-based 
recommendations embed the user and item vectors as translation vectors 
of a triple form (head, relation, tail) using KG completion to move the 
previous user’s item vector to be close to the user’s next item vector in 
sequential behavior sequences. Fig. 2 illustrates the process of providing 
the next item recommendation through TransRec. In Fig. 2, TransRec 
predicts the user’s next item by modeling third-order interactions 
between the user’s previous item, the user, and the user’s next item in 
a translation space. The previous items of the user are also modeled to 
move the previous item to the next item in chronological order through 
TransE, as shown in Fig. 2. Fig. 3 illustrates the process of providing 
the next item recommendation through mixtures of heterogeneous 
recommenders (MoHRs) [38]. Similar to TransRec in Fig. 2, MoHR 
predicts the user’s next item by modeling third-order interactions 
based on the user’s item sequences and user information. Specifically, 
MoHR represents various sequential relationships, that is, previous 
item-to-next item and user-to-next item, and adopts KG embedding 
to predict the next item-based distance from the previous item vector 
in the translation space. MoHR captures three types of relationships: 
long-term user-to-item preferences, relationships between short-term 
item transitions, and exhibit relationships (e.g., also-bought/also-
viewed) between the short-term item transitions by applying TransE 
separately for each relationship, as shown in Fig. 3. MoHR also models 
item vectors in the user’s purchasing sequences to move the previous 
item vector close to the user’s next purchased item vector. An attentive 
translation model for next item recommendation (ATM) [39] constructs 
a user, multiple previous items, and the next items as translation vectors 
to translate a user to the next item. In particular, ATM implements high-
order MCs to embed a user’s sequential behaviors into the relation 
vector. ATM then models third-order interactions (a user, the user’s 
sequential preferences, and the next item). 

Recently, translation-based recommendations have also facilitated 
KG completion to predict user-to-item ratings in sequential RSs 
[11], [14]. Translation-based factorization machines [40] combine 
KG completion and factorization machines to predict user–item 
ratings in sequential RSs. To improve the performance of translation-
based recommendations, recent approaches utilize user and item 
context information, such as item category and user region. The 
adaptive hierarchical translation-based sequential recommendation 
[41] captures item sequence patterns based on implicit purchasing 
behaviors and purchased item category information by modeling 
sequential item interactions using KG completion.

However, these approaches require additional resources and time 
to consider contextual attributes. To reduce the resources of context 
analysis, we solved the data sparsity problem and predicted the next 
item using only implicit interactions between the user and items 
inspired by TransRec and MoHR with performance comparable to 
recent sequential recommendation methods such as SSE-PT and 
TiSASRec introduced in Section II.B.

User

User

User

User

Previous items

User

User

Next item

Item 8Item 5

Item 5

Item 3

Item 1

Item 3

<Purchasing item history>

Item 1

<Translation space>

Predicting
next item

Move item vectors to minimize distance

Fig. 2.  Simplified illustration of TransRec based on the user’s item sequences.
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Previous item 5

User

Next item

Next item 8

Item 1 Item 3 Item 5 Item 8

Purchasing item history

Minimizing distance between two vectors

Interactions between user and items
Item interactions in chronological order

Exhibit item relationships

Fig. 3.  Simplified illustration of MoHR. MoHR models distance functions for 
three types of relationships to each previous item pairs. Then, MoHR finds 
the item vector with the shortest distance from the last purchased item as the 
next item.

Many translation-based recommendation systems exhibit robust 
performance on sparse datasets, such as e-commerce, by adopting 
the translational distance for capturing third-order interactions (a 
user, a previously consumed item, the next item) to the next item 
recommendation. TransE models h + r ≈ t, where (h, r, t) is a triple 
of KG, with a promising performance in 1-to-1 relationships, but it is 
too strict to model 1-to-n, n-to-1, and n-to-n relationships. In addition, 
many approaches cannot address users’ long-term dependencies and 
thus achieve lower performance than RNN- and self-attention-based 
sequential recommendation systems in sequential recommendation. 
To address this issue, our proposed method uses a translational 
embedding model that handles not only 1-to-1 and other relationships 
but also long-term dependencies and sophisticated item interactions in 
sequential behaviors to recommend the most appropriate target item.

III. Methodology

In recommendation research, many translation-based approaches 
have been proposed that learn the relationships between users and 
items as translation vectors for sequential recommendation. In this 

section, we introduce the novel translation-based recommendation 
AFTRec, which applies KG embedding to improve the sequential 
recommendation with sparse datasets. The architecture of the 
proposed AFTRec is shown in Fig. 4. First, we encoded the 
information of a user’s consumed item based on personalized 
sequential behaviors to the user-specific item translation vector γu 
as the head entities. In this process, the self-attention mechanism 
was used to capture the items’ long-term dependencies in sequential 
behaviors (Section III.A). Next, we designed a transaction graph that 
included item connections in chronological purchasing order. We 
divided the edges into incoming and outgoing edges to learn item 
interactions, reflecting changes in users’ purchasing preferences. 
Using the transaction graph, we generated a correlation-specific 
item translation vector γr as relationships between entities, which 
includes sophisticated interactions between items in users’ item 
sequences through GGNN (Section III.B). Finally, we optimized 
the metric function to score the interactions with the target item 
translation vector γj represented as the tail entity. In this module, we 
additionally created comprehensive item vectors γu' that explicitly 
aggregated the item’s information related to user-to-item and 
item-to-item interactions. Inspired by FT embedding, our distance 
function considered the direction of translation vectors to release 
the strict translational principle h + r ≈ t. Owing to the flexible 
metric in the proposed method, we additionally considered the 
relationships between consumed items and target item vectors from 
the two perspectives with γu and γu'. Owing to the three generated 
vectors of user behavior-based item vector, comprehensive item 
vector, and item correlation vector as γu, γu' and γr, respectively, 
we were able to optimize the translational embedding model 
(γu' + γr)

⊺ γj + ( γj + γr)
⊺ γu to find the next item (Section III.C). 

A. User-Specific Item Translation Vector Embedding
Let U and I represent the user and item sets, where u ∈ U denotes a 

user and i ∈ I denotes an item. For each user u, we extracted every L  
successive items as a user action sequence. In this module, we generated 
a user-specific item translation vector γu ∈ R|L|×d. By reflecting users’ 
long-term preferences in γu, AFTRec considers item transitions and 
users’ purchasing history to model relationships between items using 
translation-based approaches. 

User-action
sequences

S

Embedding Matrix
SA Block

Output

A�ention

Q K V

generation

So�-A�ention

Target Item lists

Translational principle

Target Item
score lists

Predicting the
next item with

the highest score

generation

generation

transaction Graph G

User-specific item translation vector Embedding module

Correlation-specific item translation vector Embedding module Translation-based
Prediction module

G
G
N
N

Fig. 4.  Architecture of our proposed method.
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Let Su = {𝑖1, 𝑖2, …, 𝑖L} denote the set of all L items ordered by 
timestamp. In this section, a user-specific item translation vector is 
generated for each previous item in {𝑖1, 𝑖2, …, 𝑖L} as shown in Fig. 4. 
With the translational principle, AFTRec predicted the item for the 
𝑡 + 1 step-based translational distance with γu corresponding to the 
purchased item in step 𝑡  (0 < 𝑡  < L) in chronological order.

In Su, we created an item embedding matrix M ∈ RL×d, where 𝑑 is the 
latent dimensionality. In addition, we generated a learnable position 
embedding matrix P ∈ RL×d as the purchasing order information in the 
user sequence. We obtained the item embedding lookup matrix E ∈ 
RL×d by calculating E = M + P. To efficiently represent item translation 
vectors reflecting user preferences, we utilized stacked self-attention 
blocks (SABs) for E. The SAB consists of a multi-head attention and a 
pointwise feed-forward (FF) layer. Multi-head attention runs a scaled 
dot-product attention mechanism several times in parallel. Because it 
concatenates different representations of an item’s dependencies from 
various perspectives, it is beneficial to consider multiple relationships 
jointly through a separate analysis. MHA was calculated as follows: 

 (1)

 (2)

  (3)

where Q, K, and V denote the sets of queries, keys, and values, 
respectively. In addition,  are learnable 
parameters, and  is a scale factor that scales the dot products 
to avoid the vanishing gradient problem. We provided the item 
embedding lookup matrix E as input, which can be defined as a linear 
transformation of Q = EWQ, K = EWK, and V = EWV. To reflect a realistic 
sequential behavior of a user to a user-specific item translation vector, 
we considered 𝑡  items when generating the 𝑡 -th purchased item 
translation vector. Therefore, we masked the queries and keys from 
𝑡 + 1 to the last item. Then, the pointwise FF layer was calculated as 
follows:  

 (4)

 (5)

where W1, W2 ∈ Rd×d are the learnable parameters. In addition,  
b1, b2 ∈ R1×d are the bias parameters. A pointwise FF layer was applied 
to each item position separately to aggregate and normalize the 
attention outputs. Similar to [22], the pointwise FF layer included a 
residual connection and layer normalization, which are omitted in 
(4) for brevity. To efficiently improve the performance of capturing 
item transitions in long-term sequences, we stacked the SABs. The  
B−th (B > 1) block is defined as follows:

 (6)

where X(0) = E. In this module, we obtained the output item 
embedding matrix X' ∈ Rd×d using stacked SABs. We then defined X' 
as the head γu in the transition space. In contrast to TransRec and 
MoHR, where the translation vectors are represented only by item 
embeddings, our proposed method is able to represent not only long-
term preferences but also item transitions.

B. Correlation-Specific Item Translation Vector Embedding
In this section, we generate a relation vector that translates the 

interaction between the previous and next items for personalized 
recommendation in the same space. Therefore, we encoded complex 
item-to-item interactions in users’ purchasing behaviors to correlation-
specific item vectors γr ∈ RL×d based on users’ item sequences, as 
shown in Fig. 4.

Because the basic idea of graph neural networks (GNNs) [42] is to 
generate node embedding by aggregating the features and topological 
information from the neighbors, it ensures that GNNs are capable 
of efficiently capturing the interactions between nodes on graph-
structured data. GGNN extends GNNs to sequential data, using a GRU 
as an update function to propagate information. Owing to the use of 
a GRU, GGNN selectively aggregates information of the neighbors, 
and thus, it is able to reduce the computational limitations and 
achieve a better performance. In this study, we converted personal 
item sequences to graph-structured data and learned the general 
relationships between consumed items in the e-commerce platform 
through GGNN, as described below.

1. Constructing a Session Graph
For user 𝑢, given the behavior sequence Su, we designed a 

transaction graph G. Let Gu = (𝒱, ℰ) be a directed graph, where each 
node denotes a purchased item at time 𝑡  as 𝑣t ∈ I, and each edge  
(𝑣t−1, 𝑣t) ∈ ℰ denotes each link for a chronologically ordered pair of 
items. To represent chronological item-to-item relationships, we built 
an adjacency matrix using a sliding window that moved a unit distance 
ahead. For the user sequence Su, we moved the window in a unit time 
and connected the links between neighboring item nodes.  

An example of the construction of an adjacency matrix is shown 
in Fig. 5. The adjacency matrix A ∈ RL×2L is represented by two 
adjacency matrices ABF, AAF ∈ RL×L, which represent connections of 
earlier or later purchased items as incoming or outgoing edges in the 
transaction graph, respectively. All edges have normalized weights 
with connections between earlier or later items for each item. In Fig. 
5, each graph representation of a user process through the adjacency 
matrix is based on item sequences of each user, and the transaction 
graph is generated by repeating this process for all users in the data-
sparse environment.

<Transaction graph generated
by User 1, 2, 3>

User 1
Item sequences of User 1

Item sequences of User 2

Item sequences of User 3

Adjacency matrix

The Graph generation process for item sequences of User 1

outgoing edges incoming edges

Fig. 5.  An example of transaction graph generation process. Transaction 
graph is generated by the purchase history of users. The adjacency matrix is 
represented as a concatenation of two adjacency matrices, which link earlier 
or later purchased items, respectively.

2. Item-to-Item Interaction Learning
After constructing a transaction graph Gu of each user, we 

adopted a GGNN to learn item-to-item relations. Owing to the gating 
mechanism of a GRU, a GGNN can tackle the vanishing gradient and 
computational limitations by selectively gathering information from 
the other nodes to update the hidden state of each node. Let hi ∈ Rd 
denote the embedded node vector of the corresponding item 𝑣i and 
H denote the set of all item node vectors. For the initialization step, 
the aggregation information ai  is defined as the concatenation of two 
types of adjacency matrices ,  ∈ R1×d corresponding to the target 
node hi:
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 (7)

  (8)

 (9)

where WBF, WAF ∈ Rd×d are learnable parameters; bBF, bAF ∈ Rd are bias 
parameters;  is the list of item node states; and [⋅;⋅] is the 
concatenation operation. 

Then, the computation steps of updating hi are defined as follows: 

 (10)

 (11)

 (12)

 (13)

where Wz, Wr, Wr ∈ R2d×d, Uz, Ur, Uo ∈ Rd×d are learnable parameters. 
In addition,  and  are the update and reset gates, respectively. The 
reset gate determines the amount of past information that must be 
preserved or discarded. The update gate determines the amount of 
past information that must be passed along to the future. Moreover, σ  
denotes the logistic sigmoid function, and ⨀ denotes the element-wise 
multiplication. This procedure was computed in a manner similar to 
the GRU. After this procedure, the corresponding items of all updated 
nodes were defined as the relations γr that contain high-level item-to-
item interactions and short-term user interests in the transaction graph.

C. Optimization and Target Item Prediction 
After obtaining the user and item translation vectors as the head 

and relation, respectively, we could predict the target item as the 
tail by optimizing the translational embedding model. In previous 
translation-based recommendations, (h, r, 𝑡 ) was modeled by the same 
translational principle h + r ≈ 𝑡 in KG embedding techniques (e.g., 
TransE and TransR [43]). However, the translational principle h + r ≈ 𝑡  
is too strict to model the complex and diverse interactions between 
entities and relations (e.g., symmetric/transitive/one-to-many/many-
to-one/many-to-many relations). To consider an item’s diverse 
information related to personal preferences in a metric space, we 
extended the FT to generate flexible translation vectors with respect 
to multiple entities and relations. Originally, FT embedded multiple 
entities and relations by optimizing (h + r)⊺𝑡 + (𝑡 − r)⊺ h. Given an 
ideal embedding h + r ≈ 𝑡 , FT applies h + r ≈ ρt, ρ > 0 by considering 
directions of vectors h + r and 𝑡 . To balance the constraints on the 
head and tail during training, FT considers both directions of vectors 

𝑡  and h + r and h and 𝑡 − r. Thus, it can flexibly capture more diverse 
and complex relationships between the head and tail. 

For each triple (h, r, 𝑡 ), we can create an inverse triple (t, r−1, h), 
which has also been used in [44], [45]. Thus, we can convert the 
translational principle h + r ≈ 𝑡  to 𝑡 − r ≈ h. Using the FT principle, 
we can also apply 𝑡 − r ≈ ρh, ρ > 0. For personal recommendations, we 
treat two user-specific item vectors as head entities: the user behavior-
based item translation vector γu and the attentive item translation 
vector γu'. An attentive item translation vector strengthens the crucial 
information in the relationship between general purchased items and 
user preferences. Therefore, we applied the soft-attention mechanism 
[46] for long-term user interest and sophisticated item relations and 
then successfully aggregated the context pairs of user interest-to-item 
relations. The attentive item translation vector γu' is defined as  

 (14)

 (15)

 (16)

where W3, W4, W5 ∈ Rd×d are learnable parameters, and b3 ∈ Rd is 
the bias parameter. By considering the heads γ'u, γu and the relation 
γr, we can seek the tail γr to predict a suitable item for the user’s 
dynamic preferences. Fig. 6 illustrates translational embedding models 
of TransRec and our AFTRec. In our translational embedding model, 
we consider the directions of the vectors (γu' +  γi) with γj, and (γj − γr)  
with γu.

Using balanced learning for the interactions of two triple sets (γu', γr , γj) 
and (γu, γr , γj) in a translation space, as shown in Fig. 6, AFTRec can 
flexibly capture diverse user and target item relations using different 
perspectives for the personal preferences of users. Finally, the model 
scores can be formulated as follows:

 (17)

Based on our model’s score, as shown in Fig. 6, AFTRec aims to 
maximize the probability of a true item under relationships in a user’s 
behavior sequence. We adopted the binary cross-entropy loss for the 
optimization of the translation-based methods proposed by [47]–[49]. 
Given positive item set I and negative item set I', positive item j ∈ I and 
negative item j' ∈ I' are uniformly sampled. Then, we optimize the loss 
function as follows:

 (18)

Fig. 6.  Illustrations of translational principle for TransRec and AFTRec.
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where σ is the logistic sigmoid function used to obtain the predicted 
probability of a triple. In this model, we updated the parameters using 
an Adam optimizer [50] and regularized the parameters based on L2 
regularization to prevent overfitting. In the training process, for items 
purchased before the last purchased item, AFTRec modeled item 
vectors to predict the next item using the previous item based on our 
translational principle. AFTRec finally recommended an appropriate 
item for the user with the highest fuj score with the user- and correlation-
specific item translation vector for the latest purchased item.

IV. Experiments

A. Datasets
We evaluated AFTRec on five public datasets for real-world 

applications. All datasets had diverse domains and sizes. The statistics 
of all datasets are reported in Table I. For comparison with translation-
based models that require standardized relationships between users 
and items, we used datasets from the Amazon and Steam platforms, 
which define specific relationship types between user-to-user and 
item-to-item pairs. We take five domains: “Beauty,” “Toys and games 
(Toys),” “Clothing, shoes, and jewelry (Clothing),” and “Automotive” 
from Amazon review datasets in [51], and “Games” from Steam datasets 
generated in [33]. Amazon datasets were used as sparse datasets, 
whereas the Steam dataset was used as dense dataset. In this section, 
we demonstrate our performance for sparse datasets using Amazon 
datasets, and we experiment with our recommendation performance 
on dense datasets using the Steam dataset. All the datasets contain 
various user-to-item interaction data (e.g., user ratings and reviews). 
We followed the methods used by Kang and McAuley [33], and Wu 
et al. [34] to preprocess datasets to sort items in the sequential order 
of user sequences. First, we ordered the review behaviors as positive 
feedbacks by the timestamps. Second, we discarded users with fewer 
than five related-item interactions. Then, we transformed the users’ 
review data to become a sequential dataset indicating the order of each 
user’s purchase items.

For each user, we split the user’s historical sequences Su into 
three parts, as done by Kang and McAuley [33], and Wu et al. [34]: 
(1) the most recent interaction in Su as the testing set, (2) the next 
interaction as the validation set, and (3) the remaining interactions 
as the training set.

B. Evaluation Metric
We used two common Top-K recommendations: the hit rate 

(HR@10) and normalized discounted cumulative gain (nDCG@10). 
Here, HR@10 is the rate of positive items in the top-10 recommended 
items, and nDCG@10 is a ranking measurement for the positions 
of the positive items in the top-10 recommended items. For the 
computational cost, we followed the previous mentioned works [33], 
[34]. We randomly sampled 100 negative and 1 positive item for each 
user and ranked them for evaluation.

C. Comparison Methods
To evaluate the performance of AFTRec, we compared it with the 

following eight competitive baselines: 

POP: Simple baseline recommendation model that recommends the 
most popular items in the training set.

CML: CF-based method that applies metric learning instead of MF. 
It learns a metric to minimize similar user and item pairs. 

FPMC: Sequential RS that combines MF and factorized first-order 
MC. It captures long-term user interests and item-to-item transitions 
by utilizing the characteristics of both methods. TransRec: Baseline 
translation-based method for sequential recommendations. It embeds 

users and items into the transition space and models three-component 
relationships between a user, previously visited items, and target item.

MoHR: Translation-based method that minimizes the distance 
between relevant item pairs in the translation space. It exhibits 
different relation types (e.g., also-viewed/also-bought) between user 
and item pairs and is integrated into the translational embedding 
model. 

SASRec: Self-attention-based sequential recommendation model 
inspired by a transformer in NLP. It captures the long-term user 
interest in predicting the next item through multiple stacked SABs. 

TiSASRec: Self-attention-based sequential recommendation model. 
Unlike SASRec, which considers the absolute time position of items, 
TiSASRec uses relative time intervals for positioning the encodings of 
items in stacked SABs.

D. Implementation Details
During the experiments, we implemented AFTRec using the Adam 

optimizer with momentum exponential decay rates β1 = 0.9 and β2 = 0.98. 
We set the batch size to 128 and the maximum sequence length to 50 
for all datasets. In AFTRec, we set the number of SABs to two and 
used single-head self-attention layers to generate the user translation 
vector. We set the number of links in the transaction graph to three for 
learning the item relations. For comparison with competitive baselines, 
the hyperparameters were tuned through a grid search. The learning 
rate was {0.1, 0.001, 0.0001, 0.00001}, and the dropout rate was {0.2, 
0.5}. For SASRec and TiSASRec, we set the number of SABs to two and 
used single-head self-attention layers. For SASRec and TiSASRec, the 
embedding dimensions were set to 50. For TransRec and MoHR, the 
embedding dimensions were set to 10. Except for POP, CML, FPMC, 
and TransRec, the batch size was set to 128. For SASRec and TiSASRec, 
the maximum sequence lengths were 50. We set all other parameters 
according to the respective baseline papers.

E. Recommendation Performance
Tables II and III show a performance comparison of sequential 

recommendations and translation-based recommendations with 
HR@10 and nDCG@10 on four sparse datasets and one dense dataset. 
On sparse datasets, AFTRec achieved the best performance for both 
the HR@10 and nDCG@10 metrics. These results show that AFTRec 
outperforms sequential recommendations using only the self-attention 
mechanism and translation-based sequential recommendations to 
resolve the data sparsity problem in the data-sparse environment 
such as e-commerce recommendation. Several observations of the 
competitive baselines are shown in Table II. For the Beauty and Toys 
datasets, POP, which is a traditional recommendation, achieves the 
worst performance in terms of nDCG and HR. TiSASRec achieved 
the second-best performance among the baseline methods in terms of 
nDCG and HR on the Beauty, Toys, and Clothing datasets. In addition, 
SASRec achieved the second-best performance in nDCG and HR 
among the baselines on the Beauty dataset. 

The proposed model showed better nDCG@10 performance than 
the existing model for all datasets and better HR@10 performance 
than the existing models on sparse datasets (Table III). In particular, 
the proposed model showed the greatest improvement in nDCG 
and HR performance compared to the existing embedding-based 
recommendation model for the Clothing dataset. For all datasets, CML, 
which applies a metric function instead of MF, achieved the worst 
performance in terms of nDCG and HR. For sparse datasets, MoHR 
achieved the second-best performance in terms of nDCG and HR. 

Compared with these baselines, the proposed AFTRec achieved 
the best performance on the four datasets. This is because our 
method represents the user’s short-term and long-term interests as 
user translation vectors through self-attention to user sequences and 
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high-level item relations as item translation vectors. By mapping 
user- and item-specific vectors onto the head and the relation into 
the transition space, we can utilize the advantages of self-attention-
based methods and translation principles. In addition, we modeled the 
interactions between the user and target item efficiently by optimizing 
the translational embedding model, which considers the directions 
of both user and target item vectors toward a FT. This shows that 
the modeling of translational relationships with users, items, and 
heterogeneous items is generally efficient in capturing a user’s 
long-term interest and short-term item transitions by leveraging a 
translation function for the given user-to-item interactions. Neural-
network-based sequential recommendations are generally superior 
for predicting personal recommendations on relatively large datasets 
with respect to interactions between users and items. In contrast, on 
relatively small datasets with respect to interactions between users 
and items, translation-based sequential recommendations can provide 
better recommendations by utilizing interactions between user and 
item translation vectors captured by transitional principle-based KG 
embedding techniques. 

F. Limitations for AFTRec
Tables II and III show a performance comparison of sequential 

recommendations and translation-based recommendations with 
HR@10 and nDCG@10 on four sparse datasets and one dense dataset. 

For the Steam dataset, which is a dense dataset (Table II), TiSASRec 
achieved the best performance in terms of nDCG. In contrast, AFTRec 
achieved the best performance in terms of HT. For nDCG, self-attention-
based models were advantageous for predicting the next item for dense 
datasets in sequential recommendations. However, AFTRec applies a 
self-attention mechanism to generate user-specific item translation 
vectors. Therefore, a user’s item preferences with self-attention are 
advantageous for showing candidate items that include true items in 
terms of HR. Because the proposed model comprehensively learns the 
user’s purchase characteristics and the comprehensive correlations 
between the users’ purchased items, the nDCG performance is slightly 
lowered, but our model shows better HR performance, indicating 
whether the true item is exposed to the recommendation candidates. 
Among the sparse datasets, the proposed model showed the greatest 
performance improvement on the Automotive dataset, which is a 
representative sparse dataset, and the experimental results show that 
the proposed model has better recommendation performance than the 
existing models.

On the Steam dataset, MoHR achieved the best performance in 
terms of nDCG with dimensions of 10 (Table III). Considering that 
the user-specific item translation vector and correlation-specific 
item translation vector generated by the proposed model are 
trained by a neural network, the experimental results show that the 
recommendation performance of the proposed model is slightly lower 

TABLE I.  Statistics of Datasets Used in Evaluations

Dataset # Users # Items # Actions Avg of actions/user
Automotive 34,315 40,287 183,567 5.35

Beauty 52,204 57,289 394,908 7.56

Clothing 184,050 174,484 1,068,972 5.81

Toys 57,617 69,147 410,920 7.39
Steam 335,730 13,047 4,213,117 12.59

TABLE II. Comparison of Recommendation Performance on Five Public Datasets and Four Sequential Recommendations. The Best Performing 
Method is in Boldface. The Latent Dimension Size D for All Baselines Was Set to 50

Dataset Metric PopRec FPMC SASRec Ti-SASRec AFTRec

Automotive
nDCG@10 0.2084 0.1981 0.2288 0.2509 0.4875

HR@10 0.3481 0.3210 0.3716 0.4032 0.8992

Beauty
nDCG@10 0.2277 0.2532 0.3211 0.3126 0.4325

HR@10 0.4003 0.4070 0.4852 0.4734 0.8571

Clothing
nDCG@10 0.2166 0.2076 0.2214 0.2445 0.4667

HR@10 0.3661 0.3478 0.3853 0.3974 0.8872

Toys
nDCG@10 0.2048 0.2651 0.3136 0.3177 0.4730

HR@10 0.3601 0.4170 0.4663 0.4920 0.8596

Steam
nDCG@10 0.4728 0.5297 0.6211 0.6228 0.5716

HR@10 0.7297 0.7830 0.8716 0.8657 0.9036

TABLE Ⅲ.  Comparison of Recommendation Performance on Five Public Datasets and Three Translation-Based Sequential Recommendations. The 
Best Performing Method Is in Boldface. The Latent Dimension Size D for All Baselines Was Set to 10

Dataset Metric CML TransRec MoHR AFTRec

Automotive
nDCG@10 0.1793 0.2034 0.3478 0.3845

HR@10 0.3062 0.3332 0.5382 0.7260

Beauty
nDCG@10 0.2532 0.2666 0.3635 0.4004

HR@10 0.4070 0.4125 0.5550 0.7416

Clothing
nDCG@10 0.1904 0.2111 0.3015 0.4457

HR@10 0.3307 0.3608 0.4919 0.7024

Toys
nDCG@10 0.2437 0.2890 0.4151 0.4185

HR@10 0.4015 0.4474 0.6061 0.7734

Steam
nDCG@10 0.4699 0.5287 0.5598 0.5835

HR@10 0.7481 0.7842 0.7983 0.7020
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than that of MoHR when the size of the data dimension is 10. However, 
because the proposed model learned various features extracted from 
purchased items as item translation vectors, it showed a higher 
recommendation performance than the existing recommendation 
models, which do not properly reflect the sequential purchase 
characteristics of the user.

G. Hyperparameter Study
We conducted an additional experiment that varied the dimension 

size on four sparse datasets to investigate the performance changes 
based on different embedding dimension sizes of d. The dimension 
size affects the item embedding size of self-attention and GGNN for 
entities and relations. We changed the dimension sizes from {10, 20, 
30, 40, 50}, and the nDCG@10 results are shown in Fig. 7. For the 
Amazon datasets, our model outperformed the baselines. From Fig. 
7, TransRec, MoHR, and AFTRec achieved better performance as the 
latent dimension d ≥ 30 increased on the Automotive, Beauty, and 
Clothing datasets. By contrast, for the Toys dataset, the performance 
of the MoHR peaked when d = 40. A dimension size of 40 represents 
sufficient information for MoHR on the Toys dataset. In addition, 
translation-based models generally have more advanced performance 
than neural network-based models, such as SASRec and TiSASRec, on 
sparse datasets. 

In Fig. 7, SASRec and TiSASRec show the following aspects. 
The performance of TiSASRec peaks when d = 40 on the Toys and 
Automotive datasets. For Beauty and Clothing datasets, TiSASRec 
achieved better performance as d increased. In addition, for the Toys 
and Beauty datasets, SASRec for Automotive and Clothing datasets, 
the performance of SASRec peaked when d = 40. It is indicated that 
a dimension size of 40 provides sufficient information for SASRec on 
Automotive and Clothing datasets. Thus, we find that the dimension 
size d affects the model’s ability to represent sufficient information for 
user preferences. 

We also changed the number of SABs to efficiently learn more 
complex global preferences of users (Table IV). For all datasets, 

AFTRec exhibited the best performance on nDCG@10 when using 
two SABs. The performance of AFTRec increased until the number of 
SABs was set to two, but AFTRec decreased performance with more 
than two SABs. From these results, we found that AFTRec has a more 
stable performance with two SABs. 

V. Conclusion

In this study, we proposed AFTRec, a novel translation-based 
sequential recommendation method for sequential personal historical 
behaviors for the data sparsity problem. The process maps user 
preferences and sophisticated item relations to embedding vectors to 
model the interactions between users and items using the transitional 
principle. The proposed method includes three main processes. 
First, for the user-specific item translation vector, we utilized SABs 
to adaptively capture short- and long-term user preferences in user 
historical sequences. Second, we designed a transaction graph that 
links relevant items in terms of timestamps. We applied a GGNN to 
the transaction graph to generate the item vector, which represents 
complex interactions between chronologically relevant items and 
embeds a correlation-specific item translation vector for each item. 
Third, we employed an attentive user vector using a soft-attention 
mechanism to jointly learn user-to-item relations in diverse forms 
of user embedding. After considering the item translation vectors as 
the heads and the relation vectors, AFTRec models the interactions 
between the user and items in the same translation space. Because 
our translational embedding model considers the direction of the 
embedding vectors, it flexibly provides suitable recommendations for 
user preferences. 

We conducted experiments to evaluate our method on the 
Automotive, Clothing, Beauty, and Toys datasets collected by the 
Amazon platform and the Game dataset collected by the Steam 
platform. The experimental results demonstrate that our method 
outperforms state-of-the-art baselines in terms of both nDCG and HR 
on a sparse dataset. Therefore, the experimental results demonstrate 
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Fig. 7.  Comparison of recommendation performance on four datasets (nDCG) with varying latent dimension size d of 10 to 50.

TABLE Ⅳ.  Comparison of Recommendation Performance on Four Datasets (NDCG) When Varying the Number of Self-Attention Blocks (SABs) of 
1 to 3

Dataset Metric
Number of SABs

1 2 3
Automotive nDCG@10 0.4371 0.4875 0.4105

Beauty nDCG@10 0.4073 0.4325 0.4264

Clothing nDCG@10 0.4016 0.4667 0.4090

Toys nDCG@10 0.3819 0.4730 0.4083

Steam nDCG@10 0.5104 0.5716 0.5367
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that our model is appropriate for predicting the next item in sparse 
datasets. In the future, we plan to improve the performance of our 
model and extend it by incorporating complex context-level user 
information, such as user groups, locations, and devices. 
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