
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 78 -

* Corresponding author.

E-mail addresses: cosimani@ubp.edu.ar (C. Osimani),
juanje.ojeda@ual.es (J. J. Ojeda-Castelo), jpiedra@ual.es (J. A. Piedra-
Fernandez).

Keywords

Artificial Neural
Network, Computer
Vision, Hand Gesture
Recognition, Point
Cloud.

Abstract

In the last couple of years, there has been an increasing need for Human-Computer Interaction (HCI) systems
that do not require touching the devices to control them, such as ATMs, self service kiosks in airports, terminals
in public offices, among others. The use of hand gestures offers a natural alternative to achieve control without
touching the devices. This paper presents a solution that allows the recognition of hand gestures by analyzing
three-dimensional landmarks using deep learning. These landmarks are extracted by using a model created
with machine learning techniques from a single standard RGB camera in order to define the skeleton of the
hand with 21 landmarks distributed as follows: one on the wrist and four on each finger. This study proposes
a deep neural network that was trained with 9 gestures receiving as input the 21 points of the hand. One of
the main contributions, that considerably improves the performance, is a first layer of normalization and
transformation of the landmarks. In our experimental analysis, we reach an accuracy of 99.87% recognizing of
9 hand gestures.

DOI: 10.9781/ijimai.2023.01.001

Point Cloud Deep Learning Solution for Hand
Gesture Recognition
César Osimani1, Juan Jesus Ojeda-Castelo2, Jose A. Piedra-Fernandez2 *

1 Applied Research & Development Center on IT (CIADE-IT) Universidad Blas Pascal, Córdoba
(Argentina)
2 Applied Computing Group (ACG), Department of Informatics University of Almeria, Almeria (Spain)

Received 11 March 2021 | Accepted 11 March 2022 | Published 10 January 2023

I. Introduction

T here is a high interest in using LiDAR scanners (Light Detection
and Ranging) which use beams of light to measure distance to

objects, allowing to acquire a three-dimensional point cloud of the
environment [1]. The information acquired by this type of scanner
combined with object color information is interesting for several
applications (e.g., construction of three-dimensional models from
the scanning of real objects [2], identification of objects within an
environment [3], or self-driving cars [4]). Devices that combine color
information (standard RGB cameras) and the data obtained by LiDAR
scanners are more often called depth cameras or D-RGB (Depth - Red
Green Blue) sensors. Among them we can find Kinect for Windows,
Leap Motion Controller o Intel RealSense, which can be found in offices
and homes as they are affordable. However, they are not consumer
devices, as RGB cameras are.

If we get into the topic of Human–Computer Interaction and the
constant effort to incorporate increasingly natural interactions, we
find the commands by voice or through gestures of the face, body or
hands. Let’s focus on Computer Vision and the area of study related
to hand gestures, particularly to one aimed at controlling Natural User
Interfaces (NUI).

The identification of hand gestures can be interesting to create
user interfaces with the aim of achieving better experiences, such as
in augmented reality applications [5] overlapping virtual contents
or digital information in an aligned way with the real image of the
hand or applications to control devices. This identification of hand
gestures is not trivial considering the hands and their fingers are,
generally, occluded from each other, and their contours do not have
high contrast.

In this work we propose the identification of 9 hand gestures by
interpreting a cloud of 3D reference points obtained through a standard
RGB camera. We introduce a neural network architecture which has
the follow main advantages: a small number of hidden layers and high
prediction hit rate of hand gestures. In this way, we achieve good
results in predictions and the possibility of working on CPU not only
to make predictions but also to train the network.

The rest of the paper is organized as follows: section II describes
the Related Work, section III explains our Proposed Work, section IV
explains the results and section V includes the conclusions.

A. Contributions
A deep learning model has been developed to recognize 9 hand

gestures by analyzing a point cloud of sparse 3D landmarks of the
hand. The network architecture has at its input a transformation and
normalization layer that allows achieving very good classification hit
rates, even when using third party datasets containing different user
profiles and variable environments.

Regular Issue

- 79 -

II. Related Work

A. Point Cloud
A point cloud is a fancy name for a group of points in space (here

we will refer to three-dimensional space, but the concept is extensible
to any dimension). There are different ways to collect point clouds
from the objects that exist in an environment, among the most
common are LiDAR scanners, depth cameras or some models created
with automatic learning to infer reference points for hands [6], faces
[7] or skeletons of bodies [8].

Point clouds have been applied mainly in detecting objects as shown
in the works described below. In [9] a framework called PointRCNN
has been developed to detect 3D objects through point clouds. This
framework consists of 2 phases: in the first one 3D bounding boxes
are used to generate segmentation masks in a bottom-up architecture.
The second phase is essential to improve the efficiency of this
approach with the combination of semantic and local spatial features.
In [10] VoxelNet is presented, which is a deep network to perform
3D detections, with the particularity of joining the feature extraction
processes and the prediction of 3D bounding boxes in one phase,
unlike PointRCNN where they were carried out in 2 phases. One of the
main advantages of VoxelNet is that it does not perform hand-crafted
feature extraction, which can be understood as features extracted
from separate images according to a certain manually predefined
algorithm based on the knowledge of experts. Features extracted with
Scale-Invariant Feature Transform (SIFT) and Histogram of Oriented
Gradients (HOG) are commonly known examples of hand-crafted
features. Although the previous cases allowed to perform object
recognition in a generic way, studies have also been done to focus
on the detection of a specific object, that is the case of this work [11]
where point cloud data has been applied to perform a vehicle detection
in order to integrate it into an autonomous driving system. To achieve
this goal, the authors have proposed a 3D convolutional network to
improve performance in the point cloud detection task. However, they
have also been used in gesture recognition, i.e., in [12] a recognition
of hand gestures based on 3D and 2D representations to control a
virtual world in 3D was proposed. The 3D features are based on the
finger position in the point cloud, while the 2D features come from
the outline of the hand drawn from a series of images. This system has
the outstanding characteristics that it can recognize both static and
dynamic gestures, where the algorithm used to classify static gestures
has been Support Vector Machine, while Dynamic Time Warping has
been used for dynamic gestures. In addition, in the evaluation process
of this work, a 95% success rate was obtained for static gestures and
81.34% for dynamic gestures.

B. Classification and Segmentation of Point Cloud
Once a point cloud has been collected, it may be necessary to

isolate the different objects, that is, to perform a segmentation,
or also to classify each of those objects. Deep Learning has a good
performance for classification of point clouds and this is demonstrated
by the Multilayer Perceptron (MLP) called PointNet [13] that achieves
an accuracy of between 80% and 90%for classification of point clouds
using the dataset ModelNet40 [14] which contains 40 classes of objects
such as chairs, desks, beds, tables and others. The point cloud of a
chair is shown in Fig. 1.

PointNet has been applied in many studies, some examples are
described then. This work [15] aims to improve PointNet to increase
object classification performance which is the main use of this model.
To achieve this objective, two actions have been carried out: one is
to increase the number of hidden layers of the architecture and the
other is to combine the softmax loss function with center loss. In this
way, an accuracy of 89.95% has been obtained. In [16] the PointNet

network has been trained in order to verify the performance of this
deep network in the human body segmentation task. To perform the
segmentation in PointNet, the SMPL model is used, which offers a
realistic 3D model of the human body. In this work two types of tasks
have been approached: a segmentation and a classification task. In
each task a different simplification of the PointNet architecture has
been used. In the segmentation task, the points that have been located
on the surface of the body are obtained, while in the classification
task a binary classification is carried out to identify the body of a man
and a woman. On the assumption of gesture recognition, Ge et al [17]
propose a PointNet that has the purpose of processing the 3D point
clouds to obtain a representation of the pose of the hand in 3D. This
system is based on analyzing the 3D point cloud to obtain an estimate
of the joints of the hand in 3D and to get better results, the points have
been normalized so that it is insensitive to the variations that may
arise from the location of each one of them. Furthermore, it has been
possible to improve the precision of the position of the fingertips using
a PointNet that obtains the neighboring points of the estimation of the
location of the fingertips, having as a consequence that the model is
more robust.

Among jobs that address the challenge of unsupervised learning
with point clouds, we can find FoldingNet [18] and PointCNN [19].

In the same line appears PointNet++ [20] that adds a neigh-borhood
of points to capture features that allow to group close points.

There are also works, such as [21], that improve the segmenta-tion
of the different objects in a point cloud by processing point clouds
within a temporary space, that is, point clouds obtained from multiple
instants of consecutive times.

Regarding the work that adjusts, aligns and superimposes a 3D
model of a hand on the hand detected in a single image, we can find
[22], which also proposes an approach to the automated collection of
data from Youtube to incorporate them into the dataset in order to
include data unrelated to the laboratory.

C. Deep Learning in Gesture Recognition
PointNet is a deep network that has been used in this work

to perform gesture recognition, but there are other proposals in
Deep Learning that have also been applied to perform this type of
recognition. In [23] the aim was to develop a framework to recognize
human actions applying the Convolutional Neural Network (CNN).
This system consists of two phases. In the first one the activities that
involve single-limb are separated from those that are multi-limb to
perform the classification of said activities in the next phase. In the
classification stage, two CNNs were used to detect the two types
of activities that were identified in the previous phase, obtaining
a 97.88% hit rate. Khari et al [24] use learning transfer to do static
gesture recognition. In this study, the VGG19 model has been trained
with RGB and RGB-D images to identify of 24 gestures from the ASL
dataset. This proposal has been compared with other models such as
VGG16, CaffeNet or Inception V3, being the presented proposal in this
work the one with the highest hit rate with 94.8%.

Fig. 1. Point cloud of a chair.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 80 -

Another type of gesture recognition is based on using devices or
sensors, which provide a set of data that are useful for such recognition
[25]. deepGesture [26] is a methodology that recognizes gestures
with the arm through the data it receives from the gyroscope and
accelerometer of an arm band using Convolutional Neural Network
and Recurrent Neural Network. In this process, the input data obtained
from the arm band are entered in the Convolutional Neural Network
to extract the characteristics and then in the layers of the Recurrent
Neural Network to improve the performance of gesture recognition,
which has improved the precision of each class by 6%.

III. Proposed Work

The aim of our work is to achieve a hand gesture detection model
that allows developing solutions to control devices (such as a graphical
user interface, virtual keyboard or mouse) in a natural and intuitive
way. In the following we will detail the steps we follow in order to
approach the solution. The steps we will detail below are the following:
obtaining a point cloud of the hand, choosing the gestures to be used,
creating the dataset, normalizing the data, defining the network
architecture, training and obtaining the model for the predictions.

A. Inference of KeyPoints
This work implements the model Mediapipe hands [6] created with

automatic learning techniques to infer 21 three-dimensional reference
points of a hand from the processing of a single image. These 21 points
(from now on KeyPoints) are located: one on the wrist and 4 more
points on each finger (as shown in Fig. 2).

4

5

6

7

8

9

10

11

12
16

15

14

13

17

18

19

20

3

2

1
0

Fig. 2. KeyPoints of a hand.

B. Gesture Selection
In order to make a selection of gestures that users can choose from,

we have explored gestures from non-verbal communica-tion, sign
language and related articles to Human-Computer In-teraction. A
variety of hand gestures are used in natural user in-terfaces and it is
common to find solutions that use: the tip of the index finger or the
open palm of the hand to control the mouse; the closed hand (fist)
followed by the open hand to drag & drop; the thumb up to accept or
the thumb down to cancel.

We want to obtain a model that recognizes a set of gestures to be
able to design solutions in the future where users can select one by
one the gestures for different actions (such as clicking the mouse,
scrolling, moving the mouse pointer, moving forward or backward in
a presentation, accepting or canceling). Just by obtaining an identifier
for each gesture, either a letter or a number, we explored different sign
languages and selected the following (visualized in the Fig. 3):

• From International Sign language: 1, 4, 5
• From American Sign Language: 9, V, W
• From French Sign Language: A, L, S

Fig. 3. Gesture names: S - 1 - V - W - 4 - 5 - 9 - L - A.

C. Dataset
In order to create our dataset, we requested video recordings from

10 volunteers. Each of them recorded a single video of approximately 3
minutes performing the 9 gestures without interrupting the recording.
All movements were executed under free style, speed and direction
to the personal liking. Subsequently, all the videos were processed in
order to extract a sequence of grouped and annotated images for each
gesture. A total of 39,150 images were obtained in a balanced way
between gestures and volunteers. The Mediapipe Hands [6] model was
used to extract the 21 keypoints of the hands from the complete set
of images. A couple of sample images of this dataset with its detected
KeyPoints are shown in Fig. 4.

Fig. 4. Example of images to extract KeyPoints.

The dataset consists of a CSV (comma-separated values) file
containing 39,150 records (4,350 for each of the 9 gestures) with
the information shown in Fig. 5. Each record has 64 columns of
information: the name of the gesture plus 21 KeyPoints (x, y, z).

gesture x0 y0 z0 x1 y1 z1 x20 y20 z20

S

1

V

21 KeyPoints

W 4 5

A

9
L

Fig. 5. Stored information.

This dataset is divided into a proportion of 80% for training and
validation data (31,320 samples), and 20% for testing (7,830 samples).

In addition, we have downloaded 3 external datasets [27], [28]
and [29] to test our model. Since these datasets do not contain our 9
gestures, we have combined them to reach a set of 4,500 samples (500
for each gesture).

D. Data Normalization
After generating the dataset of 39,150 images, data normal-ization

is performed, which consists of several transformations (translation,
rotation and scaling) so that KeyPoints are located at the origin of
three-dimensional space and the middle finger aligned with Y-axis.

Following transformation matrices are used for normalization:

• Matrix (1) to translate to origin.

 (1)

where KeyPoint 0 is (x, y, z) = (kp0x, kp0y, kp0z)

Regular Issue

- 81 -

• Rotation matrix (2) around an arbitrary axis: To align the middle
finger with Y-axis.

 (2)

where:

Here, u is a unit vector that is perpendicular to the plane formed
by KeyPoint 9 vector and Y-axis. Knowing that two vectors are
perpendicular (or orthogonal) when their dot product (or scalar
product) is equal to zero, then we can calculate the vector u. Or
it is also possible to use the vector product (or cross product)
between KeyPoint 9 and Y-axis. To do this, we can use the Rule of
Sarrus to calculate the 3×3 determinant and thus obtain a vector
perpendicular to the plane between KeyPoint 9 and Y-axis. Finally,
we divide it by the norm to obtain a unit vector which is the vector
u of the previous expressions.

By Rule of Sarrus we obtain a vector (Eq. 3) that, in general, is not
unitary. We consider that the vector on the Y-axis is unitary, that
is, it is the vector (0, 1, 0):

 (3)

When we divide by its norm we get the unit vector u, as shown
in Eq. 4.

 (4)

θ is the angle between the vector formed from the origin to the
start of the middle finger (i.e. KeyPoint 9) and the unit vector on
the Y-axis. It can be calculated as given in Eq. 5.

 (5)

• Matrix (6) to rotate palm on the Y-axis so it is aligned with plane
z = 0.

 (6)

β is the angle on the plane y = 0 of the angle formed between
KeyPoint 17 and X-axis. In this way, we align the palm with the
plane z = 0 as shown in Eq. 7.

 (7)

• Rotation matrix on Y-axis to place the palm in a frontal way: we
use the Ry matrix to rotate 180° over Y-axis as long as the palm is

in the direction of the negative values of z. To know if the palm
is facing forward or not, a simple calculation is done by detecting
where fingertips are facing.

• Mirror with respect to the plane x = 0: Regardless of whether it is
right or left hand, we want to mirror the hand in such a way that
the thumb always remains towards positive values of x. It is easy
to detect if the thumb is to the right or to the left by finding out x
values of the KeyPoints belonging to the thumb.

• Scaling: The hand is scaled in order that the magnitude |kp0y −
kp9y| is equal to 100. The matrix (8) is used to solve it.

 (8)

To obtain normalized values, operations (shown in Eq. 9) are
performed with these matrices with each of the 21 KeyPoints of each
hand.

 (9)

where xn, yn and zn are the coordinates of the normalized KeyPoints.

Bear in mind that, depending on the case, the 180° rotation and/or
the mirror with respect to the plane x = 0 is also carried out.

To carry out normalization of the KeyPoints, we developed a tool
that allows visualizing the correct normalization of KeyPoints that
make up our dataset. In Fig. 6, a hand is shown in its original position
and in Fig. 7 it is displayed after normalization. Some KeyPoints were
joined with lines for a clear visualization of the hand’s skeleton.

Fig. 6. Skeleton of a hand in its original position.

Fig. 7. Skeleton of a hand after normalization.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 82 -

E. PointNet Network Architecture
There is a type of neural network called PointNet [30], which

receives in its input layer a point cloud for object classification. In
general, point clouds are obtained from objects in an environment,
and the challenge is to be able to classify and/or segment each one of
them from this point cloud, which is just a bunch of isolated points
that vaguely describe the structures and surfaces of the objects. The
following is a brief discussion of some characteristics when classifying
a point cloud:

• Invariance to permutation: a point cloud is a set of raw data,
without additional information. It is a collection of (x, y, z)
coordinates without structure. This makes the data invariant to
permutations.

• Invariance to transformations: the classification of objects should
not change if the point cloud undergoes translation and/or rotation
transformations (not so with scaling).

• Importance between neighboring points: each point is not treated
independently as the interaction between neighboring points
contains useful information.

It is important to note that it is common to consider that a point
cloud has a large number of points. The PointNet authors used in their
work a cloud of 2048 points for each object, using the ModelNet10
dataset [14], which contains objects belonging to 10 classes.

PointNet network architecture for classification of a point cloud
can be visualized and analyzed in [30]. This network takes n entry
points, each one with dimension 3 belonging to (x, y, z) coordinates.
The authors propose 2048 points for each object, so it would have
an input with dimension [2048, 3]. It has two groups of layer called
T-Net which are also neural networks that perform transformations
on the data without modifying its dimension. These T-Net subnets are
composed of temporal convolutions (Conv1D) with ReLU activation,
batch normalization, 1D Max Pooling and densely connected layers
(Fully Connected).

After transformations with T-Net combined with the convolu-tion
layers, a Max Pooling (GlobalMaxPooling1D) is performed, taking the
global maximum value of the data, decreasing the di-mensionality. It
is followed by Fully Connected Layers, Dropout layers and a last layer
with softmax activation function to obtain the scores for k output
classes. PointNet network uses optimiza-tion with Adam stochastic
gradient descent method and cross en-tropy as loss function. We
analyze this network architecture and propose some modifications
which are discussed below.

F. Modified Network Architecture
T-Net subnets perform affine transformations in data and we

propose to eliminate them, since our dataset already has different
transformations that apply a normalization. We also propose to
include new convolution layers and Fully Connected Layers, leaving
an architecture as shown in Fig. 8, which was one of the best results.
Note that the data normalization explained above is carried out
beforehand.

G. Data Increment
While analyzing a graph of 21 KeyPoints of a hand it can be

difficult, to the human eye, to identify to which gesture those points
correspond. It can be considered that 21 KeyPoints are insufficient
to represent the skeleton of a hand, so we can generate extra data
by knowing that among certain KeyPoints there is a hand bone (in
the palm the metacarpaql bones, in the beginning of the fingers the
proximal phalanges, followed by the middle phalanges and at the tip
of the fingers the distal phalanges).

In this regard, a new parameter is defined which allows to
incorporate a certain amount of additional KeyPoints on the bones of
the hand. This is achieved by calculating lines that join the KeyPoints
that correspond to the ends of the bones mentioned above. In Fig. 9
we can see KeyPoints of a hand with the addition of 10 KeyPoints on
each bone.

H. Training
At this point we have the network architecture defined with the

Keras library and the dataset with 31,320 samples for training and
validation. We continue with the training in order to obtain a model
(in HDF5 format) that allows us to make predictions.

Fig. 9. Hand with 10 extra KeyPoints on each bone.

Keep in mind that we have a total of 39,150 samples in our own
dataset plus 4,500 samples obtained from third-party image datasets.
From the 39,150 samples, we separated 31,320 for training and
validation, and 7,830 for testing. Note that we have two sets of samples
for testing, one of which was randomly sampled from our own dataset
and the other has been generated from third-party images.

IV. Experiments and Evaluation

A. Performance of the Proposed Network
Several network trainings were performed modifying param-eters

such as the number of epochs, learning rate of the Adam optimization
method and the number of extra KeyPoints on each bone. In Table I are

Layer Output Shape Param #

InputLayer (None, 21, 3) 0

Conv1D (None, 21, 32) 128

BatchNormalization (None, 21, 32) 128

Activation (None, 21, 32) 0

Conv1D (None, 21, 64) 2112

BatchNormalization (None, 21, 64) 256

Activation (None, 21, 64) 0

GlobalMaxPooling1D (None, 64) 0

Dense (None, 128) 8320

BatchNormalization (None, 128) 512

Activation (None, 128) 0

Dropout (None, 128) 0

Dense (None, 7) 903

Total params: 12,359
Trainable params: 11,911
Non-trainable params: 448

Fig. 8. Proposed network architecture.

Regular Issue

- 83 -

shown the results ordered according to suc-cesses in predictions made
with the test dataset of KeyPoints be-longing to 7,830 hand samples
and, in addition, 4500 samples of external datasets. The table shows
the following: the amount of additional keyPoints added on each
bone; the learning rate of Adam optimizer; the amount of epochs for
training with batch size of 32 with a division of 80%/20% for training/
validation; the total of KeyPoints for each hand; the loss in the training
set af-ter all the epochs; the accuracy with the training set; the loss
in validation set after all epochs; the accuracy in validation set; the
success rate in predictions made with a test set of 4,500 sam-ples of
external datasets; and the success rate in predictions made with a test
set of 7,830 own samples (independent of the train/val set). The time
consumed to perform each prediction is 26 mil-liseconds on average
on an Intel® Core™ i7-1165G7 Processor (without GPU).

B. Metrics
In order to observe the performance of the proposed architec-

ture we will resort to analysis of trained model number 1, 5 and 10
presented in Table I.

• Model number 1: In order to have a quick approximation to the
performance of this model, let’s analyze the confusion matrix in

Fig. 10. Each column represents the number of predictions made
by this model for each of the 9 gestures, while rows represent the
true gesture. For these predictions, the own test set composed of
7,830 samples (870 for each gesture) is used, which is independent
of set used for training and validation.

tr
ue

 la
be

l

s 870 0 0 0 0 0 0 0 0

1 0 869 0 0 0 0 0 1 0

v 0 2 868 0 0 0 0 0 0

w 0 0 1 867 2 0 0 0 0

4 0 0 0 0 870 0 0 0 0

5 0 0 0 0 0 870 0 0 0

9 0 0 0 0 0 1 869 0 0

L 0 0 0 0 0 0 0 870 0

a 2 0 0 0 0 0 0 1 867

s 1 v w 4 5 9 L a
predited label

Fig. 10. Confusion matrix of model number 1.

By breaking down a little the information of the confusion matrix,
we can observe the incorrect predictions in Table II where it is
shown in the first column the gesture predicted by the model,

TABLE I. 7,830 Predictions Made

#
Extra

KeyPoints on
each bone

Learning
rate

Epochs
Total

KeyPoints
training

loss
training

acc
validation

loss
validation

acc

Correct
predictions (ext

dataset)

Correct
predictions (%)

(ext dataset)

Correct
predictions

(own dataset)

Correct
predictions (%)
(own dataset)

1 0 0.0005 10 21 0.0068 99.84 % 0.0048 99.95 % 4336 of 4500 96.36 % 7820 of 7830 99.87 %

2 2 0.0005 30 61 0.0085 99.80 % 0.0056 99.89 % 4305 of 4500 95.67 % 7820 of 7830 99.87 %

3 10 0.001 50 221 0.0062 99.85 % 0.0094 99.89 % 4297 of 4500 95.49 % 7820 of 7830 99.87 %

4 0 0.0005 30 21 0.0055 99.88 % 0.0072 99.86 % 4305 of 4500 95.67 % 7819 of 7830 99.86 %

5 5 0.0005 30 121 0.0054 99.90 % 0.0038 99.92 % 4349 of 4500 96.64 % 7819 of 7830 99.86 %

6 0 0.001 30 21 0.0070 99.81 % 0.0027 99.92 % 4315 of 4500 95.89 % 7819 of 7830 99.86 %

7 5 0.001 20 121 0.0084 99.80 % 0.0035 99.92 % 4340 of 4500 96.44 % 7819 of 7830 99.86 %

8 5 0.001 30 121 0.0064 99.86 % 0.0039 99.94 % 4289 of 4500 95.31 % 7819 of 7830 99.86 %

9 10 0.001 30 221 0.0075 99.82 % 0.0073 99.90 % 4296 of 4500 95.47 % 7819 of 7830 99.86 %

10 0 0.0005 50 21 0.0058 99.85 % 0.0050 99.89 % 4320 of 4500 96.00 % 7818 of 7830 99.85 %

TABLE II. Number of Wrong Predictions by Model 1

Said... It was...
Number of wrong

predictions

L 1 1

L A 1

5 9 1

V W 1

4 W 2

1 V 2

S A 2

TABLE III. Metrics for Training Number 1

gesture precision recall f1-score support

s 0.9977 1.0000 0.9989 870

1 0.9977 0.9989 0.9983 870

v 0.9988 0.9977 0.9983 870

w 1.0000 0.9966 0.9983 870

4 0.9977 1.0000 0.9989 870

5 0.9989 1.0000 0.9994 870

9 1.0000 0.9989 0.9994 870

L 0.9977 1.0000 0.9989 870

a 1.0000 0.9966 0.9983 870

accuracy = 0.9987 for 7830 predictions (870 each class)

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 84 -

in the second column the true gesture and in the third column
the number of times that there was confusion. In Table III are
presented metrics that mean the following:

 - Precision: It provides information about false positives, as
shown in Eq. 10. It is the ratio between well classified positive
cases and the total number of predictions made.

 (10)

where:

TP is the number of true positives

FP is the number of false positives.

 - Recall: It indicates the ratio of positive classes that the model
has been able to predict correctly. To exemplify, if the ratio is
too low it means that the model missed too many positives.
Being FN the number of false negatives, recall is defined in
Eq. 11.

 (11)

 - F1-score: It combines precision and recall in a single value
and allows to compare the performance between several
models. F1-score is defined in Eq. 12.

 (12)

 - Support: Number of predictions made for each class.

 - Accuracy: It measures the ratio of cases that the model has
succeeded, considering all the classes.

From this information we can mention that the model has a precision
of 100% for the ‘W’, ‘9’ and ‘A’ gestures, which means that in none of
the predictions made has resulted in the ‘W’, ‘9’ or ‘A’ gesture when
they were not. This can be verified in the column ‘It was ...’ of Table
II in which the ‘W’, ‘9’ and ‘A’ gestures do not appear.

On the other hand, in the column ‘Said ...’ of Table II the ‘S’, ‘4’,
‘5’ and ‘L’ gestures do not appear, which means that they have a
100% of recall. This means that all predictions made for the ‘S’, ‘4’,
‘5’ and ‘L’ gestures have been accurate without having incorrect
predictions.

In Fig. 11, the training metrics for each epoch were recorded,
including accuracy and loss for training and validation sets. It is
observed a correct learning of network parameters with the set of
training with the passage of the epochs and with the validation
set is observed that after the epoch number 6 does not improve
performance significantly. It is worth mentioning that in this
model was used a learning rate of 0.0005 for the optimizer Adam
and that no extra KeyPoints were added on the hands.

model accuracy model loss

epoch

ac
cu

ra
cy

lo
sstrain

val
train
val

0.94

0 2 4 6 8 0 2 4 6 8

0.95

0.96

0.97

0.98

0.99

1.00

0.00

0.05

0.10

0.15

0.20

0.25

epoch

Fig. 11. Model accuracy and model loss for training number 1.

• Model number 5: For this model and in a comparative mode we
will only analyze the metrics of Table IV and the graphs of Fig.
12. We can observe some minimal differences between precision
and recall with respect to model number 1. However, we can use
the f1-score metric to make a comparison with which we can
indicate that the model number 5 has more erroneous predictions
but is still very close to the performance of the previous model.
Regarding the metrics during the learning process of the network,
a similar behavior to the previous model is observed, where the
performance does not improve considerably after the epoch
number 10. For this model a learning rate of 0.0005 was used for
Adam optimizer and 5 extra KeyPoints were added to each bone,
making a total of 121 KeyPoints for each hand.

TABLE IV. Metrics for Training Number 5

gesture precision recall f1-score support

s 0.9977 1.0000 0.9989 870
1 0.9977 1.0000 0.9989 870
v 0.9988 0.9977 0.9983 870
w 1.0000 0.9954 0.9977 870
4 0.9966 0.9989 0.9977 870
5 0.9977 1.0000 0.9989 870
9 1.0000 1.0000 1.0000 870
L 0.9989 0.9989 0.9989 870
a 1.0000 0.9966 0.9983 870

accuracy = 0.9986 for 7830 predictions (870 each class)

model accuracy model loss

epoch

ac
cu

ra
cy

lo
sstrain

val
train
val

0.94

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0.95

0.96

0.97

0.98

0.99

1.00

0.00

0.05

0.10

0.15

0.20

0.25

epoch

Fig. 12. Model accuracy and model loss for training number 5.

• Model number 10: In Table V a similar performance to the
previous models is observed. No noticeable differences in the
metrics during the learning (Fig. 13).

TABLE V. Metrics for Training Number 10

gesture precision recall f1-score support

s 0.9977 0.9989 0.9983 870
1 0.9977 1.0000 0.9989 870
v 0.9977 0.9977 0.9977 870
w 1.0000 0.9954 0.9977 870
4 0.9966 1.0000 0.9983 870
5 0.9989 0.9989 0.9989 870
9 1.0000 1.0000 1.0000 870
L 0.9989 0.9989 0.9989 870
a 0.9988 0.9966 0.9977 870

accuracy = 0.9985 for 7830 predictions (870 each class)

Regular Issue

- 85 -

model accuracy model loss

epoch

ac
cu

ra
cy

lo
sstrain

val
train
val

0.93

0.94

0 10 20 30 40 50 0 10 20 30 40 50

0.95

0.96

0.97

0.98

0.99

1.00

0.00

0.05

0.10

0.15

0.20

0.25

epoch

Fig. 13. Model accuracy and model loss for training number 10.

The results in Table I show a high performance of the proposed
network. We detect the extra KeyPoints added on each bone would be
of little importance, giving an indication that these extra KeyPoints
do not provide significant information. We consider it would be
important to include other type of information to the input data, such
as the flexion angle at each joint and a number that identifies each
KeyPoint. That is, if we look at Fig. 2 we can see that each KeyPoint
has a number that identifies it and also on some KeyPoints is defined
a flexion angle (except in the KeyPoints of the wrist and fingertips
that do not have a defined angle). In this way, the input data could be
defined as (x, y, z, number_kp, angle_joint) .

C. Comparative Results
In order to compare the prediction accuracy of our model against

other models, we have chosen our own test set (7,830 samples) and the
external test set (4,500 samples). It is worth remembering that the own
set is a random extraction of 20%of samples from our complete dataset
(39,150 samples) and that the external test set is a collection of samples
from third party works [27], [28], [29]. This set of external samples was
made in order to obtain heterogeneous data, since they were extracted
from images taken in other environments and by other people.

In addition to performing the predictions with our model (model
number 1 in Table I) on the two test sets, we also use the PointNet
model [13] trained with Adam optimizer with learning rate of 0.001
and 20 epochs, and also with a model created from ours, but without
the initial transformation and normalization layer.

One can appreciate in these results the importance of the
transformation and normalization layer that is initially applied. It
provides a significant increase in accuracy when predictions are made
with widely varying samples from different third party sources.

D. Comparison With ROC and AUC
The Receiver Operating Characteristic (ROC) is a measure of a

classifier's predictive quality that compares and visualizes the tradeoff
between True Positive Rate () and False Positive Rate
(). ROC curves are typically used in binary classification,
but one of the ways it can be approached is by binarizing the output
(per-class). A ROC curve displays the true positive rate on the Y axis
and the false positive rate on the X axis. The ideal region is therefore
the top-left corner of the plot, where false positives are zero and true
positives are one. This leads to Area Under the Curve (AUC), which is
a metric that relates false positives and true positives. The higher the
AUC, in general, the better the model.

Fig. 14 presents the ROC curve of our model number 1 (from Table
1) and shows the high success rate achieved in the predictions. All
three models predict considerably well with our dataset, as shown in
Table VI, and the ROC curves are very similar to the one presented in
Fig. 14. We present the ROC curves of the three models performing the
predictions with the external dataset. It can be observed that only our
model with the normalization and transformation layer behaves in an
acceptable performance. This is shown in Fig. 15, 16 and 17.

Tr
ue

 P
os

it
iv

e
R

at
e

False Positive Rate
0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

ROC of class ‘S’
ROC of class ‘1’
ROC of class ‘V’
ROC of class ‘W’
ROC of class ‘4’
ROC of class ‘5’
ROC of class ‘9’
ROC of class ‘L’
ROC of class ‘A’

AUC = 0.9999
AUC = 0.9993
AUC = 0.9988
AUC = 0.9983
AUC = 0.9999
AUC = 0.9999
AUC = 0.9994
AUC = 0.9999
AUC = 0.9983

Random Guessing

Fig. 14. ROC curves and AUC for our model with own dataset.

TABLE VI. Comparison of Models

Model
Accuracy

(our dataset)
Accuracy

(external dataset)

Our model
7820 of 7830

99.87 %
4336 of 4500

96.36%

PointNet
7660 of 7830

97.82 %
2155 of 4500

47.89%
Our model without

normalization
7760 of 7830

99.11 %
1371 of 4500

30.47 %
Tr

ue
 P

os
it

iv
e

R
at

e

False Positive Rate
0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

ROC of class ‘S’
ROC of class ‘1’
ROC of class ‘V’
ROC of class ‘W’
ROC of class ‘4’
ROC of class ‘5’
ROC of class ‘9’
ROC of class ‘L’
ROC of class ‘A’

AUC = 0.99
AUC = 0.98
AUC = 0.96
AUC = 0.99
AUC = 0.98
AUC = 0.99
AUC = 0.97
AUC = 0.99
AUC = 0.96

Random Guessing

Fig. 15. ROC curves and AUC for our model with external dataset.

Tr
ue

 P
os

it
iv

e
R

at
e

False Positive Rate
0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

ROC of class ‘S’
ROC of class ‘1’
ROC of class ‘V’
ROC of class ‘W’
ROC of class ‘4’
ROC of class ‘5’
ROC of class ‘9’
ROC of class ‘L’
ROC of class ‘A’

AUC = 0.67
AUC = 0.90
AUC = 0.81
AUC = 0.94
AUC = 0.71
AUC = 0.70
AUC = 0.75
AUC = 0.62
AUC = 0.66

Random Guessing

Fig. 16. ROC curves for PointNet model with external dataset.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 86 -

Tr
ue

 P
os

it
iv

e
R

at
e

False Positive Rate
0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

ROC of class ‘S’
ROC of class ‘1’
ROC of class ‘V’
ROC of class ‘W’
ROC of class ‘4’
ROC of class ‘5’
ROC of class ‘9’
ROC of class ‘L’
ROC of class ‘A’

AUC = 0.76
AUC = 0.67
AUC = 0.54
AUC = 0.50
AUC = 0.54
AUC = 0.61
AUC = 0.63
AUC = 0.68
AUC = 0.47

Random Guessing

Fig. 17. ROC curves for our model without normalization.

V. Conclusion

In this work, we present a new network architecture for hand
gesture recognition using point cloud. The study was focused on the
cloud of 3D reference points obtained through a standard RGB camera.
The new network (based on PointNet architecture) was trained with
hand KeyPoints and thanks to a simple architecture with few hidden
layers it is possible to work directly on the CPU.

The results show an accuracy of 99.87% in our hand gesture dataset.
It is interesting to extend this study by including new gestures in
order to have a wider variety of options for device control, and also
to experiment with end users to detect those gestures that are more
appropriate to perform certain control commands.

It is important to notice that the transformation and normaliza tion
layer allows us to maintain the good prediction performance of our
model by using third-party datasets that contain a wide variety of
users and physical spaces where samples are taken.

Acknowledgment

This work was funded by the EU ERDF and the Spanish Ministry
of Economy and Competitiveness (MINECO) under AEI Project
TIN2017-83964-R. http://acg.ual.es/projects/cosmart/

References

[1] M. Palieri, B. Morrell, A. Thakur, K. Ebadi, J. Nash, A. Chatterjee, C.
Kanellakis, L. Carlone, C. Guaragnella, A. a. Aghamohammadi, “Locus:
A multi-sensor lidar-centric solution for high-precision odometry and
3d mapping in real-time,” IEEE Robotics and Automation Letters, pp. 1–1,
2020.

[2] W. Zhang, D. Yang, “Lidar-based fast 3d stockpile modeling,” in 2019
International Conference on Intelligent Computing, Automation and
Systems (ICICAS), 2019, pp. 703–707.

[3] S. Muhammad, G. Kim, “Visual object detection based lidar point cloud
classification,” in 2020 IEEE International Conference on Big Data and
Smart Computing (BigComp), 2020, pp. 438–440.

[4] C. P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore,
V. Donzella, “A review and perspective on optical phased array for
automotive lidar,” IEEE Journal of Selected Topics in Quantum Electronics,
vol. 27, no. 1, pp. 1–16, 2021.

[5] E. de Oliveira, E. W. Gonzalez, D. G. Trevisan, L. C. de Castro Salgado,
“Investigating users’ natural engagement with a 3d design approach in
an egocentric vision scenario,” in 2020 22nd Symposium on Virtual and
Augmented Reality (SVR), 2020, pp. 74–82.

[6] F. Zhang, V. Bazarevsky, A. Vakunov, G. Sung, C.-L. Chang, M.
Grundmann, A. Tkachenka, “Mediapipe hands: On-device real-time
hand tracking,” in CVPR Workshop on Computer Vision for Augmented
and Virtual Reality, June 2020.

[7] Y. Kartynnik, A. Ablavatski, I. Grishchenko, M. Grundmann, “Real-time
facial surface geometry from monocular video on mobile gpus,” in CVPR
Workshop on Computer Vision for Augmented and Virtual Reality, June
2019.

[8] V. Bazarevsky, I. Grischenko, K. Raveendran, M. Grundmann, F. Zhang,
T. Zhu, “Blazepose: On-device real-time body pose tracking,” in CVPR
Workshop on Computer Vision for Augmented and Virtual Reality, June
2020.

[9] S. Shi, X. Wang, H. Li, “Pointrcnn: 3d object proposal generation and
detection from point cloud,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 770–779.

[10] Y. Zhou, O. Tuzel, “Voxelnet: End-to-end learning for point cloud based
3d object detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4490–4499.

[11] B. Li, “3d fully convolutional network for vehicle detection in point
cloud,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 1513–1518, IEEE.

[12] S. K. Arachchi, N. L. Hakim, H.-H. Hsu, S. V. Klimenko, T. K. Shih, “Real-
time static and dynamic gesture recognition using mixed space features
for 3d virtual world’s interactions,” in 2018 32nd International Conference
on Advanced Information Networking and Applications Workshops
(WAINA), 2018, pp. 627–632, IEEE.

[13] H. Seo, S. Joo, “Influence of preprocessing and augmentation on 3d
point cloud classification based on a deep neural network: Pointnet,” in
2020 20th International Conference on Control, Automation and Systems
(ICCAS), 2020, pp. 895–899.

[14] Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
J. Xiao, “3d shapenets: A deep representation for volumetric shapes,” in
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 1912–1920.

[15] Z. Li, W. Li, H. Liu, Y. Wang, G. Gui, “Optimized pointnet for 3d
object classification,” in International Conference on Advanced Hybrid
Information Processing, 2019, pp. 271–278, Springer.

[16] A. Jertec, D. Bojanić, K. Bartol, T. Pribanić, T. Petković, S. Petrak, “On
using pointnet architecture for human body segmentation,” in 2019 11th
International Symposium on Image and Signal Processing and Analysis
(ISPA), 2019, pp. 253–257, IEEE.

[17] L. Ge, Y. Cai, J. Weng, J. Yuan, “Hand pointnet: 3d hand pose estimation
using point sets,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 8417–8426.

[18] Y. Yang, C. Feng, Y. Shen, D. Tian, “Foldingnet: Point cloud auto-encoder
via deep grid deformation,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 206–215.

[19] Y. Yu, F. Li, Y. Zheng, M. Han, X. Le, “Clustering-enhanced pointcnn for
point cloud classification learning,” in 2019 International Joint Conference
on Neural Networks (IJCNN), 2019, pp. 1–6.

[20] C. R. Qi, L. Yi, H. Su, L. J. Guibas, “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space,” in Advances in Neural Information
Processing Systems, vol. 30, 2017, pp. 5099–5108, Curran Associates, Inc.

[21] Y. Momma, W. Wang, E. Simo-Serra, S. Iizuka, R. Nakamura, H. Ishikawa,
“P2net: A post-processing network for refining semantic segmentation
of lidar point cloud based on consistency of consecutive frames,” in 2020
IEEE International Conference on Systems, Man, and Cybernetics (SMC),
2020, pp. 4110–4115.

[22] D. Kulon, R. A. Guler, I. Kokkinos, M. M. Bronstein, S. Zafeiriou, “Weakly-
supervised mesh-convolutional hand reconstruction in the wild,” in
CVPR Workshop on Computer Vision for Augmented and Virtual Reality,
June 2020.

[23] K. K. Verma, B. M. Singh, H. Mandoria, P. Chauhan, “Two-stage
human activity recognition using 2d-convnet.,” International Journal of
Interactive Multimedia & Artificial Intelligence, vol. 6, no. 2, 2020.

[24] M. Khari, A. K. Garg, R. G. Crespo, E. Verdú, “Gesture recognition of
rgb and rgb-d static images using convolutional neural networks.,”
International Journal of Interactive Multimedia & Artificial Intelligence,
vol. 5, no. 7, 2019.

[25] M. Kim, J. Cho, S. Lee, Y. Jung, “Imu sensor-based hand gesture recognition

http://acg.ual.es/projects/cosmart/

Regular Issue

- 87 -

for human-machine interfaces,” Sensors, vol. 19, no. 18, p. 3827, 2019.
[26] J.-H. Kim, G.-S. Hong, B.-G. Kim, D. P. Dogra, “deepgesture: Deep

learning-based gesture recognition scheme using motion sensors,”
Displays, vol. 55, pp. 38–45, 2018.

[27] A. Thakur, “American Sign Language Dataset for Image Classifcation.”
https://www.kaggle.com/ayuraj/ asl-dataset, 2019. [Online; accessed
2-July-2021].

[28] A. Memo, L. Minto, P. Zanuttigh, “Exploiting Silhouette Descriptors and
Synthetic Data for Hand Gesture Recognition.” https://lttm.dei.unipd.it/
downloads/gesture/, 2015. [Online; accessed 2-July-2021].

[29] P. Bao, A. I. Maqueda, C. R. del Blanco, N. García, “Image database
for tiny hand gesture recognition.” https:// sites.google.com/view/
handgesturedb/home, 2017. [Online; accessed 2-July-2021].

[30] C. R. Qi, H. Su, K. Mo, L. J. Guibas, “Pointnet: Deep learning on point
sets for 3d classification and segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 652–660.

César Osimani

César Osimani is an Associate Professor in the Applied
Research & Development Center on IT at Universidad
Blas Pascal, Argentina. He received the degree in
Telecommunications Engineering and he is currently a PhD
student at Universidad Nacional de Córdoba. He is engaged
in the research on computer vision, pattern recognition,
augmented reality and Human-Computer Interaction.

Juan Jesus Ojeda-Castelo

Computer Science Engineering at University of Almeria.
Juan Jesus got a Master degree in Systems and Languages
Programming about Computer Science by UNED and he
is currently a Ph.D. student at University of Almeria. He
is a collaborator of the Project titled Investigar en el uso
didactico de la Kinect en el CEEE Princesa Sofia Almeria
which is supported by Junta de Andalucia. He is very

interested in Human-Computer Interaction particularly Natural interaction,
Computer Vision and Artificial Intelligence especially Deep Learning. The
devices that he usually attempts to include in his personal projects are: Microsoft
Kinect, Leap Motion, Intel RealSense, so far.

Jose Antonio Piedra-Fernandez

He received his PhD in Computer Science from the
University of Almeria in 2005. Currently, he is an
Assistant Professor at the Department of Informatics, the
same University. He is member of the Research Applied
Computing Group (TIC-211), Coordinator of the Master
in Computer Engineering since 2014 and Director of the
Quality Secretariat since 2017. He works closely with the

James Wang’s research group at The Pennsylvania State Univesity. José Luis
Labrandero Prize by the Spanish Association of Remote Sensing in 2007. He
got a Patent in the field of recognition of cancer cells using a fuzzy robot vision
system. Participates in various national, international and regional projects.
He is author and co-author in several scientific publications, among journal
articles, national and international book chapters, and publications in national
and international congress proceedings. He is reviewer of scientific articles
in several international JCR impact journals, such as IEEE Transactions on
Geoscience and Remote Sensing or International Journal of Remote Sensing.
His research area focuses on computer vision, artificial intelligence, natural
interaction systems and serious games applied to the field of education and
health.

https://www.kaggle.com/ayuraj/asl-dataset
https://www.kaggle.com/ayuraj/asl-dataset
https://lttm.dei.unipd.it/downloads/gesture/
https://lttm.dei.unipd.it/downloads/gesture/
https://sites.google.com/view/handgesturedb/home
https://sites.google.com/view/handgesturedb/home
https://sites.google.com/view/handgesturedb/home

