
Regular Issue

- 153 -

* Corresponding author.

E-mail address: luisaugustos@usal.es

Keywords

Deep Learning, GIS
Detection, Illegal Pools
Detection, Pool Aerial
Recognition.

Abstract

Spain is the second country in Europe with the most swimming pools. However, the legal literature estimates
that 20% of swimming pools are not declared or irregular.The administration has a corps of people who
manually analyze satellite or drone images to detect illegal or irregular structures. This method is costly in
terms of effort and time, and it is also a method based on the subjectivity of the person carrying it out. This
proposal aims to design a platform that allows the automatic detection of irregular pools. Using geographic
information tools (GIS) based on orthophotography, combined with advanced machine learning techniques
for object detection, allows this work. Furthermore, using a multi-agent architecture allows the system to be
modular, with the possibility of the different parts of the system working together, balancing the workload. The
proposed system has been validated by testing it in different towns in Spain. The system has shown promising
results in performing this task, with an F1-Score of 97.1%.

DOI: 10.9781/ijimai.2023.01.002

A Platform for Swimming Pool Detection and Legal
Verification Using a Multi-Agent System and Remote
Image Sensing
Héctor Sánchez San Blas, Antía Carmona Balea, André Sales Mendes, Luís Augusto Silva*, Gabriel
Villarrubia González

Expert Systems and Applications Lab—ESALAB, Faculty of Science, University of Salamanca - Plaza
de los Caídos s/n, 37008 Salamanca (Spain)

Received 30 September 2021 | Accepted 21 October 2022 | Published 11 January 2023

I. Introduction

Cartography deals with the conception, production, dissemination,
and study of maps that have undergone a good evolution in the last

decade. Until a few years ago, the processes of cartographic revision
and, mainly, those aimed at calculating the fiscal area have been
carried out manually. Specifically, these processes required significant
investments in airplanes or helicopters, making the processes more
expensive. Because of this, municipalities are unable to perform
cartography surveys frequently. One of the most current research
fields is to investigate technological capabilities for local authorities
to perform detailed surveys of the territory of municipalities at a
reasonable cost.

One of the most important milestones that cartography allows is
refining fiscal data or verifying geographic information that forms the
basis for local taxes. One aspect taken into account in an audit process
by the municipalities is the size of the plots and the construction of
private swimming pools. Spain, for tax purposes, needs to take into
account a private swimming pool on a plot of land. However, this
process is not easy, as there are many aspects to consider with the
mapping, such as location, time of day when we take the image, how
close or far away the image is, or obstacles. In addition, the result of
this process must be evaluated by a person, a costly task that depends

on the individual’s subjectivity, as he or she is the one who must detect
the structures built in an area. Depending on the image’s characteristics
relative to the cartography, these characteristics can lead to errors in
determining the existence of such structures.

Knowing the precise location of swimming pools is crucial for tax
collection purposes and ecological reasons. It is vital to know the pools
with large volumes of water since, in the event of a fire in a nearby
area, firefighting teams can make use of it [1]. Another major issue
that has caused concern in recent years is controlling and managing
limited and indispensable water resources such as drinking water. In
particular, the construction of swimming pools in summer impacts
the demand for water the municipal supplier needs to prepare.
Therefore, it is understandable that the local government asks for an
extra contribution from pool owners in a tax. A third eminent problem
is mosquito-borne diseases, which affect many people worldwide,
mainly in tropical and sub-tropical countries such as Brazil. Pool water
in unoccupied homes may not be adequately filtered, and rainwater
accumulated along with decaying leaves may not be removed from the
pool, providing an ideal habitat for mosquitoes to live and breed [2].

With the proliferation and evolution of UAV, particularly the
use of RPAS, the process of pool detection is much faster and more
cost-effective than it was a decade ago [3]. However, the numerical
quantification of pools from a large amount of data produced during the
photographic session is a time-consuming task performed by manual
procedures. The different satellite images obtained have different
properties, making it challenging to develop different algorithms to
detect pools. These images differ in scale, resolution, sensor type,

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 154 -

orientation, quality, and ambient illumination conditions. In addition
to these diÿculties, buildings may have complicated structures and
could be hidden by other buildings or trees. Both structural and
deterministic clues must be taken into account when constructing the
solution. Up-to-date and accurate data are essential for municipalities.
Therefore orthophotography makes it slightly easier to recognize
outdoor pools. Among the existing possibilities to solve this problem
is the use of satellite imagery in combination with machine learning
techniques [4]

The main problem in these processes is to relate the images
collected by satellites or drones with a pool detection system and the
corresponding verification of the same within the databases of local
systems. The solution for the detection problem followed the advances
in the literature of machine learning algorithms, precisely Deep
Learning was used, which is a class of Machine Learning algorithms.
This type of algorithm uses multiple layers to progressively extract
features from the input images [5].

This article presents a novel platform that allows the automatic
detection of swimming pools by acquiring images from different
sources. For this purpose, the system can apply different algorithms to
determine the proliferation of illegal swimming pools in a territory by
accessing local control databases. In order to make the system scalable,
robust, and able to merge the information coming from several neural
networks, this case study uses a multi-agent architecture. A multi-
agent system makes it possible to build a dynamically reconfigurable
platform. It also allows the resources and capabilities of the system
to be distributed evenly among the different elements of the system.
In this way, problems that often occur in centralized systems, such as
bottlenecks or recurring access to critical resources, are eliminated.
In addition, the system’s eÿciency in retrieving, filtering, and
coordinating information is improved.

The paper is organized as follows: Section II focuses on an in-depth
review of the state-of-the-art literature on Deep Learning algorithms
used for object detection in images; Section III conducts a review
of works similar to the proposed one related to pool detection and
pool legality verification; Section IV describes the architecture of the
proposed system; On the other hand, Section V will explain each of the
blocks that make up the system; Section VI, will show the case study
carried out with the results obtained; Finally, the conclusions obtained
are in Section VII.

II. Background

Deep Learning is a field that focuses on algorithms based on artificial
neural networks. Thanks to deep learning, intelligent document
processing (IDP) can combine various AI technologies to classify
photos automatically and describe the various elements of images.
With their multilevel structures, deep learning models are beneficial
for extracting detailed information from input images. Convolutional
neural networks can also drastically reduce computational time by
taking advantage of the GPU for computation, something that many
networks do not use. In the field of object identification in images, two
methods stand out: Region Proposal algorithms and regression object
detection algorithms.

The first method is to find out in advance the possible locations
of the target to detect in the figure. This method can ensure that the
highest recovery rate is maintained when fewer windows are selected.
Suppose an image is an input and, after a series of convolutions and
clustering in the backbone, a feature map of size M × N is obtained,
corresponding to the original image’s division into M × N areas. The
center of each area from the original image represents the coordinates
of a pixel in this feature map.

Region Proposal Algorithms find whether the k anchor boxes
corresponding to each pixel contain a target. The network must learn
to classify the anchor boxes as background or foreground. It must
calculate regression coeÿcients to modify the foreground anchor
box’s position, width, and height. Within these classifiers, we find
algorithms such as R-CNN [6], Fast R-CNN [7], Faster R-CNN [8] and
MASK-CNN [9].

Of the algorithms mentioned above, Mask R-CNN stands out. This
algorithm extends Faster R-CNN and works by adding a branch to
predict an object mask in parallel with the existing branch for bounding
box recognition. The critical element of Mask R-CNN is pixel-to-pixel
alignment, which is the main missing piece in Fast/Faster R-CNN.
Mask R-CNN adopts the same two-stage procedure with an identical
first stage (which is RPN). In parallel to predicting the class and box
offset in the second stage, Mask R-CNN also outputs a binary mask
for each RoI. This method is in contrast to most current systems,
where classification depends on mask predictions. In addition, Mask
R-CNN is simple to implement and train thanks to the faster R-CNN
framework, which facilitates a wide range of flexible architecture
designs. Moreover, the mask branch only adds a small computational
overhead, enabling a fast system and rapid experimentation. Fig. 1
shows a visual example of the segmentation performed by the algorithm.

Class Box

ConvConvRow Align

Fig. 1. Mask R-CNN Framework for Instance Segmentation.

Along the same lines as the above, we find Detectron [10], Facebook
AI Research’s (FAIR) software system that implements state-of-the-
art object detection algorithms, including Mask R-CNN. Detectron
aims to provide a high-quality, high-performance codebase for object
detection research. The design of this algorithm is flexible to support
the rapid implementation and evaluation of new research. However,
the most successful version is Detectron2 [11], being an enhancement
of Detectron. The significant difference between versions is that
the latest version is a more modular, flexible, and extensible design,
allowing much faster training on GPU-enabled computers. Detectron2
includes high-quality implementations of the most advanced object
detection algorithms, such as DensePose, pyramid networks with
panoptic features, and numerous variants of the pioneering Mask
R-CNN family of models, also developed by FAIR. The creators of the
algorithm reproduce the ResNet-50-FPN baselines together with the
Scale Jitter algorithm.

A. YoloV4
The above algorithms use detection as a classification problem,

that is, first, the algorithm generates object proposals, and then these
proposals are sent to the classification/regression regions. However,
some methods approach detection as a regression problem based on a
similar operation. The YOLO (You Only Look Once) and SSD (Single
Shot Detector) algorithms stand out within this field.

The SSD [12] algorithm strikes a good balance between speed
and accuracy. SSD runs a convolutional network on the input image
only once and computes a feature map. It then runs a small 3×3
convolutional kernel on this feature map to predict bounding boxes

Regular Issue

- 155 -

and classification probability. SSD also uses anchor boxes in various
aspect ratios, similar to Faster-RCNN, and learns the offset instead of
learning the box. To handle scale, SSD predicts bounding boxes after
multiple convolutional layers. As each convolutional layer operates
at a different scale, it detects objects of various scales. Fig. 2 shows an
example of how the SSD algorithm works.

a) Image with GT boxes b) 8x8 feature map c) 4x4 feature map

Fig. 2. SSD framework example.

For YOLO [13], detection is a simple regression problem that
takes an input image and learns the class probabilities along with the
coordinates of the bounding box. YOLO divides each image into an S x
S grid, and each grid predicts N bounding boxes and their confidence.
The confidence reflects the accuracy of the bounding box and whether
the bounding box contains an object, regardless of the class. YOLO also
predicts the classification score of each bounding box for each class in
training. It can combine both classes to calculate the probability that
each class is present in a predicted box. Thus, the algorithm predicts
a total of SxSxN bounding boxes. However, most of these boxes have
low confidence scores, so if we set a threshold, for example, 30 percent
confidence, we can eliminate most of them, as shown in Fig. 3.

Bounding boxes + confidence

S x S grid on input Final Detections

Class probability Map

Fig. 3. YOLO workflow example.

YOLO is a algorithm faster than all other detection algorithms,
allowing it to run in real-time. Another key difference is that YOLO
sees the entire image at once rather than looking only at the proposals
of a region generated in previous methods. Thus, this contextual
information helps to avoid false positives. However, one of the
limitations of YOLO is that it only predicts one class type in a grid, so
it has diÿculties with tiny objects. There are several versions of YOLO
such as YOLOv2 [14], YOLOv3 [15], and YOLOv4 [16]. There are also
variations of this latest version, adapting it to the context of use and
improving its results [17], [18].

III. Related Works

The related works listed in this section are recent and present
evidence and contributions relevant to the area. However, they are
limited and do not have as their primary focus the analyzed points

necessary for controlling and managing pool legality verification
based on object detection and image classification.

Thus, we start the comparisons with the work proposed by Tien [1]
which introduces a Support Vector Machine (SVM) technique to classify
small area water bodies, namely swimming pools. The work focus
on locating and subsequently using the water source for emergency
services in fighting bushfires in urban areas of Australia. First, satellite
images were processed, and then the images were segmented.

In Galindo’s [19] work, the authors proposed a detection system
to locate full pools during drought periods in order to alert local
authorities. The work applies color analysis for water and approximate
segmentation and active contouring techniques to refine the shape of
the pools. This algorithm with satellite imagery and aerial imagery has
a 93% of success rate.

Kim et al. [20] shows a concern regarding neglected pools in
California, as is the case in other countries [2]. These countries seek
economic ease in locating pools for ground survey and mosquito control.
This research focused on using high spatial resolution (VHR) satellite
imagery and image Pansharpening techniques, normalized difference
water index, and geographic object-based image analysis. In this way,
the authors developed a geographic information system (GIS) database
of pool locations. The system demonstrated that VHR imagery could
produce a GIS database of pools with high accuracy of 94%.

Rodriguez-Cuenca and Alonso [21] presented in their paper a semi-
automatic determination of the location of swimming pools in urban
areas from aerial images and LIDAR sensor data. All this without the
need for specific training, added indices combined with Dempster-
Shafer theory to determine pool locations. The method presented an
accuracy rate of 99.86%.

Ferner et al. [22] study the detection of homes with swimming
pools using convolutional neural networks (CNNs), applied to load
heat maps constructed from load profiles. The author presents only a
small dataset. Still, the results show that using CNNs, privacy can be
broken automatically, without using manual feature generation, which
requires a lot of time. The method outperforms the nearest neighbor
classifier compared by the authors. Although this work does not use
satellite images or aerial images, it is related to the current project as
it uses a Convolutional Neural Network (CNN).

Domozi et al. [23] also uses a Convolutional Neural Network applied
to aerial images by drones. The proposal makes use of an application
called Pix4D. The current development allowed to automatically
detect the ponds and quantify them employing a neural network on
the orthophotos.

Lima et al. [24] presented in their article an application integrated
into municipal systems, determining the location of swimming pools
in urban areas from a GIS system. The application includes the use
of deep learning algorithms to detect swimming pools and focus on
existing municipal information, with validation in the region of Braga
in Portugal. The method has demonstrated an accuracy of 83%, with a
significant number of illegal or unknown pools detected.

In this section, we have analyzed different works carried out in the
areas involved. To provide a more detailed and clear analysis all the
methods explained in this section are summarized in Table I.

IV. Proposed Architecture

The proposed architecture of this section aims to provide a solution
to the problem while adapting and introducing new functionality
without affecting the other parts of the system. In order to achieve
the objective of this research work, the detection and automatic
verification of the legality of swimming pools built in private spaces, it

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 156 -

is necessary to have an architecture with well-defined characteristics so
that the system can operate correctly. For this purpose, an architecture
is modeled based on virtual agents, where each of the system’s agents
works individually to achieve a common goal. One of the primary
needs that have led to the system’s design using this architecture has
been the need to design a distributed system to perform the different
tasks of image extraction, model training, and classification in a
scalable way. Another essential feature of this architecture based on
virtual agents is that another can replace one agent without affecting
the rest of the system.

PANGEA works [25] have used a base of the proposed architecture.
PANGEA allows the different agents to adapt to the computational
needs of the system dynamically. Another advantage of this
architecture is that it allows the system’s services to rise on demand.
When an agent joins the platform, it must communicate which
services are available and can offer to other entities. In Fig. 4, the
architecture designed for the case study presented in this article is
shown. In addition, the agents organized in virtual organizations that
make up the system can be seen.

Compared to other existing systems such as SPADE, Python’s
Library, JADE, or osBrain, the PANGEA multi-agent platform can

create virtual organizations. These virtual organizations allow the
creation of visual representations and modeling of any system. In
addition, being an open-source system, it will be available for use by
other researchers who want to replicate the system in the future.

The following is a list of the organizations, the functionality, and
the agents of each one:

Image Acquisition: This virtual organization is responsible for
obtaining the satellite images that the other organizations will use to
detect the pools. One of the main features of this organization is that it
allows the use of different map sources for downloading the tiles. For
this purpose, the Tiles Selector agent is in charge of calculating the
tiles to be downloaded for the zones pre-selected by the system users.
Analyzing system needs was determined to perform periodic downloads
and checks to detect new pools and pools installed temporarily in the
summer. For this purpose, the Tiles Downloader agent can program the
downloads according to the indicated periodicity.

Aplication Interface: This organization is the one that allows
the information generated by the system to be understandable by
humans. This organization serves as an interface between the system
and the system’s applications. Applications that have access to this
organization can access or generate data in the system. In this case, the

TABLE I. Related Works

Work Year Algorithm Images Accuracy
Tien et al. [1] 2007 Support Vector Machine Satellite Image -

Galindo et al. [19] 2009 Color and Segmentation Analysis Satellite Image 93%
Kim et al. [20] 2011 Pan-sharpening Satellite Image 94%

Rodríguez-Cuenca [21] 2014 Support Vector Machine Aerial Image + LiDAR 99.86%
Ferner et al. [22] 2019 CNN / 5-Nearest neighbors - 68.5% and 71.9%

Domozi et al. [23] 2019 R-CNN Drone Imagery 99%
Passos et al. [2] 2020 Faster R-CNN / ResNet-101-C4 Drone Imagery 74%
Lima et al. [24] 2021 Faster R-CNN GeoTIFF Images 83%

PANGEA

Service Agent

Manager Agent

Organization Agent

Normative Agent

Database Agent

Information Agent App Web

Tiles Selector Map Service

External
Services

Model
Training

Pool
Detection

Calculate global
Coordinates

External
Services

Parcel
detection

Supervisor

Parcel Features
Extraction

Fuzzy Classifiers
Data

Supervisor

Tiles Downloader

Maps

API

DB

Notification

Report Manager

Image Acquisition

APP DB Gov
Services

Aplication Interfaces

Validate Swimming Pool

Image Process

Fig. 4. System Architeture.

Regular Issue

- 157 -

human agent with the system can define which zones to inspect and
review detection results, alerts, or detection reports.

Image Process: This organization aims to carry out tasks related
to image processing and tile pool detection. For this purpose, it has
agents with the Model Training agent responsible for the training and
retraining the models used with new images labeled by the user. The
Pool Detection agent can detect the new tiles pending classification
downloaded into the system and proceed to their classification using
the pre-trained models. Finally, in this organization, the Calculate
Global Coordinates agent’s main task is to convert the coordinates of
each of the pools detected by the Pool Detection agent to the global
system, taking into account the relative coordinates and the zoom
level of the tile analyzed.

Validate Swimming Pool: This organization aims to detect
which pools are legally registered. To do so, this organization uses
a governmental Webservice to obtain the data associated with each
of the plots. The information returned by the service is whether
any swimming pool is registered. The Parcel Detection agent, using
the external services, has the objective of assigning the identifier of
the parcel to each of the detections. The parcel uses this identifier
Features Extraction agent, which is in charge of obtaining if the pool
is registered as a legal form in the parcel. In this way, the system
can determine if the detected pool is correctly registered. The Fuzzy
Classifiers Data agent is responsible for detecting duplicate pools in
adjacent tiles or at a minimal distance.

Pangea Multi-Agent System Organization: In this organization
there are the minimum agents necessary for the Pangea system to
work. The main milestone of this organization is to carry out the
tasks of organizing the virtual organizations and the communication
between the agents responsible for each organization. Below the
agents that are part of this organization are described:

• Service Agent: This agent can expose functionality through
web services such as a communication interface between the
organization’s external agents and those of itself. This interface
allows the creation of agents independent of programming
language or execution environment.

• Manager Agent: Responsible for periodically checking the status of
the system, detecting system overloads and possible failures that
may occur in the agents of each of the organizations.

• Organization Agent: This agent is responsible for verifying the
operations of virtual organizations, ensuring security and load

balancing. This agent also provides encryption services.

• Normative Agent: It is responsible for enforcing compliance with
the rules in communications between agents.

• Database Agent: This agent is the only agent in the organization
that has database access permissions. It is in charge of storing the
system status information, analyzing the data persistence and
consistency capabilities.

• Information Agent: Responsible for managing the services available
within the virtual organizations, indicating which services are
available for each of the agents. When an agent joins the system,
it must indicate which services are available. In this way, when
another agent requests a service, it must query this agent to know
which entity is in charge of offering it.

For its correct operation and scalability, the system uses different
databases; The system uses the database inside the PANGEA
organization to store the information of the system agents, the
services provided by each one, and the tasks that any agent can carry
out. Apart from this, the system has an additional database used to
store the specific information of the case study, the areas selected for
inspection, detected pools generated tiles.

One of the advantages offered by this architecture is the contact
network, where an external agent can search for and execute a service.
To do so, the external agent must send a message to the Manager
Agent, indicating the required service with the necessary parameters
for that service. In collaboration with the other agents of the PANGEA
organization, organization Agent, Information Agent, and Database
Agent, this agent responds with a list of available agents that can
carry out the requested service. Finally, the agent who is to perform
the task must accept the proposal to carry out the task. Fig. 5 shows
an example of a request for the service of extracting features from a
parcel by an external agent.

V. Proposed System

The main challenge of this work is to design a platform capable of
automatically detecting illegal pools at the lowest possible cost. This
process requires data sources that are updated frequently and at the
lowest possible cost. Following the current method for this verification,
administrations use images of the exterior of people’s residences to
check existing constructions and verify that they are in the official
register. Therefore, the images fulfill the role of a low-cost and up-to-

call("parcelFeatures
Extraction", coors)

callService("parcelFeaturesExtraction", coors)
accept-proposal()

propose

inform-result

inform-done

failure

refuse

findService("parcel
FeaturesExtraction")

agentWithService
agentWithService

agentWithService
agentWithService

findService("parcel
FeaturesExtraction") findService("parcel

FeaturesExtraction")

response

findService("parcel
FeaturesExtraction")

Initiator Manager
Agent

Organization
Agent

Information
Agent

Database
Agent

Agent with parcel
feature extraction service

Pangea
DB

Fig. 5. Sequence Diagram from the System.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 158 -

date data source thanks to GIS tools and represent a method already
used by public administrations. The system adapts to the current way
of working without creating any problems.

Considering that the primary source of data obtained is images,
reviewing the literature, the systems that obtain the best results
in classifying and detecting objects in images are Deep Learning
algorithms. The use of these algorithms is crucial in developing this
task as they will allow the detection of areas where pools exist from the
images. Without such a detection capability, the proposed automatic
system would not be possible. This section presents the case study
based on the sub-block image classification technique. Fig. 6A shows
an example of a tile with zoom 18, and Fig. 6B shows an example with
zoom 19.

A B

Fig. 6. Satellite Image for Detection with Zoom 18.

The proposed solution has three main blocks, the block of satellite
image generation, the block of detection and classification of pools
from the generated images, and, finally, the block of checking their
legality with municipal databases. In addition, for interconnecting the
parts, the PANGEA multi-agent architecture is used, briefly explained
in Section IV.

The following sections describe the development steps. Section V.A
deals with the development of the image search system in the maps.
Section V.B is where the algorithms and classification methods used
are presented, contemplating the second block of the work. Added to
that is Section V.B.1, which presents the dataset formed by the images
and their annotations, followed by the algorithms in sections V.B.2,
V.B.3 and V.B.4. Finally, Section V.C describes the system that allows
checking if a pool is legally registered.

A. Images Generation System
It is necessary to have a database covering a large area and

containing aerial photos to detect pools. Users can build such a
database with private or public tools and use expensive large aircraft
systems for less expensive drone-based solutions.

The proposed block for the generation of images is interoperable and
obtains data from several providers, such as Bing Maps [26], Google
Maps [27], OpenStreetMaps [28], ESRI World Imagery [29], Wikimedia
Maps [30], NASA GIB S [31], Carto Light [32], Stamen Toner B & W

[33] and the Sentinel [34]. This portfolio of service providers covers a
large part of the inhabited areas and are publicly available.

In the present research work, the user draws a zone on the map
to inspect the area. In this tool, it is possible to configure, on the one
hand, the zoom of the images, and on the other hand, the map data
source, as shown in Fig. 7a.

Then, the system generates a grid with small map fragments (tiles)
filling the entire drawn area. This process is repeated for each selected
zoom as many times as necessary. Fig. 7b illustrates the process of
transforming the selected area into the corresponding tiles.

B. Swimming Pool Detection Algorithms
The algorithms used have in common the preprocessing phases of

each of the images. The whole process is performed in an identical way
and with the same parameters. It is possible to emphasize the process
of transformation of the image to grayscale and the subdivision of the
image in N blocks of equal size. Subsequently, for each of these blocks,
image processing is performed to extract the texture descriptors.

The texture descriptors refer to information about the spatial
arrangement of color or intensities in an image. The feature vectors,
formed from the texture descriptors, are normalized and used in
training the classifiers. The programming language used for the
development of the algorithms and experiments was Python 3. In
particular, the OpenCV, skimage and mahotas image processing
libraries were used. In addition, the machine learning libraries scikit-
learn, TensorFlow, keras and imbalanced-learn have been used.

1. Datasets
The dataset used for training is a proprietary dataset. The Images

Generation System explained in section V.A has been used to build
it. To train the model, 999 images of 512x512 pixels with zoom 18
were obtained from Redlands, CA, around Prospect Park because
it has a high concentration of swimming pools. Subsequently, the
Roboflow web application [35] was used, which allows for easy
labeling of the images. The set of images created consists of a single
class, Swimming Pools.

The complete dataset have 778 annotated images with pool and 221
images unannotated, that do not contain any pool. In total, there are
2300 labels of the pool class. All images are randomly arranged in the
dataset that was separated in two sets (Table II): the training set (80%)
with 799 images and 1892 labels, and the validation set (20%) with 200
images and 408 labels.

TABLE II. Number of Pools in Each Set of Training Images

Set Images Pools
Training 799 1892

Validation 200 408
 All 999 2300

The storage format of the bounding box information for the
annotations or labeling of this dataset is different for each object
detection model. We need three different storage versions of the
bounding box data, one for each object detection model used for the
comparison. In [36] the three different datasets are published, one
for each detection model, for further verification of the results or
evaluation of new algorithms. Fig. 8 shows a example of labeling set.

2. Yolov4
For the training of the YoloV4 neural network, we use the Jetson

Xavier AGX hardware device. The configuration file used can be
found at [37]. It uses the Yolo Darknet annotation format in TXT file
format. Note that we set the image dimensions to 512x512 pixels and a
maximum of 6000 batches.

Regular Issue

- 159 -

3. MaskRCNN
For training with the MaskRCNN algorithm, a notebook within

Google Colab [38] was used. The algorithm makes use of the Pascal
VOC annotation format [39] in XML file format. The training
parameters set were 150 epochs and minimum detection confidence
of 70%. Note that the notebook used saves the trained model at each
epoch, which allows us to choose the best model. The trained models
that gave the best value in any of the metrics F1, Accuracy, Average
Accuracy, True Positive, False Positive, False Negative are selected.
Subsequently, the selected model has the best results in the evaluation
process from among them.

4. Detectron2
Finally, for the training of the Detectron2 algorithm, a Google Colab

workbook [40] has been utilized. It uses the COCO annotation format
[41] in JSON file format. It is worth noting that, for this algorithm, we
can include the segmentation annotations for each tag. In order to be
on equal footing with the previous algorithms, we have not included
segmentation annotations except the bounding box annotations.

This method only uses the algorithm Faster-RCNN, whose basic
configuration file can be found in the Detectron2 Repository [42]. In
addition, we set the learning rate to 0.01 with a maximum of 50,000
iterations and steps in 30,000, 40,000, and 45,000.

C. Legal Registration Check System
For the registration of properties, some organizations aim to

guarantee the legal security of the operations carried out in the
real estate market. For example, in Spain, the registration of a

swimming pool is not compulsory, but it is always advisable, as
otherwise, it will not be valid in the eyes of third parties. In addition,
the swimming pool affects the payment of real estate tax (IBI) since,
like other types of constructions and installations on the property, it
adds additional value to the property.

The name and correspondence of the bodies responsible for
ensuring the registration of new works vary from country to country.
For example, in the USA, the responsibility for these registrations
belongs to the municipalities. In Spain, on the other hand, there is a
body in charge of this competence called the Dirección General del
Catastro (General Directorate of Cadastre). In both cases, these bodies
offer a service to check the buildings registered for a given point on
the coordinate map used in services such as Google Maps.

Therefore, we propose that the system obtains the coordinates
corresponding to these pools after obtaining the pools detected in the
images. In this way, the system will check if the property corresponding
to the coordinates obtained has the detected pool registered. In this
case, the system makes this check through a request to an endpoint of
the API offered by the services of the aÿliated organization. Based on
the data obtained in response, it will be possible to check the registered
constructions, determining whether or not the pool is registered.

VI. Results

The tools used for training the models have methods for calculating
some metrics using the validation set. However, we use a new process to
evaluate the algorithms without relying on these tools and evaluating
some new issues. This method consists of a new set, the evaluation set,
which contains representative images of the final system. In addition
to comparing the different models trained with the three algorithms,
the method compares images with zoom 18 (Z18 set) and images with
zoom 19 (Z19 set).

This Section is structured as follows: Section VI.A explains the
metrics used. Section VI.B details the evaluation set. Sections VI.C,
VI.D and VI.E show the results obtained from each algorithm. Section
VI.F shows the comparison between the models trained with the
different algorithms is given. Also, a comparison is also made between
the Z18 set and the Z19 set. Finally, the VI.G section describes a system
for check if the pools are registered legally by the appropriate agency.

A. Metrics
For the quantitative evaluation, we used the following metrics:

accuracy, i.e., the relationship between true positives (TPs) and true
positives (TPs) along with false positives (FPs) (Equation 1); recall,
which is the probability that an image is classified as positive and

(b) Photo generation based on map selection(a) Map area selection

Fig. 7. Image grid generation tool.

Fig. 8. Example of labeling a training image.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 160 -

the relationship between the TPs and the TPs together with the false
negatives (FNs) (Equation 2); and F1, which is combination of the two
previous metrics (Equation 3).

We classified the speed measured in frames per second (FPS); the
mean average precision (mAP), calculated by the precision and recall
curve; and the intersection over union (IoU), which is the overlapping
area between the annotated bounding box of the object in the image
and the detected bounding box by the model. For the mAP measure,
the notation of mAP@X is used, where X indicates the IoU threshold
value used to calculate the AP.

 (1)

 (2)

 (3)

B. Evaluation Set
For the evaluation of the algorithms, we establish a reduced set of

images. We have chosen eight locations in the province of Salamanca
(Spain), obtaining a zoom 18 image (Z18 set) and a zoom 19 image
(Z19 set) for each location. In total, we have obtained 16 images. Fig.
9 shows a Z18 image of a point and Fig. 10 shows a Z19 image, with
their respective labelling.

We consider the following criterion for calculating the metric values
for each trained model: It will consider neither a true positive nor a
false positive if the model detects a not labeled pool for the evaluation.

These initially unlabelled objects are usually of tiny size in the image.
Human experts are also not able to classify whether they are pools or
not. This evaluation set contains in total 85 pools. Furthermore, the set
splits into two image sets with 50 pools for the Z18 set and 35 pools
for the Z19 set (Table III).

TABLE III. Number of Pools in Each Set of Assessment Pictures

Set Images Pools
Zoom 18 8 50
Zoom 19 8 35

All 16 85

C. Yolov4
As can be seen in Fig. 11 the model trained with the YoloV4 neural

network managed to detect 365 pools correctly and 56 detections as
false positives using the validation set. This model has given 89.75% of
mAP@0.50, 87% accuracy, 89% recall, and 88% F1-Score. These results
come from a confidence threshold of 25%.

Fig. 11. Validation results of the best model trained with YoloV4.

In Fig. 12 and Fig. 13 we can observe the detection on images of the
evaluation set with zoom 18 and zoom 19, respectively. These example
of detection use a confidence threshold of 10% as it has yielded the
best results between the confidence thresholds 70%, 50%, 25%, and 10%.

Fig. 12. YoloV4 detection with zoom 18.

Fig. 10. Evaluation image with zoom 19.Fig. 9. Evaluation image with zoom 18.

mailto:mAP@0.50

Regular Issue

- 161 -

Fig. 13. YoloV4 detection with zoom 19.

The model trained with the zoomed image 18 has managed to detect
8 pools out of 9, one false positive, and there is one discarded detection
as we do not know if it is a pool or not. As for the zoom image 19 it
has detected 5 pools out of 5 and there is one discarded detection for
the same reason.

Table IV shows the results obtained when using the evaluation
set for detection with the model trained on YoloV4 with a confidence
threshold of 10 percent. The nomenclatures used in the table are: TP =
True Positive, FP = False Positive, FN = False Negative, GT = Ground
Truth or total of truth pool, Prec = Precision, RC = Recall and F1 =
F1-Score.

TABLE IV. Values of the YoloV4 Model Metrics on the Evaluation Set

Set TP FP FN GT Prec RC F1
Z18 43 2 7 50 95.6% 86.0% 90.5%
Z19 33 0 2 35 100% 94.3% 97.1%
 All 76 2 9 85 97.4% 89.4% 93.3%

D. MaskRCNN
Training with MaskRCNN returned all models for each epoch.

This algorithm allows us to evaluate each model resulting from each
epoch individually. In this case, we have chosen the trained models
whose results stand out in some of the metrics returned by the training
tool with the validation set, such as mAP@0.5, precision, recall, and
F1-Score. For each of these chosen models, we have calculated their
metrics with the evaluation set. Among them, we highlight the model
resulting from epoch 46 that gave us the best results. This trained
model stood out from the other models resulting from this training
because of its high accuracy, whose value reached 86.3%. In Fig. 14 we
can observe the values of the metrics that the epoch 46 model has had
with the validation set.

Fig. 14. Validation results of the best model trained with MaskRCNN.

It has correctly detected 297 pools or true positives and incorrectly
detected 47 pools or false positives. It has reached a mAP@0.5 of
73.54%, a recall of 72.79%, and an F1-Score of 78.98%.

In Fig. 15 and Fig. 16 we can observe the detections on the images of
the evaluation set with zoom 18 and zoom 19, respectively.

Fig. 15. Example of MaskRCNN detection with zoom 18.

These detections use a confidence threshold of 90% because it yields
better results and allows filtering out more false positives. The model
has detected 7 pools out of 9 in the zoom 18 image and 4 out of 5 in
the zoom 19 image.

Fig. 16. Example of MaskRCNN detection with zoom 19.

Table V shows the results obtained when using the evaluation set
for detection with the epoch 46 model trained on MaskRCNNN with a
confidence threshold of 90%.

TABLE V. Values of the Metrics of the MaskRCNN Model on the
Evaluation Set

Set TP FP FN GT Prec RC F1

Z18 29 0 21 50 100% 58.0% 73.4%

Z19 29 2 6 35 93.5% 82.9% 87.9%

 All 58 2 27 85 96.7% 68.2% 80.0%

mailto:mAP@0.5
mailto:mAP@0.5

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 162 -

E. Detectron2
Finally, the model trained with Detectron2 has obtained an AP@0.5

of 87.23% with the validation set, as we can see in Fig. 17. In this
case, the tool used for training with Detectron2 also calculates the
mAP@0.5:0.95 with a result of 35.06% and the AP@0.75 with 16.43%.

Fig. 17. Validation results of the best model trained with Detectron2.

Fig. 18 and Fig. 19 show the detections on the images of the evaluation
set with zoom 18 and zoom 19, respectively. These detections use a
confidence threshold of 50%. The trained model detects 7 pools out of
9 in the zoom 18 image and 4 out of 5 in the zoom 19 image.

Fig. 18. Example of Detectron2 detection with zoom 18.

Fig. 19. Example of Detectron2 detection with zoom 19.

Table VI shows the results obtained when using the evaluation
set for pool detection with the model trained with Detectron2 with a
confidence threshold of 50%.

TABLE VI. Values of the Metrics of the Detectron2 Model on the
Evaluation Set

Set TP FP FN GT Prec RC F1

Z18 28 5 22 50 84.8% 56.0% 67.5%

Z19 30 3 5 35 90.9% 85.7% 88.2%

All 58 8 27 85 87.9% 68.2% 76.8%

F. Comparison
Once we have obtained the metrics of each model trained with

the evaluation set, we proceed to compare the algorithms. Fig. 20a,
Fig. 20b and Fig. 20c show plots comparing the models with the true
positive, false positive and false negative values, respectively.

The model trained with the YoloV4 neural network yielded much
better results than the other two algorithms. It managed to detect
many more pools correctly, and, in addition, it only detected 2 pools
incorrectly. On the other hand, if we use a confidence threshold of 25%
or more with the model trained with YoloV4 we achieve that the model
does not detect pools incorrectly. With the 25% threshold, we obtain 61
true positives and 0 false positives in the whole set.

Finally, if we compare between the set of zoom 18 images (Z18)
with the set of zoom 19 images (Z19) we can observe that in the three
algorithms, there is a higher detection of true positives with the set Z19.

(a) True positives value comparison.

(b) False positive value comparison.

(c) False negative value comparison.

Fig. 20. True positive, false positive and false negative values comparison.

mailto:AP@0.5
mailto:AP@0.75

Regular Issue

- 163 -

The YoloV4 algorithm has been able to detect 33 pools out of 35 in the
Z19 set, while it has detected 43 out of 50 in the Z18 set. This difference
is even more marked in the other two algorithms, where the number of
true positives is almost identical between set Z18 and set Z19.

If we compare the precision metric of each model (Fig. 21) we obtain
that the model trained with YoloV4 is more accurate than the other
two algorithms. Furthermore, if we increase its confidence threshold
to 25%, we obtain a precision of 100% on all three sets: Z18, Z19, and
All. Finally, we can see that there is a lower precision with the Z18 set
in all three algorithms compared to the Z19 set.

Fig. 21. Precision metrics comparison.

As for the recall metric, the YoloV4 algorithm has yielded better
results, reaching 94.3% in the Z19 set. In addition, we see that with the
Z19 set, they achieve a higher recall than the Z18 set, with a difference
of almost 30% in the case of the Detectron2 algorithm.

Fig. 22. Recall metric comparison.

Finally, regarding the F1-Score metric, which combines the
precision and recall metrics, we can observe in Fig. 23. The YoloV4
algorithm is far superior to the other two algorithms, achieving up to
97.1% with the Z19 set. On the other hand, we see better results with
the Z19 set compared to the Z18 set.

Fig. 23. F1-Score metric comparison.

G. Test Case of the Verification System
Before we can comment on the test case performed for the test

system, we must describe it to know the system’s situation. In this
case, the test case has performed in a town near the city of Salamanca.
The name of this town is Villamayor.

The Dirección General del Catastro is the body in charge of
controlling, verifying and managing the records of buildings in Spain.
The system has collected the images and check them, going through
the pool detection subsystem. Their coordinates have been obtained
from the detected pools to request the service offered by the Dirección
General del Catastro. This legal system is in charge to check if the pools
located in properties were registered. The result obtained from this
process is in Fig. 24.

Fig. 24 shows three types of points distinguished by colors:

• Blue: This item identifies a pool detected by the system. This item
has not yet gone through the system verification process.

• Green: This point identifies a pool detected in the system and was
verified as registered to the corresponding property through its
geographical coordinates.

Fig. 24. Results from the verification system.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº4

- 164 -

• Red: This item identifies a swimming pool detected in the
system and has no record for the corresponding property with its
geographical coordinates.

In the observed village of Villamayor, as observed in Fig. 24, there
are actually 27 pools. Of those 27 pools, the system has been able to
detect 23 pools and unable to detect 5 pools that actually exist. Of
those 23 detected pools, 22 of them are correct, however, one of them
is incorrect. Of these pools, 22 are registered and linked to the related
property, one is not registered, and one is still pending verification.

VII. Conclusions

This paper demonstrates that it is possible to determine the
presence of a pool in an image with an accuracy better than 97% using
a multi-agent architecture that allows distributed computing and has
allowed the evaluation of different algorithms combined to improve
the detection process.

After evaluating the algorithms and comparing them, we highlight
the model trained with the YoloV4 neural network, which offers
better results in all metrics. We propose to use this algorithm for pool
detection using a confidence threshold of 10% in case errors or false
positives can be assimilated, allowing a higher detection or recall,
or to use a confidence threshold of 25% in case higher accuracy in
pool detection is sought. Finally, it has been observed that for the
detection of pools, it is better to use images with zoom 19 versus zoom
18. Although for images with zoom 19, it is necessary to process four
times more images for the same area than with images with zoom
18, it is very convenient to sacrifice more computational resources to
detect pools. Moreover, in this case, study, it is not vital to display
the detections in real-time, so spending a few extra seconds in the
detection process is not a concern.

Finally, a test case is made to observe a specific population to check
the system’s operation. In this way, based on the test carried out in the
town of Villamayor, an operating system has been verified. This test
has been possible to certify the system’s effectiveness to determine
which pools are registered or not in the corresponding official bodies.
In addition, the system has proven to help check the automatic
detection of pools and the checking of pool records.

Acknowledgments

Héctor Sánchez San Blas's research is supported by the Spanish
Ministry of Universities (FPU Fellowship under Grant FPU20/03014).
The research of Luis Augusto Silva has been funded by the call for
predoctoral contracts USAL 2021, co-financed by Banco Santander.

References

[1] D. Tien, T. Rudra, A. B. Hope, “Swimming pool identification from digital
sensor imagery using SVM,” Proceedings - Digital Image Computing
Techniques and Applications: 9th Biennial Conference of the Australian
Pattern Recognition Society, DICTA 2007, pp. 523–527, 2007, doi: 10.1109/
DICTA.2007.4426841.

[2] W. Passos, E. Silva, S. Netto, J. Martins, Y. Costa, G. Araujo, A. Lima,
“Detecção de Potenciais Focos do Aedes aegypti em Vídeos Aéreos Usando
Redes Neurais,” pp. 22–25, 2020, doi: 10.14209/sbrt.2020.1570661555.

[3] P. C. Gray, K. C. Bierlich, S. A. Mantell, A. S. Friedlaender, J. A.
Goldbogen, D. W. Johnston, “Drones and convolutional neural networks
facilitate automated and accurate cetacean species identification and
photogrammetry,” Methods in Ecology and Evolution, vol. 10, no. 9, pp.
1490–1500, 2019, doi: 10.1111/2041-210X.13246.

[4] M. I. Habibie, T. Ahamed, R. Noguchi, S. Matsushita, “Deep Learning
Algorithms to determine Drought prone Areas Using Remote Sensing
and GIS,” pp. 69– 73, 2020, doi: 10.1109/AGERS51788.2020.9452752.

[5] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[6] R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. 580–587, 2014, doi: 10.1109/CVPR.2014.81.

[7] R. Girshick, “Fast R-CNN,” Proceedings of the IEEE International Conference
on Computer Vision, vol. 2015 Inter, pp. 1440–1448, 2015, doi: 10.1109/
ICCV.2015.169.

[8] H. Rampersad, “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks,” Total Performance Scorecard, pp. 159–
183, 2020, doi: 10.4324/9780080519340-12.

[9] K. He, G. Gkioxari, P. Dollár, R. Girshick, “Mask r- cnn,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386–397,
2020, doi: 10.1109/TPAMI.2018.2844175.

[10] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, K. He, “Detectron.”
https://github.com/ facebookresearch/detectron, 2018.

[11] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, R. Girshick, “Detectron2.” https://
github.com/ facebookresearch/detectron2, 2019.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, A. C. Berg,
“SSD: Single Shot MultiBox Detector,” 12 2015, doi: 10.1007/978-3-319-
46448-0_2.

[13] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once:
Unified, real-time object detection,” Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol. 2016-
Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.

[14] J. Redmon, A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, vol. 2017-Janua, pp. 6517–6525, 2017, doi: 10.1109/CVPR.2017.690.

[15] J. Redmon, A. Farhadi, “Yolov3: An incremental improvement,” CoRR, vol.
abs/1804.02767, 2018, doi: http://arxiv.org/abs/1804.02767.

[16] A. Bochkovskiy, C. Wang, H. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020, doi:
https://arxiv.org/abs/2004.10934.

[17] S.-H. Chen, C.-W. Wang, I.-H. Tai, K.-P. Weng, Y.-Chen, K.-S. Hsieh,
“Modified yolov4-densenet algorithm for detection of ventricular
septal defects in ultrasound images,” International Journal of Interactive
Multimedia and Artificial Intelligence, vol. 6, no. 7, pp. 101-108, doi:
10.9781/ijimai.2021.06.001.

[18] L. A. Silva, H. S. S. Blas, D. P. García, A. S. Mendes, G. V. González, “An
architectural multi-agent system for a pavement monitoring system with
pothole recognition in uav images,” Sensors, vol. 20, no. 21, pp. 1–23, 2020,
doi: 10.3390/s20216205.

[19] C. Galindo, P. Moreno, J. Gonzalez, V. Arévalo, “Swimming pools
localization in colour high- resolution satellite images,” vol. 4, pp. IV–
510–IV–513, 2009, doi: 10.1109/IGARSS.2009.5417425.

[20] M. Kim, J. B. Holt, R. J. Eisen, K. Padgett, W. K. Reisen, J. B. Croft,
“Detection of swimming pools by geographic object-based image
analysis to support west nile virus control efforts,” Photogrammetric
Engineering and Remote Sensing, vol. 77, no. 11, pp. 103– 113, 2011, doi:
10.14358/pers.77.11.1169.

[21] B. Rodríguez-Cuenca, M. C. Alonso, “Semi-automatic detection of
swimming pools from aerial high- resolution images and LIDAR data,”
Remote Sensing, vol. 6, no. 4, pp. 2628–2646, 2014, doi: 10.3390/rs6042628.

[22] C. Ferner, G. Eibl, A. Unterweger, S. Burkhart, S. Wegenkittl, “Pool
detection from smart metering data with convolutional neural networks,”
Energy Informatics, vol. 2, pp. 1–9, 2019, doi: 10.1186/s42162-019-0097-8.

[23] Z. Domozi, A. Molnar, “Surveying private pools in suburban areas
with neural network based on drone photos,” EUROCON 2019 - 18th
International Conference on Smart Technologies, pp. 1–6, 2019, doi:
10.1109/EUROCON.2019.8861770.

[24] B. Lima, L. Ferreira, J. M. Moura, “Helping to detect legal swimming pools
with deep learning and data visualization,” Procedia Computer Science,
vol. 181, no. 2019, pp. 1058–1065, 2021, doi: 10.1016/j.procs.2021.01.301.

[25] C. Zato, G. Villarrubia, A. Sanchez, I. Barri, E. Rubión, A. Fernández, C.
Sánchez, J. Cabo, T. Álamos, J. Sanz, J. Seco, J. Bajo, J. Corchado Rodríguez,
“Pangea - platform for automatic construction of organizations of
intelligent agents,” vol. 151, 01 2012, doi: 10.1007/978- 3-642-28765-7_27.

[26] J. Schwartz, et al., “Bing maps tile system,” 2009. http://msdn.microsoft.
com/en-us/library/ bb259689.aspx, (accessed in: 13/09/2021).

[27] “Google maps.” https://maps.google.com, (accessed in: 13/09/2021).

http://www.deeplearningbook.org/
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
http://msdn.microsoft.com/en-us/library/bb259689.aspx
http://msdn.microsoft.com/en-us/library/bb259689.aspx
http://msdn.microsoft.com/en-us/library/bb259689.aspx
https://maps.google.com/

Regular Issue

- 165 -

[28] “Open street maps.” https://www.openstreetmap. org/, (accessed in:
13/09/2021).

[29] “Esri world imagery.” https://www.arcgis. com/apps/mapviewer/
index.html?layers= 10df2279f9684e4a9f6a7f08febac2a9, (accessed in:
13/09/2021).

[30] “Wikimedia maps.” https://maps.wikimedia.org/, (accessed in:
13/09/2021).

[31] “Nasa gibs.” https://map1.vis.earthdata.nasa.gov/, (accessed in:
13/09/2021).

[32] “Carto light.” https://cartodb-basemaps-c. global.ssl.fastly.net/, (accessed
in: 13/09/2021).

[33] “Stamen toner b & w.” https://stamen.com/, (accessed in: 13/09/2021).
[34] “Sentinel.” https://www.sentinel-hub.com/, (accessed in: 13/09/2021).
[35] “Roboflow.” https://roboflow.com, (accessed in: 13/09/2021).
[36] “Swimming Pool Detect.” https://github.com/ Hectorssb/

SwimmingPoolDetection, (accessed in: 02/11/2022).
[37] “YoloV4 cfg.” https://github.com/Hectorssb/ SwimmingPoolDetection/

blob/main/Yolov4/cfg/ yolov4-obj.cfg, (accessed in: 02/11/2022).
[38] “Train Mask-RCNN Model on Custom Data.” https://colab.research.

google.com/drive/1rBuhT8AjP2td20otdUnpuF7CCMmjRb4O, (accessed
in: 13/09/2021).

[39] M. Everingham, L. Van Gool, C. K. I. Williams, Winn, A. Zisserman,
“The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.”
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/
index.html.

[40] “Detectron2 Beginner’s Tutorial.” https://colab.research.google.com/
drive/1n-_ nulKMxxCF6Jg4WMw20mO8R6rqC078, (accessed in:
13/09/2021).

[41] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, P. Dollár, “Microsoft coco: Common objects in
context,” 2014. [Online]. Available: https://arxiv.org/abs/1405.0312, doi:
10.48550/ARXIV.1405.0312.

[42] Detectron2, “faster_rcnn_X_101_32x8d_FPN_3x.” https://github.com/
facebookresearch/ detectron2/blob/main/configs/COCO-Detection/
faster_rcnn_X_101_32x8d_FPN_3x.yaml, (accessed in: 13/09/2021).

Héctor Sánchez San Blas

He is a Researcher at the University of Salamanca. He is the
beneficiary of an FPU predoctoral contract in the 2020-2021
call. He is a Ph.D. student in computer engineering at the
same university and has a degree in Computer Engineering
and a Master’s degree in Intelligent Systems at the same
center. During his master’s degree, he was a collaborating
researcher at the Expert Systems and Applications Laboratory

(ESALab) of this university, collaborating with research projects related to the
Internet of Things, Virtual Reality applications, and machine learning. Currently,
he is researching the development of IoT and neural networks together with
research projects focused on machine vision and Smart Cities.

Antía Carmona Balea

She is a Pd.D. student in Computer Engineering at
University of Salamanca (USAL). She has a degree
in Chesmistry at the University of Valladolid (UVA),
she received the master’s degree in Meteorology from
UNED and she is currently doing a master in scientific
communication. Her doctoral studies deal with IoT and
artificial intelligence which she combines with her work as

a secondary school teacher.

André Sales Mendes

He received a master’s degree in Intelligent Systems and
the Ph.D. degree in Computer Engineering from University
Of Salamanca (USAL). He is current working on Expert
System And Applications Laboratory Research Group,
Computer Science Department, University of Salamanca,
as an Adjunct Professor. It has a numerous publication in
international impact journals indexed in JCR reference

ranking. His main research interests focus on the field of artificial intelligence,
IoT (internet of things) and robotic. He also collaborates in several research
projects within the research group.

Luís Augusto Silva

He received his Master’s degree in Applied Computing
from the University of Itajaí Valley, Brazil, in 2019. He
has a degree in Internet Systems from the Federal Institute
of Santa Catarina (IFC), Camboriú, Brazil, ending in
February 2017. His research during his master’s degree
covered the field of Notification Systems, IoT, and Data
Privacy. During the master’s degree, he was a collaborating

researcher at the Laboratory of Embedded and Distributed Systems (LEDS) at
UNIVALI, collaborating with research projects related to the Internet of Things.
Since August 2020, he has been a Ph.D. student in Computer Engineering at
the Universidad de Salamanca - Spain, and a researcher at the Expert Systems
and Applications Laboratory (ESALab). His research lines are directly related
to Internet of Things, Embedded Drone Systems, and Data Privacy applied to
Smart Environments.

Gabriel Villarrubia González

He received the master’s degree in intelligent systems
from the University of Salamanca, in 2012, the master’s
degree in Internet Security, in 2014, the master’s degree in
information systems management, in 2015, and the Ph.D.
degree from the Department of Computer Science and
Automation, University of Salamanca. He is a Computer
Engineer at the Pontifical University of Salamanca in

2011. He is currently a Research Professor with the Department of Informatics.
Throughout his training, he has followed a well-defined line of research, focused
on the application of multi-agent systems to ambient intelligence environments,
with special attention to the definition of intelligent architectures and the fusion
of information.

https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.arcgis.com/apps/mapviewer/index.html?layers=10df2279f9684e4a9f6a7f08febac2a9
https://www.arcgis.com/apps/mapviewer/index.html?layers=10df2279f9684e4a9f6a7f08febac2a9
https://www.arcgis.com/apps/mapviewer/index.html?layers=10df2279f9684e4a9f6a7f08febac2a9
https://maps.wikimedia.org/
https://map1.vis.earthdata.nasa.gov/
https://map1.vis.earthdata.nasa.gov/
https://cartodb-basemaps-c.global.ssl.fastly.net/
https://cartodb-basemaps-c.global.ssl.fastly.net/
https://stamen.com/
https://www.sentinel-hub.com/
https://roboflow.com/
https://github.com/Hectorssb/SwimmingPoolDetection
https://github.com/Hectorssb/SwimmingPoolDetection
https://github.com/Hectorssb/SwimmingPoolDetection
https://github.com/Hectorssb/SwimmingPoolDetection/blob/main/Yolov4/cfg/yolov4-obj.cfg
https://github.com/Hectorssb/SwimmingPoolDetection/blob/main/Yolov4/cfg/yolov4-obj.cfg
https://github.com/Hectorssb/SwimmingPoolDetection/blob/main/Yolov4/cfg/yolov4-obj.cfg
https://github.com/Hectorssb/SwimmingPoolDetection/blob/main/Yolov4/cfg/yolov4-obj.cfg
https://colab.research.google.com/drive/1rBuhT8AjP2td20otdUnpuF7CCMmjRb4O
https://colab.research.google.com/drive/1rBuhT8AjP2td20otdUnpuF7CCMmjRb4O
https://colab.research.google.com/drive/1rBuhT8AjP2td20otdUnpuF7CCMmjRb4O
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
https://colab.research.google.com/drive/1n-_nulKMxxCF6Jg4WMw20mO8R6rqC078
https://colab.research.google.com/drive/1n-_nulKMxxCF6Jg4WMw20mO8R6rqC078
https://colab.research.google.com/drive/1n-_nulKMxxCF6Jg4WMw20mO8R6rqC078
https://colab.research.google.com/drive/1n-_nulKMxxCF6Jg4WMw20mO8R6rqC078
https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml
https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml
https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml
https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml

