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Abstract

One of the main advancements in distributed learning may be the idea behind Google’s Federated Learning 
(FL) algorithm. It trains copies of artificial neural networks (ANN) in a distributed way and recombines the 
weights and biases obtained in a central server. Each unit maintains the privacy of the information since the 
training datasets are not shared. This idea perfectly fits a Multi-Agent System, where the units learning and 
sharing the model are agents. FL is a centralized approach, where a server is in charge of receiving, averaging 
and distributing back the models to the different units making the learning process. In this work, we propose 
a truly distributed learning process where all the agents have the same role in the system. We suggest using a 
consensus-based learning algorithm that we call Co-Learning. This process uses a consensus process to share 
the ANN models each agent learns using its private data and calculates the aggregated model. Co-Learning, 
as a consensus-based algorithm, calculates the average of the ANN models shared by the agents with their 
local neighbors. This iterative process converges to the averaged ANN model as a central server does. Apart 
from the definition of the Co-Learning algorithm, the paper presents its integration in SPADE agents, along 
with a framework called FIVE allowing to develop Intelligent Virtual Environments for SPADE agents. This 
framework has been used to test the execution of SPADE agents using Co-Learning algorithm in a simulation 
of an orange orchard field.

DOI:  10.9781/ijimai.2023.08.004

Consensus-Based Learning for MAS: Definition, 
Implementation and Integration in IVEs
C. Carrascosa, F. Enguix, M. Rebollo, J. Rincon *

VRAIn - Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València, 
Valencia (Spain)

Received 23 February 2023 | Accepted 4 August 2023 | Published 24 August 2023

I. Introduction

This paper follows a research line related to multi-agent learning. 
So, it extends the work presented by Carrascosa et al. [1], where 

a new algorithm based on Federated Learning and Consensus in 
Multi-Agent Systems named CoL was presented. This extension 
focuses in how this kind of algorithms can be tested in execution in a 
close to real simulation using a new Intelligent Virtual Environment 
(IVE) generator.

Multi-agent Learning is currently a hot topic mixing machine 
learning with distributed systems. It can be found two main different 
kinds of such systems: the ones where the learning is a specific part of 
the system carried out by one (or a few) agents of the system (like in the 
work by Sánchez San Blas et al. [2]) where the deep learning is made 
by an agent in a complex system dedicated to the automatic detection 
of illegal swimming pools), and the ones where all agents make the 
same kind of deep learning process (that is, the learning also uses a 
distributed approach). In this last kind of system is where the proposed 
algorithm is classified. The proposed algorithm intends to get the most 
out of a distributed approach. It tries to mix the learned parameters in 

each agent with the parameters trained in its local neighbors without 
knowing the whole system. Moreover, this kind of learning algorithm 
preserves the privacy of the data used for the learning process by each 
agent in his local learning.

These features are, in some way, present in other approaches, mainly 
Federated Learning (FL). The FL algorithm was defined by Google [3]. 
The main idea behind this algorithm is to take advantage of distributed 
learning and maintain the privacy of the data used by each node in 
the learning process. The algorithm uses two different kinds of agents: 
server and client. The server defines the training model and sends it to 
all the clients. Then, clients train with their private data and send the 
model back to the server. Finally, the server aggregates all the models, 
for example, calculating an averaged one. This global model is sent back 
to execute the next training iteration. Kairouz et al. [4] analyze deeply 
the open challenges related to FL algorithms. It should be emphasized 
that the connection topology among the agents significantly influences 
the convergence rate in decentralized distributed learning processes. 
Nonetheless, the FL approach has noteworthy characteristics worth 
considering. Firstly, it maintains a distributed nature while operating 
with a centralized framework, implying that the system synchronizes 
and evolves based on the pace of the slowest agent. Furthermore, it lacks 
fault tolerance, rendering it vulnerable in scenarios where agents fail to 
respond or vanish, and it does not accommodate the incorporation of 
new agents during execution.

These features are of great importance when developing systems that 
must work in environments with a high probability of communication 
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failure, where agents communicate sporadically, or when they must 
deal with disconnection periods to save battery. This situation appears 
in rural areas, characterized by limited connectivity and where the 
system may remain isolated without supervision for extended periods. 
These features can be obtained if, instead of using a centralized 
approach, a fully distributed one is used, as is the one followed by a 
consensus algorithm according to Olfati-Saber and Murray [5].

This paper presents a consensus-based learning algorithm coined 
Co-Learning or CoL, trying to take advantage of a completely 
decentralized approach for an FL-like learning algorithm. Along with 
presenting the CoL algorithm definition and description, an actual 
implementation using SPADE agents [6] is provided.

SPADE (Smart Python Agent Development Environment) [6] 
is a framework for developing intelligent agents in Python. The 
communication layer uses XMPP (Extensible Messaging and Presence 
Protocol)1 as an instant messaging protocol. 

This platform has been used in different areas, especially in IoT  
[7]. The CoL implementation in SPADE takes advantage of the 
Presence feature of the XMPP so that it can detect when a neighbor 
agent decides not to go on being connected or fails its connection, 
not having to wait for a deadline to acknowledge those failures. There 
is also some previous work in implementing a pure FL algorithm in 
SPADE agents, called FLaMAS [8].

In multi-agent systems, communication between agents is essential, 
and SPADE agents have an integrated message dispatcher that allows 
communication between them.

The SPADE agent model is based on behaviors. They are tasks that 
repeat upon a particular time pattern: one-shot, periodic, finite state 
machines (FSM) or even BDI (Belief Desire Intention) [9] behaviors, 
which allows reactive and deliberative capabilities in the agent.

The paper also presents a new Intelligent Virtual Environment 
(IVE) [10] generator, developed to test SPADE agents in a close-to-
real-world scenario before deployment. Graphical simulations have 
always been a way of testing and validating applications (like in the 
work by Ikidid et al. [11]) where a simulation in ANYLOGIC is used 
to validate a model to control and fluidize vehicle traffic in a multi-
intersection network). Checking qualitatively if a simulation seems 
to work correctly can save hours of work analyzing boring tables 
of numbers. The main problem with these simulations is that they 
usually cost a lot to build or even tune for a specific algorithm.

There is no novelty in proposing just another simulation framework, 
even if discussing a simulated environment, simply to deploy a Multi-
Agent System. Traditionally, simulators that include agency concepts 
simulate the environment and the agents. That is the case, for instance, 
of Netlogo [12], where agents inhabit a matrix-like environment 
formed by patches. However, this simulator is limited to four different 
types of agents, the simulated environment is two-dimensional and 
does not allow the decoupling of its parts. The configuration of this 
monolithic system is produced in the same file.

On the other hand, it may be found what is called an IVE (Intelligent 
Virtual Environment) [10] that is, a virtual environment simulating 
a real world, inhabited by intelligent agents who may interact and 
whose behavior can be easily validated.

JaCalIVE (Jason Cartago implemented Intelligent Virtual 
Environment) [13] can be seen as an example of a framework for 
developing MAS inhabiting an IVE. This framework is based on 
MAM5 meta-model [14]. The idea behind it is to define a simulation 
through such a meta-model, which is compiled into some templates of 
Jason agents [15] and CaRTago artifacts [16] to be completed by the 
simulation developer. This framework has a very formal development 

1   https://xmpp.org/

process, but it is difficult to develop a new simulation or even make 
changes to an existing one.

It can also be found MASON (Multi-Agent Simulator Of Neighborhoods) 
[17], made purely in the Java programming language and released in 
2003. This simulator is mainly oriented toward swarm intelligence and 
multi-agent systems. In addition, it allows you to choose a discrete or 
continuous space in the simulations and visualize the result in a two or 
three-dimensional space. However, achieving a 3D visualization in this 
simulator is not easy or fast and requires the additional installation of the 
Java3D libraries and knowledge of Java programming.

Differently, the proposal presented in this paper looks for an easy 
way of defining and modifying an IVE. This IVE will be developed 
in Unity2, and agents will be SPADE agents [6]. This Simulation 
framework, named FIVE [18], allows us to define the environment 
and incorporate the algorithms to be validated into SPADE agents 
inhabiting such an environment.

The rest of the paper is structured as follows: in Section II 
the Co-Learning algorithm is presented. Next, in Section III the 
implementation of this algorithm in SPADE agents is shown. After 
that, in Section IV new FIVE framework is presented as a way of easy 
and fast creation and modification of Intelligent Virtual Environments 
to test Co-Learning SPADE agents, followed by Section V, where a 
case study with a virtual environment simulating an orange orchard is 
presented. The paper ends with some conclusions in Section VI.

II. Co-Learning (CoL) Algorithm

This section presents the model that supports the distributed 
training of the machine learning model, combined with the consensus 
process to average the parameters learned by the agents. An 
interaction topology delimits the ability of the agents to communicate 
and exchange information.

A. Consensus-Based Multi-Agent Systems
Olfati–Saber and Murray [5] define a consensus process in a Multi-

Agent System (MAS) as a problem where the agents reach an agreement 
about the value of a variable of interest without any intermediate or 
leader that rules the process. It is an iterative procedure. The agent 
ai calculates the new value xi (t + 1) in each iteration, according to 
Equation (1).

 (1)

where Ni denotes the neighbors of agent ai and ε is the learning 
step: a factor bounded by the maximum degree of the network. 
The consensus converges to the average of the initial values  
whenever . This algorithm has been the base for different and 
multiple applications and other algorithms as, for instance, Supportive 
Consensus [19].

Fig. 1 depicts an example of the evolution of consensus over one 
of the weights over this simple synthetic network with four agents 
and initial values x(0) = {0.2, 0.4, 0.6, 0.8}. The convergence value is 

.

B. Consensus in Federated Learning
One of the approaches of FL consists of a set of clients that learns 

the weights of an artificial neural network (ANN) and shares them 
with a central server, which averages the weights to obtain a global 
model. Without losing generality, we can consider each weight as an 
independent variable and execute the consensus process in parallel 
over all the weights simultaneously.

2   http://unity.com



Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 23 -

Let us define a set of n identical agents A; each one implements 
identical ANN structures (same blocks, layers, and neurons). The goal 
is to learn a global model (W, tr) with a set of weights W for a training 
dataset tr. As the model is common, agents need only to share the set 
of weights W. The training dataset is divided into n fragments of the 
same length. The extrapolation of this approach to non-independent 
and identically distributed (non-IID) datasets is direct by using a 
weighted consensus variation [20].

The communication among the set of agents is constrained by a 
topology modeled by an undirected network G = (A, E), where the 
nodes are the agents of set A. The set of edges E formed by pairs (ai , aj), 
denoting that agent ai is connected with agent aj . The neighborhood 
of agent ai is denoted with Ni = {aj ∈ A : (ai , aj) ∈ E}.

Each agent keeps an ANN (Wi , tri ), being Wi a set of weights and 
biases for each layer of the ANN.

 (2)

where Wi, j ∈ ℝn,m represents the weights (or the bias) learned by 
agent ai for the layer j of its ANN. Without losing generality, we 
can assume that the parameters of the ANN can be reshaped into a 
conforming representation.

The process follows the adapted Equation (3).

 (3)

C. Algorithm Description
The Consensus-based Learning Algorithm, named either Co-Learning 

or CoL Algorithm can be described as a set of identical agents learning 
a model through an ANN, where all the agents share the same ANN 
structure. This allows sharing the model being learned by each agent 
with its local neighbors and making a consensus of such model based 
on the Equation (1). This model is formed by the weights matrices 
result of the training of the learning process -Equation (2)-. This 
consensual model is then used for each agent in the next training. 
An agent ai following the Co-Learning algorithm (Algorithm 1) first 
of all will make e epochs of training the algorithm. The result of this 
training is the set of k matrices at Equation (2), and for each one of 
them, the next c iterations of the consensus algorithm, following the 
Equation (1) are made, leading to k new matrices that will be used in 
the training process again.

The process is executed in parallel as many times as parameters the 
ANN has. It can be considered a vectorized version of the evolution 
seen in Fig. 1.

Algorithm 1. Co-Learning (CoL) Algorithm for agent ai

1: while !doomsday do
2:     for f ← 1, e do
3:         W ← Train(f)
4:     end for
5:     for j ← 1, k do
6:         Xi (0) ← Wj

7:         for t ← 1, c do
8:              Xi (t+1) ← Xi (t) + ε ∑aj ∈ Ni

 [Xj (t) − Xi (t)]
9:         end for
10:    end for
11: end while

D. Network Topology
The underlying network topology does not affect the final consensus 

value but does the convergence speed. The effect of different network 
structures has been studied by Carrascosa et al. [1]. Random geometric 
graphs (RGG) are the most balanced solution between the efficiency 
in achieving the consensus value and the robustness under deliberate 
or accidental failures.

In an RGG, agents are located randomly in a square-unit area and 
linked with neighbors within a determined radius. It’s the equivalent 
of a random graph, considering the spatial location of the agents.

Fig. 3 shows the robustness to agent failures of different network 
topologies: square and triangular grids, Kleinberg’s networks, RGG, 
Delaunay triangulation, and Gabriel’s graph (a simplification of 
Delaunay one). Comparing random failures and deliberate attacks, 
RGG and Delaunay have an adequate balance between algorithm 
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Fig. 1. Consensus evolution in a network with four agents. Initially,  
x(0) = {0.2, 0.4, 0.6, 0.8}, so 〈 x(0)〉 = 0.5.
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performance and resilience. Nevertheless, RGG scales better when the 
size of the network grows.

Therefore, the underlying structure selected to configure the 
acquaintance’s graph is an RGG using a given radius from the initial 
location of the agents. When no spatial information about the agents 
is available, we distribute them randomly in a fictitious space.

III. Execution Using SPADE Agents

This section presents the CoL algorithm implementation using 
SPADE agents [21]. Fig. 2 shows the Co-Learning algorithm in a 
network formed by four SPADE agents. Our CoL system is composed 
of two types of agents, initialization and learning agents: There is one 
initialization agent in the platform and n learning agents.

As its name suggests, the initialization agent is the agent in charge 
of setting up the whole system. It starts with reading a CSV file, which 
contains all the information related to the construction of the network 
of agents, indicating to each agent who is in contact. So, each agent 
will subscribe to the presence functionality of its neighbors, provided 
by the XMPP protocol features. The presence is a feature provided by 
the XMPP protocol to SPADE agents, enabling an agent to ascertain 
the status of other agents. This functionality is particularly valuable 
for determining whether an agent is connected and available for 
information exchange. The initialization agent is a utility agent that 
is not involved in the consensus process (in fact, the system has been 
tested adding new SPADE agents to the process during the execution 
of the system, without using this initialization agent).

Learning agents carry out the CoL process, exchanging the ANN 
model information with the neighbors with mutual subscriptions. The 
behavior of these learning agents is defined as a finite-state machine 
(FSM) in SPADE (See Fig. 4).

SETUP TRAIN RECEIVE

CONS.SEND

init epoch e

model j

new model

model i

reconfig

averaged
model

Fig. 4. FSM behavior for the SPADE learning agents doing the CoL Algorithm.

The first state is the SETUP state. In this state, the FSM that 
controls the agent is initialized. Then, it will pass to the TRAINING 
state, where it will train the model during e epochs. The next stage 
is the RECEIVING state, in charge of receiving two different kinds of 
messages: configuration messages and new training weights messages. 
The first one allows modifying the agent’s acquaintances to change 
the network’s structure if necessary. The second one is the messages 
the agents send to their neighbors during the consensus process to 
share their model. When the agent has received a message from all 
its active neighbors sharing their new training weights, it will pass to 
the CONSENSUATING state, where it will calculate a new aggregated 
model applying the consensus equation. Then, it will progress to the 
SENDING state, sending the latest model to its neighbors. While it is 
making c iterations of the consensus algorithm, it will go back to the 
RECEIVING state. When it has finished the c consensus iterations, it 
will go back to the TRAINING set, where it will use the new aggregated 
model to go on training during e epochs.

The RECEIVE–CONS–SEND loop finishes when there are no 
significant differences in the models. Then, the agent can begin a new 
training iteration if needed or conclude the complete process and use 
the ANN model.

IV. FIVE Framework

SPADE agents can run over the physical system or on a simulated 
one without relevant differences. Having available 3D virtual 
environments as close to reality eases the MAS’ development and 
debugging, testing the agents’ behavior in real-world conditions. This 
section describes the FIVE framework (Flexible Intelligent Virtual 
Environment developing framework) that will support the agents 
executing the CoL process.

A. FIVE Architecture
The FIVE framework is composed of three elements:

• The XMPP server.

• The FIVE simulator server, made with Unity3.

• A set of SPADE agents that will populate the simulated 
environment.

Each component can transparently run on separate machines 
(including, of course, each SPADE agent being executed in a different host).

Fig. 5 shows an example of a FIVE simulation deployed into four 
local networks. The colored rectangles represent different local 
networks, and the arrows are network sockets. Each intelligent agent 

3   https://unity.com
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represented in the figure runs on a different machine. Agent 1 and 
Agent 2 are on the same local network (Network 2). The three agents 
are connected to both the simulator and the XMPP server.

The FIVE simulator is a new tool made with Unity designed to 
define IVEs inhabited by SPADE agents. FIVE allows the creation 
of three-dimensional environments using a built-in text-based map 
editor. In addition, it will enable the rapid creation of custom agent 
avatars equipped with sensors, such as a camera.

FIVE agents (based on SPADE) control the virtual avatar in the 
IVE managed by the simulator. The framework grants network failure 
toleration: if an agent is disconnected from the FIVE simulator, it can 
be reconnected easily and resume its activity.

B. Defining a Simulation
FIVE simulations are composed of the environment created by 

the simulator and the intelligent agents that inhabit it. Defining a 
simulation is a process that just involves four text files (see Fig. 6). 
Three define the environment with elements such as terrain, trees, or 
light conditions, and the last file is used to create the agents.
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light and individual elements

map.txt

map_config.json
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 E

nv
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Fig. 6. FIVE simulator environment and agent generation from input files. The 
first three red files generate the intelligent virtual environment (composed of 
light objects, agent spawn points, and other elements), and the last blue file is 
used to generate the agents.

The file named map.txt is a text-based map where each ASCII 
character represents an object in the environment (Fig. 11 contains 
examples of all these files for the case study). This design decision was 
made to create the simulations easily and even modify the file through 
a text-based console.

The second file, map_config.json, assigns the map letters in 
the map.txt file to the objects in the simulator. The configurable 
properties are:

• origin: It represents the starting point where the elements will 
be placed into the simulation as a three-dimensional coordinate.

• distance: It represents the separation distance between elements 
in the different axis.

• symbolToPrefabMap: It is a list formed by three elements: the 
character that represents the element in map.txt file, the reference 
name of the object that replaces the letter, and an optional path 
that contain images to represent the object in the simulator

The third file used to generate the environment is map.json. The 
file sets the environmental conditions, such as light objects, and 
configures individual special elements. For example, if we need a river 
and a bridge that connects the two sides, the file includes configurable 
properties for these objects. The file contains two lists: one for objects 
with light properties and another for objects that do not need them. 
The main configurable properties are:

• active: Flag to create the object or ignore it.

• objectName: Internal name of the object.

• position: 3d coordinate where the element will be placed.

• rotation: Rotation (in degrees) in the three axes.

• color: Object with color data, in RGB and an alpha channel for 
opacity.

• intensity: Intensity of light ray.

Besides the files for generating the environment, the 
configuration.json file generates the inhabitant agents. This file 
includes the definition of all the information needed by the agents, 
including the FIVE simulator IP address, the avatar of the agents, or 
the spawn position. The configurable properties for the agents are:

• name: Name of the agent.

• at: XMPP server direction.

Local network 1 Local network 4

XMPP
Simulator

Local network 2

Local network 3

Agent 2

Agent 1

Agent 3

Fig. 5. Example of a FIVE simulation deployed in four different local networks.
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• imageBufferSize: Maximum number of images per agent.

• imageFolderName: Name of the folder where images are saved. 
(related to the images perceived by the camera of the agent).

• enableAgentCollision: If this value is set to true, this agent will 
collide with other agents. Otherwise, it won’t.

• prefabName: Avatar reference name for the agent.

• position: Spawn point position that can be referenced by name or 
by three-dimension coordinate.

FIVE simulator includes a library of existing elements by default, 
which can be incremented with new imported models. It contains 
several agent avatars that can be assigned to any inhabitant agent. 
Additional agent avatars can be added to the simulator through the 
Unity editor. The same can be said about the remaining objects that 
can be used to define the IVE.

It is important to underline that agent avatars include a configurable 
camera component so that the agent can take pictures of the IVE. Users 
can follow the track of any agent in the IVE in a first-person view. 
The resolution of these images can be easily configured. The camera 
component is not exclusive to included avatars; newly designed ones 
can also incorporate it.

To illustrate the effect of the change in configuration files, Fig. 7 
depicts two different scenarios. In Fig. 7a, the distance between trees 
is nine, and there is only one agent in configuration.json. For Fig. 
7b, we have reduced the distance to three, with five agents in the 
correspondent file.

C. Agents Programming
After defining the IVE, the next step is to program the agents’ 

behavior. The FIVE framework includes an inhabitant agent’s 
template, formed by a generic SPADE agent with an FSM behavior that 
implements the agent’s execution cycle for communications with the 

(a) Simulation of one tractor agent in an orange orchard �eld

(b) Simulation of four tractor agents and one robot agent in an orange orchard �eld

Fig. 7. Example of a simulation of an orange orchard field and agents. (a) there is only one agent. (b) there are five agents, and the space between trees is three 
times smaller than in figure (a).
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IVE. The code is addressed to control the avatars in the environment. 
The rest of the cognition related to the domain is included in the 
normal SPADE behaviors. The execution cycle (see Fig. 8) is composed 
of the following four states:

1. INITIAL STATE: The agent initializes variables to be referenced in 
other states. It also starts an instance of the ImageManager class 
on a background thread. The ImageManager class handles the 
incoming stream of captures taken by the agent’s avatar in the 
FIVE simulator. It also adds the image data to a shared thread-safe 
queue for further processing.

2. PERCEPTION STATE: This state captures the image queue, 
dequeues them, and passes them to the agent behavior so that 
the images can be used for further process. The pictures are also 
automatically stored in the file system if desired.

3. COGNITION STATE: This state is where the process of cognition 
occurs. The agent decides to perform an action based on the 
information that it has at the moment.

4. ACTION STATE: In this state, the agent sends commands to the 
agent’s avatar in the simulator. An example could be a camera 
rotation command or a move command. 

Inizialization Perception Cognition Action

Fig. 8. FIVE agent FSM to control the avatar in the IVE.

Agent programming is done in a file named entity_shell.py. This 
file is an abstraction of the agent behavior explained above. It contains 
four methods that can be overloaded: init, perception, cognition, 
and action. Each method controls the execution of the agent in the 
corresponding FSM state.

The agent has access to a Commander class which defines an 
abstraction layer with the FIVE network protocol and contains 
methods to ease communication with the FIVE simulator. The current 
commands covered by Commander are:

• create_agent: It sends an instantiate request to the simulator, 
and the simulator returns the starting position coordinates to the 
agent. This command is always sent during the initial state to 
create the agent’s avatar.

• move_agent: It sends a command to the simulator to move the 
agent’s avatar to the desired position defined as (x, y, z). The 
simulator returns the agent the target position if the agent’s avatar 
can reach this position. In the other case, the simulator returns the 
location where the agent got stuck.

• fov_camera: It sends a command to change the field of view value 
of the camera.

• move_camera: It sends a command to move the camera position.

• rotate_camera: It sends a command to rotate the camera.

• take_image: controls the image capture from the IVE.

• change_color: It sends a command to change the color of the 
agent.

Fig. 9 shows a possible execution interaction between one inhabitant 
agent and the FIVE simulator. The agent sends a first message to 
initiate the avatar in the simulation, adjusts the camera, and tries to 
move across the environment.

D. Executing a Simulation
With all the previous elements set, the FIVE system is ready for 

execution. It starts with the FIVE simulator generating the map 
elements, such as lighting, trees, or walls, and locating agents at 
their spawn points. First, the FIVE simulator parses the file named  
map.json and places the elements described by the JSON file in the 
IVE. Then, the FIVE simulator processes the ASCII characters in  
map.txt, situating the corresponding pieces in the IVE according to 
the letters’ definitions. The simulator parses the file map_config.json 
to get the letters’ associations and also sets the origin position for 
placing the elements and the amount of space between items.

Once the environment is ready, the FIVE simulator listens for 
incoming requests, handling the recently created sockets in new 
threads. The simulator provides the starting position coordinates as 
an answer to any agent sending a create_agent command, indicating 
its entity type information and spawning location data. The agent then 
initiates a new thread to handle the image socket’s data reception to 
keep synchronized with the avatar and the agent.

Finally, each agent starts the FSM behavior that loops over the 
perception, cognition , and action states. The simulator process 
and executes all the commands, reflecting the agent actions in the IVE.

V. Case Study: A Simulation of an Orange Orchard 
Smart Area

The case study consists of the simulation of an IVE modeling 
an orange grove smart area. This simulation aims to test the CoL 
algorithm to train an ANN capable of detecting fruit diseases and what 
kind of disease it is. Several robots patrol the fruit orchard. Each robot 
trains its ANN with pictures of the fruits it views. Once the individual 
models are trained, they are shared and aggregated by consensus with 
CoL. The result is a model trained with the complete image dataset, 
even with pictures a particular robot has never seen.

This case uses several of the three-dimensional models available 
within the FIVE simulator: a tractor robot, a tree, and a white box 
representing the fruit. The white boxes will have orange textures 
that will be loaded from map_config.json dataFolder path, so 
the trees will show actual oranges hanging on their branches. Fig. 11 
depicts some details of the configuration files with the map and object 
characteristics.

Inhabitant Agent n

dispatch create_agent

return agent position

dispatch rotate_camera

dispatch move_agent

return agent position

Simulator
command manager

Instantiate agent
in the simulation

Rotate agent camera

Move agent to position

Fig. 9. FIVE agent communication through XMPP messages.
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1. The letters in the map represents: A letter is replaced by an agent 
spawner point, O and G characters are orange trees. The difference 
is that G trees only have green oranges.

2. Besides identifying G and O with trees, the file contains in the 
dataFolder fields the paths with the corresponding orange 
pictures depending on its color. The orange ones might include 
diseases.

3. The environmental conditions include an isolated with a custom 
position and rotation in this case.

4. The last file includes the agents’ declaration. Its position property 
refers to the name of the (invisible object) spawner where the 
agent will be created.

When the simulation starts, map.json file is parsed and its 
elements (the light and an isolated tree without oranges) are placed 
into the environment. Then the other components (agent spawner 
points and orange trees) from map.txt are added to the scene using 
the map_config.json information. Finally, the agents described in 
configuration.json file are spawned in the simulation and walk 
through the grove field, taking images of the oranges (see Fig. 10).

Fig. 10. Agents agente1 (yellow tractor) and agente2 (red tractor) patrolling and taking pictures of the oranges in the grove. Notice the "Tree Fruit Variant" trees 
with random textures of orange fruits applied at runtime, loading the images from the folder path specified in map_config.json file.

A A
   O G O G O
   O G O G O
   O G O G O
   O G O G O
   O G O G O
   O G O G O
   O G O G O
   O G O G O
   O G O G O
   O G O G O

(a) Portion of map.txt content.

" active ": true ,
" objectName ": " Tree 1",
" objectPrefabName ": " Tree ",
" position ": {
  "x": -2.6,
  "y": 0.0,
  "z": 0.0
},
" rotation ": {
  "x": 0.0,
  "y": 5.0,
  "z": 0.0

(c) Portion of map.json content.

{
   " symbol ": "G",
   " prefabName ": " Tree  Fruit  Variant ",
   " dataFolder ": "C:/ oranges / green "
},
{
   " symbol ": "A",
   " prefabName ": " Spawner "
}

(b) Portion of map_config.json content.

{
   " name ": " agente1 ",
   "at": " localhost ",
   " password ": " xmppserver ",
   " imageBufferSize ": 3,
   " imageFolderName ": " captures ",
   " enableAgentCollision ": true ,
   " prefabName ": " Tractor ",
   " position ": " Spawner 1"
}

(d) Portion of configuration.json content.

Fig. 11. Portions of the content of the four different files involved in defining the FIVE IVE of the case of study.
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Although it can be specified in other ways, and even personalized 
in different ways for each agents, the test made have considered a 
random network.

A. Disease Identification
To validate the simulator, agents integrate a plant disease classification 

ANN. The architecture used for the experiments was a Mobilenet V2 [22] 
with the following hyperparameters definition: the agents make one 
epoch in their training step before changing to the receiving state in the 
FSM machine. The models of all agents are identical, having undergone 
training using data augmentation and fine-tuning, employing the 
following set of hyperparameters: Global Epochs:1; Local Epochs: 10; 
Local Batch Size: 10; Learning Rate: 0.001; SGD momentum: 0.5; Number 
of Each Kind of Kernel: 9; Number of Filters for Conv Nets: 32; Max 
Pooling: Yes; Network: CNN; Transfer learning (Tl): Yes or No.

This network was trained using the dataset presented in port [23], 
which has four classes Blackspot, Canker, Fresh, and Grenning. The 
dataset is divided into 80% for training, 10% for validation and 10% for 
testing. The training set contains 207 images for Blackspot, 202 images 
for Canker, 389 images for Fresh, and 370 images for Grenning. The 
testing set contains 139 images for Blackspot, 149 images for Canker, 
165 images for Fresh, and 177 images for Grenning. Fig. 12 shows some 
pictures extracted from the dataset used to perform the training. The 
dataset images have been distributed along the different orange trees 
in the simulation, and each agent is able to access only a subset of trees 
as they are distributed along the different parts of the orange orchard. 
So, they are using different parts of the dataset.

Blackspot Canker Fresh Grenning

Fig. 12. Four sample images, one image of each citrus dataset class.

Fig. 13 shows the accumulated accuracy and loss obtained in the 
training process and the confusion matrix is presented and elaborated 
in the "Execution using SPADE agents" section of the original article, 
where a convergence analysis of the CoL algorithm have been 
conducted [1]. After training the network using the CoL process, the 
obtained model was integrated into the Cognition method available 
for the inhabitant agents and used for testing the model against the 
testing part of the dataset commented above.

As commented above, these agents include, by default, a camera 
for capturing images. The camera was adjusted using the Commander 
API, modifying its position and field-of-view via commands to focus 
on the fruit images as the tractor robot moved along the grove. These 
fruits were images of fruits loaded according to the dataset path 
indicated in the map_config.json file. Executing the agents would 
allow validating the values we obtained when training the network.

B. Modifying the Field Configuration
In this section, we are going to make modifications to the case of 

study in order to illustrate how simple it is to change a simulation 
in the FIVE framework. The modification consists of dividing the 
trees into five classes. As we have more agents capable of identifying 
diseases of the orange grove, we will obtain faster identification. Each 
agent will be spawned in a different column. Therefore, it will only 
be necessary for everyone to go through their column once to obtain 
captures of all the trees in the orchard. We are also going to modify 
the environmental conditions so that the captures are taken at night, 
checking the identification precision under poor light conditions.

First, we have to create five folders: one folder for each class. Each 
folder will contain four images rendered as a texture and randomly 
applied to the oranges in the tree to which the folder class belongs. To 
achieve this, we must modify the map.txt and map_config.json files. 
In map.txt, we add three more A letters to create the new agents, and 
we have to define a character for each tree class. For example, we can 
use B for black spot, C for Canker, G for Greening, M for Melanose, and 
H for Healthy. Then, in map_config.json file, we match the characters 
with the elements they represent, as letter G is defined in Fig. 11b. 
Finally, we must modify the dataFolder property with the folder 
where the images are to load the textures. 

Next, we must update the map.json file to modify the environmental 
conditions. Our desired light condition is moonlight, so we can change 
the intensity and color of the light used in map.json without writing a 
single line of code. 

Finally, we have to modify configuration.json file and add three 
more agents as agente1 is defined in Fig. 11d. We can change the 
name property of the new agents to agente3, agente4, and agente5. 
We can also set the initial position of them in Spawner 3, Spawner 
4, and Spawner 5 generation points. Lastly, it has to be indicated the 
neighbors of the new agents generated.

Once we have defined all our modifications in the four files involved, 
we can start the simulation process, and the result is shown in Fig. 14. 
As a result, we have a completely new environment to test whenever 
the ANNs trained in good light conditions are valid or if they need 
some retraining process to adjust the parameters to the new scenario.

C. FIVE Loading Time Test
The last experiments measure the load time FIVE simulator needs 

to load a complete scene populated by elements that use the FIVE 
system to apply textures from images at runtime.

The dimension of the images for the textures is 224 × 224 pixels, 
randomly chosen from five classes located in folders with four images 
each, adding a total of twenty different pictures. The execution platform 
is a laptop without an external graphics card and with the following 
components: an integrated graphics model Intel Iris Plus Graphics, an 
Intel Core i7 processor 1035G7, 16 GB of RAM, a motherboard ASUSTeK 
X421JAY and a storage device NVMe Intel SSDPEKNW01.
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Fig. 13. Accumulated Train Accuracy and Accumulated Train Loss.
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Fig. 16 shows a graph that illustrates the time (in seconds) it has 
taken to load the entire scene, populating it with a light object, the 
terrain, and a variable number of fruit trees. The loading time of the 
whole scene has been measured, not just the texture loading process.

In conclusion, we can see that FIVE is ready to load complex 
environments quickly and effectively. The reason is that FIVE uses 
optimization techniques that allow us to simulate scenes with a large 
number of different elements.

VI. Conclusions

We have presented a Consensus-based Learning algorithm (CoL) 
that takes advantage of distributed learning based on the idea behind 
federated learning of sharing a model between a set of agents. This 

advantage is based on complementing individual models the agents 
train with their aggregation. By doing this, all agents may benefit from 
the training completed by the rest of the agents. The agents share the 
parameters of the models but not the training data. Therefore, privacy 
is maintained during the training. As we use a consensus-like algorithm 
for the model’s aggregation, we have some other advantages as the 
adaptation to variations in the agent set, allowing agents to abandon 
and enter during the execution. The paper shows the implementation 
of CoL algorithm in SPADE agents.

RGG topology improves the performance of the convergence of 
consensus since the average path lengths are shorter than the rest 
of the networks and is a pretty robust topology under random or 
deliberate failures. Therefore, we propose its use as the underlying 
structure for the MAS.

Fig. 14. Five agents in the modified case of study with nocturnal environmental conditions.

Fig. 15. Modified case of study with daylight environment conditions and two thousand five hundred orange trees.



Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 31 -

Moreover, we have presented a new framework called FIVE that 
allows the easy creation and modification of IVEs inhabited by SPADE 
agents. This framework has been used to test CoL in SPADE agents 
through an orange orchad simulation.

As part of our future work, we are dedicated to enhancing the 
communication between agents in the CoL process. This includes 
optimizing message transmission, both in terms of quantity and 
size. Additionally, we are actively exploring the generation of 
simulated maps, where satellite images are leveraged to create them 
automatically. Lastly, we are delving into the possibility of introducing 
semantic coalitions among agents. This entails agents that share 
similar meanings in the data they handle, engaging in more frequent 
information exchange with each other compared to other agents in 
the network.
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Fig. 16. Graph showing the time it took to load the scene composed of fruit 
trees, with four fruits each, and loading their textures at runtime from images.
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