
Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 21 -

* Corresponding author.

E-mail addresses: carrasco@dsic.upv.es (C. Carrascosa),
fraenan@inf.upv.es (F. Enguix), mrebollo@dsic.upv.es (M. Rebollo),
jrincon@dsic.upv.es (J. Rincon).

Keywords

Complex Networks,
Distributed AI,
Multiagent Systems,
Neural Networks.

Abstract

One of the main advancements in distributed learning may be the idea behind Google’s Federated Learning
(FL) algorithm. It trains copies of artificial neural networks (ANN) in a distributed way and recombines the
weights and biases obtained in a central server. Each unit maintains the privacy of the information since the
training datasets are not shared. This idea perfectly fits a Multi-Agent System, where the units learning and
sharing the model are agents. FL is a centralized approach, where a server is in charge of receiving, averaging
and distributing back the models to the different units making the learning process. In this work, we propose
a truly distributed learning process where all the agents have the same role in the system. We suggest using a
consensus-based learning algorithm that we call Co-Learning. This process uses a consensus process to share
the ANN models each agent learns using its private data and calculates the aggregated model. Co-Learning,
as a consensus-based algorithm, calculates the average of the ANN models shared by the agents with their
local neighbors. This iterative process converges to the averaged ANN model as a central server does. Apart
from the definition of the Co-Learning algorithm, the paper presents its integration in SPADE agents, along
with a framework called FIVE allowing to develop Intelligent Virtual Environments for SPADE agents. This
framework has been used to test the execution of SPADE agents using Co-Learning algorithm in a simulation
of an orange orchard field.

DOI: 10.9781/ijimai.2023.08.004

Consensus-Based Learning for MAS: Definition,
Implementation and Integration in IVEs
C. Carrascosa, F. Enguix, M. Rebollo, J. Rincon *

VRAIn - Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València,
Valencia (Spain)

Received 23 February 2023 | Accepted 4 August 2023 | Published 24 August 2023

I. Introduction

This paper follows a research line related to multi-agent learning.
So, it extends the work presented by Carrascosa et al. [1], where

a new algorithm based on Federated Learning and Consensus in
Multi-Agent Systems named CoL was presented. This extension
focuses in how this kind of algorithms can be tested in execution in a
close to real simulation using a new Intelligent Virtual Environment
(IVE) generator.

Multi-agent Learning is currently a hot topic mixing machine
learning with distributed systems. It can be found two main different
kinds of such systems: the ones where the learning is a specific part of
the system carried out by one (or a few) agents of the system (like in the
work by Sánchez San Blas et al. [2]) where the deep learning is made
by an agent in a complex system dedicated to the automatic detection
of illegal swimming pools), and the ones where all agents make the
same kind of deep learning process (that is, the learning also uses a
distributed approach). In this last kind of system is where the proposed
algorithm is classified. The proposed algorithm intends to get the most
out of a distributed approach. It tries to mix the learned parameters in

each agent with the parameters trained in its local neighbors without
knowing the whole system. Moreover, this kind of learning algorithm
preserves the privacy of the data used for the learning process by each
agent in his local learning.

These features are, in some way, present in other approaches, mainly
Federated Learning (FL). The FL algorithm was defined by Google [3].
The main idea behind this algorithm is to take advantage of distributed
learning and maintain the privacy of the data used by each node in
the learning process. The algorithm uses two different kinds of agents:
server and client. The server defines the training model and sends it to
all the clients. Then, clients train with their private data and send the
model back to the server. Finally, the server aggregates all the models,
for example, calculating an averaged one. This global model is sent back
to execute the next training iteration. Kairouz et al. [4] analyze deeply
the open challenges related to FL algorithms. It should be emphasized
that the connection topology among the agents significantly influences
the convergence rate in decentralized distributed learning processes.
Nonetheless, the FL approach has noteworthy characteristics worth
considering. Firstly, it maintains a distributed nature while operating
with a centralized framework, implying that the system synchronizes
and evolves based on the pace of the slowest agent. Furthermore, it lacks
fault tolerance, rendering it vulnerable in scenarios where agents fail to
respond or vanish, and it does not accommodate the incorporation of
new agents during execution.

These features are of great importance when developing systems that
must work in environments with a high probability of communication

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 22 -

failure, where agents communicate sporadically, or when they must
deal with disconnection periods to save battery. This situation appears
in rural areas, characterized by limited connectivity and where the
system may remain isolated without supervision for extended periods.
These features can be obtained if, instead of using a centralized
approach, a fully distributed one is used, as is the one followed by a
consensus algorithm according to Olfati-Saber and Murray [5].

This paper presents a consensus-based learning algorithm coined
Co-Learning or CoL, trying to take advantage of a completely
decentralized approach for an FL-like learning algorithm. Along with
presenting the CoL algorithm definition and description, an actual
implementation using SPADE agents [6] is provided.

SPADE (Smart Python Agent Development Environment) [6]
is a framework for developing intelligent agents in Python. The
communication layer uses XMPP (Extensible Messaging and Presence
Protocol)1 as an instant messaging protocol.

This platform has been used in different areas, especially in IoT
[7]. The CoL implementation in SPADE takes advantage of the
Presence feature of the XMPP so that it can detect when a neighbor
agent decides not to go on being connected or fails its connection,
not having to wait for a deadline to acknowledge those failures. There
is also some previous work in implementing a pure FL algorithm in
SPADE agents, called FLaMAS [8].

In multi-agent systems, communication between agents is essential,
and SPADE agents have an integrated message dispatcher that allows
communication between them.

The SPADE agent model is based on behaviors. They are tasks that
repeat upon a particular time pattern: one-shot, periodic, finite state
machines (FSM) or even BDI (Belief Desire Intention) [9] behaviors,
which allows reactive and deliberative capabilities in the agent.

The paper also presents a new Intelligent Virtual Environment
(IVE) [10] generator, developed to test SPADE agents in a close-to-
real-world scenario before deployment. Graphical simulations have
always been a way of testing and validating applications (like in the
work by Ikidid et al. [11]) where a simulation in ANYLOGIC is used
to validate a model to control and fluidize vehicle traffic in a multi-
intersection network). Checking qualitatively if a simulation seems
to work correctly can save hours of work analyzing boring tables
of numbers. The main problem with these simulations is that they
usually cost a lot to build or even tune for a specific algorithm.

There is no novelty in proposing just another simulation framework,
even if discussing a simulated environment, simply to deploy a Multi-
Agent System. Traditionally, simulators that include agency concepts
simulate the environment and the agents. That is the case, for instance,
of Netlogo [12], where agents inhabit a matrix-like environment
formed by patches. However, this simulator is limited to four different
types of agents, the simulated environment is two-dimensional and
does not allow the decoupling of its parts. The configuration of this
monolithic system is produced in the same file.

On the other hand, it may be found what is called an IVE (Intelligent
Virtual Environment) [10] that is, a virtual environment simulating
a real world, inhabited by intelligent agents who may interact and
whose behavior can be easily validated.

JaCalIVE (Jason Cartago implemented Intelligent Virtual
Environment) [13] can be seen as an example of a framework for
developing MAS inhabiting an IVE. This framework is based on
MAM5 meta-model [14]. The idea behind it is to define a simulation
through such a meta-model, which is compiled into some templates of
Jason agents [15] and CaRTago artifacts [16] to be completed by the
simulation developer. This framework has a very formal development

1 https://xmpp.org/

process, but it is difficult to develop a new simulation or even make
changes to an existing one.

It can also be found MASON (Multi-Agent Simulator Of Neighborhoods)
[17], made purely in the Java programming language and released in
2003. This simulator is mainly oriented toward swarm intelligence and
multi-agent systems. In addition, it allows you to choose a discrete or
continuous space in the simulations and visualize the result in a two or
three-dimensional space. However, achieving a 3D visualization in this
simulator is not easy or fast and requires the additional installation of the
Java3D libraries and knowledge of Java programming.

Differently, the proposal presented in this paper looks for an easy
way of defining and modifying an IVE. This IVE will be developed
in Unity2, and agents will be SPADE agents [6]. This Simulation
framework, named FIVE [18], allows us to define the environment
and incorporate the algorithms to be validated into SPADE agents
inhabiting such an environment.

The rest of the paper is structured as follows: in Section II
the Co-Learning algorithm is presented. Next, in Section III the
implementation of this algorithm in SPADE agents is shown. After
that, in Section IV new FIVE framework is presented as a way of easy
and fast creation and modification of Intelligent Virtual Environments
to test Co-Learning SPADE agents, followed by Section V, where a
case study with a virtual environment simulating an orange orchard is
presented. The paper ends with some conclusions in Section VI.

II. Co-Learning (CoL) Algorithm

This section presents the model that supports the distributed
training of the machine learning model, combined with the consensus
process to average the parameters learned by the agents. An
interaction topology delimits the ability of the agents to communicate
and exchange information.

A. Consensus-Based Multi-Agent Systems
Olfati–Saber and Murray [5] define a consensus process in a Multi-

Agent System (MAS) as a problem where the agents reach an agreement
about the value of a variable of interest without any intermediate or
leader that rules the process. It is an iterative procedure. The agent
ai calculates the new value xi (t + 1) in each iteration, according to
Equation (1).

 (1)

where Ni denotes the neighbors of agent ai and ε is the learning
step: a factor bounded by the maximum degree of the network.
The consensus converges to the average of the initial values
whenever . This algorithm has been the base for different and
multiple applications and other algorithms as, for instance, Supportive
Consensus [19].

Fig. 1 depicts an example of the evolution of consensus over one
of the weights over this simple synthetic network with four agents
and initial values x(0) = {0.2, 0.4, 0.6, 0.8}. The convergence value is

.

B. Consensus in Federated Learning
One of the approaches of FL consists of a set of clients that learns

the weights of an artificial neural network (ANN) and shares them
with a central server, which averages the weights to obtain a global
model. Without losing generality, we can consider each weight as an
independent variable and execute the consensus process in parallel
over all the weights simultaneously.

2 http://unity.com

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 23 -

Let us define a set of n identical agents A; each one implements
identical ANN structures (same blocks, layers, and neurons). The goal
is to learn a global model (W, tr) with a set of weights W for a training
dataset tr. As the model is common, agents need only to share the set
of weights W. The training dataset is divided into n fragments of the
same length. The extrapolation of this approach to non-independent
and identically distributed (non-IID) datasets is direct by using a
weighted consensus variation [20].

The communication among the set of agents is constrained by a
topology modeled by an undirected network G = (A, E), where the
nodes are the agents of set A. The set of edges E formed by pairs (ai , aj),
denoting that agent ai is connected with agent aj . The neighborhood
of agent ai is denoted with Ni = {aj ∈ A : (ai , aj) ∈ E}.

Each agent keeps an ANN (Wi , tri), being Wi a set of weights and
biases for each layer of the ANN.

 (2)

where Wi, j ∈ ℝn,m represents the weights (or the bias) learned by
agent ai for the layer j of its ANN. Without losing generality, we
can assume that the parameters of the ANN can be reshaped into a
conforming representation.

The process follows the adapted Equation (3).

 (3)

C. Algorithm Description
The Consensus-based Learning Algorithm, named either Co-Learning

or CoL Algorithm can be described as a set of identical agents learning
a model through an ANN, where all the agents share the same ANN
structure. This allows sharing the model being learned by each agent
with its local neighbors and making a consensus of such model based
on the Equation (1). This model is formed by the weights matrices
result of the training of the learning process -Equation (2)-. This
consensual model is then used for each agent in the next training.
An agent ai following the Co-Learning algorithm (Algorithm 1) first
of all will make e epochs of training the algorithm. The result of this
training is the set of k matrices at Equation (2), and for each one of
them, the next c iterations of the consensus algorithm, following the
Equation (1) are made, leading to k new matrices that will be used in
the training process again.

The process is executed in parallel as many times as parameters the
ANN has. It can be considered a vectorized version of the evolution
seen in Fig. 1.

Algorithm 1. Co-Learning (CoL) Algorithm for agent ai

1: while !doomsday do
2: for f ← 1, e do
3: W ← Train(f)
4: end for
5: for j ← 1, k do
6: Xi (0) ← Wj

7: for t ← 1, c do
8: Xi (t+1) ← Xi (t) + ε ∑aj ∈ Ni

 [Xj (t) − Xi (t)]
9: end for
10: end for
11: end while

D. Network Topology
The underlying network topology does not affect the final consensus

value but does the convergence speed. The effect of different network
structures has been studied by Carrascosa et al. [1]. Random geometric
graphs (RGG) are the most balanced solution between the efficiency
in achieving the consensus value and the robustness under deliberate
or accidental failures.

In an RGG, agents are located randomly in a square-unit area and
linked with neighbors within a determined radius. It’s the equivalent
of a random graph, considering the spatial location of the agents.

Fig. 3 shows the robustness to agent failures of different network
topologies: square and triangular grids, Kleinberg’s networks, RGG,
Delaunay triangulation, and Gabriel’s graph (a simplification of
Delaunay one). Comparing random failures and deliberate attacks,
RGG and Delaunay have an adequate balance between algorithm

Synchronoys Consensus

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0 0 10
#iter

X i

15 20 25

Fig. 1. Consensus evolution in a network with four agents. Initially,
x(0) = {0.2, 0.4, 0.6, 0.8}, so 〈 x(0)〉 = 0.5.

Input

Train

Train
Train

Train

Clien Agent
Ag2

Clien Agent
Ag1

Clien Agent
Ag3

Clien Agent
Ag4 calculate

consensus
model

PresencePresence

Presence Presence

send
local model

Input

Input Input

Fig. 2. Scheme of four SPADE agents doing a CoL Algorithm.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 24 -

performance and resilience. Nevertheless, RGG scales better when the
size of the network grows.

Therefore, the underlying structure selected to configure the
acquaintance’s graph is an RGG using a given radius from the initial
location of the agents. When no spatial information about the agents
is available, we distribute them randomly in a fictitious space.

III. Execution Using SPADE Agents

This section presents the CoL algorithm implementation using
SPADE agents [21]. Fig. 2 shows the Co-Learning algorithm in a
network formed by four SPADE agents. Our CoL system is composed
of two types of agents, initialization and learning agents: There is one
initialization agent in the platform and n learning agents.

As its name suggests, the initialization agent is the agent in charge
of setting up the whole system. It starts with reading a CSV file, which
contains all the information related to the construction of the network
of agents, indicating to each agent who is in contact. So, each agent
will subscribe to the presence functionality of its neighbors, provided
by the XMPP protocol features. The presence is a feature provided by
the XMPP protocol to SPADE agents, enabling an agent to ascertain
the status of other agents. This functionality is particularly valuable
for determining whether an agent is connected and available for
information exchange. The initialization agent is a utility agent that
is not involved in the consensus process (in fact, the system has been
tested adding new SPADE agents to the process during the execution
of the system, without using this initialization agent).

Learning agents carry out the CoL process, exchanging the ANN
model information with the neighbors with mutual subscriptions. The
behavior of these learning agents is defined as a finite-state machine
(FSM) in SPADE (See Fig. 4).

SETUP TRAIN RECEIVE

CONS.SEND

init epoch e

model j

new model

model i

reconfig

averaged
model

Fig. 4. FSM behavior for the SPADE learning agents doing the CoL Algorithm.

The first state is the SETUP state. In this state, the FSM that
controls the agent is initialized. Then, it will pass to the TRAINING
state, where it will train the model during e epochs. The next stage
is the RECEIVING state, in charge of receiving two different kinds of
messages: configuration messages and new training weights messages.
The first one allows modifying the agent’s acquaintances to change
the network’s structure if necessary. The second one is the messages
the agents send to their neighbors during the consensus process to
share their model. When the agent has received a message from all
its active neighbors sharing their new training weights, it will pass to
the CONSENSUATING state, where it will calculate a new aggregated
model applying the consensus equation. Then, it will progress to the
SENDING state, sending the latest model to its neighbors. While it is
making c iterations of the consensus algorithm, it will go back to the
RECEIVING state. When it has finished the c consensus iterations, it
will go back to the TRAINING set, where it will use the new aggregated
model to go on training during e epochs.

The RECEIVE–CONS–SEND loop finishes when there are no
significant differences in the models. Then, the agent can begin a new
training iteration if needed or conclude the complete process and use
the ANN model.

IV. FIVE Framework

SPADE agents can run over the physical system or on a simulated
one without relevant differences. Having available 3D virtual
environments as close to reality eases the MAS’ development and
debugging, testing the agents’ behavior in real-world conditions. This
section describes the FIVE framework (Flexible Intelligent Virtual
Environment developing framework) that will support the agents
executing the CoL process.

A. FIVE Architecture
The FIVE framework is composed of three elements:

• The XMPP server.

• The FIVE simulator server, made with Unity3.

• A set of SPADE agents that will populate the simulated
environment.

Each component can transparently run on separate machines
(including, of course, each SPADE agent being executed in a different host).

Fig. 5 shows an example of a FIVE simulation deployed into four
local networks. The colored rectangles represent different local
networks, and the arrows are network sockets. Each intelligent agent

3 https://unity.com

(a) E�ciency under random failures

Network E�iciency (random) Network E�iciency (targeted)

(b) E�ciency under deliberated attack

nodes removed

2d grid
triangle
RGG
Delaunay
Gabriel
Kleinberg

E/
E G

0

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100
nodes removed

2d grid
triangle
RGG
Delaunay
Gabriel
Kleinberg

E/
E G

0

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

Fig. 3. Efficiency of different network topologies.

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 25 -

represented in the figure runs on a different machine. Agent 1 and
Agent 2 are on the same local network (Network 2). The three agents
are connected to both the simulator and the XMPP server.

The FIVE simulator is a new tool made with Unity designed to
define IVEs inhabited by SPADE agents. FIVE allows the creation
of three-dimensional environments using a built-in text-based map
editor. In addition, it will enable the rapid creation of custom agent
avatars equipped with sensors, such as a camera.

FIVE agents (based on SPADE) control the virtual avatar in the
IVE managed by the simulator. The framework grants network failure
toleration: if an agent is disconnected from the FIVE simulator, it can
be reconnected easily and resume its activity.

B. Defining a Simulation
FIVE simulations are composed of the environment created by

the simulator and the intelligent agents that inhabit it. Defining a
simulation is a process that just involves four text files (see Fig. 6).
Three define the environment with elements such as terrain, trees, or
light conditions, and the last file is used to create the agents.

ASCII symbols

symbol to element map

elements

map

light and individual elements

map.txt

map_config.json

map.json

configuration.json

agents

Si
m

ul
at

ed
 E

nv
ir

om
en

t

Fig. 6. FIVE simulator environment and agent generation from input files. The
first three red files generate the intelligent virtual environment (composed of
light objects, agent spawn points, and other elements), and the last blue file is
used to generate the agents.

The file named map.txt is a text-based map where each ASCII
character represents an object in the environment (Fig. 11 contains
examples of all these files for the case study). This design decision was
made to create the simulations easily and even modify the file through
a text-based console.

The second file, map_config.json, assigns the map letters in
the map.txt file to the objects in the simulator. The configurable
properties are:

• origin: It represents the starting point where the elements will
be placed into the simulation as a three-dimensional coordinate.

• distance: It represents the separation distance between elements
in the different axis.

• symbolToPrefabMap: It is a list formed by three elements: the
character that represents the element in map.txt file, the reference
name of the object that replaces the letter, and an optional path
that contain images to represent the object in the simulator

The third file used to generate the environment is map.json. The
file sets the environmental conditions, such as light objects, and
configures individual special elements. For example, if we need a river
and a bridge that connects the two sides, the file includes configurable
properties for these objects. The file contains two lists: one for objects
with light properties and another for objects that do not need them.
The main configurable properties are:

• active: Flag to create the object or ignore it.

• objectName: Internal name of the object.

• position: 3d coordinate where the element will be placed.

• rotation: Rotation (in degrees) in the three axes.

• color: Object with color data, in RGB and an alpha channel for
opacity.

• intensity: Intensity of light ray.

Besides the files for generating the environment, the
configuration.json file generates the inhabitant agents. This file
includes the definition of all the information needed by the agents,
including the FIVE simulator IP address, the avatar of the agents, or
the spawn position. The configurable properties for the agents are:

• name: Name of the agent.

• at: XMPP server direction.

Local network 1 Local network 4

XMPP
Simulator

Local network 2

Local network 3

Agent 2

Agent 1

Agent 3

Fig. 5. Example of a FIVE simulation deployed in four different local networks.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 26 -

• imageBufferSize: Maximum number of images per agent.

• imageFolderName: Name of the folder where images are saved.
(related to the images perceived by the camera of the agent).

• enableAgentCollision: If this value is set to true, this agent will
collide with other agents. Otherwise, it won’t.

• prefabName: Avatar reference name for the agent.

• position: Spawn point position that can be referenced by name or
by three-dimension coordinate.

FIVE simulator includes a library of existing elements by default,
which can be incremented with new imported models. It contains
several agent avatars that can be assigned to any inhabitant agent.
Additional agent avatars can be added to the simulator through the
Unity editor. The same can be said about the remaining objects that
can be used to define the IVE.

It is important to underline that agent avatars include a configurable
camera component so that the agent can take pictures of the IVE. Users
can follow the track of any agent in the IVE in a first-person view.
The resolution of these images can be easily configured. The camera
component is not exclusive to included avatars; newly designed ones
can also incorporate it.

To illustrate the effect of the change in configuration files, Fig. 7
depicts two different scenarios. In Fig. 7a, the distance between trees
is nine, and there is only one agent in configuration.json. For Fig.
7b, we have reduced the distance to three, with five agents in the
correspondent file.

C. Agents Programming
After defining the IVE, the next step is to program the agents’

behavior. The FIVE framework includes an inhabitant agent’s
template, formed by a generic SPADE agent with an FSM behavior that
implements the agent’s execution cycle for communications with the

(a) Simulation of one tractor agent in an orange orchard �eld

(b) Simulation of four tractor agents and one robot agent in an orange orchard �eld

Fig. 7. Example of a simulation of an orange orchard field and agents. (a) there is only one agent. (b) there are five agents, and the space between trees is three
times smaller than in figure (a).

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 27 -

IVE. The code is addressed to control the avatars in the environment.
The rest of the cognition related to the domain is included in the
normal SPADE behaviors. The execution cycle (see Fig. 8) is composed
of the following four states:

1. INITIAL STATE: The agent initializes variables to be referenced in
other states. It also starts an instance of the ImageManager class
on a background thread. The ImageManager class handles the
incoming stream of captures taken by the agent’s avatar in the
FIVE simulator. It also adds the image data to a shared thread-safe
queue for further processing.

2. PERCEPTION STATE: This state captures the image queue,
dequeues them, and passes them to the agent behavior so that
the images can be used for further process. The pictures are also
automatically stored in the file system if desired.

3. COGNITION STATE: This state is where the process of cognition
occurs. The agent decides to perform an action based on the
information that it has at the moment.

4. ACTION STATE: In this state, the agent sends commands to the
agent’s avatar in the simulator. An example could be a camera
rotation command or a move command.

Inizialization Perception Cognition Action

Fig. 8. FIVE agent FSM to control the avatar in the IVE.

Agent programming is done in a file named entity_shell.py. This
file is an abstraction of the agent behavior explained above. It contains
four methods that can be overloaded: init, perception, cognition,
and action. Each method controls the execution of the agent in the
corresponding FSM state.

The agent has access to a Commander class which defines an
abstraction layer with the FIVE network protocol and contains
methods to ease communication with the FIVE simulator. The current
commands covered by Commander are:

• create_agent: It sends an instantiate request to the simulator,
and the simulator returns the starting position coordinates to the
agent. This command is always sent during the initial state to
create the agent’s avatar.

• move_agent: It sends a command to the simulator to move the
agent’s avatar to the desired position defined as (x, y, z). The
simulator returns the agent the target position if the agent’s avatar
can reach this position. In the other case, the simulator returns the
location where the agent got stuck.

• fov_camera: It sends a command to change the field of view value
of the camera.

• move_camera: It sends a command to move the camera position.

• rotate_camera: It sends a command to rotate the camera.

• take_image: controls the image capture from the IVE.

• change_color: It sends a command to change the color of the
agent.

Fig. 9 shows a possible execution interaction between one inhabitant
agent and the FIVE simulator. The agent sends a first message to
initiate the avatar in the simulation, adjusts the camera, and tries to
move across the environment.

D. Executing a Simulation
With all the previous elements set, the FIVE system is ready for

execution. It starts with the FIVE simulator generating the map
elements, such as lighting, trees, or walls, and locating agents at
their spawn points. First, the FIVE simulator parses the file named
map.json and places the elements described by the JSON file in the
IVE. Then, the FIVE simulator processes the ASCII characters in
map.txt, situating the corresponding pieces in the IVE according to
the letters’ definitions. The simulator parses the file map_config.json
to get the letters’ associations and also sets the origin position for
placing the elements and the amount of space between items.

Once the environment is ready, the FIVE simulator listens for
incoming requests, handling the recently created sockets in new
threads. The simulator provides the starting position coordinates as
an answer to any agent sending a create_agent command, indicating
its entity type information and spawning location data. The agent then
initiates a new thread to handle the image socket’s data reception to
keep synchronized with the avatar and the agent.

Finally, each agent starts the FSM behavior that loops over the
perception, cognition , and action states. The simulator process
and executes all the commands, reflecting the agent actions in the IVE.

V. Case Study: A Simulation of an Orange Orchard
Smart Area

The case study consists of the simulation of an IVE modeling
an orange grove smart area. This simulation aims to test the CoL
algorithm to train an ANN capable of detecting fruit diseases and what
kind of disease it is. Several robots patrol the fruit orchard. Each robot
trains its ANN with pictures of the fruits it views. Once the individual
models are trained, they are shared and aggregated by consensus with
CoL. The result is a model trained with the complete image dataset,
even with pictures a particular robot has never seen.

This case uses several of the three-dimensional models available
within the FIVE simulator: a tractor robot, a tree, and a white box
representing the fruit. The white boxes will have orange textures
that will be loaded from map_config.json dataFolder path, so
the trees will show actual oranges hanging on their branches. Fig. 11
depicts some details of the configuration files with the map and object
characteristics.

Inhabitant Agent n

dispatch create_agent

return agent position

dispatch rotate_camera

dispatch move_agent

return agent position

Simulator
command manager

Instantiate agent
in the simulation

Rotate agent camera

Move agent to position

Fig. 9. FIVE agent communication through XMPP messages.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 28 -

1. The letters in the map represents: A letter is replaced by an agent
spawner point, O and G characters are orange trees. The difference
is that G trees only have green oranges.

2. Besides identifying G and O with trees, the file contains in the
dataFolder fields the paths with the corresponding orange
pictures depending on its color. The orange ones might include
diseases.

3. The environmental conditions include an isolated with a custom
position and rotation in this case.

4. The last file includes the agents’ declaration. Its position property
refers to the name of the (invisible object) spawner where the
agent will be created.

When the simulation starts, map.json file is parsed and its
elements (the light and an isolated tree without oranges) are placed
into the environment. Then the other components (agent spawner
points and orange trees) from map.txt are added to the scene using
the map_config.json information. Finally, the agents described in
configuration.json file are spawned in the simulation and walk
through the grove field, taking images of the oranges (see Fig. 10).

Fig. 10. Agents agente1 (yellow tractor) and agente2 (red tractor) patrolling and taking pictures of the oranges in the grove. Notice the "Tree Fruit Variant" trees
with random textures of orange fruits applied at runtime, loading the images from the folder path specified in map_config.json file.

A A
 O G O G O
 O G O G O
 O G O G O
 O G O G O
 O G O G O
 O G O G O
 O G O G O
 O G O G O
 O G O G O
 O G O G O

(a) Portion of map.txt content.

" active ": true ,
" objectName ": " Tree 1",
" objectPrefabName ": " Tree ",
" position ": {
 "x": -2.6,
 "y": 0.0,
 "z": 0.0
},
" rotation ": {
 "x": 0.0,
 "y": 5.0,
 "z": 0.0

(c) Portion of map.json content.

{
 " symbol ": "G",
 " prefabName ": " Tree Fruit Variant ",
 " dataFolder ": "C:/ oranges / green "
},
{
 " symbol ": "A",
 " prefabName ": " Spawner "
}

(b) Portion of map_config.json content.

{
 " name ": " agente1 ",
 "at": " localhost ",
 " password ": " xmppserver ",
 " imageBufferSize ": 3,
 " imageFolderName ": " captures ",
 " enableAgentCollision ": true ,
 " prefabName ": " Tractor ",
 " position ": " Spawner 1"
}

(d) Portion of configuration.json content.

Fig. 11. Portions of the content of the four different files involved in defining the FIVE IVE of the case of study.

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 29 -

Although it can be specified in other ways, and even personalized
in different ways for each agents, the test made have considered a
random network.

A. Disease Identification
To validate the simulator, agents integrate a plant disease classification

ANN. The architecture used for the experiments was a Mobilenet V2 [22]
with the following hyperparameters definition: the agents make one
epoch in their training step before changing to the receiving state in the
FSM machine. The models of all agents are identical, having undergone
training using data augmentation and fine-tuning, employing the
following set of hyperparameters: Global Epochs:1; Local Epochs: 10;
Local Batch Size: 10; Learning Rate: 0.001; SGD momentum: 0.5; Number
of Each Kind of Kernel: 9; Number of Filters for Conv Nets: 32; Max
Pooling: Yes; Network: CNN; Transfer learning (Tl): Yes or No.

This network was trained using the dataset presented in port [23],
which has four classes Blackspot, Canker, Fresh, and Grenning. The
dataset is divided into 80% for training, 10% for validation and 10% for
testing. The training set contains 207 images for Blackspot, 202 images
for Canker, 389 images for Fresh, and 370 images for Grenning. The
testing set contains 139 images for Blackspot, 149 images for Canker,
165 images for Fresh, and 177 images for Grenning. Fig. 12 shows some
pictures extracted from the dataset used to perform the training. The
dataset images have been distributed along the different orange trees
in the simulation, and each agent is able to access only a subset of trees
as they are distributed along the different parts of the orange orchard.
So, they are using different parts of the dataset.

Blackspot Canker Fresh Grenning

Fig. 12. Four sample images, one image of each citrus dataset class.

Fig. 13 shows the accumulated accuracy and loss obtained in the
training process and the confusion matrix is presented and elaborated
in the "Execution using SPADE agents" section of the original article,
where a convergence analysis of the CoL algorithm have been
conducted [1]. After training the network using the CoL process, the
obtained model was integrated into the Cognition method available
for the inhabitant agents and used for testing the model against the
testing part of the dataset commented above.

As commented above, these agents include, by default, a camera
for capturing images. The camera was adjusted using the Commander
API, modifying its position and field-of-view via commands to focus
on the fruit images as the tractor robot moved along the grove. These
fruits were images of fruits loaded according to the dataset path
indicated in the map_config.json file. Executing the agents would
allow validating the values we obtained when training the network.

B. Modifying the Field Configuration
In this section, we are going to make modifications to the case of

study in order to illustrate how simple it is to change a simulation
in the FIVE framework. The modification consists of dividing the
trees into five classes. As we have more agents capable of identifying
diseases of the orange grove, we will obtain faster identification. Each
agent will be spawned in a different column. Therefore, it will only
be necessary for everyone to go through their column once to obtain
captures of all the trees in the orchard. We are also going to modify
the environmental conditions so that the captures are taken at night,
checking the identification precision under poor light conditions.

First, we have to create five folders: one folder for each class. Each
folder will contain four images rendered as a texture and randomly
applied to the oranges in the tree to which the folder class belongs. To
achieve this, we must modify the map.txt and map_config.json files.
In map.txt, we add three more A letters to create the new agents, and
we have to define a character for each tree class. For example, we can
use B for black spot, C for Canker, G for Greening, M for Melanose, and
H for Healthy. Then, in map_config.json file, we match the characters
with the elements they represent, as letter G is defined in Fig. 11b.
Finally, we must modify the dataFolder property with the folder
where the images are to load the textures.

Next, we must update the map.json file to modify the environmental
conditions. Our desired light condition is moonlight, so we can change
the intensity and color of the light used in map.json without writing a
single line of code.

Finally, we have to modify configuration.json file and add three
more agents as agente1 is defined in Fig. 11d. We can change the
name property of the new agents to agente3, agente4, and agente5.
We can also set the initial position of them in Spawner 3, Spawner
4, and Spawner 5 generation points. Lastly, it has to be indicated the
neighbors of the new agents generated.

Once we have defined all our modifications in the four files involved,
we can start the simulation process, and the result is shown in Fig. 14.
As a result, we have a completely new environment to test whenever
the ANNs trained in good light conditions are valid or if they need
some retraining process to adjust the parameters to the new scenario.

C. FIVE Loading Time Test
The last experiments measure the load time FIVE simulator needs

to load a complete scene populated by elements that use the FIVE
system to apply textures from images at runtime.

The dimension of the images for the textures is 224 × 224 pixels,
randomly chosen from five classes located in folders with four images
each, adding a total of twenty different pictures. The execution platform
is a laptop without an external graphics card and with the following
components: an integrated graphics model Intel Iris Plus Graphics, an
Intel Core i7 processor 1035G7, 16 GB of RAM, a motherboard ASUSTeK
X421JAY and a storage device NVMe Intel SSDPEKNW01.

Training and Validation Accuracy

A
cc

ur
ac

y
(t

ra
in

in
g

an
d

va
lid

at
io

n)

Training and Validation Loss

Training Loss
Validation Loss

Training Accuracy
Validation Accuracy

Training Steps
0

0.80
0.2

0.4

0.6

0.8

1.0

0.85

0.90

0.95

2 4 6 8
Training Steps

0 2 4 6 8

Lo
ss

 (t
ra

in
in

g
an

d
va

lid
at

io
n)

Fig. 13. Accumulated Train Accuracy and Accumulated Train Loss.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 30 -

Fig. 16 shows a graph that illustrates the time (in seconds) it has
taken to load the entire scene, populating it with a light object, the
terrain, and a variable number of fruit trees. The loading time of the
whole scene has been measured, not just the texture loading process.

In conclusion, we can see that FIVE is ready to load complex
environments quickly and effectively. The reason is that FIVE uses
optimization techniques that allow us to simulate scenes with a large
number of different elements.

VI. Conclusions

We have presented a Consensus-based Learning algorithm (CoL)
that takes advantage of distributed learning based on the idea behind
federated learning of sharing a model between a set of agents. This

advantage is based on complementing individual models the agents
train with their aggregation. By doing this, all agents may benefit from
the training completed by the rest of the agents. The agents share the
parameters of the models but not the training data. Therefore, privacy
is maintained during the training. As we use a consensus-like algorithm
for the model’s aggregation, we have some other advantages as the
adaptation to variations in the agent set, allowing agents to abandon
and enter during the execution. The paper shows the implementation
of CoL algorithm in SPADE agents.

RGG topology improves the performance of the convergence of
consensus since the average path lengths are shorter than the rest
of the networks and is a pretty robust topology under random or
deliberate failures. Therefore, we propose its use as the underlying
structure for the MAS.

Fig. 14. Five agents in the modified case of study with nocturnal environmental conditions.

Fig. 15. Modified case of study with daylight environment conditions and two thousand five hundred orange trees.

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 31 -

Moreover, we have presented a new framework called FIVE that
allows the easy creation and modification of IVEs inhabited by SPADE
agents. This framework has been used to test CoL in SPADE agents
through an orange orchad simulation.

As part of our future work, we are dedicated to enhancing the
communication between agents in the CoL process. This includes
optimizing message transmission, both in terms of quantity and
size. Additionally, we are actively exploring the generation of
simulated maps, where satellite images are leveraged to create them
automatically. Lastly, we are delving into the possibility of introducing
semantic coalitions among agents. This entails agents that share
similar meanings in the data they handle, engaging in more frequent
information exchange with each other compared to other agents in
the network.

Acknowledgment

This work has been developed thanks to the funding of projects:

• Grant PID2021-123673OB-C31 funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF A way of making Europe”

• PROMETEO CIPROM/2021/077

• TED2021-131295B-C32

• Ayudas del Vicerrectorado de Investigacion de la UPV (PAID-
PD-22)

References

[1] C. Carrascosa, J. Rincón, M. Rebollo, “Co-learning: Consensus-based
learning for multi-agent systems,” in Advances in Practical Applications
of Agents, Multi-Agent Systems, and Complex Systems Simulation. The
PAAMS Collection, 2022, pp. 63–75.

[2] H. Sánchez San Blas, A. Carmona Balea, A. Sales, L. Augusto Silva, G.
Villarrubia González, “A platform for swimming pool detection and
legal verification using a multi-agent system and remote image sensing,”
International Journal of Interactive Multimedia and Artificial Intelligence,
2023, pp. 1-13, doi: 10.9781/ijimai.2023.01.002.

[3] H. Brendan McMahan, E. Moore, D. Ramage, S. Hampson, B. Agüera
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Artificial intelligence and statistics, 2017, pp. 1273–
1282, PMLR.

[4] P. Kairouz, H. McMahan, B. Avent, A. Bellet, M. Bennis, A. Bhagoji, K.
Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., “Advances and

open problems in federated learning,” Foundations and Trends in ML, vol.
14, no. 1–2, pp. 1–210, 2021.

[5] R. Olfati-Saber, R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE TAC, vol. 49, no.
9, pp. 1520–1533, 2004.

[6] J. Palanca, A. Terrasa, V. Julian, C. Carrascosa, “SPADE 3: Supporting the
new generation of multi-agent systems,” IEEE Access, vol. 8, pp. 182537–
182549, 2020, doi: 10.1109/ACCESS.2020.3027357.

[7] J. Palanca, J. Rincon, V. Julian, C. Carrascosa, A. Terrasa, “Developing iot
artifacts in a mas platform,” Electronics, vol. 11, no. 4, p. 655, 2022.

[8] J. Rincon, V. Julian, C. Carrascosa, “Flamas: Federated learning based on
a spade mas,” Applied Sciences, vol. 12, no. 7, pp. 1–14, 2022, doi: 10.3390/
app12073701.

[9] M. Bratman, Intention, Plans, and Practical Reason. Cambridge:
Cambridge, MA: Harvard University Press, 1987.

[10] M. Luck, R. Aylett, “Applying artificial intelligence to virtual reality:
Intelligent virtual environments,” Applied artificial intelligence, vol. 14,
no. 1, pp. 3–32, 2000.

[11] A. Ikidid, E. F. Abdelaziz, M. Sadgal, “Multi-agent and fuzzy inference-
based framework for traffic light optimization,” International Journal of
Interactive Multimedia and Artificial Intelligence, vol. 8, no. 2, pp. 88-97,
2023, doi: 10.9781/ijimai.2021.12.002.

[12] U. Wilensky, “Netlogo (and netlogo user manual),” Center for connected
learning and computer-based modeling, Northwestern University. http://
ccl. northwestern. edu/netlogo, 1999.

[13] J. Rincon, E. Garcia, V. Julian, C. Carrascosa, “The jacalive framework for
mas in ive: A case study in evolving modular robotics,” Neurocomputing,
vol. 275, pp. 608–617, 2018.

[14] A. Barella, A. Ricci, O. Boissier, C. Carrascosa, “Mam5: multi-agent model
for intelligent virtual environments,” in 10th european workshop on multi-
agent systems (EUMAS 2012), 2012, pp. 16–30.

[15] R. H. Bordini, J. F. Hübner, M. Wooldridge, Programming multi-agent
systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

[16] A. Ricci, M. Viroli, A. Omicini, “Cartago: A framework for prototyping
artifact-based environments in mas,” in International Workshop on
Environments for Multi-Agent Systems, 2006, pp. 67–86, Springer.

[17] S. Luke, G. C. Balan, L. Panait, C. Cioffi-Revilla, S. Paus, “Mason: A java
multi-agent simulation library,” in Proceedings of Agent 2003 Conference
on Challenges in Social Simulation, vol. 9, 2003.

[18] F. Enguix Andrés, Desarrollo de un generador de simulaciones en Unity
3D para sistemas multi-agente basados en SPADE. PhD dissertation,
Universitat Politècnica de València, 2022.

[19] A. Palomares, M. Rebollo, C. Carrascosa, “Supportive consensus,” PLOS
ONE, vol. 15, no. 12, pp. 1–30, 2020.

[20] F. Pedroche, M. Rebollo, C. Carrascosa, A. Palomares, “Convergence
of weighted-average consensus for undirected graphs,” International
Journal of Complex Systems in Science, vol. 4, no. 1, pp. 13–16, 2014.

[21] J. Palanca, A. Terrasa, V. Julian, C. Carrascosa, “Spade 3: Supporting the
new generation of multi-agent systems,” IEEE Access, vol. 8, pp. 182537–
182549, 2020, doi: 10.1109/ACCESS.2020.3027357.

[22] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, L. Chen, “Inverted
residuals and linear bottlenecks: Mobile networks for classification,
detection and segmentation,” CoRR, vol. abs/1801.04381, 2018.

[23] M. C. Silva, J. C. F. da Silva, R. A. R. Oliveira, “Idissc: Edge-computing-
based intelligent diagnosis support system for citrus inspection.,” in ICEIS
(1), 2021, pp. 685–692.

300 600 900 1,200 1,500 1,800

0.1

0.2

0.3

0.4

Frui�rees [units]

Lo
ad

in
g

ti
m

e
[s

]

Loading time per number of fruit trees instantiated

Fig. 16. Graph showing the time it took to load the scene composed of fruit
trees, with four fruits each, and loading their textures at runtime from images.

Carlos Carrascosa

Dr. Carlos Carrascosa was born in Valencia (Spain) and
received the M.S. degree in Computer Science from the
Universidad Politécnica de Valencia (UPV), in 1995.
He obtained his Ph.D. in the Departamento de Sistemas
Informáticos y Computación at UPV and is currently a
Lecturer involved in teaching several AI-related subjects at
the UPV. He is member of the VRAIn (Valencian Research

Institute for Artificial Intelligence) where he develops his research that include
MAS, Federated Learning, consensus in MAS, IVEs, social emotions, serious
games, information retrieval, and real-time systems.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 32 -

Francisco Enguix

Francisco Enguix Andrés was born in Valencia (Spain).
He is pursuing a Master’s degree in Artificial Intelligence,
Pattern Recognition and Digital Imaging at Polytechnic
University of Valencia (UPV) while he works at the
Valencian Institute for Research in Artificial Intelligence
(VRAIN). He holds a degree in Computer Science from
the Polytechnic University of Valencia (UPV) since 2022.

Miguel Rebollo

Dr. Miguel Rebollo received his PhD. in Artificial
Intelligence from the Universitat Politècnica de València
(Spain) in (2004), and Dr. in Complex Systems from the
Universidad Politècnica de Madrid (Spain) in 2019. He is
a member of the Valencian Research group for Artificial
Intelligence (vRAIN). He works as Associate Professor
at the Universitat Politècnica de València. His research

interests involve complex intelligent adaptive systems, multi-agent systems,
chaos and non-linear systems, and social network analysis.

Jaime Andrés Rincón Arango

Jaime Andrés Rincón Arango is a postdoctoral researcher at
the Valencian Institute for Research in Artificial Intelligence
(VRAIN) of the Polytechnic University of Valencia.
He holds a degree in Biomedical Engineering from the
Universidad Manuela Beltrán (Colombia), a Master’s
degree in Artificial Intelligence from the Universidad
Politécnica de Valencia and a PhD in Computer Science

from the Universidad Politécnica de Valencia. His main research activities focus
on IoT, IoMT, Cognitive Assistants, assistive robotics for the elderly and Edge
AI. He is author or co-author of more than 50 articles in specialized journals and
national and international conferences.

