
Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 33 -

* Corresponding author.

E-mail address: alvaro.michelena@udc.es

Keywords

Cybersecurity, DoS
Attacks, Feature
Extraction, MQTT, Soft
Computing, Supervised
Classifiers.

Abstract

The prevalence of Internet of Things (IoT) systems deployment is increasing across various domains, from
residential to industrial settings. These systems are typically characterized by their modest computational
requirements and use of lightweight communication protocols, such as MQTT. However, the rising adoption
of IoT technology has also led to the emergence of novel attacks, increasing the susceptibility of these systems
to compromise. Among the different attacks that can affect the main IoT protocols are Denial of Service
attacks (DoS). In this scenario, this paper evaluates the performance of six supervised classification techniques
(Decision Trees, Multi-layer Perceptron, Random Forest, Support Vector Machine, Fisher Linear Discriminant
and Bernoulli and Gaussian Naive Bayes) combined with the Principal Component Analysis (PCA) feature
extraction method for detecting DoS attacks in MQTT networks. For this purpose, a real dataset containing
all the traffic generated in the network and many attacks executed has been used. The results obtained with
several models have achieved performances above 99% AUC.

DOI: 10.9781/ijimai.2023.08.003

Development of an Intelligent Classifier Model for
Denial of Service Attack Detection
Álvaro Michelena1*, Jose Aveleira-Mata2, Esteban Jove1, Héctor Alaiz-Moretón3, Héctor Quintián1, José
Luis Calvo-Rolle1

1 University of A Coruña, CTC, CITIC, Department of Industrial Engineering, Ferrol, A Coruña, (Spain)
2 University of León, RIASC: Research Institute of Applied Sciences in Cybersecurity, León, (Spain)
3 University of León, Department of Electrical and Systems Engineering, León, (Spain)

Received 23 February 2023 | Accepted 31 July 2023 | Published 21 August 2023

I. Introduction

IoT (Internet of Things) allows daily objects to acquire new
functionalities, such as gathering information from the environment

or performing actions in the environment through actuators. Thanks
to internet connectivity, these devices can collect, analyze, and share
data between objects, software applications, and cloud platforms.
Concepts such as smart cities [1] and Industry 4.0 [2] have emerged
thanks to healthcare devices, industrial sensors, and actuators
connected to the Internet.

Recent market studies have predicted that the number of connected
devices will be more than 70% of total internet connections, with the
number growing by 180% in the next four years [3].

IoT systems present new cybersecurity challenges due to the
heterogeneous growth in the number of devices and linked services.
Operating in resource-constrained environments, such as networks
with low transfer rates due to interference, low power consumption,
and small embedded processors, requires the use of simple protocols
and devices, which may limit security aspects [4], [5].

The different protocols can be represented like a layered structure,
where each of them provides a different functionality [6], being the
most widely used architecture the three-layer topology. Considering
the studies on the protocols used in IoT environments [7], [8], they can
be classified according to Table I.

TABLE I. IoT Protocol Classification in Three Layers

Protocols Layers

XMPP, MQTT, CoAP, Web-Socket, HTTP REST Application

UDP, TCP, 6LoWPAN Network

LoRa, IEE 802.15 (BLE, Bluetooth, ZigBee), IEE 802.11(Wi-Fi) Physical

Malicious actors can exploit a diverse range of attack vectors, based
on the special behaviours of this kind of environment. As a result,
there is a growing interest in cybersecurity topics research around
IoT. In the review addressed by Lu & Xu [9], a clear upward trend in
research on "IoT cybersecurity" is shown.

Attackers usually exploit vulnerabilities of specific IoT protocols
embedded in TCP/IP networks [10]. One of the most common attacks
is a denial of service (DoS) which consists of the attacker saturating the
network with a large volume of traffic until the system cannot provide
[11] service. One of the most famous attacks that have been performed
on the Internet was the "Mirai" botnet, developed on September 2016.
It performed a DDoS attack, based on a distributed denial of service
over "DynDNS" servers, being one of the largest DNS service providers
systems. "Mirai" attack generated 1.2 terabits of malicious traffic,
forcing to set of "DynDNS" servers, the out of service during several
hours, which caused the fall of widespread of internet services such as
Twitter, Netflix, Reddit, and GitHub [12]. A more recent botnet attack
was "dark_nexus" which dated in 2020 compromised around 1370
devices. Bitdefender analysis report [13] shows how "dark_nexus"
works, with a behaviour very similar to Mirai.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 34 -

A. IoT Cybersecurity Solutions
This subsection addresses state of the art to show the most popular

solutions for protecting IoT environments.

The research work conducted by Idriss et al. [14], delves into
various options for implementing cybersecurity in IoT systems, being
the most notable of them, the implementation of a hardware module
that allows adding randomness to the encryption in a more lightweight
way than other methods, calling PUF (Physical Unclonable Functions)
based lightweight authentication. Amanlou et al. [15] proposes a
lightweight authentication system for IoT systems using the MQTT
protocol, a temporary key exchange algorithm FCDHE, and the
shared key authentication (PSK) algorithm. This combination provides
mutual authentication between IoT network devices thanks to an
authentication scheme known as ECDHE-PSK. This implementation
would also improve IoT cybersecurity using this protocol. However,
the systems deployed previously must be modified.

In the last few years, new IoT cybersecurity approaches have
been published. Zhu & Deng [16], include IoT security situation
classification based on support vector machines and security situation
awareness based on Markov game model. Choudhary & Pahuja [17],
present a new technique called Steering Convention for Vitality
Effective Systems (SC-VFS) that improves vitality proficiency and
ensures the safety of sensitive information in remote sensor networks,
with a focus on detecting doppelganger attacks in IoT-based intelligent
health applications. Berjón et al. [18], introduce the SCIFI-II system,
which simplifies the development of applications in IoT contexts
by allowing the distribution of events between event brokers and
designing components that are decoupled from the event brokers.

To address cybersecurity without modifying existing systems,
implementing Intrusion Detection Systems (IDS) is the main solution
since they can analyse the traffic generated by the environment, without
intervening in its configuration. There are several types of intrusion
detection systems, depending on the paradigm applied in their detection
module, being theses rule-based IDS or anomaly-based IDS [19]. The
anomaly-based IDS paradigm observes network traffic features to detect
attacks by identifying altered behaviour within the network.

Anomaly detection systems (IDS) are an effective solution for
implementing attack detection in IoT systems. They are highly
versatile in detecting new types of attacks and can adapt to new
protocols. Anomaly IDS systems utilize classification models created
with soft computing techniques, such as machine and deep learning,
supported by neural networks [20]. The implementation of these
procedures requires training models using high quality datasets [21].

B. Objectives
Based on the state of the art addressed previously, this paper aims

to develop a functional IDS with an intelligent model for detecting
DoS attacks on the MQTT protocol. The model will be constructed
thanks to applying soft computing techniques based on machine
learning techniques.

To achieve a functional IDS, several tasks are addressed. These
tasks are described throughout the paper as follows:

• Study the data sets available to develop the intelligent model that
applied the soft computing techniques chosen (Section II).

• Collect a new MQTT dataset (How this dataset has been
constructed will be addressed in Section III) because no MQTT
datasets exist with normal and DOS traffic for applying machine
learning methods.

• Chose and test a set of machine learning methods for application
to the previously defined dataset, to achieve the best model for
deployment in the IDS (Sections IV and V).

II. Related Works

In order to implement a set of machine learning techniques
for getting a functional model that will be inserted in an IDS, it is
necessary to work with a specific dataset. This dataset consists of
labeled traffic frames, each one tagged as standard/normal network
traffic or traffic with hostile purposes. Thanks to the models obtained
after a training process, the IoT MQTT behaviour is modeled as well
as the recognition of the most important features for understanding
this behaviour.

Using general purposed datasets collected from TCP/IP networks
can be a solution for modeling attacks such as botnets, without
focusing on the special characteristics of IoT systems [22]. To obtain
anomaly-based IDS capable of detecting DoS attacks, well-known
datasets are used. Some of them were created like over general
purposed networks (non IoT networks) such as the NSL-KDD dataset
[23], which an enhanced version of the KDD99 dataset was developed
in 1993. Some research works address the use of different artificial
intelligence techniques for modeling traffic and detecting distributed
denial of service DDoS attacks, caused by IoT system botnets [24],
[25]. Liu et al. [26], also use the NSL-KDD dataset for getting the model
that will be included in the IDS, in this case, Kontiki is the software
utilized for simulating IoT environments where CoAP (Constrained
Application Protocol) works.

MQTT is typically utilized to connect small devices with restricted
bandwidth in IoT [27] and Industry 4.0 environments [28]. MQTT
is a publish/subscribe protocol designed for lightweight machine-
to-machine (M2M) communications, being ideal for connecting
small devices to networks with low bandwidth. MQTT architecture
follows a star topology with a central server node called a Broker.
The communication is based on topics. Clients can create and publish
topics, while others that want to receive information from that topic,
can subscribe to it. The broker side handles all the load of the overall
system. This operation can be seen in detail in Fig. 1.

Client - PCSensor - Distance

Actuator - Light

MQTT
Broker

Client - Smartphone

Publish distance

Subscribe status

Publish/subscribe

Publish/subscribe

Publish topic:
“Room1/distance”
“Room1/light”

Publish topic:
“Room1/distance”
“Room1/light”

Subscribe topic:
“Room1/light”

Publish topic:
“Room1/distance”

Fig. 1. MQTT environment.

MQTT does not specify any networking or routing techniques;
it uses TCP as a transport protocol and TLS/SSL for security. IoT
application protocols, such as MQTT, can be supported by transport
layer security (TLS), but there are no mechanisms in place to protect
IoT devices from denial of service (DoS), being this susceptible to this
kind of attack. Several datasets have recently been created that focus
on attacks on MQTT systems. For example, "MQTT-iot-ids2020" [29]
was generated using a simulated MQTT architecture that consists of
twelve sensors sending random messages, a server that manages the
connections called "broker", a simulated camera, and an attacker. On
top of this environment, the attacker performs network scanning and
brute force attacks to decrypt access credentials.

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 35 -

The "TON_IoT" dataset [30] focuses on modern IoT systems using
the MQTT protocol. It was generated in a simulated environment with
the NSX-VMware platform [31] where network scanning process and
DoS attacks are performed on the MQTT environment.

III. Case Study

A Denial of Service (DoS) attack involves flooding a network with
a high traffic volume to the point where the system cannot provide its
intended services. This attack particularly affects IoT systems, since
they have limited computational capacity and most protocols they use
are for processing information in real time [32].

The previously described datasets use simulated environments
and traffic that is collected by only considering the frames of the
MQTT protocol. This paper presents the development of a dataset that
aggregates all traffic from a real-world environment, utilizing an IoT
system with the MQTT protocol. Notably, any denial of service attacks
against the broker within this system is labeled. Therefore, an MQTT
environment is developed to simulate real traffic thanks to a broker
programmed in "node.js" with the "Aedes" library [33]. It uses an
actuator with a relay, a distance sensor, and two clients: a smartphone
and a computer. All the traffic generated in this environment,
including the interactive Internet traffic, is captured by a router with
the "OpenWRT OS" installed.

Several DoS attacks are performed on the environment, taking
into account the vulnerabilities of the protocol. An attacker scans the
network with a search engine like "Shodan" through the well-known
port 1883 [23]. Thanks to this, it is possible to find out which servers
use this protocol as a broker, being this the vulnerable part of the
MQTT system, due to this centralizes all control of the system.

The attacks are performed with a tool developed for performance
testing called "Malaria MQTT" [34]. This tool sends many messages to
the broker, simulating 1000 clients, sending 1000 messages per second
with a size of 100 characters. Thanks to this, it is not possible for the
broker to respond to all of these messages, generating a service failure
in the IoT environment.

To generate the dataset, all the traffic in the test environment
developed is captured, standard internet browsing traffic and traffic
generated by the IoT environment. The router registers all the traffic
for generating a PCAP file. The set of PCAP files contains a lot of
information and many fields. In this way it is simplified by a dissecting
procedure. With this purpose, a tool developed for the authors was
designed [35]. The dissecting tool works as follows:

• The frames in a pcap file must be organized to analyze a DoS
attack effectively. During an attack, a large number of frames may
be generated in a short period of time, and the capture tool (such
as tcpump with OpenWRT) may overlap several frames with the
same timestamp. To obtain useful information about the attack, it
is necessary to separate these overlapping frames based on their
timestamps.

• The frames are dissected by taking some fields common to all the
frames. These common fields are chosen, taking as an example the
AWID dataset, which is from 802.11 protocol. All fields that make up
the MQTT protocol are included, resulting in 65 fields for each frame.

• To properly label each frame as either part of an attack or normal
traffic, it is necessary to consider the timestamp of when each
attack begins and ends. Each frame should be tagged based on
this information, allowing for a clear distinction between attack
frames and normal traffic.

The resulting dataset contains all traffic generated by the described
environment, capturing both the normal operation traffic and
the traffic under a DOS attack on the MQTT protocol. The dataset

comprises a CSV file in which 65 fields delineate each captured frame.
It compiles a total of 94,625 frames, 45,513 of which are labeled as
"under attack" in the "type" field, while 49,112 are labeled as "normal".
This dataset is currently accessible online [36].

IV. Soft Computing Techniques Used

Two stages are implemented to detect DoS attacks in MQTT
networks with a functional IDS based on an intelligent model. The
first one reduces the dataset dimensionality, while in the second one, a
set of classification methods are implemented, choosing the best one.

Therefore, this section is divided into two subsections. Section IV.A
will describe the feature extraction method employed, while Section
IV.B will define the six different classification techniques implemented.

A. Feature Extraction Method
As discussed in Section III, the working dataset contains a total of 65

variables. This large number of features can lead to a high computational
cost in the model training process and a certain mathematical
complexity in the classifiers. Therefore, in these scenarios, it is very
common to use dimensionality reduction techniques, based on feature
extraction, to minimize the number of variables in the dataset in order
to reduce the computational cost and obtain simpler classifiers with
good performance. Nowadays, there is a wide variety of techniques and
algorithms for dimensionality reduction, being Principal Component
Analysis (PCA) one of the most common.

1. Principal Component Analysis
Principal Component Analysis (PCA) is an unsupervised multivariate

statistical approach developed by Pearson [37] and is generally used
for dimensional reduction. The variation of a multivariate dataset
is described by this technique as a set of uncorrelated variables
corresponding to linear combinations of the original parameters. In
general, the principal purpose of this strategy is to generate a new set
of orthogonal axes that maximize data variance, avoiding the loss of
information. This is accomplished by computing the eigenvalues of
the correlation matrix. The initial set can then be linearly translated
into lower dimension space using the eigenvectors [38]. Fig. 2 shows
an example in ℝ2 of obtaining the principal components.

Original data

x1

x2 x2

x1

Data
Data
Component 1
Component 2

Components

Fig. 2. PCA example.

B. Classification Methods
This subsection describes briefly the six supervised classification

techniques implemented in this research.

1. Decision Trees
One of the simplest and most widely used supervised machine

learning techniques are decision trees (DT). This method is based on
generating a model with a hierarchical tree structure with a root node,
branches, decision nodes, and response nodes, also known as leaves [39].

The model starts at the root node, where one of the dataset variables
is evaluated. Then, according to the variable value, one of the output
branches is selected to re-evaluate the data in a decision node. This
process is repeated until the data reaches a response node where the

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 36 -

sample is classified with the value associated with the leaf node. In
general, the decision tree divides the data according to the value of
its variables, so it is essential to find the optimal division boundaries.
For this purpose, this method calculates each variable’s entropy, or
Gini index, to know its impurity degree. By estimating this value, the
information gain value can be determined by comparing the impurity
of the data set before and after the node splitting. Since the decision
tree has a hierarchical structure, the tree is built from top to bottom
using the variables with the highest information gain at the nodes of
the first stages.

On the other hand, the decision trees algorithm generates models
that are easy to understand and interpret; however, this technique
cannot achieve good performance in complex problems since it
generates large and complex trees that tend to cause overfitting.

2. Multi-Layer Perceptron
Artificial neural networks are one of the most widely used

techniques in the field of soft computing. This method uses artificial
neurons linked in layers to generate a structure of interconnected
neurons that emulates the functioning of a human brain [40]. In this
way, neural networks consist of an input layer, one or more hidden
layers, and an output layer. Each of these layers is composed of one or
more artificial neurons. These neurons sum the input values weighted
by weights related to each input, and an independent value, also
known as bias. Then, an activation function is applied to this value to
obtain the neuron’s output result.

Information flows through the network’s hidden layers from the
input to the output layer. In contrast, the training process is executed
from the output layer to the input layer, applying a method known
as backpropagation. The training process calculates the necessary
gradients to optimize and adjust each network connection’s weights.

Different network architectures can be developed depending on
the configuration of the layers and the connections of layers and
neurons. However, one of the simplest and most commonly used
structures is the Multilayer Perceptron neural network (MLP), which
is characterized by each neuron being connected to all the neurons of
the next layer.

3. Random Forest
Random Forest (RF) is a well-known supervised machine learning

technique commonly applied in classification and regression tasks
based on implementing a certain number of decision trees [41].

Its performance is based on hiring a certain number of decision trees
to generate a more accurate and robust model. Each random forest tree
is different since it is trained with different random subsets selected
from the training data. The Bootstrap Aggregation, or Bagging, is used
to obtain the data subsets. This technique generates as many subsets
as decision trees used in the model.

Finally, with each tree trained, Random Forest uses each decision
tree to classify the input data. The classification of all the trees is then
analyzed, and the most common prediction is taken as the model’s
output classification.

4. Support Vector Machine
Other well-known supervised techniques are the Support Vector

Machines (SVM) developed by Cortes and Vapnik [42]. These
methods are a group of machine learning algorithms often used for
classification and regression tasks. The main objective of SVMs is to
achieve a hyperplane that maximizes the minimum distance, known as
the margin, between the hyperplane and the nearest samples of each
class. This margin is used to determine a boundary for classifying new
data samples.

The above SVMs definition assumes that a linear boundary can
separate the classes. However, most real-world datasets are not linearly
separable. To solve this problem, SVMs use data transformations,
〈xi, xj〉 → 〈ϕ(xi), ϕ(xj)〉, for mapping the data into a higher dimensional space,
where a linear boundary can separate it. The specific transformation
implemented, ϕ(x), depends on the kernel function selected.

5. Fisher Linear Discriminant
The Linear Discriminant Analysis (LDA), or Fisher Linear

Discriminant Analysis, is a supervised classification machine learning
technique developed by R.A. Fisher [43].

The main goal of the Fisher Linear Discriminant is to find the best
linear combination of features that separates different training data
classes as much as possible. Therefore, LDA searches out the hyperplane
where the means of each class are as far apart as possible and the classes
have the least variance in their data. The objective function, Equation
(1) defined as J(θ) is maximized in the optimization process.

 (1)

where μ1 and μ2 are the mean value of class 1 and 2 respectively, and
 and correspond to the within-class variance 1 and 2.

6. Naive Bayes
Naive Bayes, also known as Naive Bayesian (NB), are straightforward

machine learning methods, frequently used for classification issues,
that are based on the Bayes statistical theorem. Additionally, these
approaches presuppose that given the class, data properties are
conditionally independent [44]. Although this assumption is generally
excessively strong, Naive Bayes performance still produces outcomes
that are very competitive and computationally efficient.

Under this technique, different algorithms can be applied. In the
current research, Bernoulli and Gaussian methods have been tested.

Bernoulli Naive Bayes: Each feature is thought to correlate to a
binary value. In this model, the probability is obtained using Equation
(2).

 (2)

To use this approach, all data features must be binary; if a feature
contains any other type of data, a binarization process is carried out.

Gaussian Naive Bayes: The numerical attribute values in
Gaussian NB have a normal distribution and are shown concerning
the mean and standard deviation. Equation (3) is used in this approach
to determine the probability of the features.

 (3)

where σ is the standard deviation and µ the mean value.

V. Experiments and Results

The present section describes the setup of the experiments and the
results obtained.

A. Experiments Setup
This section provides the experiment configurations, including the

tools and metrics used to measure and compare the performance of each
classifier. The experiments were implemented using Python and several
libraries such as Scikit-learn, Pandas, Numpy, TensorFlow and Keras.

To configure the experiments, the fundamental stages of machine
learning problems summarized in Fig. 3, were followed. Each of these
stages is described in detail below.

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 37 -

DATA
PREPROCESSING

CLASSIFIER
CONFIGURATION

FEATURE
EXTRACTION

Original dataset is
preprocessing, and
normalized

PCA is executed to reduce
dataset dimensionality.
Di�erent numbers of
components are selected

Each classification technique
is tested for di�erent values
of their hyperparameters

CLASSIFIER
ASSESSMENT

To train each classifier, a 10
k-fold validation was used.
The AUC metric is used to
compare the results

1

2

3

4

Fig. 3. Experiment setup scheme.

1. Data Preprocessing
The first step was the preprocessing of the study case dataset.

Once the data was analyzed, samples with missing data and constant
variables for all the samples were removed from the dataset. On the
other hand, the non-numerical variables were codified to numerical
features, and finally, the data were normalized using the z-score
method, with a mean value of 0 and a standard deviation of 1.

2. Feature Extraction
After preparing the dataset, the PCA technique was employed

to reduce the number of features and choose the most important
dataset variables. The number of principal components to retain was
determined by analyzing the variance explained by each component,
focusing on those that explain a significant amount of variance. In
order to obtain the best classifier, both in terms of performance and
computational cost efficiency, in this research, the experiments were
carried out taking into account the different number of components.

3. Classifier Configuration
Each of the supervised classification techniques presented in

Section IV has been tested for different configurations. Table II shows
the hyperparameters that have been configured for each algorithm as
well as the values that have been implemented. Each of the model’s
hyperparameters is briefly described below.

• Decision Trees (DT): for this technique, decision trees have been
evaluated for different maximum depth parameters, from 5 to
50 layers of the tree with intervals of 5. In addition, it has also
been tested, not indicating a maximum depth value ("None"). This
way, the nodes are expanded until all leaves contain less than two
samples.

• Multi-layer Perceptron (MLP): MLP neural networks have been
analyzed for different network structures, considering the number
of hidden layers, the number of neurons in the hidden layers, and
the dropout percentage. The dropout corresponds to the middle
layers used to control the regularization of the neural network and
avoid overfitting problems. The following values have been taken
into account for each parameter:

 - Number of hidden layers: 1, 2, and 3 hidden layers.

 - Number of neurons in hidden layers: 5, 10, 15, and 20 neurons
per layer.

 - Dropout: 0 and 20%.

It is important to note that the ReLu function was used as activation
function in the neurons of the hidden layers and Softmax in the
output layer. This configuration is commonly used in classification
tasks with neural networks.

• Random Forest (RF): the parameter to be determined in this
technique is the number of decision trees that conform the model.
In this case, the algorithm performance was evaluated for models
of 10 to 100 trees with increments of 10 trees.

• Support Vector Machines (SVM): in this case, different
configurations of the Support Vector Machine have been
tested by modifying the algorithm kernel, which indicates the
transformation function, and the data regularisation factor, C. The
strength of the regularisation is inversely proportional to C. The
values used in these hyperparameters are:

 - Kernel: linear, polynomial, rbf (Radial Basis Function) and
sigmoid.

 - Data regularization C: 0.001, 0.01, 0.1 and 1.

• Fisher Linear Discriminant (LDA): the performance of this
technique has been tested for three different algorithms solvers
(least squares, lsqr, singular value decomposition, svd and
eigenvalue decomposition, eigen).

• Naive Bayes (NB): as already mentioned in IV.B.6 the performance
of Bernoulli and Gaussian Naive Bayes have been evaluated.

4. Classifier Assessment
For the training process of each model, k-fold cross-validation with

a k value of 10 has been used. In addition, the Area Under the receiving
operating Curve (AUC) has been considered as the evaluation metric,
which is widely used in classification tasks. The relationship between
true positive and false positive rates is established by this parameter,

TABLE II.Configurations Tested

Evaluated technique Evaluated configuration Tested values
Decision Trees Maximum depth 5:5:50 and None

Multi-layer Perceptron
Number of hidden layes
Neurons in hidden layers

Dropout (%)

1:1:3
5:5:20
0, 10

Random Forest Number of trees 10:10:100

Support Vector Machine
Data regularization

Kernel
0.001, 0.01, 0.1, 1

linear, poly, rbf, sigmoid

Fisher linear discriminant Solver svd, lsqr, eigen

Naive bayes Algorithm Bernoulli, Gaussian

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 38 -

which boasts two key benefits. Firstly, it offers a unified evaluation
of classifier performance, and secondly, it remains unaffected by
variations in class distribution.

On the other hand, the computational cost of each classifier
implemented has also been measured. For this purpose, the average
training time of each configuration of the models has been considered.
In this sense, it must be taken into account that the experiments have
been executed on a computer with an Intel(R) Core(TM) i7-7500U CPU
@ 2.70GHz 2.90 GHz and a RAM memory of 8GB.

B. Results
The results derived from the experimental setup outlined above are

shown in this section. First, to determine the number of components
to reduce the initial dataset, an initial Principal Component Analysis
was executed to identify the components and their respective
percentage of variance explained. Fig. 4 shows the results obtained
in bar graph format.

Principal Components

%
 o

f v
ar

ia
nc

e
ex

pl
ai

ne
d

0
1

5

10

15

20

25

30

5 10 15 20 25 30

Fig. 4. PCA initial analysis.

Based on the achieved results, three different component selections
will be considered for the experiments for evaluating the performance
of combining dimensional reduction with the above-described
classification techniques in terms of classification accuracy and
computational cost. The three component selection criteria are as
follows:

• Components with a percentage of explained variation greater than
10%: in this case the first 2 components are selected.

• Components with a percentage of variance explained greater than
5%: in this case the first 5 components are selected.

• Components with a percentage of explained variation greater than
0.01%: in this case the first 24 components are selected.

After selecting the different numbers of components to be used
in each experiment, we trained and evaluated each technique’s
performance using the proposed configurations.

Before presenting the results, since the models were tuned and
evaluated using k-fold cross-validation, it is essential to highlight that
all the tables in this section depict the average AUC and training time
values.

Table III presents the results obtained using decision trees. As can
be seen, this technique achieved excellent results, exceeding 99% in
terms of AUC, with the different configurations tested. Furthermore,
it is noticeable that using fewer components significantly reduces the
training time, with a slight loss in classifier performance, lower than
0.3% in terms of AUC. This technique has very low training times, less
than 1 second in some of its configurations.

On the other hand, Table IV shows the results obtained with the
Multi-Layer Perceptron neural networks (MLP). This technique
exhibits high performance, reaching more than 99.8% of AUC in some
configurations. In this case, reducing the number of components also

reduces the classifier’s performance. Comparing the results obtained,
a reduction of more than 1% in terms of AUC can be produced using
24 or 2 components. On the other hand, the training time is not
affected by the number of components, i.e., the number of neurons
in the network’s input layer. The network dimension, determined by
the number of hidden layers and neurons per layer, is the main factor
affecting computational cost. Additionally, it is observed that using
dropout in the network does not improve classifier performance and
significantly increases the training time, as it involves adding a new
layer (the regularisation layer). Generally speaking, this technique
presents a higher computational cost than decision trees.

Table V presents the performance of the Random Forest method
for its different configurations. This technique achieves very good
classifiers, with an AUC of over 99% in all configurations tested.
Regarding the results, it can be observed that using a greater number
of trees does not significantly improve the model’s performance. For
example, comparing the 100-tree model with the 10-tree model showed
a difference of less than 0.1%. Similarly, the classifier’s performance
does not deteriorate significantly when using fewer components,
achieving a reduction of 0.2% AUC when comparing models trained
with 24 components to models adjusted with 2. However, models with
fewer trees combined with a reduced number of selected components
minimize the computational cost measured in training time, reducing
it by more than 70% in some cases.

On the other hand, Table VI shows the performance of support
vector machines. With this technique, very different results were
obtained among the evaluated configurations. In general, it can
be observed that using a reduced number of components greatly
affects the classifier’s performance, with a loss of more than 20% of
AUC in many cases. Moreover, the best results are obtained with
the highest value of the hyperparameter C, which implies low data
regularisation. For this technique, the best model obtained was the one
that uses the polynomial kernel with C = 1, which reaches a 98.32%
AUC considering 24 components. Finally, highlight that reducing
the number of components used does not reduce the training time.
Compared to the other techniques, except for MLP, the computational
cost of this technique is much higher.

The performance results of Fisher’s Linear Discriminant Analysis
are presented in Table VII. It can be observed that changing the
algorithm’s solver does not affect the classifier’s performance,
and this hyperparameter only influences the training time. In this
regard, the svd (Singular value decomposition) method is the most
computationally expensive compared to the other solvers tested.
Additionally, when analyzing the impact of the number of components
on the classifier’s performance, it is evident that reducing the number
of components significantly compromises the classifier’s performance,
lowering the AUC value and the training time. For this technique, the
optimal classifier is obtained using the lsqr (Least squares solution)
algorithm and components, which achieves over 89% AUC with an
average training time of 0.159 seconds.

Finally, the Gaussian and Bernoulli naive Bayes were tested and the
results are presented in Table VIII. With this technique, the Gaussian
model fits better to the problem posed and performs better than
the Bernoulli algorithm. On the other hand, it can be observed how
considering a greater number of components improves the AUC result
of the classifier and increases the training time.

Fig. 5 summarizes the best AUC results obtained for each of the
techniques and the different number of components. This graph shows
how using a greater number of components improves the results
measured by the AUC metric and how the best classifiers are obtained
with the Decision Trees, Multi-layer Perceptron, and Random Forest.

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 39 -

TABLE III. Decision Trees Results

PCA
Model setup

2 components 5 components 24 components

Nº of trees
AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

5
10
15
20
25
30
35
40
45
50

None

98.27
99.00
99.09
99.09
99.10
99.09
99.10
99.10
99.09
99.09
99.09

0.064
0.098
0.112
0.116
0.116
0.115
0.118
0.117
0.117
0.117
0.117

98.43
99.02
99.19
99.24
99.25
99.28
99.27
99.29
99.27
99.27
99.28

0.135
0.224
0.262
0.273
0.278
0.276
0.276
0.275
0.275
0.275
0.280

98.83
99.24
99.30
99.33
99.35
99.33
99.34
99.35
99.34
99.35
99.33

0.705
1.263
1.679
2.013
2.042
2.038
2.038
2.037
2.038
2.038
2.039

TABLE IV. Multilayer Perceptron Results

PCA
Model setup

2 components 5 components 24 components

Nº of
hidden layers

Nº of
neurons

Dropout
(%)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3

5
5
10
10
15
15
20
20
5
5
10
10
15
15
20
20
5
5
10
10
15
15
20
20

0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10

96.22
96.04
98.20
98.18
98.25
98.22
98.41
98.33
93.35
96.39
98.37
96.50
98.47
98.50
98.62
98.51
98.12
95.40
98.43
98.22
98.65
98.52
98.79
98.52

20.755
21.794
21.259
22.446
21.496
22.680
22.077
24.207
22.652
24.766
22.977
25.435
23.459
25.942
24.099
26.379
24.411
27.229
25.194
28.644
25.787
29.346
26.494
30.360

99.11
97.33
99.27
99.28
99.30
99.29
99.35
99.39
92.48
99.07
99.35
99.37
99.42
99.41
99.47
99.42
93.58
99.13
99.43
99.34
99.53
99.45
99.48
99.47

20.714
21.933
21.116
22.560
21.328
22.810
21.936
23.131
22.663
27.514
23.039
25.471
23.508
26.003
23.861
26.391
24.170
26.911
24.801
27.994
25.205
28.693
25.795
29.480

99.57
99.45
99.68
99.68
99.75
99.70
99.76
99.74
99.58
99.46
99.73
99.68
99.73
99.76
99.79
99.78
99.59
99.49
99.73
99.73
99.79
99.76
99.82
99.80

20.786
22.043
21.405
22.884
21.579
23.044
22.032
23.330
22.250
24.297
22.941
25.243
23.286
25.722
23.591
26.056
23.799
26.760
24.457
27.849
25.111
28.716
25.287
29.156

TABLE V. Random Forest Results

PCA
Model setup

2 components 5 components 24 components

Nº of trees
AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

10
20
30
40
50
60
70
80
90
100

99.19
99.20
99.19
99.19
99.18
99.20
99.19
99.19
99.21
99.21

0.594
1.211
1.839
2.435
3.248
3.385
4.021
4.160
3.922
4.393

99.29
99.33
99.31
99.32
99.32
99.32
99.30
99.32
99.31
99.32

0.718
1.539
2.013
2.665
3.278
3.933
4.610
5.281
6.216
6.599

99.36
99.39
99.38
99.42
99.40
99.42
99.41
99.41
99.44
99.41

2.052
4.221
6.209
6.655
8.994
11.621
12.580
12.646
14.138
15.604

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 40 -

Classification technique

Comparative results obtained (AUC %)

A
U

C
 (%

)

70
DT

75

80

85

90

95

100

MLP RF SVM LDA NB

2 components
5 components
24 components

Fig. 5. Comparison of results.

VI. Conclusions and Future Work

This research analyses the performance of six supervised
classification techniques in combination with the PCA dimensional
reduction method to detect DoS attacks in data networks working with
the MQTT protocol. The obtained results have been highly promising,
reaching AUC values higher than 95% except for the LDA and Naive

Bayes methods that have achieved, for their best configuration, a
maximum of 89.27% and 83.55% AUC, respectively.

Considering only the classifier performance, MLP neural networks
have been shown to detect better DoS attacks reaching 99.82% AUC for
the network with 3 hidden layers, 20 neurons per layer, and without
dropout layers. However, the computational cost of this technique,
with a mean average training time of 25 seconds, is significantly
higher than other methods that have also demonstrated excellent
performance, such as, for instance, Decision Trees, with a maximum
of 99.35% AUC and training times between 0.1 and 2 seconds, or
Random Forest with more than 99% AUC and training times between
0.6 and 15 seconds depending on the selected configuration. SVMs also
performed well in many configurations with values above 98% AUC
but with training times above 30 seconds. Therefore, considering a
computational performance-cost relationship, it can be concluded that
decision trees are the best technique.

On the other hand, comparing the results obtained by using a
different number of components, it was observed that a significant
reduction in the number of components can worsen the classifier’s
performance and reduce the model’s training times. For Decision
Trees, a maximum loss of 0.3% AUC is quite optimal when compared
to the substantial reduction in training time, often exceeding 90%in
some cases. This aspect is also similarly reflected in the Random

TABLE VI. Support Vector Machine Results

PCA
Model setup

2 components 5 components 24 components

Kernel Reg.
AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

linear
linear
linear
linear
poly
poly
poly
poly
rbf
rbf
rbf
rbf

sigmoid
sigmoid
sigmoid
sigmoid

1
0.1
0.01
0.001

1
0.1
0.01
0.001

1
0.1
0.01
0.001

1
0.1
0.01
0.001

73.50
73.50
73.50
73.50
73.69
73.69
73.70
73.71
88.33
73.73
73.50
73.50
71.15
73.03
78.27
73.23

37.442
25.434
20.351
19.763
29.088
49.309
26.095
21.021
26.963
30.471
27.578
30.304
27.657
27.566
40.877
40.016

84.47
79.90
74.66
74.64
90.72
75.52
74.87
74.86
91.04
90.27
74.65
74.65
71.16
73.48
79.53
74.61

52.600
28.180
21.244
21.188
17.263
19.876
25.077
25.688
18.143
25.654
30.738
39.303
26.914
29.337
38.644
49.282

90.00
89.97
90.07
89.20
98.32
91.04
75.56
75.55
98.26
98.27
90.46
73.29
85.77
88.95
82.70
73.49

34.126
23.385
23.605
28.774
16.225
22.407
29.913
37.652
16.359
21.541
43.467
62.536
46.046
49.293
55.067
58.673

TABLE VII. Fisher Linear Discriminant Results

PCA
Model setup

2 components 5 components 24 components

Solver
AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

svd
lsqr

eigen

73.51
73.51
73.51

0.041
0.038
0.037

74.52
74.52
74.52

0.049
0.040
0.042

89.27
89.27
89.27

0.236
0.159
0.178

TABLE VIII. Naive Bayes Results

PCA
Model setup

2 components 5 components 24 components

Algorithm
AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

Bernoulli
Gaussian

73.51
80.37

0.026
0.023

75.11
78.80

0.022
0.021

75.19
83.55

0.047
0.054

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 41 -

Forest models, in which component reduction greatly reduces the
computational cost with minimal loss of classifier performance.
However, in SVMs and MLP neural networks, using a smaller number
of components does not reduce the training time and worsens the
performance of these techniques.

Thanks to the high performance of the models achieved, these can
be deployed in an IDS for detecting anomalous network behaviours,
preventing attacks.

In future works, we will study the performance of other supervised
and unsupervised classification techniques and other feature
extraction methods to compare their performance against the proposal
shown in this paper. Additionally, it will also be considered to test the
performance of our proposal for detecting Denial of Service attacks in
other types of IoT protocols, such as CoAP and LoRa, among others.
On the other hand, the possibility of detecting other types of attacks
in this protocol will also be studied. Finally, the development of an
intelligent hybrid system capable of detecting different attacks in
different IoT network protocols will be analyzed, making it possible to
standardize and offer a handy tool for the field of cybersecurity.

Acknowledgment

Álvaro Michelena’s research was supported by the Spanish
Ministry of Universities (https://www.universidades.gob.es/), under
the “Formación de Profesorado Universitario” grant with reference
FPU21/00932. Spanish National Cybersecurity Institute (INCIBE) and
developed Research Institute of Applied Sciences in Cybersecurity
(RIASC). CITIC, as a Research Center of the University System
of Galicia, is funded by Consellería de Educación, Universidade e
Formación Profesional of the Xunta de Galicia through the European
Regional Development Fund (ERDF) and the Secretaría Xeral de
Universidades (Ref. ED431G 2019/01).

References

[1] T. M. Ghazal, M. K. Hasan, M. T. Alshurideh, H. M. Alzoubi, M. Ahmad, S.
S. Akbar, B. Al Kurdi, I. A. Akour, “Iot for smart cities: Machine learning
approaches in smart healthcare—a review,” Future Internet, vol. 13, no. 8,
2021, doi: 10.3390/fi13080218.

[2] P. K. Malik, R. Sharma, R. Singh, A. Gehlot, S. C. Satapathy, W. S. Alnumay,
D. Pelusi, U. Ghosh, J. Nayak, “Industrial internet of things and its
applications in industry 4.0: State of the art,” Computer Communications,
vol. 166, pp. 125–139, 1 2021, doi: 10.1016/j.comcom.2020.11.016.

[3] M. Rothmuller, S. Barker, “Iot the internet of transformation 2020,”
Juniper Research, Basingstoke, UK, Whitepaper, 2020.

[4] M. Ahmad, T. Younis, M. A. Habib, R. Ashraf, S. H. Ahmed, “A review of
current security issues in internet of things,” Recent Trends and Advances
in Wireless and IoT-enabled Networks, pp. 11–23, 2019, doi: 10.1007/978-
3-319-99966-2.

[5] M. H. Khalid, M. Murtaza, M. Habbal, “Study of security and privacy
issues in internet of things,” CITISIA 2020 - IEEE Conference on Innovative
Technologies in Intelligent Systems and Industrial Applications, Proceedings,
11 2020, doi: 10.1109/CITISIA50690.2020.9371828.

[6] B. Kepçeoğlu, A. Murzaeva, S. Demirci, “Performing energy consuming
attacks on iot devices,” in 2019 27th Telecommunications Forum (TELFOR),
2019, pp. 1–4.

[7] J. Granjal, E. Monteiro, J. S. Silva, “Security for the internet of things:
A survey of existing protocols and open research issues,” IEEE
Communications Surveys and Tutorials, vol. 17, pp. 1294–1312, 2015, doi:
10.1109/COMST.2015.2388550.

[8] R. Yugha, S. Chithra, “A survey on technologies and security protocols:
Reference for future generation iot,” Journal of Network and Computer
Applications, vol. 169, p. 102763, 11 2020, doi: 10.1016/j.jnca.2020.102763.

[9] Y. Lu, L. D. Xu, “Internet of things (iot) cybersecurity research: A review
of current research topics,” IEEE Internet of Things Journal, vol. 6, pp.
2103–2115, 4 2019, doi: 10.1109/JIOT.2018.2869847.

[10] J. Tournier, F. Lesueur, F. L. Mouël, L. Guyon, H. Ben-Hassine, “A survey
of iot protocols and their security issues through the lens of a generic
iot stack,” Internet of Things, vol. 16, p. 100264, 12 2021, doi: 10.1016/J.
IOT.2020.100264.

[11] E. Džaferović, A. Sokol, A. A. Almisreb, S. M. Norzeli, “Dos and ddos
vulnerability of iot: a review,” Sustainable Engineering and Innovation,
vol. 1, no. 1, pp. 43–48, 2019.

[12] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J.
Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, et al.,
“Understanding the mirai botnet,” in 26th USENIX security symposium
(USENIX Security 17), 2017, pp. 1093–1110.

[13] M. H. Khalid, M. Murtaza, M. Habbal, “Study of security and privacy
issues in internet of things,” in 2020 5th International Conference on
Innovative Technologies in Intelligent Systems and Industrial Applications
(CITISIA), 2020, pp. 1–5, IEEE.

[14] T. A. Idriss, H. A. Idriss, M. A. Bayoumi, “A lightweight puf-based
authentication protocol using secret pattern recognition for constrained
iot devices,” IEEE Access, vol. 9, pp. 80546–80558, 2021, doi: 10.1109/
ACCESS.2021.3084903.

[15] S. Amanlou, M. K. Hasan, K. A. A. Bakar, “Lightweight and secure
authentication scheme for iot network based on publish–subscribe fog
computing model,” Computer Networks, vol. 199, p. 108465, 11 2021, doi:
10.1016/J.COMNET.2021.108465.

[16] X. Zhu, H. Deng, “A security situation awareness approach for iot
software chain based on markov game model,” International Journal of
Interactive Multimedia and Artificial Intelligence, vol. 7, pp. 59–65, 2022,
doi: 10.9781/ijimai.2022.08.002.

[17] D. Choudhary, R. Pahuja, “Improvement in quality of service against
doppelganger attacks for connected network,” International Journal of
Interactive Multimedia and Artificial Intelligence, vol. 7, pp. 51–58, 2022,
doi: 10.9781/ijimai.2022.08.003.

[18] R. Berjón, M. Mateos, M. E. Beato, A. F. García, “An event mesh for
event driven iot applications,” International Journal of Interactive
Multimedia and Artificial Intelligence, vol. 7, pp. 54–59, 2022, doi: 10.9781/
ijimai.2022.09.003.

[19] H. J. Liao, C. H. R. Lin, Y. C. Lin, K. Y. Tung, “Intrusion detection system:
A comprehensive review,” Journal of Network and Computer Applications,
vol. 36, pp. 16–24, 1 2013, doi: 10.1016/J.JNCA.2012.09.004.

[20] L. Aversano, M. L. Bernardi, M. Cimitile, R. Pecori, “A systematic review
on deep learning approaches for iot security,” Computer Science Review,
vol. 40, p. 100389, 2021.

[21] A. Khraisat, A. Alazab, “A critical review of intrusion detection systems
in the internet of things: techniques, deployment strategy, validation
strategy, attacks, public datasets and challenges,” Cybersecurity, vol. 4,
pp. 1–27, dec 2021, doi: 10.1186/s42400-021-00077-7.

[22] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, F. Ahmad,
“Network intrusion detection system: A systematic study of machine
learning and deep learning approaches,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 1, p. e4150, 2021.

[23] S. Andy, B. Rahardjo, B. Hanindhito, “Attack scenarios and security
analysis of mqtt communication protocol in iot system,” in 2017 4th
International Conference on Electrical Engineering, Computer Science and
Informatics (EECSI), 2017, pp. 1–6.

[24] D. H. Deshmukh, T. Ghorpade, P. Padiya, “Intrusion detection system
by improved preprocessing methods and naïve bayes classifier using
nsl-kdd 99 dataset,” in 2014 International Conference on Electronics and
Communication Systems (ICECS), 2014, pp. 1–7.

[25] M. Esmaeili, S. H. Goki, B. H. K. Masjidi, M. Sameh, H. Gharagozlou, A.
S. Mohammed, “Ml-ddosnet: Iot intrusion detection based on denial-of-
service attacks using machine learning methods and nsl- kdd,” Wireless
Communications and Mobile Computing, vol. 2022, pp. 1–16, 8 2022, doi:
10.1155/2022/8481452.

[26] J. Liu, B. Kantarci, C. Adams, “Machine Learning- Driven Intrusion
Detection for Contiki-NG-Based IoT Networks Exposed to NSL-KDD
Dataset,” in Proceedings of the 2nd ACM Workshop on Wireless Security
and Machine Learning, New York, NY, USA, 2020, ACM.

[27] P. Sethi, S. R. Sarangi, “Internet of things: architectures, protocols, and
applications,” Journal of Electrical and Computer Engineering, vol. 2017,
2017, doi: 10.1155/2017/9324035.

[28] K. Ramamoorthy, S. Karthikeyan, T. Chelladurai, “An investigation on

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 42 -

industrial internet of things for mission critical things in industry 4 . 0 2 .
literature review,” Seybold Report, vol. 15, pp. 3294–3300, 2020.

[29] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, X. Bellekens,
“Machine learning based iot intrusion detection system: An mqtt case
study (mqtt-iot-ids2020 dataset),” in International Networking Conference,
2020, pp. 73–84, Springer.

[30] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, A. N. Anwar, “Ton-iot
telemetry dataset: A new generation dataset of iot and iiot for data-
driven intrusion detection systems,” IEEE Access, vol. 8, pp. 165130–
165150, 2020, doi: 10.1109/ACCESS.2020.3022862.

[31] VMware, “Vmware nsx data center datasheet.” [Online]. Available:
https://kb.vmware.

[32] J. Deogirikar, A. Vidhate, “Security attacks in iot: A survey,” Proceedings
of the International Conference on IoT in Social, Mobile, Analytics and
Cloud, I-SMAC 2017, pp. 32–37, 2017, doi: 10.1109/I-SMAC.2017.8058363.

[33] “GitHub - moscajs/aedes: Barebone MQTT broker that can run on any
stream server, the node way.” [Online]. Available: https://github.com/
moscajs/aedes.

[34] K. Palsson, “mqtt-malaria @ github.com,” 2018. [Online]. Available:
https://github.com/remakeelectric/mqtt-malaria.

[35] J. Aveleira-Mata, H. Alaiz-Moreton, “Functional prototype for intrusion
detection system oriented to intelligent iot models,” in International
Symposium on Ambient Intelligence, 2019, pp. 179–186, Springer.

[36] “MQTT Dataset LE-229-18,” 2019. [Online]. Available: https://joseaveleira.
es/dataset.

[37] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in
space,” The London, Edinburgh, and Dublin philosophical magazine and
journal of science, vol. 2, no. 11, pp. 559–572, 1901.

[38] H. Abdi, L. J. Williams, “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–
459, 2010.

[39] L. Rokach, O. Maimon, “Decision trees,” in Data mining and knowledge
discovery handbook, Springer, 2005, pp. 165–192.

[40] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed,
H. Arshad, “State-of-the-art in artificial neural network applications: A
survey,” Heliyon, vol. 4, no. 11, p. e00938, 2018.

[41] A. Cutler, D. R. Cutler, J. R. Stevens, “Random forests,” in Ensemble
machine learning, Springer, 2012, pp. 157– 175.

[42] C. Cortes, V. Vapnik, “Support-vector networks,” Machine learning, vol.
20, no. 3, pp. 273–297, 1995.

[43] J. Yang, Z. Jin, J.-y. Yang, D. Zhang, A. F. Frangi, “Essence of kernel fisher
discriminant: Kpca plus lda,” Pattern Recognition, vol. 37, no. 10, pp. 2097–
2100, 2004.

[44] I. Rish, et al., “An empirical study of the naive bayes classifier,” in IJCAI
2001 workshop on empirical methods in artificial intelligence, vol. 3, 2001,
pp. 41–46.

Álvaro Michelena

Álvaro Michelena is a Ph.D. student in Computational
Science at the University of A Coruña, Spain, su. He
received a M.S. in Industrial Computing and Robotics from
the University of A Coruña in 2021. He has worked for a
year and a half as a Research Assistant at the Centre for
Information and Communications Technology Research
(CITIC) of the University of A Coruña where he has

collaborated on different research projects. His main research areas are related
to applying intelligent techniques for anomaly detection and system modeling.

Héctor Alaiz-Moretón

Héctor Alaiz-Moretón received his degree in Computer
Science, performing the final Project at Dublin Institute of
Technology, in 2003. He received his PhD in Information
Technologies in 2008 (University of Leon). He has worked
as a lecturer since 2005 at the School of Engineering at
the University of Leon. His research interests include
knowledge engineering, machine and deep learning,

networks communication, and security. He has several works published in
international conferences, as well as books, more than 90 scientific publications
between JCR papers, Lecture Notes and Scientific Workshops. He has been a
member of scientific committees in conferences. He has headed several PhD
Thesis and research competitive projects. Actually, he is the vice main of
RIASC (Institute of Applied Sciences to Cybersecurity).

Jose Aveleira-Mata

Jose Aveleira-Mata is a Ph.D. student on Production and
Computing Engineering at the University of Leon, Spain.
His research interests include Internet of Things, Cloud
Computing, Wireless Sensor Networks and Network
Security. He has several papers published in international
conferences, as well as scientific publications in JCR
journals, on topics related to cybersecurity.

Héctor Quintián

Héctor Quintián is currently Assistant Professor at
University of A Coruña (UDC). Along his academic career,
he has published many papers in national and international
scientific journals and several book chapters. As far as
research activity is concerned, it is worth highlighting his
publication activity; over the last 10 years, 62 research
papers in journals indexed with relative quality index,

all of them in the JCR. Around 70% of them have been published in journals
located in the first two quartiles of their categories. He has published a total
of 65 contributions in conferences of which 80% correspond to international
conferences, most of them indexed at the CORE ranking and at the GII-GRIN-
SCIE (GGS) Conference Rating. In addition, it has organized a large number
of scientific conferences in various editions (40), all of them of recognized
international prestige, His main research lines are focused on artificial
intelligence, and not supervised learning developing several algorithms with
application to industrial modelling systems.

Esteban Jove

Esteban Jove received a M.S. degree in Industrial
Engineering from the University of Leon in 2014. After
two years working in the automotive industry, he joined
the University of A Coruña, Spain, where he has been
Assistant Professor of Power Electronics in the Faculty
of Engineering since 2016. He received his Ph.D at the
University of La Laguna in 2020, and his research has been

focused on the use of intelligent techniques for nonlinear systems modelling and
anomaly detection using one-class techniques.

José Luis Calvo-Rolle

José Luis Calvo-Rolle received M.S. and Ph.D. degrees
in Industrial Engineering from the University of Leon
in 2004 and 2007, respectively. He is Full Professor in
the Systems Engineering and Automation Area, of the
Industrial Engineering Department, University of A
Coruña. Currently, he is the director of that department and
the head of the Environmental Radioactivity Laboratory.

In addition, he coordinates the Cybernetic Science and Technology Research
Group. His main research areas are focused on the application of intelligent
techniques and systems for optimization, diagnosis, modeling and control.

