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Abstract

Human nature is inherently intertwined with violence, impacting the lives of numerous individuals. Various 
forms of violence pervade our society, with physical violence being the most prevalent in our daily lives. The 
study of human actions has gained significant attention in recent years, with audio (captured by microphones) 
and video (captured by cameras) being the primary means to record instances of violence. While video requires 
substantial processing capacity and hardware-software performance, audio presents itself as a viable alternative, 
offering several advantages beyond these technical considerations. Therefore, it is crucial to represent audio 
data in a manner conducive to accurate classification. In the context of violence in a car, specific datasets 
dedicated to this domain are not readily available. As a result, we had to create a custom dataset tailored to this 
particular scenario. The purpose of curating this dataset was to assess whether it could enhance the detection 
of violence in car-related situations. Due to the imbalanced nature of the dataset, data augmentation techniques 
were implemented. Existing literature reveals that Deep Learning (DL) algorithms can effectively classify 
audio, with a commonly used approach involving the conversion of audio into a mel spectrogram image. Based 
on the results obtained for that dataset, the EfficientNetB1 neural network demonstrated the highest accuracy 
(95.06%) in detecting violence in audios, closely followed by EfficientNetB0 (94.19%). Conversely, MobileNetV2 
proved to be less capable in classifying instances of violence.
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I. Introduction

As stated by Koritsas in 2009 [1], violence manifests in both 
verbal and physical aspects. Verbal aggression entails employing 

disrespectful speech, shouting, or shrieking with the purpose of 
causing offense or inducing fear. Physical aggression involves 
physically assaulting or trying to assault others, encompassing actions 
like striking, slapping, kicking, or utilizing a weapon or any object 
with the intention of inflicting bodily harm. As outlined in a study [2], 
almost half (48%) of the individuals who fell victim to interpersonal 
violence in South Korea in 2015 were fatally injured by sharp 
instruments like knives, whereas such fatalities attributed to sharp 
objects were approximately 25%. In the year 2020, the Portuguese 
Association for Victim Support (APAV) reported a total of 66,408 cases, 
with 31% attributed to "crimes and other forms of violence." Among 
these cases, 94% involved acts of violence against individuals [3]. The 
identification and acknowledgment of violence have been focal points 
of research interest, particularly within surveillance. The primary 
aim of detecting and recognizing violence revolves around achieving 
automated and real-time capabilities, enabling timely assistance to 

victims [4]. It is crucial to identify and prevent such actions before 
they escalate into catastrophic situations.

Modern society is placing increasing emphasis on automated 
surveillance as it helps manage an overwhelming amount of data, 
including attention bias, and ensures the privacy of those being 
surveyed [5], [6]. Well-designed surveillance software can process 
multiple sets of sensor data over an extended period of time without 
risking disengagement. On the other hand, an extra safeguard for data 
privacy is a properly auditable system that anonymises or deletes data 
in cases where violence is not detected.

Most violence recognition methods primarily rely on video 
detection, which necessitates high-performance hardware and 
software for recording [7]. An alternative technique for violence 
detection involves using audio, which can be effectively recognized 
and classified using deep learning algorithms [8]. Audio signals 
can be effortlessly captured by microphones, which possess strong 
capabilities to record human behavior and emotions. Therefore, it is 
crucial to have a robust audio representation that complements and 
validates the video’s audio quality [9], [10].

Another consideration is that violence detection is often associated 
with crowd violence detection [11]–[14]. However, in recent times, 
there has been a notable surge in interest surrounding audio-based 
violence detection, owing to its capacity to identify and prevent 
violent incidents and also by the increase of car sharing. Particularly, 
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researchers have directed their attention to the detection of violence 
within vehicles using audio-based methods [5], [7], [15].

Despite the promising prospects of audio-based violence detection 
inside vehicles, its effectiveness relies on various factors, such as 
the type of microphone employed, background noise levels, and 
microphone placement within the car [7], [16], [17]. Nonetheless, 
leveraging audio-based violence detection in vehicles holds potential 
to enhance the safety of both passengers and drivers.

According to the search results provided, various models have 
been employed for audio-based violence detection inside vehicles. 
These models include the ResNet model utilizing the Mel-spectrogram 
methodology for audio signals [10], [18], CNN-based Audio Event 
Recognition [15], ensemble deep learning, and multimodal approaches 
[19], as well as the application of machine learning (ML) models 
for detecting violence in video streams [20]. The studies indicate 
that deep learning techniques, such as artificial neural networks 
and convolutional neural networks, have demonstrated notable 
enhancements in the accuracy of audio event classification when 
compared to traditional feature-based classification methods.

Deep learning [21], a novel approach to data modeling that has 
gained significant traction in recent years, has led to the development 
of innovative structures and learning algorithms. These advancements 
have enabled breakthroughs in areas such as recognition [22], object 
recognition, and machine translation [23], [24]. In the realm of audio-
related tasks, deep learning models have played a pivotal role in 
enhancing accuracy and robustness across diverse categories. As a 
result, deep learning has become a fundamental area of research in 
various fields of knowledge [25].

Notwithstanding the extensive research conducted thus far, the 
realm of identifying violence within the confines of a vehicle remains 
severely limited in terms of available studies. This scarcity of research 
is attributed to the distinctive attributes of the car’s interior, which 
pose challenges to the effectiveness of existing models in yielding 
favorable outcomes [5]. As audio requires minimal storage, our 
intention is to carry out a study focused on detecting violence within 
a car using audio.

A. Main Contributions
We utilized a custom dataset designed specifically for detecting 

violence within a car environment using audio data. It is worth noting 
that this paper is an extension of the previously published work [26], 
with the primary focus being on violence detection within a car.

The main objective of this paper is to present the outcomes of our 
experiments conducted using in-car audio data and deep learning 
frameworks for the purpose of violence identification. The dataset 
used for training and validation serves as the foundation for the results 
presented in this study. Due to the relatively small size of the dataset, 
data augmentation techniques were applied to augment its volume.

The research questions to be addressed are as follows: RQ1) Can 
violence inside a car be effectively detected using audio data and deep 
learning models? RQ2) Can the use of data augmentation enhance the 
accuracy of violence detection results? To limit the scope of the study, 
incidents will be classified solely as either violent or non-violent, 
without considering the specific type of human action or the nature of 
the violence involved.

B. Organization
The organization of this document is as follows: Section II, 

Background, discusses the current state of the field, while Section 
III, Methods, outlines the Mel Spectrogram concepts, public dataset, 
In car dataset, pre-processing techniques, algorithms, and training 
procedures employed. Section IV, Results and Discussion, presents the 

obtained outcomes and corresponding discussions. Lastly, Section V, 
Conclusion, offers the final conclusions drawn from the study.

II. Background

Different methodologies adopted in some previously conducted 
studies on the use of audio in violence detection were explored.

A. Models
The detection of violence inside a car using audio-based methods 

has garnered significant interest as it holds the promise of enhancing 
road safety by preventing violent incidents and aiding in criminal 
investigations. Over time, research in this domain has resulted in 
the advancement of sophisticated algorithms and techniques that 
significantly improve the accuracy of identifying violent activities 
within vehicles.

Audio violence detection offers several advantages over video 
approaches, particularly in terms of bandwidth, storage, and computing 
requirements, which are significantly lower [9]. While audio sensors 
have their limitations, they are relatively minor compared to video 
cameras. For instance, microphones can have an omnidirectional 
capability, providing a spherical field of view, unlike video cameras 
with limited angular views. Additionally, audio event acquisitions can 
outperform video acquisitions due to the longer wavelength of audio, 
allowing for acoustic wave reflections when encountering obstacles in 
the direct path. Moreover, audio processing is not affected by issues 
like lighting and temperature, unlike video processing [9]. The audio 
approach also captures a wealth of information that visual data alone 
cannot represent, including screams, explosions, abusive language, 
and emotional cues conveyed through sound passages. Despite these 
advantages, there are still limited applications for violence detection 
using audio-based methods.

Souto, Mello, and Furtado [27] conducted research on domestic 
violence and acoustic scene classification using machine learning. The 
parameters employed for feature extraction and processing in both 
short and medium terms included MFCC (Mel Frequency Cepstral 
Coefficients), Energy, and ZCR (Zero Crossing Rate). For classification, 
they utilized the SVM (Support Vector Machine) technique. The 
resulting models, post-training, included the MFCC-SVM classifier, 
the Energy-SVM classifier, and the ZCR-SVM classifier.

In their previous work, Purwins, Virtanen, Schluter, Chang, and 
Sainath [28] explored audio signal processing methods like Gaussian 
mixture models, hidden Markov models, and non-negative matrix 
factorization. However, they found that these traditional methods were 
often outperformed by deep learning models when sufficient data was 
available. They applied various techniques such as categorization, 
audio features, models, data, and evaluation, and conducted cross-
domain comparisons with speech, music, and environmental sounds. 
Additionally, for audio synthesis and transformation, they employed 
source separation, speech enhancement, and audio generation methods.

Rouas [29], based on public transport vehicles, studied the detection 
of audio events. For this purpose he created an automatic audio 
segmentation, which divides an audio signal into several consecutive, 
almost stationary zones. The developed algorithm detected activity, 
i.e., ignored the quiet and low noise zones, focusing exclusively on the 
high noise zones. In this work the SVM model was used.

Crocco [9] conducted a systematic review of surveillance based 
on the audio signal. In this review, several approaches are presented, 
namely: i) background subtraction by monomodal analysis; ii) 
background subtraction by multimodal analysis; iii) audio event 
classification; iv) source localisation and tracking, especially audio 
source localisation; v) audiovisual source localisation; and vi) audio 
source tracking and audiovisual source tracking.
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Gavira [30] has presented a device designed to accurately perform 
the recognition task in urban areas with high noise. The audio was 
recorded in real urban environments using a current microphone. The 
strategy was to train a classifier based on temporal and frequency 
data analysis, and deep convolutional neural networks were used to 
develop the work.

Hossain [31] proposes a system for emotion recognition through 
audiovisuals, using two deep networks to extract features and join the 
features. In addition, it uses Big Data technology to train the emotion 
network and separate the information based on gender. The proposed 
system will also use a CNN network for audio signals and a three-
dimensional CNN for video signals.

Another study [32] delves into the intricate task of Motivic pattern 
classification in music audio recordings, with a particular focus on 
a cappella flamenco cantes. To tackle this, the paper proposes the 
application of Convolutional Neural Networks (CNN) architectures 
for intra-style classification of flamenco cantes, utilizing small motivic 
patterns. The suggested architecture capitalizes on the advantages of 
residual CNN for feature extraction and incorporates a bidirectional 
LSTM layer to handle the sequential nature of musical audio data. 
Sequential pattern mining and contour simplification techniques are 
employed to extract relevant motifs from the audio recordings, and Mel-
spectrograms of these motifs serve as inputs for the various architectures 
tested. The research investigates the practicality of motivic patterns for 
automatically classifying music recordings and explores the influence 
of audio length and corpus size on the overall classification accuracy.

B. Data Augmentation
Related to data augmentation techniques, a study [33] focuses 

on enhancing the accuracy of animal audio classification through 
various data augmentation techniques. These techniques involve 
manipulating the existing audio data to create additional samples, 
thereby increasing the diversity and size of the dataset. The study 
investigates different augmentation methods, their impact on model 
performance, and their ability to mitigate challenges such as limited 
labeled data. By implementing these augmentation strategies, the 
paper aims to enhance the robustness and effectiveness of animal 
audio classification models, ultimately improving their ability to 
accurately identify and classify animal sounds.

Another work [34] presents a methodology for effectively 
classifying environmental sounds using a deep convolutional neural 
network (CNN) that incorporates regularization techniques and data 
augmentation. The study emphasizes the challenges of environmental 
sound classification, including limited labeled data and diverse acoustic 
variations. To address these challenges, the proposed approach involves 
augmenting the dataset through various techniques and integrating 
regularization methods into the CNN architecture. The experimental 
results demonstrate that the combination of data augmentation and 
regularization enhances the model’s ability to accurately classify 
environmental sounds, making it more robust to variations in acoustic 
conditions and contributing to improved classification performance.

Also another study [35] introduces a novel technique for 
augmenting audio data using an evolutionary-based generative 
approach. The method involves employing evolutionary algorithms 
to generate new audio samples that are structurally similar to the 
existing data while introducing variations. By iteratively refining 
these generated samples, the approach aims to create diverse and 
realistic audio data that can expand the training dataset for machine 
learning models. The paper highlights the benefits of this approach in 
improving the performance of audio-based tasks such as classification 
and recognition, demonstrating its effectiveness in enhancing model 
generalization and accuracy through the incorporation of synthetically 
generated but plausible audio samples.

Finally, a last study [36] presents a method for automating the 
selection of effective data augmentation techniques to enhance object 
detection models. It addresses the challenge of selecting appropriate 
augmentation strategies from a large set of possibilities by utilizing 
a reinforcement learning framework. The approach involves training 
a policy network that learns to select augmentation operations based 
on their impact on the model’s performance. This policy network is 
optimized through reinforcement learning techniques, resulting in a 
strategy for augmenting the training data that improves the object 
detection model’s accuracy. The paper demonstrates the effectiveness 
of the approach through experiments, showing that learned data 
augmentation strategies can lead to significant performance gains in 
object detection tasks.

The background discussed in this section highlights the progress 
achieved in the development of methods for identifying violence and 
the latest enhancements in data augmentation techniques. However, 
when we narrow our focus to the particular scenario of detecting 
violence using audio within a vehicle, the existing models are not 
well-suited, and there is a lack of datasets recorded in such settings. 
Therefore, our study aims to enhance the effectiveness of violence 
detection within cars by utilizing audio inputs and a newly captured in-
car dataset. Additionally, we emphasize the significance of employing 
data augmentation techniques to improve the results in this context.

III. Methods

A. Mel Spectrogram
Audio can be converted into an interpretable format by representing 

it as visual images. The key concept involves transforming the audio 
signal into visual images, which can then be utilized to extract features 
either manually or directly fed into a Deep Learning classifier. There 
exist classifiers that can learn and extract features from these audio-
generated images [37].

There are some methods tha can be used to create this images 
(spectrograms), that represent the audio, and some are: Short-Time 
Fourier Transform, Chromagram, Mel-Spectrogram [7]. According to the 
literature by Choi, Fazekas, Cho, and Sandler [38]; Gaviria et al. [30]; 
Hossain and Muhammad [39]; Purwins et al. [40], each method for audio 
representation comes with its own set of advantages and disadvantages. 
Nonetheless, the Mel-Spectrogram method stands out as the most 
widely utilized approach. Therefore, we have chosen to employ the Mel-
Spectrogram method to represent audio in order to test our model.

A mel-spectrogram is a type of spectrogram, which visualizes the 
frequency content of an audio signal over time. However, instead of 
using a linear scale for the frequency axis, the mel-spectrogram uses 
the mel scale. The mel scale is a perceptual scale that is designed to 
better align with how humans hear and perceive sound [30]. The mel 
scale was introduced in the 1930s in order to account for the fact that 
humans do not perceive changes in frequency linearly - that is, changes 
in pitch at lower frequencies are more noticeable than at higher 
frequencies. The mel scale is based on this perceptual phenomenon, 
and is designed so that equal distances on the scale correspond to 
equal perceived differences in pitch. In practical terms, the mel scale 
is used to create a filterbank that is applied to the Fourier transform of 
an audio signal to map it onto the mel scale [40].

So, a mel spectrogram displays the time-frequency distribution 
of audio, with the frequency axis based on the mel-frequency scale. 
The process of converting to a mel spectrogram involves computing 
the Short-Time Fourier Transform (STFT) of the audio signal. This 
STFT computation transforms the audio from the time domain to the 
frequency domain. Once in the frequency domain, the y-axis is scaled 
using a mel-scale [41].
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The mel spectrogram displays the successive frequencies (y-axis) 
over time (x-axis) as well as the different amplitudes (represented by 
colors and measured in decibels) for each moment (Fig. 1).
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Fig. 1. Representation of a mel spectrogram.

B. Public Datasets
One of the key points in ML is selecting a dataset that has the 

necessary restrictions of what is intended to be classified. For the 
problem of this paper, the dataset should have audio entries where each 
entry would fall into violence or non violence. With this restrictions, 
we found some datasets worth mentioning.

The XD-Violence dataset is comprised of 4754 videos, with varying 
degrees of audio availability. It is divided into two categories: violence 
(2405 videos) and non-violence (2349 videos), totaling 217 hours of 
footage. The videos that depict violence can be further categorized into 
six types, including abuse, explosions, car accidents, riots, fights, and 
shootings. Each video of violence can have 1 to 3 labels, reflecting the 
significance of each event depicted. The videos come from a variety 
of sources, including movies, cartoons, video games, news, sports, 
etc. The XD-Violence dataset is separated into two parts, training and 
testing. The training section has 3954 videos, while the testing section 
has 800 videos. In both the training and testing datasets, the six types 
of violence are present at different points in time within the videos 
[42] [43].

Nanyang Technological University CCTV-Fights dataset contains 
1000 videos obtained from YouTube, some without audio, that display 
various actions such as pushing, kicking, fighting, etc. It is separated 
into two categories: CCTV (280 videos captured by surveillance 
cameras) and NON-CCTV (720 videos captured by dash-cams, cell 
phones, drones, and helicopters). The CCTV (camera stands for 
Closed-Circuit Television camera) videos range from five seconds 
to 12 minutes (average of two minutes), totaling 8.54 hours, while 
the NON-CCTV videos range from three seconds to seven minutes 
(average of 45 seconds), adding up to 9.13 hours of footage [44] [45].

Violent Scenes Detection (VSD2014) is widely used when the 
problem is to detect violence through video or audio. It has two types 
of videos: clips from Hollywood movies and clips taken from YouTube. 
The dataset is divided into three groups: "Hollywood: Development", 
"Hollywood: Test" and "YouTube: Generalization". In terms of the 

Hollywood group, they selected some movies, and it can go from 
movies with some violence ("Saving Private Ryan", with 34% frames 
with violence) to movies without violence ("Legally Blond", with 0% 
frames with violence). The "Hollywood" group has a total of 63 hours 
and 55 minutes of movie time (31 movies), while clips from YouTube 
has a total of two hours and 37 minutes (86 clips) and each clip can last 
from six seconds to six minutes. The features offered by this dataset 
are separated into audio and visual features, to make it easier for those 
without much experience in classification to have a starting point. 
To complete the dataset, annotations are included for all the content. 
The annotations identify the start and end frames of each violent 
segment and are binary in nature. There are seven visual concepts 
and three audio ones. The visual elements include: fights, blood, fire, 
knives, car pursuits, and disturbing/bloody images, which may also 
provide information about the level of intensity. The audio elements 
include: shots, screams, and explosions. It should be noted that the 
visual elements provide the start and end of each segment, expressed 
in terms of frames. Meanwhile, the audio elements are described in 
terms of seconds for the start and end of each occurrence [46].

The Real Life Violence Situations (RLVS) dataset contains real-world 
violent scenarios used for research in fields like computer vision. The 
purpose of the RLVS dataset is to supply a varied and accurate set of 
violent situations for the purpose of training and evaluating algorithms 
and systems with the aim of detecting, preventing, and responding to 
acts of violence. The dataset is comprised of 2000 clips, half of which 
depict violence and the other half do not. Some of the clips have been 
manually captured. In an effort to eliminate redundancy of individuals 
and surroundings, additional videos were taken from the YouTube 
platform. The lengthy clips have been broken down into shorter 
ones, ranging from three to seven seconds, with an average duration 
of five seconds. All of these clips are of high resolution and some of 
them have no sound. The violent clips depict scenes from places like 
prisons, schools, streets, etc. The non-violent clips feature individuals 
participating in activities like playing walking, eating, sports, etc. This 
dataset includes a wide variety of race, gender and age [47].

A brief summary can be seen on the Table I. 

However, despite the existence of several audio-based datasets, 
none have met the specified constraints for this work. So a group of 
researchers made their own dataset.

C. In Car Dataset
In order to evaluate the implemented models, a dataset was 

necessary, but no existing dataset met the specific requirements. 
Consequently, a team of researchers decided to create their own 
dataset, capturing video recordings of both violent and non-violent 
scenarios inside a car, involving real people, and all recorded during 
the pandemic. The dataset consists of videos, each with accompanying 
audio, representing 20 distinct scenarios. Among these scenarios, 12 
involve violence, including push and punch incidents, different fight 
scenarios, discussions with physical altercations, sexual harassment 
situations, and robberies using weapons like knives or guns. One 
scene depicts one person forcibly looking at another’s phone. On 
the other hand, the remaining 8 scenarios are non-violent, featuring 
instances such as people hugging, taking photos, fixing hair, sleeping, 

TABLE I. Overall Analysis of the Datasets

Dataset Number of videos Duration (hours) Sources Audio
XD- Violence 4754 217 Movies, cartoons, videogames, news, sport, etc. Yes

NTU CCTV-Fights 1000 18 Surveillance cameras and mobiles Yes*
VSD2014 31 Movies + 86 Clips 64+3 Hollywood movies and clips from YouTube Yes

RLVS 2000 - Manually recorded and clips from YouTube Yes*

* Some videos lack sound or only have background music.
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sneezing, reading a book, yawning, listening to music, answering calls, 
coughing, using a notebook, and writing, along with using alcohol 
gel. Each scenario was recorded with 16 different pairs of actors, and 
certain scenes include the use of various objects. For each pair, each 
scenario was recorded twice, P1 is one person and P2 is the other one.

The dataset is comprised of video files, with 494 entries depicting 
non-violent scenes and 795 depicting violent scenes. Every video file 
has audio, and that audio can go from the scene in itself or just noise.

The violence scenarios can be described as:

1. A person (P1) requests a kiss; A second person (P2) refuses the 
kiss; P1 insists; P2 slaps P1; A conflict ensues between the two.

2. P2 is on the phone; P1 approaches; P2 shoves P1; P1 insists on 
seeing the phone.

3. P2 is sleeping; P1 drinks water from a bottle; P1 throws the bottle 
at P2; P2 wakes up and shoves P1.

4. P1 and P2 are on the phone. They engage in a dispute, leading to 
a physical conflict.

5. P1 threatens P2 with a knife; P1 harasses P2 by touching their 
body.

6. P1 pulls out a knife and points it at P2; P1 stabs P2.

7. P1 draws a gun and points it at P2; P1 shoots P2 with the weapon.

8. P1 greets P2; P1 shows something on the phone and threatens P2 
with scissors; P1 robs P2.

9. P1 approaches P2, touches a non-sexual part of P2; P2 slaps P1.

10. P2 threatens to strike P1; P1 behaves in a provocative manner, and 
P2 slaps P1.

11. P2 performs an obscene gesture; P1 attacks P2 with a closed fist 
and attempts to strangle him.

12. A discussion with hand gestures, shoves, and punches.

As for the non-violent scenarios, they can be described as follows:

1. P1 is writing in a notebook, while P2 is applying hand sanitizer.

2. P1 answers a phone call; P2 uses a notebook and coughs.

3. P1 drinks and eats; P2 takes pictures.

4. P1 yawns and stretches; P2 puts on the headphones to listen to 
music.

5. P1 sneezes; P2 reads a book/newspaper/magazine.

6. P1 applies lipstick and arranges her hair; P2 sleeps.

7. P1 asks P2 to take a picture; P2 takes several pictures of him; P2 
shows P1 the pictures taken.

8. P1 and P2 talk; P2 cries; P1 and P2 embrace.

D. Pre-Processing
Data pre-processing is a crucial step to reduce the difficulty of 

learning features of the algorithm [48]. In the section III.C, we talked 
about the dataset created. This dataset only had 494 videos without 
violence on it and 795 videos with violence. The data pre-processing 
follows the flow represented in Fig. 2.

1. Converting videos
 to audio

2. Split the audios
3. Separate violence
from non violence

6. Dataset balancing
5. Conversion into
mel spectrogram

4. Audio analysis
and removal

Fig. 2. Pre-processing steps.

As for the first step all the videos had to be converted to audios so 
we could create the mel spectrograms of each one. In the second step, 
the audios without violence that had more than 40 seconds were split 
in half so each entry became two entries in the dataset with the same 
label. The audio recordings of violent incidents were typically longer 
than those of non-violent incidents, but the issue was that violence was 
often not present in the beginning of the audio. The solution involved 
inspecting each audio individually to determine the start of violence, 
and using the "pydub" library1, the audio could be divided into two parts 
- one representing non-violence, and the other representing violence. 
During the process of analysing each audio (step 4), it was discovered 
that some files lacked content and that some audio recordings did not 
have meaningful information for the data (e.g. audio recordings that 
only had background noise). These were removed from the dataset. By 
the end of the fourth step in the workflow, the dataset had 860 audio 
files of non-violence and 755 audio files of violence, for a total of 1615 
audio files. The step five was mixed with step six. We converted every 
audio into a mel spectrogram that could represent the audio in itself, 
so all the 1615 were converted and then it was decided that a good 
approach would be to balance the dataset so we used some entries 
from the RLVS dataset refered in section III.B. We tried to find the best 
violence videos in RLVS dataset that could go into our dataset. We 
found 105 violent videos, and those were converted to audio and then 
converted into a mel spectrogram to be added to the dataset. Ending 
this workflow, the dataset had 860 non-violence mel spectrograms and 
860 violent mel spectrograms, with a total of 1720 mel spetrograms.

In Fig. 3 it is shown what a mel spectrogram created from an audio 
with violence and and audio without violence looks like.

1   https://thepythoncode.com/assistant/transformation-details/cutting-audio-
files-in-python-with-pydub/
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Fig. 3. Mel spectrogram created from (a) an audio without violence and (b) an audio with violence.
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E. Data Augmentation
In deep learning, there is the notion that large datasets lead to better 

training which can lead to best accuracies. But collecting enough data 
to create a suitable dataset can be a challenging task at times. The data 
augmentation mechanism is frequently employed to generate a large 
volume of training data by adding synthetic data to the dataset. These 
synthetic data may consist of copies of existing data but with minor 
changes or completely new data created from the data already on the 
dataset [49].

Some examples of data augmentation were:

• Cropping: The process involves trimming the image, thus 
decreasing its input size;

• Rotation: Consists in rotating the image, between 1 and 359 
degrees;

• Translation: This process involves in moving the image along the 
x-axis or y-axis (left, right, up or down);

• Flipping: The image is flipped vertically or horizontally;

• Scalling or resizing: The image is resized to a given size;

• Noise injection: The process entails adding a matrix of randomly 
generated values;

• And other methods that are more complex to achieve.

For the problem meant to be solved which was the classification of 
mel spectrograms, the data augmentation that we used was flipping. 
With this flipping method we were able to duplicate the number of 
entries of the dataset, where we performed a horizontal flip in each 
entry. This resulted in a dataset with 3440 mel spectrograms, 1720 for 
each class.

This flip method was most useful in violence entries because 
some of the entries had violence since the start and it would calm 
down later in the audio. But after this data augmentation, we were 
able to show that it also can start with a calm environment and 
then escalate the situation to pure violence. The Fig. 4 ilustrates 
this last case, where in a) we see a mel spectrogram taken from an 
audio with violence and in b) this same mel spetrogram after being 
flipped. Every mel spectrogram had also his axis removed for the 
final dataset.

F. Algorithms
This section provides an overview of all the algorithms evaluated 

in this project. The tested algorithms include Convolutional Neural 
Network (CNN), EfficientNetB0, EfficientNetB1, EfficientNetB2, 
MobileNet, MobileNetV2, ResNet50, VGG16, VGG19, and Xception. 
The selection of these models is supported by the findings from the 
literature review.

Convolutional Neural Network (CNN) is a deep learning algorithm 
used for image classification. Its architecture was inspired by the 
human brain. This network can extract features directly from the 
image without requiring human assistance [50].

EfficientNets are a type of artificial neural networks that take into 
account the scaling process and the importance of the base network. 
They feature a unique mechanism called the compound scaling 
method, which enables the network to be uniformly scaled in terms of 
depth, width, and resolution. The base network is the EfficientNetB0 
(for example, EfficientNetB1 is a scaled version of EfficientNetB0). 
These networks can achieve better performance than existing CNN 
models while using less number of parameters [51] . EfficientNetB0, 
EfficientNetB1, and EfficientNetB2 belong to the EfficientNet family 
of image classification models. Here are the key distinctions between 
these three models: i)Depth: EfficientNetB0 has the fewest layers with 
20 convolutional layers, while EfficientNetB1 has 23 convolutional 
layers, and EfficientNetB2 has 26 convolutional layers; ii) Width: 
As we progress from B0 to B2, the width of the network increases. 
This means that the number of channels in each convolutional layer 
is larger in EfficientNetB2 than in EfficientNetB1, and larger in 
EfficientNetB1 than in EfficientNetB0; and iii) Resolution: The input 
resolution of EfficientNetB2 is higher than that of EfficientNetB1, 
and EfficientNetB1 has a higher resolution than EfficientNetB0. 
Consequently, EfficientNetB2 is better equipped to handle high-
resolution images. In general, moving from EfficientNetB0 to 
B2 results in a model that is deeper, wider, and more capable of 
processing high-resolution images. However, with each step up the 
scale, the model also becomes more computationally demanding. The 
choice of which model to use depends on specific task requirements, 
including available compute resources and the resolution of the input 
images [51].

MobileNet was designed for efficient deployment on mobile and 
embedded devices with limited computational resources. This network 
is based on a CNN and uses depthwise separable convolutions, which 
leads to a decrease in the number of parameters when comparing to 
networks with regular convolutions and with the same depth. This 
process allows the network to be a lighter neural network [52].

The Residual Network (ResNet) was created to address the issue of 
the vanishing gradient problem, making it possible to train a network 
with more than 1000 layers [7].

VGG, an acronym for Visual Geometry Group, is a deep 
convolutional neural network (CNN) architecture that is composed of 
multiple layers. This model is used for image classification and has 
been trained using the ImageNet dataset, making it a popular choice 
for transfer learning. VGG16 means that the neural network has 16 
layers, while the VGG19 has 19 layers [53].
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Fig. 4. Horizontal flipping of a spectrogram.
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Xception is a network developed by Google, for image classification 
tasks. It uses the idea of depthwise separable convolution layers that 
decreases the computacional cost, and it was designed to be a more 
efficient alternative for the overall Inception architectures [54].

These models have been developed specifically for image 
classification tasks. EfficientNet is a family of optimized and efficient 
models that also achieve top-notch accuracy in image classification. 
MobileNet, on the other hand, is a family of lightweight and fast models, 
making them ideal for deployment on mobile and embedded devices. 
ResNet50 is a CNN architecture that cleverly employs skip connections 
to address the vanishing gradient problem during training, enabling 
the creation of very deep neural networks without compromising 
performance. VGG16 and VGG19 are CNN architectures known 
for their utilization of small 3x3 convolutional filters. While they 
demonstrate strong performance in image classification tasks, they can 
be computationally expensive during both training and deployment. 
Lastly, Xception is a CNN architecture that incorporates depthwise 
separable convolutions, performing a depthwise convolution followed 
by a pointwise convolution. This design results in better performance 
with fewer parameters compared to other architectures.

G. Training Details
As to prepare for the training of the algorithm, the dataset was 

divided initially into train and test. We decided that 80% of the dataset 
would be for the training, and 20%for the testing, giving a total of 
2752 entries for training and 688 entries for testing (equal distribution 
between classes). With the necessity of a validation set, we used the 80% 
for training where 80% of those would be for training and the other 20% 
would be for validation. Ending the split phase, the train set consisted 
of 2202 entries, validation set had 550 entries, and the test set had 688.

Table II shows the class distribution between the three sets (train, 
validation and test set).

TABLE II. Train, Validation and Test Set

Dataset Violence Non violence Total
Train 1101 1101 2202

Validation 275 275 550
Test 344 344 688

All the algorithms used the same callbacks: EarlyStopping2, 
ReduceLROnPlateau3, ModelCheckpoint4, and TensorBoard5. The 
EarlyStopping was meant to stop the training of the algorithm in case 
the validation loss was not getting better. It had a patience of 25 for the 

2   https://keras.io/api/callbacks/early_stopping/
3   https://keras.io/api/callbacks/reduce_r_on_plateau/  
4   https://keras.io/api/callbacks/model_checkpoint/
5   https://www.tensorflow.org/

CNN and 10 for the other algorithms. The ReduceLROnPlateau would 
reduce the learning rate if the validation loss did not improve; we used 
a factor of 0.1 for every algorithm, a patience of 10 for CNN and 5 
for the rest of the algorithms. The ModelCheckpoint would save the 
model weights in a file. To visualize all the training done (accuracy and 
loss during the different epochs) it was used the callback TensorBoard.

The Table III shows all the training details for each algorithm. All 
of them used Adamax as optimizer, with a learning rate of 0.001. CNN 
was meant to run for 200 epochs, while the others ran for 40 epochs. 
Batch size used was 64, with a resize to (150,150) on each entry (mel 
spectrograms). The last column of the table (EarlyStopping) shows the 
epoch that the algorithm stopped the training because of the callback 
EarlyStopping.

As pre-trained networks on ImageNet have demonstrated 
remarkable results across multiple fields such as image classification 
datasets, object detection, action recognition, and more [55], we 
decided that all the algorithms would use the weights from training 
the network on ImageNet dataset. Those weights are available on the 
python library Keras6.

The training was done on a computer with a GeForce GTX 1070 Ti, 
16GB RAM, and a AMD Ryzen 5 2600 as CPU.

IV. Results and Discussion

Table IV shows the best results obtained by the different algorithms, 
with all values corresponding to the epoch that achieved the best 
validation loss.

The VGG16 network performed better on the test in terms of 
accuracy (91.86%) than VGG19 (91.28%). However, it has slightly 
worse test loss compared to VGG19. Of the transfer learning networks, 
Xception had the lowest test accuracy at 90.70%, while ResNet50 had 
a slightly better result at 90.84%. Both had a similar test loss that was 
around 0.25.

In regards to the MobileNet family of networks, MobileNet achieved 
superior results in training, validation, and test, even reaching an 
accuracy of 93.31% on test. Nevertheless, MobileNetV2 also performed 
well on test with an accuracy of 92.44% when compared to the 
previously evaluated networks.

The family of EfficientNet achieved the best results, with 
EfficientNetB1 achieving the highest accuracy in the test (95.06%), 
followed by EfficientNetB0 with 94.19%. Moreover, in terms of test 
loss, EfficientNetB1 had the best performance with a loss of 0.1685, 
followed by EfficientNetB0 with 0.1772. Although EfficientNetB2 
had the weakest performance within the family, it still achieved a 
satisfactory accuracy of 92.88%.

6   https://keras.io/

TABLE III. Details of the Training for Each Algorithm

Algorithm Optimizer Learning Rate Epochs Batch Resize EarlyStopping
CNN Adamax 0.001 200 64 (150,150) 82

EfficientNetB0 Adamax 0.001 40 64 (150,150) 28

EfficientNetB1 Adamax 0.001 40 64 (150,150) 31

EfficientNetB2 Adamax 0.001 40 64 (150,150) 21

MobileNet Adamax 0.001 40 64 (150,150) 23

MobileNetV2 Adamax 0.001 40 64 (150,150) 20

ResNet50 Adamax 0.001 40 64 (150,150) 14

VGG16 Adamax 0.001 40 64 (150,150) 16

VGG19 Adamax 0.001 40 64 (150,150) 15

Xception Adamax 0.001 40 64 (150,150) 20
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Accuracy and loss are the primary metrics used to evaluate the 
behavior of various algorithms. However, there are other metrics that 
assist in the evaluation of algorithms, and these metrics are widely 
used in the world of ML. The metrics that are often used to evaluate 
the algorithm are: precision, recall, and f1-score [56].

Table V presents the recall, precision, and f1-score values for each 
class, with the value 0 representing the non-violence class and the 
value 1 representing the violence class.

The outcome of an algorithm can fall into four distinct categories, 
namely, TP (True Positive), TN (True Negative), FP (False Positive), and 
FN (False Negative). When considering violence entries as "Positive" 
and non-violence entries as "Negative," TP represents the correctly 
predicted violence entries, TN denotes the correctly predicted non-
violence entries, FP includes the misclassified non-violence entries, 
and FN comprises the misclassified violence entries. These four 
categories collectively form a matrix known as the confusion matrix, 
which effectively reflects the algorithm’s performance.

Taking into account the concept of accuracy and the four 
aforementioned values, the formula is as follows:

 (1)

In contrast, the precision indicates the number of correct positive 
forecast (Equation (2)).

 (2)

The recall, as stated in Equation (3), represents the count of true 
positive cases that the algorithm correctly predicted.

 (3)

Finally, the f1-score (Equation (4)) combines the precision with 
the recall, in order to produce a value that represents both weights 
(precision and recall) in a balanced way.

 (4)

EfficientNetB0 achieved the highest precision of 96% for the 
non-violence class, although its precision for the violence class was 
not as high. Nevertheless, it had the highest recall for the violence 
class, with 96%. EfficientNetB1 came in second for precision for 
the non-violence class with 95%, and the same precision value was 
obtained for the violence class. Moreover, EfficientNetB1 attained 
a recall of 95% for both classes, and the f1-score demonstrated 
identical results of 95%. EfficientNetB2 achieved a value of 93% in 
all the analyzed fields.

MobileNetV2 had the highest recall for the non-violence class at 
96%. However, it had the poorest recall for the violence class, which 
is an important consideration when choosing which algorithm to 
use, even though it had the highest precision for the violence class. 
The MobileNet algorithm presented good results in all fields of the 
confusion matrix, even though it did not perform the best when 
compared to all the algorithms.

Although MobileNetV2 had good accuracy and precision for the 
violence class, this network is not suitable for classifying violent inputs 
as it has the lowest recall for this class, which is the most important 
class to classify.

TABLE IV. Accuracy and Loss on the Train, Validation and Test Set, for Each Algorithm

Algorithm Train Train Loss Validation Validation Loss Test Test Loss

CNN 89.28 0.2827 90.00 0.2579 89.53 0.2877

EfficientNetB0 95.19 0.1427 91.09 0.2030 94.19 0.1772

EfficientNetB1 95.19 0.1328 91.92 0.1912 95.06 0.1685

EfficientNetB2 91.05 0.2178 91.82 0.2117 92.88 0.2139

MobileNet 92.51 0.2087 89.82 0.2090 93.31 0.1926

MobileNetV2 88.74 0.2367 88.36 0.2457 92.44 0.2054

ResNet50 83.11 0.3583 89.64 0.2436 90.84 0.2535

VGG16 88.33 0.2679 88.00 0.2873 91.86 0.2259

VGG19 87.33 0.3016 86.55 0.3270 91.28 0.2238

Xception 92.14 0.2056 87.82 0.2967 90.70 0.2527

TABLE V. Results From Precision, Recall and F1-Score of the Algorithms

Algorithm Precision Recall F1-Score

0 1 0 1 0 1

CNN 0.89 0.90 0.90 0.89 0.90 0.89

EfficientNetB0 0.96 0.92 0.92 0.96 0.94 0.94

EfficientNetB1 0.95 0.95 0.95 0.95 0.95 0.95

EfficientNetB2 0.93 0.93 0.93 0.93 0.93 0.93

MobileNet 0.93 0.94 0.94 0.93 0.93 0.93

MobileNetV2 0.90 0.96 0.96 0.89 0.93 0.92

ResNet50 0.93 0.89 0.89 0.93 0.91 0.91

VGG16 0.92 0.92 0.92 0.92 0.92 0.92

VGG19 0.91 0.92 0.92 0.90 0.91 0.91

Xception 0.92 0.89 0.89 0.92 0.91 0.91

Class 0 represents non-violence inputs; 1 represents violence inputs.
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Evaluating all the results obtained in the two tables, the algorithms 
most suitable for this problem are: EfficientNetB1, EfficientNetB0, and 
MobileNet.

A. (RQ1) Can Violence Inside a Car Be Effectively Detected Using 
Audio Data and Deep Learning Models?

Violence inside a car can be effectively detected using audio data 
and deep learning models. Audio-based violence detection has gained 
significant attention in recent years, and deep learning models have 
shown promising results in accurately classifying violent and non-
violent audio events.

The results presented in Table 4 demonstrate the high accuracy 
in detecting violence behavior. As previously mentioned, the models 
from the EfficientNet family showcased the best performance. When 
compared to the background, particularly the study by Duraes, Santos, 
Marcondes, Hammerschmidt and Novais [18], our models yielded 
superior results. It is important to note that the other background 
studies have not been specifically applied to the unique environment 
inside a car.

B. (RQ2) Can the Use of Data Augmentation Enhance the 
Accuracy of Violence Detection Results?

Data augmentation typically leads to several benefits in the 
context of deep learning models:i) improved model accuracy, by 
creating variations in the training data, data augmentation can 
enhance the accuracy of deep learning models, particularly when 
dealing with small datasets; ii) increased amount of training data, 
because obtaining large amounts of labeled data can be challenging 
and costly; iii) reduced overfitting, because overfitting occurs when a 
model becomes overly complex and starts fitting noise in the training 
data instead of the underlying pattern and data augmentation 
introduces variations to the training data, mitigating overfitting and 
preventing the model from relying too heavily on a limited number 
of training examples; iv) better generalization by adding variability 
to the training data through data augmentation aids deep learning 
models in generalizing better to new and unseen data, leading to 
improved performance in real-world scenarios; and v) faster model 
development, where data augmentation can accelerate the model 
development process by reducing the time required to collect and 
label large datasets for training deep learning models.

In comparison with the previous study [26], where data 
augmentation was not applied, the results presented in this paper 
show a better increase in performance.

V. Conclusion

The fact that violence is very present in today’s society makes the 
study of violence detection an asset.

Determining how to capture violence is the primary factor that 
determines the selection of an architecture. Studies have shown 
that violence can be captured using either video (cameras) or audio 
(microphones). Since the use of audio to detect violence has more 
advantages when compared to video, it was decided that audio would 
be the mechanism to use.

To enable ML architectures to accurately classify audio, it was 
necessary to find a way to represent all the information contained in it 
in a compact way (such as an image). Mel spectrograms were utilized 
to represent audio as images for this task, since this approach is 
commonly employed and yields good accuracies in audio classification.

Datasets that contained the necessary constraints for the problem 
were also sought. However, there was no dataset that had all the 
necessary constraints, so a dataset created by researchers was 

preprocessed accordingly. A data augmentation process was also 
applied to the dataset, resulting in a dataset with twice the amount 
of data.

For the final evaluation, the custom CNN algorithm, EfficientNetB0, 
EfficientNetB1, EfficientNetB2, MobileNet, MobileNetV2, ResNet50, 
VGG16, VGG19, and Xception were evaluated. The algorithm that 
achieved the highest accuracy was EfficientNetB1 with an accuracy 
of 95.06%, followed by EfficientNetB0 with 94.19%, making the 
EfficientNetB1 the best algorithm to use in order to detect violence 
in audio. Additionally, it was found that the worst neural network 
for classifying violence inputs is MobileNetV2, so it should not be the 
most suitable for solving the problem at hand.

In future work, the intention is to compare the current approach 
with other methods, specifically those that involve transforming 
audio data into text and subsequently analyzing the text. This could 
involve using techniques such as automatic speech recognition (ASR) 
to convert the audio content into text transcripts, which can then be 
further processed and analyzed using natural language processing 
(NLP) or other text-based analysis methods. By exploring these 
alternative approaches, researchers aim to gain insights into the 
effectiveness and suitability of different methodologies for violence 
detection and potentially discover novel insights from the textual 
representations of audio data.

Appendix

On Appendix we present Fig. 5 to Fig. 14, which contain the detailed 
training made during the experience.

Fig. 5 depicted the accuracy and loss training curves over the epochs 
for CNN model. The model achieved it is best results after 80 epochs.
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Fig. 5. a) Accuracy and b) loss curve for CNN. Training is represented by the 
orange line, and validation by the blue line.

Fig. 6 illustrated the accuracy and loss training curves across the 
epochs for the model EfficientNetB0. The model attained its optimal 
performance after 26 epochs.
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Fig. 6. a) Accuracy and b) loss curve for EfficientNetB0. Training is represented 
by the orange line, and validation by the blue line.

Fig. 7 displayed the accuracy and loss training curves throughout 
the epochs for the model EfficientNetB1. The model achieved its best 
performance after 30 epochs. However, it should be noted that the 
validation line showed some instability during the training process.
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Fig. 7. a) Accuracy and b) loss curve for EfficientNetB1. Training is represented 
by the orange line, and validation by the blue line.

Fig. 8 depicted the accuracy and loss training curves over the 
epochs for the model EfficientNetB2. The model achieved its peak 
performance after 20 epochs. However, it should be acknowledged 

that the validation line displayed some instability around the 14th 
epoch during the training process.
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Fig. 8. a) Accuracy and b) loss curve for EfficientNetB2. Training is represented 
by the orange line, and validation by the blue line.

Fig. 9 presented the accuracy and loss training curves across the 
epochs for the model MobileNet. The model reached its optimal 
performance after 22 epochs.
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Fig. 9. a) Accuracy and b) loss curve for MobileNet. Training is represented by 
the orange line, and validation by the blue line.
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Fig. 10. a) Accuracy and b) loss curve for MobileNetV2. Training is represented 
by the orange line, and validation by the blue line.

Fig. 10 illustrated the accuracy and loss training curves throughout 
the epochs for the model MobileNetV2. The model achieved its best 
performance after 19 epochs. However, it is important to note that the 
validation line showed some instability around the 13th epoch during 
the training process.

Fig. 11 displayed the accuracy and loss training curves over 
the epochs for the model ResNet50. The model achieved its best 
performance after 12 epochs.
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Fig. 11. a) Accuracy and b) loss curve for ResNet50. Training is represented by 
the orange line, and validation by the blue line.

Fig. 12 showed the accuracy and loss training curves throughout 
the epochs for the model VGG16. The model achieved its peak 
performance for accuracy after 14 epochs. However, it is important to 
note that the validation performance stabilized after 6 epochs.
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Fig. 12. a) Accuracy and b) loss curve for VGG16. Training is represented by 
the orange line, and validation by the blue line.

Fig. 13 displayed the accuracy and loss training curves over the 
epochs for the model VGG19. The model reached its optimal accuracy 
after 14 epochs.
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Fig. 13. a) Accuracy and b) loss curve for VGG19. Training is represented by 
the orange line, and validation by the blue line.



Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 83 -

Fig. 14 illustrated the accuracy and loss training curves throughout 
the epochs for the model Xception. The model achieved its best 
accuracy after 19 epochs.
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Fig. 14. a) Accuracy and b) loss curve for Xception. Training is represented by 
the orange line, and validation by the blue line.

Except for the CNN model, which required 80 epochs for training, 
all the other models needed less than 30 epochs for training. Among 
them, the VGG16 model had the lowest number of epochs needed for 
training.
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