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Abstract

Due to technological advances, Internet of Things (IoT) systems are becoming increasingly complex. They are 
characterized by being multi-device and geographically distributed, which increases the possibility of errors 
of different types. In such systems, errors can occur anywhere at any time and fault tolerance becomes an 
essential characteristic to make them robust and reliable. This paper presents a framework to manage and 
detect errors and malfunctions of the devices that compose an IoT system. The proposed solution approach 
takes into account both, simple devices such as sensors or actuators, as well as computationally intensive 
devices which are distributed geographically. It uses knowledge graphs to model the devices, the system’s 
topology, the software deployed on each device and the relationships between the different elements. The 
proposed framework retrieves information from log messages and processes this information automatically to 
detect anomalous situations or malfunctions that may affect the IoT system. This work also presents the ECO 
ontology to organize the IoT system information.
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I. Introduction

According to [1], 2023 some 29.3 billion devices will be connected 
to IP networks. This more than triples the world’s population. In 

fact, there will be 3.6 devices per person, a considerable growth of over 
50% compared to 2018. Half of these devices will make machine-to-
machine (M2M) connections, totalling 14.7 billion M2M connections. 
This increase in the number of devices and connections will produce an 
enormous amount of data and create new opportunities for innovative 
applications in domains such as healthcare [2], environmental sciences 
and industrialization [3], etc. The inclusion of IoT in these domains 
requires caution in large-scale implementations because of the risks of 
saturation of system resources and due to security issues. In many cases, 
IoT devices are used to improve people’s daily activities or optimize 
important processes in companies, which may expose data [4].

Albeit security of IoT is a major topic addressed in literature [5], 
there are other important problems that condition the expansion 
and implementation of IoT solutions. For example, managing 
a large volume of devices requires dealing with problems like 
communications interruptions (network connectivity) [6], 
discontinuity of services, discharge of batteries (energy saving), 
and problems with the operating environment (overheating, storage 
management, cybercrime) [7]. All of these issues may apply to any 
of the devices that integrate an IoT system.

Self-repair or self-healing is defined as a property of systems that 
are able to identify and diagnose problems that appear during their 
operation and to determine and propose solution strategies in an 

autonomous way [8]. More specifically, self-healing provides reliability 
to a system through responsibility and awareness of the environment. 
This allows to automatically detect problems and to propose solutions 
to unwanted situations. In order to do so, a self-healing IoT system 
must incorporate monitoring, awareness, and knowledge to detect 
unwanted states. When a problem is detected, the system generates 
and executes plans with appropriate corrective actions [9], [10].

In this work, we propose a framework for the specification and 
automatic detection of problems that may occur in an IoT system. This 
framework consists of independent agents that are distributed on the 
different devices that make up a system. Setting out from messages 
stored in log registers, these agents extract information about the 
operation of devices and the software deployed on them, and process 
it to identify operating problems. The proposed framework uses 
knowledge graphs (ontologies) to structure the information, event 
stream processing to identify problems, and automatic reasoning to 
infer additional knowledge related to the operation and potential 
problems of a system. The edge-cloud ontology (ECO) has been 
designed to structure the system information and possible problems.

The rest of the article is divided into the following sections. 
Section II contains the state of the art. Section III shows the proposed 
architectural solution. Section IV details how semantic technologies 
are used to represent and process the information for identifying 
existing problems. An example is presented in Section V. We conclude 
the paper and point to some future lines of research in Section VI. 
Table I shows the list of acronyms.

II. Related Work

Failures of system elements in IoT systems are usually considered 
as something inevitable. It is important to consider this possibility 
and to integrate mechanisms that ensure that the infrastructure will 
continue to function without interruption, even if some elements fail.
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TABLE I. List of Acronyms and Abbreviations Used

Abbreviations Explanation
ASS Action Schedule Service
CEP Complex Event Processing
CLF Common Log Format
CMA Complex Management Agent
DIR Deployed Infrastructure Repository
DPR Detected Problem Repository
ECO edge-cloud ontology
ELFF W3C Extended Log File Format
DPR Detected Problems Repository
FD Fog Devices
IoT Internet of Things
IS Inference Service
KG knowledge graphs
LMA Lightweight Management Agent
LMS Log Management Service
MMS Middleware Management Service
OS operating system

SAREF
Smart Applications REFerence 
Ontology

SD Simple Devices
SmD Smart Devices
SOSA/SSN Semantic Sensor Network ontology

Some works, like [11]–[13], propose fault-tolerant solutions to 
recover IoT systems deployed in the cloud and edge computing. These 
works are mainly focused on managing problems associated with 
resource exhaustion and performance degradation. However, fault-
tolerant distributed systems must be able to go further and handle 
finer-grained problems such as error management in applications 
deployed in cloud and edge computing. To this respect, [14], [15] 
and [16] propose solutions based on micro-services. These works put 
forward mechanisms for system recovery, but do not describe the 
previous error detection process. Still, information on the causes of 
errors and the elements involved can greatly facilitate the generation 
of potential solutions to a problem.

A starting point for troubleshooting is to know if errors exist and 
when they appeared. Usually, applications write status information 
in log files, which are analyzed manually or automatically to find 
out if there are any problems. Normally, these logs have to be parsed 
before their contents can be interpreted [17]. A common approach 
to parse logs is to detect or match with specific error patterns [18], 
[19]. Other solutions use data mining techniques such as SLCT [20], 
and its extension LogCluster [21]. These works require a large data 
set with a large log history to generate efficient log patterns. Still, in 
recent and very specific or uncommon systems it is complicated to 
apply these solutions, because there may not be enough information 
to generate efficient patterns. Some works, such as [14], [15] and [16], 
also consider mechanisms to recover systems from errors and bring 
them to the desired operating status. These works use information 
repositories and catalogues to have a record of the architecture of 
services that make up an IoT systems. However, such repositories are 
specifically designed for the proposed solutions and do not have a 
formal specification of how their information is structured.

We claim that working with structured information can largely 
facilitate error detection because it allows specifying explicitly 
the relationships among the different information elements at 
a conceptual level, and enables the reuse of information across 
different systems. In particular, knowledge graphs and ontologies 
can help structuring the failure-related information available in 
an IoT system. Furthermore, inference based on ontologies may 

even infer additional information that is not explicitly available. 
As described in Noy and McGuiness [22], using ontologies 
provides several benefits: (1) they share a common understanding 
of information structure among software agents; (2) allow reuse 
of domain knowledge; (3) domain assumptions are made explicit; 
(4) domain knowledge can be analyzed. Taking advantage of all 
these benefits is key to interoperability. As indicated by Bittner et 
al. [23], as well as by Jasper and Uschold [24], ontologies facilitate 
the semantic interoperability between humans, computers, and 
systems. They consider them as a facilitating technologies to 
achieve communication interoperability between software systems.

The use of ontologies in cloud systems [25] has already been 
applied to different areas such as resource management [26], 
service discovery [27], [28], security [29] or even to improve 
system interoperability. In this line, mOSAIC [30] presents a cloud 
ontology that provides a detailed description of cloud computing 
resources. mOSAIC focuses on promoting transparency in accessing 
multiple clouds. However, mOSAIC has not been updated since 
its development more than 10 years ago, which implies that new 
elements that have appeared in the area during this time are not 
contemplated in this ontology. As a result, other works such as [31] 
and [32] have appeared so as to try to address these limitations. 
In [31], a solution for deploying applications on public and private 
clouds is shown. The solution uses a set of rules to control the 
deployment of applications. This rule set uses the CAMEL modeling 
language1. ModaClouds [32] is another work that uses ontology-
based models to perform semi-automatic code transformations 
allowing to obtain compatible implementations in public and hybrid 
cloud provider platforms. The aforementioned works propose 
mechanisms to improve the interoperability of services hosted by 
different service providers, improve the description of existing 
interfaces and even provide decision-making support. However, 
these projects do not support a broad heterogeneous environment, 
i.e., they are limited to resource management, hardware accelerators 
and provide resource abstractions in the cloud. In general, these 
works are not oriented to work with IoT devices such as sensors, 
actuators, gateways, etc.

In this line, specific ontologies have been developed to model the 
capabilities, characteristics and descriptions of systems that integrate 
IoT devices. The Semantic Sensor Network Ontology (SOSA/SSN) [33] 
is one of the most prominent efforts in this area. SOSA/SSN describes 
sensor and actuator networks, their capabilities, features of interest, 
and observations and serves as a starting point for the creation of 
new ontologies that integrate these devices. Another effort similar 
to SOSA is the Smart Applications REFerence Ontology (SAREF) [34] 
developed by the ETSI’s SmartM2M technical committee. SAREF 
allows the description of devices and their functions and is aligned 
with the oneM2M ontology [35], which allows syntactic and semantic 
interoperability between devices and external systems. SAREF and 
SSN are ontologies that are widely used and there are works that 
extend their scope of application to other more specific domains. For 
example, CASO [36] and EEPSA [34] extend SAREF for its application 
in agriculture and smart buildings domains, respectively. In the 
case of the SSN ontology, the SSN System module allows modeling 
systems, capabilities and things.

Still, despite the number of existing original ontologies and their 
extensions, to the best of our knowledge, there are no ontologies 
capable of providing mechanisms that integrate information from 
systems in the cloud, at the edge computing with IoT devices. For 
this reason, we created and present in this article an ontology for 
this purpose.

1  https://camel-dsl.org/
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III. Proposed Solution

Fig. 1 shows the type of infrastructures we aim at in this work. The 
architecture depicts a generic IoT system made up of sensors and other 
devices that allow the collection of information and interaction with 
the physical world. In general, the information collected by IoT devices 
in lower layers is processed, filtered out, and sent to higher levels for 
further analysis. As we will present in this section, we propose the 
inclusion of intelligent agents that will monitor the operation and 
status of the different devices in the system.

Application
Layer
Cloud Layer

Network
Layer

Fog Layer
Routers/Gateways

4G 5G

Fog Devices

Smart Devices

Simple Devices

Edge Layer

Fig. 1. Typical layered architecture with the distribution of devices that form a 
generic IoT system. Higher layers include devices with higher computational 
resources. Green, red and orange arrows represent interactions within 
different applications.

In the following, we begin with a description of the reference edge-
cloud architecture we focus on in this work. Then, we present our 
architectural proposal for problem identification.

A. Reference Architecture
In the structure of the IoT system described in Fig. 1, there are 

several types of devices distributed across different layers. A basic IoT 
system is composed of IoT devices deployed at some physical location, 
for example, collecting data from the environment and forwarding 
them to some remote machine for their processing. With this basic 
infrastructure, systems can become more complex by adding devices, 
services or applications.

The basic architecture is composed of five layers, each of them 
grouping different systems, devices and other computational 
resources, which may involve different service, computation and 
communication providers. These layers are common to different 
IoT systems; in fact, Fig. 1 shows different IoT systems (identified 
by red, green and orange arrows) that are extended across different 
processing layers. The Edge Layer is composed of IoT devices such as 
sensors, actuators, etc. It is the layer that interacts with the physical 
world. The Fog Layer connects the devices at the Edge Layer with 
upper layers and can provide basic processing services. The Network 
Layer is in charge of managing communications with data centres 
located in remote locations. Large-scale computational resources 
are provided on the Cloud Layer. Finally, applications, typically 
processing and producing high-level information, are running on the 
Application Layer.

For the two lower layers, in this work, we focus on three types 
of devices, namely simple, smart and fog devices. Their functionality 
highly depends on their computational resources. Simple Devices 
(SDs) are low-cost devices (e.g. sensors and actuators). SDs have low 
computational resources and basic capabilities, for example, to take 
measurements (depending on the type of physical sensor installed) 
and send those values to other remote devices where that information 
is processed. SDs usually use batteries and are typically deployed in 
remote physical environments.

Smart Devices (SmDs) have functions similar to SDs, but with more 
computing power, which allows them to process the information 
collected on the same device. For example, in a cultivated field, devices 
can be deployed to monitor the appearance of imperfections on plant 
leaves. In that case, the device would have a camera to take pictures 
of plant leaves, and a running algorithm to detect biological problems 
(e.g. musty, dry, etc.), which would be forwarded to a processing node 
in the upper layers.

Finally, Fog Devices (FDs) are located at the fog layer and have 
some computing capacity deployed somewhere on a local network. 
These devices receive information from SmDs and SDs and carry 
out processing tasks such as aggregation, integration, filtering, 
statistics, etc.

B. Proposed Architectural Solution
During normal operation, the software deployed on SDs, SmDs 

and FDs might be subject to errors and malfunctioning. Intelligent 
management techniques are required to deal with such errors and 
to make the systems efficient and stable. For this purpose, in our 
work we propose to use distributed intelligent agents with the aim 
of monitoring and controlling the software deployed on each of the 
devices. We focus on distributed systems where software is deployed 
on lower-level devices as well as on data centres to perform the 
assigned functions.

Usually, the software is installed and deployed on each device in 
the traditional way. However, we recommend encapsulating such 
software in software containers and then deploying such containers 
on devices. Software containers are a type of lightweight virtualization 
[37] that allows running multiple isolated software instances on a 
single operating system (OS) without the need to have an OS for each 
instance. This type of virtualization is also called containerization and 
provides encapsulation for each container and resource management. 
It makes this technology lighter and more efficient than traditional 
virtualization technologies which require an operating system on each 
instance. The encapsulation offered by containers does not affect the 
normal operation of the software running inside them and facilitates 
their deployment and management. Containers are managed 
independently of other containers and the OS installed on the device. 
Generally, a middleware (also called framework) is installed between 
the OS and the containers. The middleware is responsible for the 
management of containers and provides mechanisms and interfaces to 
obtain information and control them.

Using software containers is not only an advantage in terms of ease 
of management but also offers heterogeneity in terms of being able to 
run the same container on different devices. As software containers 
require to work a middleware placed between the device’s operating 
system and the containers, the same container can be executed 
on different devices if these devices have the middleware installed. 
The container will be executed on the device regardless of the type 
of OS and hardware that integrates the device. This is important for 
the solution proposed in this work because it facilitates moving and 
running software services between devices.

The container middleware provides mechanisms for starting, 
stopping and deployment of containers regardless of the device 
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where it is deployed or the software it encapsulates. Fig. 2 shows our 
proposal of a container-based software architecture that is to be used 
on the devices deployed in the architecture of Fig. 1. Using makes it 
easy to deploy software on any device in a system. This is because 
most container frameworks can connect to remote repositories where 
the software has been previously uploaded to easily download, install 
and run the desired software on any particular device. This feature 
facilitates the resolution of device failures since software from devices 
with errors can easily be transferred to other devices.

deployOn

Containers
Basic Node Architecture

C1 C2 Cn

Middleware

Operating System

5G,
WiFi,
LoRa...

Fig. 2. Device architecture that manages installed software through software 
containers.

In this paper, we propose two types of intelligent agents that 
control the functioning of the system. The first one is the Lightweight 
Management Agent (LMA), which is responsible for collecting 
information about the software and device on which it is deployed. 
LMAs send the collected information and can receive actions to apply 
on the device. The second type of agent is the Complex Management 
Agent (CMA). CMAs are able to carry out more complex reasoning 
processes, including receiving information from LMAs, detecting 
existing problems and generating local actions to alleviate existing 
problems and bring the device operation back to a desired state. 
CMAs are typically located in the fog or in the cloud. CMAs are 
deployed at the fog layer to troubleshoot unwanted situations in local 
device networks. CMAs can also be deployed in the cloud where the 
CMA is responsible for managing problems that cannot be resolved 

on the fog level. CMAs are prepared to operate with limited resources 
but are also capable of dealing with complex problems by scaling the 
computational resources of the CMA. A CMA deployed in the cloud 
is capable of addressing problems using a large number of devices 
and parameters.

Fig. 3 shows the integration of the solution proposed in this work 
into the general architecture shown in Fig. 1. LMAs and CMAs are 
described in more detail below and Fig. 4 shows their integration on 
the different devices.

Application
Layer
Cloud Layer

Network
Layer

Fog Layer
Routers/Gateways

LMA

CMA
4G 5G

Fog Devices

Smart Devices

Simple Devices

Edge Layer

Fig. 3. Integration of the solution proposed in this paper into a generic IoT 
system.
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Service
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Fig. 4. Disposition and connections of agents, devices, services and software of elements contained in Fig. 1.
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1. Lightweight Management Agent
Lightweight Management Agents are deployed on IoT devices with 

low computational resources, such as SmDs. They read information 
about the operation and status of the device they control and, if 
situations are detected that require attention, collect the related 
information and send it to a CMA, which will process that information 
and propose corrective actions. LMAs extract information from log 
files generated by the deployed software, middleware (if installed) or 
operating system (OS).

The LMA architecture is composed of two services: the Log 
Management Service (LMS) and the Middleware Management Service 
(MMS). The Log Management Service is responsible for extracting the 
data provided from applications, middleware and OS. In addition, it 
periodically extracts information related to the operating status of the 
device (e.g. battery charge status, resource usage, etc.). This information 
may indicate whether the device is operating within pre-established 
security limits or may stop working when resources collapse. The LMS 
structures all the collected information following the RDF data model 
as a list of events using the ECO ontology (described below). Then, all 
the events are sent to be analyzed by a CMA.

The LMA can also receive actions to be applied to the device. Most 
actions are expected to be executed via the Middleware Management 
Service.

2. Complex Management Agent
Complex Management Agents are more complex than LMAs and 

they are typically deployed on devices located in the Fog layer of an 
IoT system. These devices are usually advanced routers, gateways 
or other network devices that, due to their computing power, can 
provide additional services to the local network. CMAs are in charge 
of processing the information obtained from LMAs, either related to 
detected malfunctions or to any other events. A CMA consists of five 
components: Complex Event Processing (CEP), Detected Problems 
Repository (DPR), Inference Service (IS), Deployed Infrastructure 
Repository (DIR) and Action Schedule Service (ASS).

The Complex Events Processing component introduces the events 
received from LMAs into a stream of events. CEP [38] is a technology 
that analyses continuous streams of events to identify complex 
patterns. CEP systems use elements such as timestamps and sliding 
windows. Several filters are continuously analyzing the stream in 
order to identify critical operating states, which are registered in the 
DPR. The DIR contains information about the local network topology 
(e.g. connections among devices, dependencies among software, etc.). 
The Inference Service inserts into the DIR additional information 
which is inferred from the identified problems (available in the DPR) 
and the current infrastructure status (available in the DIR). Finally, the 
ASS is in charge of proposing actions with the aim of reducing the 
impact of the identified problems.

IV. Semantic Technologies Supporting Problem 
Identification

As mentioned above, we propose a solution to detect problems or 
undesired operating states in distributed edge-to-cloud infrastructures 
based on collaborative intelligent agents. Lightweight agents at the 
edge collect basic pieces of information (raw events) that in correlation 
may lead to the identification of problems or undesired operating states. 
In this context, information about dynamic events and the system 
topology (e.g. physical and/or logical connections among devices 
and processes running on them) has to be represented and processed. 
We opt for using knowledge graphs (KG) [39] to represent such 
information. A knowledge graph is a way of describing information 
in a graph structure where nodes represent entities (individuals or 

types of elements) and edges represent relations between them. While 
KGs have been used in AI for a long time (also known as semantic 
networks), they have been gaining popularity in the last years [40]. 
A knowledge graph is a flexible and easy-to-extend representation 
model, which can be endowed with a schema or ontological model 
(aka T-Box), thus facilitating automatic inference processes.

In the rest of this section, we first (A) present an ontology for 
representing the information about the topology of an edge-cloud 
system and the problems that may occur during its operation. Then 
(B), we describe how to extract and represent basic information 
(events) about the status of devices while the IoT system is running. 
Finally, we show (C) how the combination of the knowledge graph 
and the generated events are used to identify existing problems in 
the system.

A. The Edge-Cloud Ontology (ECO)
The proposed solution uses a KG and it requires advanced 

mechanisms to manage that KG in a viable way. The KG organizes 
data related to the devices connected to the IoT system, the network 
topology that interconnects different devices, and the software 
deployed on the devices. Instead of developing an ontology from 
scratch, we have considered reusing existing ontologies and if 
necessary adapting them to meet our needs. In particular, the ECO 
ontology [41] is appropriate for the needs of the proposed system 
because it provides concepts and properties to represent the state of 
each of the devices that make up an IoT system.

Fig. 5 shows the main concepts and properties of the ECO ontology. 
The ECO ontology is based on the SEAS ontology [42] and adds new 
entities. These new entities allow for specifying the current state of 
an IoT system thanks to events generated during the operation of 
the integrated devices. When events are processed, it is possible to 
identify problems or undesired operating states that are modelled into 
the system by the eco:Problem entity.

The ontology classes and properties can be organised into three 
main groups describing: (i) the connections among physical devices 
forming the network topology,(ii) the software deployed on devices 
and their logical dependencies, and (iii) the events representing 
relevant states of devices and/or software, and the problems that define 
critical situations. In the following, we describe the main elements of 
each group.

The topology of the IoT infrastructure representing computational 
systems and how they are interconnected can be represented with the 
following classes:

• seas:System. This class describes systems that share connections 
with other systems;

• seas:Connection. A connection describes potential interactions 
between systems.

• seas:ConnectionPoint. This class models the connection between 
systems.

• eco:ComputingNode. This class represents any device with 
processing capability.

Knowing which software is deployed on each device and how 
software components logically depend on each other can be important 
in certain situations in which unexpected problems (e.g. connectivity 
failures) on one device may affect the behaviour of others.

• eco:Software. This class represents any type of software and 
can be instantiated through three different types of subclasses: 
eco:Application, eco:Service and eco:Middleware.

• eco:Application. This class is a type of software that represents a 
particular application. An application may be composed of one or 
more services of type eco:Service.
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• eco:Service. The Service class represents software services that 
are independent and have been designed to perform a specific 
function.

• eco:Middleware. This class is a type of Software that may contain 
applications or services. In practice, this class can refer to software 
frameworks on which applications run. An example of frameworks 
can be the Java virtual machine, the .NET framework, software 
container frameworks such as Docker, etc.

Finally, the ECO ontology allows the representation of events and 
problems that define critical situations.

• eco:Problem. This class models problems that may appear in the 
system. Six types of problems have been identified in this work.

• eco:ConnectionFailed. The class represents problems related to the 
connections between devices and refers to operating states related 
to the lack of connection between devices or software.

• eco:DataCollectionFailed. The DataCollectionFailed class is expected 
to be instantiated when a sensor has taken a measurement but 
the result obtained is erroneous (non-consistent value or values 
out of limits). The DataCollectionFailed class is oriented towards 
simple sensors measuring attributes like temperature, humidity, 
atmospheric pressure, etc.

• eco:DeviceInCriticalStatus. This class models a problem that 
represents a device that is in a critical state (that could stop 
working at any time). This situation can occur when the CPU is 
saturated, the available RAM memory is low, the free disk space is 
almost exhausted, the device battery is almost discharged or even 
if the device temperature is relatively high. All these situations are 
indicators that the device may not be working properly and may 
affect its performance.

• eco:MechanismError. This class models a problem on an actuator 
device, robot or any other device that has some physical 
mechanism. The entity models a physical operating problem. i.e. 
the device receives and processes the indicated actions, but cannot 
carry them out due to mechanical problems of the device itself.

• eco:ProblemWithPhysicalEnviroment. This class models real-world 
conditions that can adversely affect the functioning of specific 
devices. It is used to model physical aspects of the environment 
that may present a problem for specific devices. An example could 

be the level of luminosity of the environment in which a sensor or 
camera operates.

• eco:SoftwareMalfunction. This entity reflects problems related 
to the normal operation of software. It may also indicate that a 
software component is stopped.

• eco:Event. This entity represents an event that has been generated 
during system operation. The event contains relevant information 
that must be processed to evaluate whether the system is 
functioning correctly or whether there is an associated problem.

B. Raw Events Generation
The proposed solution requires knowing the current status of 

devices and software that is deployed in an IoT system. In this sense, 
log registers can be an important source of information since they will 
usually include information related to errors and operating status. 
There have been some efforts to standardize log files such as Common 
Log Format (CLF) [43], W3C Extended Log File Format2 (ELFF), 
RFC5424 [44] or RFC3164 [45]. CLF and ELFF provide guidelines 
for organizing the information contained in log files generated by 
web servers and RFC5424 or RFC3164 are oriented to define the 
transmission of messages generated by log systems. However, there 
is no general standard nor guidelines for defining log messages or 
how to structure them. This implies that developers are responsible 
for designing the structure of the log messages generated by their 
applications. To improve this situation, we propose some indications 
to take into account when software has to generate log messages. 
Basically, we propose to specify: i) what information will be introduced 
in the log file. ii) how this information will be structured and iii) where 
the log information will be available.

Specifying the information registered in each log message is 
not easy. Ideally, the information should be as complete as possible 
because it will describe in detail why the message was inserted in the 
log register. However, the nature of applications is very varied and 
this opens up a wide range of possibilities. We propose the use of a 
limited set of parameters, grouped by field of application or category, 
as shown in tables II, III and IV.

Table II contains parameters related to the operation of applications 
and, whether or not an application is encapsulated on containers. The 

2   https://www.w3.org/TR/WD-logfile.html
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table also presents some parameters related to the management of 
these containers. This information is published in the log register by 
the applications and by the container framework.

TABLE II. Parameters Registered by the Middleware

Params Description
softwareIsRunnig Whether the software is running.

actionsCarriedOut Last command executed in the Middleware 
(e.g. stop, start, ...)

numContainersDeployed Number of containers deployed in the 
framework.

numContainersRunning Number of containers running in the 
framework.

Table III presents specific domain application parameters, usually 
related to perception and actuation elements (e.g., sensors or actuators). 
These parameters try to collect common problems that occur when 
applications use such elements.

TABLE III. Parameters Registered by Domain Applications. They 
Indicate Problems With Measurements or Actuation Orders

Params Description

errorDescription Error message generated by the software.

OutOfRangeReading This error indicates that the measurement 
received from a sensor is outside specified 
limits.

abnormalReading Measurement taken from a sensor is invalid.

highLightConditions There is too much light in the physical 
environment.

lowLightConditions There is insufficient brightness in the 
physical environment.

errorInPhysicalMechanism There was a failure to activate an actuator. 
This error is usually associated with 
actuators rather than sensors, since 
actuators usually have physical mechanisms 
to interact with the physical environment.

Table IV presents a set of parameters that represent the current 
state of a device. Essentially, these parameters are intended to indicate 
the availability of resources. In our proposed solution, these values are 
obtained by the LMS by querying the operating system.

The proposed set of parameters is oriented to an IoT system (as 
shown in Fig. 1) and is intended to cover potential unexpected 
situations that may arise. The ECO ontology includes properties to 
represent those parameters.

TABLE IV. Parameters Related to Device Operation

Params Description

connectedToTheNetwork Whether the device is connected to a 
network.

droppedPackets Number of packets discarded per second.

receivedPackets Number of network packets received per 
second.

sentPackets Number of network packets sent per second.

deviceTemperature Device temperature.

meanPercentageUseOfCPU Percentage of CPU usage.

batteryChargeLevel Battery charge percentage.

freeRAM It is the free RAM memory space. It is 
measured in MBs.

freeDiskSpace It is the free disk space. It is measured in 
MBs.

Normally, applications record log messages to dedicated log files. 
However, in this paper, we propose using the log register provided by 
the operating systems since it is possible to access all the information 
about errors from a single point. Each log entry is organized into the 
following ordered list of attributes:

• Time: when a message is generated in the log register.

• Machine: indicates the name of the machine.

• Application: refers to the application, service, process, or software 
that generates the message

• Message: information regarding the event registered in the log. 
The content is represented as key-value pairs in JSON format.

The structure formed by the fields of each log entry facilitates the 
understanding of the information by humans and machines.

Table V shows an example extracted from a log register. In Linux the 
log register is called Syslog and contains all the log entries generated 
by the operating system. It has a semi-structured format where spaces 
separate multiple segments (timestamp, machine name, application 
name and message). Similarly, other operating systems have their own 
log systems (e.g. logcat in Android).

Line 1 has been generated by a Tomcat application server that 
shows, in the body of the message, information that the application 
has been started. Line 2 corresponds to the execution of a task that 
the OS had scheduled. Line 3 shows a message from the Docker 
(middleware) framework, structured as key-value parameters. This 
line specifies that a deletion task has been performed ("topic= /tasks/
delete type=event.TaskDelete") on a container ("container=ad9c..."). 
Line 4 presents information that has been entered by the LMA (called 
LMA1 in table V).

TABLE V. Parameters Related to Device Operation

Header entry 
Time Machine Application Message entry 

Messages
1 Jan 17 17:11:36 machine 1 tomcat[8944] 17-Jan-2023 14:17:29.850 INFORMATION [main] 

org.apache.catalina.startup.Catalina.start Server startup in [560] milliseconds

2 Jan 17 17:17:01 machine 1 CRON[9184] (root) CMD (cd / && run-parts –report 
/etc/cron.hourly)

3 Jan 17 17:19:39 machine 1 dockerd[751] time="2023-01-17T17:19:39.911663169+01:00" 
level=info msg="ignoring event" 
container=ad9c3e4f269aff56c60fb3558655de1c3703be4 8b86b848ba62d8510261e8ffe 
module=libcontainerd namespace=moby topic=/tasks 
type="*events.TaskDelete"

4 Jan 17 17:20:00 machine 1 LMA1 meanPercentageUseOfCPU="7.24", freeRAM="63.4", freeDiskSpace="86.5", 
batteryChargeLevel="100.00"

5 Jan 17 17:25:00 machine 1 LMA1 errorInPhysicalMechanism
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The LMA reads the log register and generates an event with the 
necessary information and formats it in RDF triples according to the 
ECO ontology. Listing 1 shows three events (event1, event2 ad event3) 
in RDF format3 generated from lines 3, 4 and 5 of Table V, respectively.

Listing 1: Example of several events in RDF Turtle format
: event1 rdf : type eco : Event ;
     eco : date " Jan 17 17:19:39" ;
     eco : relatedToDevice : machine1 ;
     eco : relatedToSoftware : dockerd ;
      eco : actionsCarriedOutExecuted "* events . TaskDelete
     ".
: event2 rdf : type eco : Event ;
     eco : date " Jan 17 17:20:00" ;
     eco : relatedToDevice : machine1 ;
     eco : relatedToSoftware : LMA1 ;
     eco : freeRAM "63.4";
     eco : meanPercentageUseOfCP "9" ;
     eco : batteryChargeLevel "100" ;
     eco : freeDiskSpace "86.5".
: event3 rdf : type eco : Event ;
     eco : date " Jan 17 17:25:00" ;
     eco : relatedToDevice : machine1 ;
     eco : relatedToSoftware : LMA1 ;
     eco : errorInPhysicalMechanism " TRUE ".

In principle, ad-hoc parsers are needed for the different applications 
and operating systems used. However, as we mentioned above, 
in order to facilitate this task, we propose a key-value parameter 
representation and a set of specific parameters (Tables II, III and 
IV). LMAs can interpret those parameters as well as some popular 
application formats such as docker and tomcat. Other log formats are 
not considered. Thus, the systems that want to integrate our solution 
approach in the future must follow our proposed log format.

C. Stream Processing
Event processing is mainly carried out by the CEP component, 

which is responsible for analyzing the events and is able to identify 
undesirable situations or system problems from the information 
contained in an event stream. In the case of identifying any undesirable 
situation, the CEP is able to classify the type of situation and to label 
that situation with the corresponding problem entity from the ECO 
ontology. Detecting problems is generally a complex task that may 
depend on several parameters. Thus, the origin of a problem may be 
associated with one or several pieces of evidence. In this work, an 
evidence is an event; therefore, the information contained in the events 
helps to identify problems. One of the main characteristics of systems 
based on event processing is that events are not independent of each 
other, but are related to each other. In the case of systems formed by 
sensor devices, the data generated by the sensor network are usually 
related in time and space. For example, in agro-IoT systems, the data 
measured by a sensor is usually strongly related to the data of a nearby 
sensor. In a similar way, the measures observed at a particular moment 
in time are generally correlated to the measures taken in the next unit 
of time. This is important because applications may not be interested 
in measurements taken from a sensor at a particular time and place, 
but in aggregated information in space and time [46].

The main task of event processing is to identify within event 
streams those event patterns that are of interest in a particular domain. 
For example, in an agro-IoT system consisting of sensors to measure 

3   We use the Turtle RDF serialization. In short, each triple (subject predicate 
object) is written in a line, ending in ’.’. A ’;’ can be used to avoid repeating the 
same subject in consecutive lines.

the conditions of cropland, several sensors may emit events that must 
be analyzed to discover patterns identified with problems related to 
plant health. In the context of the work presented in this paper, the 
events generated from the log messages would also be analyzed in 
order to discover problems related to software or devices. It will even 
be possible to predict problems before they actually happen such that 
corrective actions could be applied before a particular problem appears.

The LMA is responsible for generating the corresponding events 
and sending them to the CMA. Then, the CEP component located in 
the CMA filters the events trying to identify problems. This process 
is done through queries. Each implemented filter returns a problem 
instance according to the ECO ontology, which is inserted into the 
Detected Problem Repository (DPR). For example, the

DeviceInCriticalStatus problem instance could be triggered in those 
cases where a device has a battery below 15% in addition to having 
high CPU and RAM consumption. This situation could cause a device 
to consume its low battery power in a short period of time.

For stream processing, we use C-SPARQL [47], a continuous query 
language that extends SPARQL [48] to work with RDF data streams such 
as the example shown in listing 1. C-SPARQL queries are continuously 
monitoring recent events/triples (time windows are specified) to detect 
particular patterns that correspond to identified problems. When the 
query is matched, it generates a result as RDF triples.

Listing 2: C-SPARQL query that identifies a problem that a device 
is in a critical state (CPU and RAM usage higher than 90% and battery 
charge lower than 15%)
CONSTRUCT {
     _: prob rdf : type eco : DeviceInCriticalStatus .
     _: prob eco : relatedTo ? device .
}
FROM STREAM : streamExample1
          [ RANGE 60s STEP 30s]
FROM < instancesTopology .owl >
WHERE {
     ? event rdf : type eco : Event .
     ? event eco : relatedTo ? device .
     ? event eco : percentCPUUsage ? cpuL .
     ? event eco : freeRAM ? ram .
     ? event eco : batteryChargeLevel ? batt .
FILTER (? percentCPUUsage > 90
     && ? freeRAM < 10
     && ? batteryChargeLevel < 15)
}

Listing 2 shows an example of a query that returns the instance 
of eco:DeviceInStatusCritical problem, with its associated device. The 
query checks the value of several parameters such as CPU, RAM 
consumption and the battery charge level of a specific device. The 
query only takes into account events occurring in the specified time 
window (60 seconds).

V. Use Case

This section presents a use case that shows the potential of the 
error detection framework proposed in this work. We consider a 
scenario composed of two local Wi-Fi networks, each containing two 
sensors deployed on SmartDevices (e.g., Smartphones), a computing 
device (Raspberry Pi4 model B equipped with 4GB of RAM) that 
acts as a Fog Device and a router that provides the Wi-Fi network 
to which each of the devices is connected. Fig. 6 shows the example 
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infrastructure. The devices host software services and could provide 
data to other services. This data is processed by services to generate 
reports, propose actions or generate new information. According to 
Fig. 6, S1, S2, S5, S6 retrieve data from the sensors integrated with 
them. S1, S2, S5, S6 are distributed in geographic positions. S1 and S2, 
located in local network 1, send data to S4 and S3 correspondingly (S3, 
S4 and S11 are part of APP1). S11 sends to S9 information processed 
from data received by S3. S9 is hosted in the cloud (machine7). It unifies 
the information received by remote services and S10 runs high-level 
tasks and provides results to end users. In the case of local network 2, 
the disposition of the elements and their functions are similar to local 
network 1.

The connections between the services as well as their relationships 
are shown in Fig. 7. This figure represents the knowledge graph 
contained in the Deployed Infrastructure Repository hosted in the 
CMA.

LMAs are installed on machine1, machine2, machine4 and 
machine5. LMAs monitor the software deployed on those devices 
and, if necessary, generate the corresponding events. Listing 3 shows 
an example of events generated by LMA1, located on machine1, and 
which sends the events to CMA1 (deployed on machine3).

The events have parameters related to the operation of the 
sensor connected to S1. The CEP component of CMA1 (at machine3) 
continuously reads and processes the received events in order to 
detect abnormal situations. If a sensor is damaged, it will produce 
different types of errors that are reflected in the event stream. For 
example, if the sensor generates errors of the type highLightConditions, 
lowLightConditions, abnormalReading, OutOfRangeReading, etc. the 
reason could be that the sensor is damaged. In this case, the CEP 
will detect this situation and will generate a eco:DataColletionFailed 
entity. In particular, event1 indicates that service S1 is notifying errors 
related to measurements taken from a sensor. Event1 has active the 
abnormalReading and OutOfRangeReading parameters, which indicate 
some problem with the measurement taken from the sensor. Event1 
also indicates that service S1 is generating the error and that S1 is 
deployed on machine1.

Listing 3: Events generated by the use case shown in Fig. 7
: event1 rdf : type eco : Event ;
     eco : date " Jan 20 18:10:29" ;
     eco : relatedToDevice : machine1 ;
     eco : relatedToSoftware :S1 ;
     eco : abnormalReading " TRUE ";
     eco : OutOfRangeReading " TRUE ".
: event2 rdf : type eco : Event ;
     eco : date " Jan 20 18:11:41" ;
     eco : relatedToDevice : machine1 ;
     eco : relatedToSoftware :S1 ;
     eco : lowLightConditions " TRUE ".
: event3 rdf : type eco : Event ;
     eco : date " Jan 20 18:11:57" ;
     eco : relatedToDevice : machine1 ;
     eco : relatedToSoftware :S1 ;
     eco : batteryChargeLevel "10".
: event4 rdf : type eco : Event ;
     eco : date " Jan 20 18:11:41" ;
     eco : relatedToDevice : machine1 ;
     eco : relatedToSoftware :S1 ;
     eco : highLightConditions " TRUE ".

In addition to the detected problem of the sensor, the indications 
that the battery is low (10%) contained in event3 might be relevant. 
This event indicates that the sensor failure could be associated with 
the fact that the sensor does not have enough battery.

The CEP component will evaluate the events and their implications 
on the system depending on the information contained in the event 
stream. For example, Listing 4 detects the eco:DataCollectionFailed 
problem if the light conditions change between low and high in a short 
period of time (60s) and the reported sensor values are out of range. In 
that case, the eco:DataCollectionFailed entity is added to the Detected 
Problems Repository.
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Fig. 6. Infrastructure and layout of the devices used in the use case.
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Listing 4: C-SPARQL query to identify data collection problems
CONSTRUCT {
     _: prob rdf : type eco : DataCollectionFailed .
     _: prob eco : relatedTo ? service
}
FROM STREAM
     : streamExample1
          [ RANGE 60s STEP 30s]
FROM < instancesTopology .owl >
WHERE {
     ? event rdf : type eco : Event .
     ? event eco : relatedTo ? machine .
     ? event eco : lowLightConditions " TRUE ".
     ? event eco : highLightConditions " TRUE ".
     ? event eco : OutOfRangeReading " TRUE ".
}

The Inference Service tries to find other elements of the IoT 
system that might be affected by the problems registered in the DPR. 
For this, the IS analyses the system architecture described in the 
Deployed Infrastructure Repository. As a result, the IS infers that S4 
is affected since it is connected to S1. Thus, the software application 
APP1 is also affected. Furthermore, the problem could be propagated 
to S9, because S11 (S11 forms part of APP1) is connected to S9 (by 
eco:remoteConnecionTo property), and this could affect APP3. The 
affected software components can be detected with standard SPARQL 
queries. Listing 5 shows an example query to retrieve the applications 
affected by the malfunction of S1.

The query considers four cases: (1) the problematic service is 
directly part of an application, (2) an application contains a service that 

is remotely connected to a problematic service (APP1 is identified), (3) 
an application is remotely connected to an application that contains 
the problematic service, and (4) an application is remotely connected 
to another application that includes a service connected to the 
problematic service (APP3 is identified).

Listing 5: Query identifying applications affected by remote 
unconnected services
SELECT ? affectedApp
WHERE {
   ? faultServ eco :id "S1" .
   { # Case 1
   ? affectedApp eco : isComposedOf ? faultServ .}
UNION { # Case 2
   ? affectedApp eco : isComposedOf ? servAux .
   ? faultServ eco : remoteConnectionTo + ? servAux .}
UNION { # Case 3
   ? appAux eco : isComposedOf ? faultServ .
   ? appAux eco : isComposedOf ? serv .
   ? serv eco: remoteConnectionTo + ? serviceAux2 .
   ? affectedApp eco : isComposedOf
   ? serviceAux2 .}
UNION { # Case 4
   ? faultServ eco : remoteConnectionTo +
   ? serviceAux4 .
   ? appAux eco : isComposedOf ? serviceAux4 .
   ? appAux eco : isComposedOf ? serv .
   ? serv eco: remoteConnectionTo + ? servAux .
   ? affectedApp eco : isComposedOf ? servAux .}
}
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Fig. 7. Knowledge graph representing the deployed architecture. The colour of a node indicates the ontological concept (on the right side of the figure) it 
instantiates. E.g. S1 is an instance of eco:Service.
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Once a problem and its scope have been identified, the Action 
Schedule Service (ASS) will decide what actions should be taken to 
resolve or alleviate the problem. The possible solutions to problems 
will be context dependent. For the above case, for example, the ASS 
may decide whether or not to stop APP1 and APP3 until the problem 
with the sensor connected to S1 is solved. Alternatively, it may 
replace some of the services that are affected by the problem. For 
example, S4 could be replaced by another service that does not require 
the information from S1. In this way, APP1 could adapt to the new 
situation and operate consistently. If APP1 works correctly then APP3 
would also not be affected by the problem with S1 and would also 
work correctly.

The ASS is an independent component that takes information from 
the DIR, interprets it and proposes corrective actions. The architecture 
has been designed with the objective that the ASS has a low coupling, 
this allows to have several implementations of the ASS with different 
AI mechanisms facilitating to experiment with different AI techniques. 
The complete design of the ASS is part of our future work. In this 
work, we propose using the Jena4 rule-based system, which allows 
easy integration of ontologies and rules. The proposed rules are 
activated depending on the information about the current status of the 
infrastructure (especially malfunctioning issues) contained in the DIR. 
When a rule is fired the specified actions are executed, which typically 
define the changes to be applied in the system.

VI. Conclusion

In this work, we have proposed a solution approach that aims 
at detecting and eventually resolving anomalous situations or 
malfunctions in IoT systems. The approach uses several mechanisms 
distributed on independent intelligent agents that collaborate with 
each other. These agents process the log registers generated by 
software installed in IoT devices and detect problems and malfunctions 
that may compromise the operation of the IoT system. The ability to 
understand messages contained in a log register is complex. For this 
reason, we propose using a list of parameters that help to identify 
and describe undesired situations of the elements that compose an 
IoT system. The Lightweight Management Agent generates events 
from messages contained in log registers and each event contains 
information about the status of an IoT device. LMAs send those events 
to Complex Management Agents, which process them in order to 
identify problems. CMAs use knowledge graphs (based on the ECO 
ontology) to structure the system information such as the topology, the 
deployed software and possible problems (undesired situations). They 
use this knowledge to infer new information, in particular, to identify 
the scope to which an identified problem affects the entire IoT system. 
Based on this information, corrective actions can be carried out to bring 
back the IoT system to a desired state. All these mechanisms provide a 
viable solution for the auto-maintenance of IoT systems. The proposed 
approach can be deployed in conjunction with third-party IoT systems 
since it can be adapted and integrated with existing solutions that have 
been designed and deployed for specific tasks.

Our work is subject to some limitations that we plan to address 
in future work. In a first step, we will extend the list of parameters 
proposed in this work. We will also apply our solution to more 
complex real-world environments so as to further back its versability 
and analyse its performance. To this end, we rely on the Mininet5 
simulator for large-scale experiments. Also, in this work, we focused 
on problem detection. As a next step, we will concentrate on analysing 
the automatic execution of corrective actions to resolve detected 
problems (Action Schedule Service in our architecture).

4   https://jena.apache.org
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