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Abstract

Deutan and protan dichromats only see exactly two hues in the HSV color space, 240-blue (240º) and 60-yellow 
(60º). Consequently, they see both reds and greens as yellows; therefore, they cannot distinguish reds from 
greens very well. Thus, their color space is 2D and results from the intersection between the HSV color cone and 
the 60º-240º plane. The RGBeat recoloring algorithm’s main contribution here is that it is the first recoloring 
algorithm that enhances the color perception of deutan and protan dichromats but without compromising the 
lifelong color perceptual learning. Also, as far as we know, this is the first HTML5-compliant web recoloring 
approach for dichromat people that considers both text and image recoloring in an integrated manner.
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I. Introduction

ABOUT 5% of the world population is affected by color vision 
deficiency (CVD), also called color blindness. This visual 

impairment hampers the color perception, ending up by limiting the 
overall perception of CVD people about the surrounding environment. 
A CVD individual may not distinguish between two different colors, 
which often originates confusion or a limited understanding of the 
reality, including web environments, whose web pages are plenty of 
media elements like text, still images, video, and sprites.

A. Color Vision 
In the human eye, there are two types of cells in the retina: rods 

and cones. Rod cells only function in scotopic (dark) conditions so 
that they add up nothing to our perception of lightness and darkness 
in photopic (bright) conditions. That is, rods are responsible for our 
vision in light-absent environments (i.e., night vision), while cones are 
responsible for our perception of color.

There are three types of cone cells: L-cones (also known as red 
cones), M-cones (or green cones), and the S-cones (or blue cones), 
depending on their sensitivity to the type of wavelengths of light: long 
(L) wavelengths, medium (M) wavelengths, and short (S) wavelengths, 
respectively. The tristimulus theory tells us that the perception of 
color results from the combination of the light stimulation of those 
three types of cones [1].

B. Color Vision Anomalies
Typically, human beings are trichromats, i.e., they see the 

entire visible light spectrum because their three types of cones are 
working correctly, as illustrated in Fig. 1(a). CVD, sometimes called 
color blindness, is the result of the misfunctioning of some cones. 
Accordingly, CVD fits in one of the following categories: anomalous 
trichromacy, dichromacy, and monochromacy [2].

Anomalous trichromacy is the less severe CVD type and occurs when 
(at least) a kind of cone cell does not work correctly, either because they 
are not distributed regularly on the retina or because their sensitivity 
is weak [3] and [4]. Consequently, there exists a displacement of the 
sensitivity curve of the corresponding color channel, changing the way 
one perceives the color as a whole, i.e., in a distorted fashion. Vision 
anomalies depend on the type of affected cone cells [5]. Protanomaly, 
also known as red-weak vision, denotes the existence of anomalous 
L-cones. Deuteranomaly, also known as green-weak vision, indicates 
the existence of anomalous M-cones. Tritanomaly, also called blue-
weak vision, shows the existence of anomalous S-cones. In conformity 
with the MPEG-21 standard [6], the degree of CVD severity for 
anomalous trichromats continuously varies in the interval [0.1, 0.9]. 
For example, those with a severity degree of 0.1 have a minor color 
vision distortion, while those  with  a  severity degree of 0.9 almost see 
colors as dichromat people do because dichromacy corresponds to a 
severity degree of 1.0.

Dichromacy occurs when cones of a given sort do not work, mainly 
because those cones do not exist on the retina. So, the color perception 
is found on the other two channels, significantly reducing the color 
spectrum perceived by dichromat individuals. Depending on the type 
of inexistent cone cells, the anomaly calls protanopy, deuteranopy, and 
tritanopy, which accounts for the absence of the L-, M- and S-cone 
cells, respectively. Thus, all colors visible for trichromat people appear 
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as two monochromatic hues for people with dichromacy: blues and 
yellows, both for people with deuteranopy and protanopy, and reds 
and bluish cyans for tritanope people [7], as illustrated in Fig. 1.

Monochromacy is the most severe CVD type due to the absence or 
non-functioning of two or three types of cone cells. This fact results 
in a rather severe reduction of the chromatic domain perceived by 
the individuals. There are two types of monochromacy: blue cone 
monochromacy, when only the S-cone cells are working [9], and rod 
monochromacy, when all types of cones are either missing or non-
functioning for some reason. The blue-cone monochromacy leads to a 
gray-scale vision, yet some shades of blue may be noticeable [10]. Rod 
monochromacy, also known as achromatopsia, leads to a total lack 
of color experience and a low visual acuity, which is related to poor 
vision and high sensitivity to light [11] and [12].

Finally, let us mention that CVD has a prevalence of 5% in the 
Caucasian population on average, though its incidence is about 
8% on men and 0.5% on women. Also, the prevalence of each CVD 
type decreases as the severity increases. Indeed, it is about 75% for 
anomalous trichromacy, 25% for dichromacy, and 0.00001% for 
monochromacy [13].

C. Contributions
RGBeat recoloring algorithm aims to help deutan and protan 

dichromat people. Like other recoloring algorithms, RGBeat aims at 
minimizing or even eliminating the likely confusion between reds and 
greens. Recall that deutan and protan dichromat people can distinguish 
some reds from greens, i.e., they can identify some reds because they 
have learned that such colors are reds. Nevertheless, dichromat people 
see reds as greenish colors. Indeed, lifelong color perceptual learning 
of each dichromat individual plays an important role to overcome part 
of ambiguity between reds and greens.

However, unlike other recoloring algorithms, RGBeat eliminates the 
color ambiguity as much as possible without compromising the lifelong 
color perceptual learning experienced by each dichromat individual. For 
this purpose, the following properties (or requirements) must be satisfied: 
color consistency, color naturalness, and color contrast. The challenge is 
how to increase the contrast between (confusing) colors and, at the same 
time, to maintain the consistency and naturalness of color.

The key contributions of the RGBeat recoloring algorithm are the 
following:

• It enhances the color perception of deutan and protan dichromats 
without undermining their lifelong color perceptual learning. 

• It increases the contrast between confusing colors, though 
maintaining the color consistency and naturalness.

• It applies to HTML5-compliant web environments, including 
images, video, and text.

• It performs very fast because it only operates on the range of reds, 
making it feasible to recolor video in real-time. 

The first contribution above concerns the research gap we have 
identified in the literature. Indeed, keeping the color perceptual learning 
of each dichromat person must be a priority for any recoloring algorithm. 

D. Article Organization
The remainder of this article organizes itself as follows. Section II 

reviews prior recoloring algorithms against relevant requirements: 
color consistency, color naturalness, and color contrast. Section III 
details our recoloring algorithm, called RGBeat. Section IV approaches 
the text and background color adaptation, while Section V approaches 
color adaption for still images. Section VI presents the qualitative, 
quantitative, and performance results of RGBeat and competitor 
methods. Section VII describes usability testing and assessment of 
RGBeat and its competitor methods. Section VIII discusses the research 
work behind RGBeat. Section IX concludes the paper, pointing out 
some hints to future work in browser recoloring and adaptation, as 
needed for color-blind people.

II. Related Work

Dichromat people only see two distinct hues, although with 
different values of saturation and brightness. More specifically, deutan 
and protan dichromats see blues and yellows, respectively; in turn, 
tritan dichromats see reds and greenish blues. For example, as shown 
in Fig. 1, a deutan dichromat sees a weakly saturated yellow as a moss 
green. Besides, reducing the chromatic range to two hues may confuse 
what is seen in a given image (see Fig. 1). 

As said above, the colorblind can distinguish some reds from 
greens because they have learned that some of such colors are reds. 
Indeed, the color perceptual learning of each dichromat individual 
is an essential tool to resolve the red-green ambiguity, even if it is 
partially. Consequently, in designing a new recoloring algorithm, it is 
of paramount importance to preserve the color perceptual learning of 
each dichromat individual. Thus, any contrast-based algorithm must 
apply minor contrast differences; otherwise, we end up undermining 
the color perceptual learning of each individual. Therefore, the 
challenge here lies in increasing the contrast between (confusing) 
colors and preserving the color consistency and naturalness. For more 
details, the reader is referred to Ribeiro and Gomes [14], a survey on 
recoloring methods based on these three concepts: color consistency, 
color naturalness, and color contrast. 

    

  (a) (b) (c) (d)

Fig. 1. Degrees of severity of color vision deficiency and its dichromat subtypes: (a) regular trichromat people; (b) deuteranope (or deutan) people; (c) protanope 
(or protan) people, and (d) tritanope (or tritan) people. Simulation of (b)-(c) using Brettel et al.’s algorithm [7] and (d) using Petrich’s algorithm [8].
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Color consistency guarantees that if two colors are identical, the 
corresponding mapped colors will remain identical, independently 
of the set of colors subject to remapping. Note that the lack of color 
consistency creates bewilderment in the perception of the colorblind. 
Color consistency is an essential requirement that is gaining 
significance in recent recoloring methods [15]-[19], though others 
avoid approaching it [20] and [21]. Its importance stems from the fact 
that it prevents us from adding more color ambiguity to the typical 
ambiguity of reds and greens inherent to the colorblind. For example, let 
us consider that a pink hue maps to a magenta hue; one says that such 
color mapping is consistent when such pink always maps to the same 
magenta. Color consistency is vital for recoloring video; otherwise, it 
would be tough to maintain the temporal color consistency.

Color naturalness has to do with minimizing the perceptual 
difference between a color and its corresponding remapped color. 
This difference should be as low as possible so as not to break up 
the perceptual learning of the colorblind. Some works address this 
property [21]-[26]. However, others [27] and [28] do not show any 
concern about color naturalness.

Color contrast stems from increasing the perceptual difference of 
neighboring elements in an image to enhance the perception of the 
colorblind. In a way, color naturalness and contrast are contradictory 
requirements that make recoloring algorithms challenging to tune-up. 
For further details about color contrast in recoloring algorithms, the 
reader is referred to [23], [24] and [29]. However, this requirement has 
not been considered by other algorithms [21] and [22]. Interestingly, 
some algorithms create higher color contrast, although not referring 
to this goal explicitly [30].

Considering the three properties of color above, we developed a 
recoloring algorithm for dichromat people, RGBeat, which reduces the 
space for color ambiguity at the cost of a few colors that only slightly 
conflict with their perceptual learning. The reduction of color ambiguity 
between reds and greens occurs by increasing the color contrast between 
confusing colors. As will be seen ahead, we compare RGBeat to other two 
methods, which are due to Iaccarino et al. [24] and the Ching-Sabudin 
[30]. We selected these two methods among all those we may find in the 
literature because they satisfy the following requirements:

• They are color-consistent, a condition to prevent adding more 
confusion in the color perception.

• They preserve either color naturalness or increase color contrast.

• They apply to true-color images.

III. Recoloring Algorithm

RGBeat recoloring algorithm was designed for deuteranopy 
and protanopy simply because they are the most common types of 
dichromacy, and their color perception is quite similar.

A. Leading Idea 
As shown in Fig. 2, deutan or protan dichromats only perceive two 

hues, yellow (60°) and blue (240°), yet with more or less luminance 
and saturation. We know that those people see greens as yellows, but 
they perceive them as unsaturated greens, i.e., they faintly perceive 
greens. Also, deutan or protan dichromats see reds as dark unsaturated 
yellows. Consequently, deutan and protan dichromats confuse reddish 
and greenish colors, though they can distinguish some reds from 
greens, which stems from their lifelong color perceptual learning.

 
(a) (b) (c) (d)

Fig. 2. HSV cone sections: (a) a section with value = 100%, as seen by trichromat 
people; (b) a section with value = 100%, as seen by deuteranope people; (c) a 
section with value = 75%, as seen by trichromat people; and (d) a section with 
value = 75%, as seen by deuteranope people. Deuteranope simulation based on 
Vienot et al.’s algorithm [31].

Thus, the leading idea of our algorithm is to reduce the confusion 
between reds and greens further so that only reds will be subject to a 
recoloring procedure. For that purpose, as mentioned in the previous 
section, it is crucial to preserve the color perceptual consistency and 
slightly increase the color contrast for reds to preserve the color 
naturalness as much as possible.

B. HSV Color Domain of Deuteranopy and Protanopy
In comparison to the color range seen by trichromat people, the 

color range seen by deutan or protan dichromats is quite limited. This 
turns up more evident when we consider HSV colors, as illustrated in 
Fig. 3. The HSV color space is a cone such that H ∈ [0°,360°[ stands 
for the hues (or color wheel), S ∈ [0, 100] denotes the saturation range, 
which increases from the cone apex to base and perpendicularly to 
cone axis, and V ∈ [0, 255] the brightness value, which increases from 
the apex to base of the cone [32]. In Fig. 3(a), we see the entire cone of 
colors seen by trichromat people, while the colors seen by deutan and 
protan dichromats map onto colors in the 60°/240° plane, which cuts 
the cone into two parts (cf. Fig. 3(b)).

As noted above, the deutan or protan dichromats only see yellows 
and blues. However, contrary to the general idea that such blues and 
yellows include multiple hues, protan and deutan people only see 
the yellow hue of 60° and the blue hue of 240°. In truth, they only 
see these two hues with more or less saturation and brightness. Our 
experiments confirmed this by using the simulation algorithm due to 
Brettel et al. [7], converting then the color to the HVS color space 

 

 (a) (b) (c) (d)

Fig. 3.  The HSV color space when seen by: (a) trichromat people; (b) deuteranope people (deuteranope half planes); (c) and (d) deuteranope people, with the 
color projection lines, joining colors seen by trichromat and deuteranope people, being (c) a lateral view and (d) the top view. Deuteranope simulation based on 
Vienot et al.’s algorithm [12].
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[33]. We constructed the deuteranope color gamut in the HSV color 
space by varying R, G, and B in the range [0, 255], converting RGB to 
RGBdeutan (i.e., using the method proposed by Vienot et al. [31]), and 
RGBdeutan to HSV afterward. This deuteranope color gamut reduces 
to two coplanar triangles, resulting from the intersection between a 
plane and the HSV cone (see Fig. 3). We can obtain a similar planar 
color gamut in the LMS color space [7] and CIE XYZ color space [34] 
for deuteranope people.

As shown in Fig. 3(c), the visual system of a deutan dichromat 
transforms the conical HVS color space (Fig. 3(a)) into a triangular color 
space (Fig. 3(b)). In other words, each hue of the HSV cone projects 
onto a triangle belonging to the plane defined by the apex, 60°-hue 
point and 240°-hue point. As illustrated in Fig. 3, such color projection 
entails a change of saturation and brightness (usually a loss). It is 
clear that colors projected onto the yellow part of the triangle ]150°, 
330°[ noticeably lose value (brightness), while colors projected onto 
the blue part tend to keep value (brightness) unchanged. Regarding 
saturation, no significant changes occur (see Fig. 3(d)). When there is 
a change, the saturation may increase or decrease (although slightly). 
The behavior of the protan dichromat’s projection is similar, though 
shades are slightly different.

C. RGBeat Recoloring Procedure
A glance at Fig. 2 shows us that deutan or protan dichromats tend 

to see reds as dark unsaturated greens, so that a pure red is seen as 
dark green, not to say black. As shown in Fig. 3, greens and reds are 
seen similarly by deutan or protan dichromats; hence, their well-
known red-green confusion, also known as colorblindness. With this 
problem is mind, we decided not to change the saturation S ∈ [0, 100]  
neither the brightness (value) V ∈ [0, 255] in the HSV model; we only 
changed hues as follows:

• Hues in the range ]0°, 60°[ (range of reds and oranges) squeezed 
into the range ]30°, 60°[.

• Hues in the range ]300°, 360°] (range of reds, pinks, and magentas) 
squeezed into the range ]300°, 330°].

The remaining hues in the range [60°, 300°] remain unchanged. 
This way, those deutan or protan dichromats end up having fewer 
dark hues (yellows and blues) in the range of reds (for trichromats). 
So, we ensure the fulfillment of the requirements of color consistency 
and naturalness. However, despite the soundness of this recoloring 
approach, we can ask ourselves about its actual help for colorblind. 
Indeed, it is convenient here to recall that:

• Reducing the hue range seems to us a good decision because 
we are just eliminating the subrange of confusing hues, i.e., 
the reds in this case. For example, in Figs. 4 and 5, we see that 
a deutan cannot distinguish a green flower from a red flower, 
but a deutan can easily distinguish them with our recoloring 
technique. In short, the question is not reducing the hue range 
but cutting off the subrange of reds after mapping reds to close 
hues as much as possible. The purpose is thus to be able to 
discriminate confusing hues.

• We must carry out the mapping of hues reducing at the same time 
the impact on the perceptual learning of the deutans as much as 
possible, i.e., without affecting the color naturalness that much. So, 
it makes sense to remap hues according to our technique, which 
keeps the color consistency while increases the contrast.

Before proceeding any further, let us recall that the hue compression 
of ]0°, 60°[ corresponds to the following non-linear interpolation 
formula:

 (1)

while the hue compression of ]300°, 360°[ is given by

 (2)

1. Mapping hues from ]0°, 60°[: Let us consider the color (R, G, B), with 
R, G, B ∈ [0, 255], being the corresponding normalized color (r, g, b) 
given by

 (3)

Let us also assume that the values of S and V remain unchanged. We 
know that by only changing the value of H in the range ]0°, 60°[, we 
only change the value of G in the RGB color space. Indeed, considering 
H ∈ ]0°, 60°[, the HSV-RGB conversion formula due to Smith [33] sets 
that

 (4)

Since we stated that S and V remain unchanged in the HSV model, 
we conclude that G is the only RGB parameter that changes because of 
changing the parameter H in the HSV color space.

In these circumstances, we have R = max(R, G, B), B = min(R, G, B), 
and G ∈ [B, R], being these equalities also valid for the (normalized) 
rgb colors. In other words, the values of R and B (resp., r and b) remain 
unchanged for H ∈ ]0°, 60°[.

Now, recalling the RGB-HSV conversion formula due to Smith [33], 
and considering ]0°, 60°[ the domain of H, we get

 (5)

But we know that varying H in ]0°, 60°[ only provokes changes in 
the value of g. So, replacing the value of H given by Eq. (5) into Eq. 
(1), we have

 (6)

or, equivalently, 

 (7)

The novelty about the hue mapping of ]0°, 60°[ translates itself into 
a color mapping in the RGB color space given by Eq. (7). That is, there 
is no need to convert from RGB into HSV and vice versa. In short, we 
have only to remap the rgb reddish colors in conformity with Eq. (7), 
since 𝑟’ = 𝑟 and 𝑏’ = 𝑏. Note that in the range ]0°, 60°[ any hue H has 
more red than green (r > g); cf. line 1 of Algorithm 1.

2. Mapping hues from ]300°, 60°]: Let us also assume that the values 
of S and V remain unchanged. By only changing the value of H ∈ 
]300°, 360°], we end up only changing the value of B in the RGB 
color space. Accordingly, we have R = max(R, G, B), G = min(R, G, B), 
and B ∈ [G, R], and the same applies to (normalized) RGB colors. 
Therefore, the values of R and G (resp., r and g) remain unchanged for 
H ∈ [300°, 360°].

Now, taking into the account the RGB-HSV conversion formula due 
to Smith [33], with H ∈ [0°, 360°], we get

 (8)

But we know that varying H ∈ ]300°, 360°] only provokes changes 
in the value of B. So, replacing the value of H given by Eq. (8) into Eq. 
(2), we obtain

 (9)
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Note that in the range ]300°, 360°[ any hue H has more red 
than blue (r > b); cf. line 1 of Algorithm 1. In short, the recoloring 
procedure that builds upon Eqs. (7) and (9) translates itself into a color 
remapping in the RGB color space, as shown in Algorithm 1, not being 
necessary to make the RGB-HSV conversion, and vice versa, explicitly. 
This simplification constitutes a significant gain in processing time.

3. Changes in perceived chroma and luminance: The algorithm relies 
on —though it does not explicitly use— the HSV colour space. It 
maintains each color’s saturation S and value V during recoloring. 
However, this does not mean that perceived chroma and perceived 
luminance hold. Indeed, as explained below, maintaining S and/or V in 
HSV space during recoloring does not maintain the perceived chroma 
nor perceived luminance of the color.

Regarding perceived chroma, its change is a result of changing 
the hues to close hues according to Eqs. (1) and (2); for example, an 
orange is mapped to a yellowish orange. Recall that we tried to reduce 
the color mapping to a minimum in order not to provoke significant 
perceived changes in the perceptual learning of deutan and protan 
dichromats.

As regards to changing the perceived luminance, it is not so 
obvious because the values of S and V remain unchanged. According 
to Poynton [35], the perceived luminance is given by

 (10)

so that, taking also into consideration Eq. (4), we conclude that 
changes in G provokes changes in L; the values of R and B remain 
unchanged because the values of S and V do not change in the 
recoloring procedure. Thus, increasing the value of G results in an 
increase in the value of L; consequently, the contrast also increases, 
eliminating the confusion between reds and greens.

Algorithm 1: RGBeat
Input: r, g, b
Output: r, g', b'
1  if (r > g) ∧ (r > b) then // reddish hues
2       if (g > b) then               // reddish hues with g > b
3             g' ← g + (g − b) (r − g) / (r − b))                 (7)
4       end
5       else                    // reddish hues with b > g
6             b' ← g − (g − b)(2 + (g − b) / (r − g))                 (9)
7       end
8  end

Algorithm 2: TextRecoloring
Input: HTMLDocument
1  css[ ] ← style sheets of HTMLDocument
2 n ← number of style sheets in css[ ]
3  for i ← 1  to n do
4   css[i ] ←i-th style sheet
5       m ← number of CSS rules of css[i]
6      for j ← 1  to m do
7           cssrule[j] ←j-th CSS rule 
8          if cssrule[j ].color then    
9                  [R, G, B] ← cssrule[j].color
10                  cssrule[j ].color ← RGBeat([R, G, B])
11          end
12           if cssrule[j ].backgroundcolor then    
13                 [R, G, B] ← cssrule[j ].backgroundcolor
14                 cssrule[j ].backgroundcolor ← RGBeat([R, G, B])
15          end
15      end
16  end

IV. Text Recoloring For HTML Documents

Algorithm 2 was designed for recoloring text in HTML documents 
using RGBeat. It involves three main steps, namely:

1. Accessing to all cascading style sheets (CSS) associated with such 
web page and to all CSS rules associated with each style sheet.

2. Recoloring each text block by changing its corresponding CSS rules 
whenever necessary. This task performs by changing the color 
and background-color properties associated with each CSS rule.

3. Rendering the HTML web page with the modified CSS rules, 
which is an automatic process provided by any web browser.

Alg. 1 (RGBeat) is used in Alg. 2 to change both text and background. 
To dynamically access and update the content, structure, and style 
of an HTML document, we use the HTML Document Object Model 
(DOM) as a programming interface for Javascript. Indeed, tasks like 
accessing each style sheet, each rule defined in a style sheet, each 
value of the rule properties, as well as determining the number of style 
sheets associated with an HTML document, and the number of rules 
defined in each style sheet, are all done using DOM object methods.

Thus, recoloring text blocks of a web page is done by changing the 
CSS rule objects associated to text blocks of an HTML document. This 
recoloring procedure operates on the CSS rules instead of being on 
the text blocks themselves. The recoloring procedure of all text blocks 
of an HTML document corresponds to Alg. 2. Recall that an HTML 
document usually is tied to a set of CSSs, so that we need to retrieve 
this set of CSS using the Javascript statement var css = document.
styleSheets; (cf. line 1 in Alg. 2).

V. Image Recoloring For HTML Documents

Recoloring a single M × N image is described in Alg. 3. This 
algorithm calls the RGBeat algorithm (cf. Algorithm 1) for every single 
pixel of the image. Alg. 3 applies to all images associated with a given 
web page, as described in Alg. 4.

Algorithm 3: ImageRecoloring
Input: Image, width, height
  1  for i ← 0 to width-1 do
  2      for j ← 0 to  height-1 do
  3           R ← Image[i][ j ].R
  4           G ← Image[i][ j ].G
  5           B ← Image[i][ j ].B
  6           [R, G, B] ← RGBeat([R, G, B])
  7           Image[i][ j ].R ← R
  8           Image[i][ j ].G ← G
  9           Image[i][ j ].B ← B
10      end
11  end

Algorithm 4: HTMLDocumentImagesRecoloring
Input: HTMLDocument
1  Images[] ← set of HTMLDocument’s images
2  n ← number of images in Images[ ]
3  for i ← 0 to n − 1 do
4   width ← Images[i ].width
5   height ← Images[i ].height
6      ImageRecoloring(Images[i ], width,height)
7  end

Recoloring starts with retrieving images from the HTML document 
(cf. line 1 in Alg. 4). The recoloring occurs in line 6, where one calls 
the procedure ImageRecoloring (i.e., Alg. 3), which in turn calls the 
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procedure RGBeat (i.e., Alg. 1) to adapt the color of each pixel. As seen 
above, RGBeat also applies to recoloring of text and backgrounds from 
the CSS style sheet rules. Recall that the HTML5 specification provides 
a 2D context (or even a 3D context) to a canvas to get a pixelized image.

VI. Qualitative, Quantitative, and Time Results

As argued above, we designed the RGBeat recoloring algorithm for 
deutan and protan dichromat people because of the following: first, 
they are the most common dichromat people; second, deutan and 
protan people perceive colors in a very similar manner. As shown 
above, the RGBeat algorithm applies to text, still images, and video, no 
matter whether they are on web pages or not.

A. Setup
Before proceeding any further, let us say that we obtained all 

experimental results using a laptop equipped with a 32-bit Microsoft 
Windows operating system running on an Intel Pentium Dual CPU 
T2330 1.60GHz, with 3G RAM. Besides, the algorithms described 
in this paper were coded in Javascript programming language for 
HTML5 web browsers, in particular for Chrome.

B. Methodology
For a fair comparison with the RGBeat, we selected the recoloring 

algorithms due to Iaccarino et a [24] and Ching and Sabudin [30] 
because they share several features, namely:

• They apply to both deuteranopy and protanopy.

• They use a phenomenal color space. Recall that a phenomenal 
color space uses hue, saturation, and brightness as classifying 
descriptors [32], [36] and [37].

• They likely are some of the fastest color mapping methods based 
on phenomenal color spaces.

• Iaccarino et al.’s method [24] tends to preserve color naturalness 
at the cost of not reinforcing too much contrast. On the other 
hand, Ching and Sabudin [30] reinforces the contrast but does not 
preserve color naturalness.

We also implemented the algorithms proposed by Vienot et al. [31]. 
These algorithms simulate how deutan and protan people see the colors 
(see Fig. 4(b) to (d)). Also, we have carried out two sorts of evaluation 
of the methods: qualitative and quantitative. The qualitative evaluation 
is visual and subjective, in the sense that we attempt to grasp which is 
the best method in recoloring process. The quantitative evaluation is 
objective because it is based on mathematical metrics or formulas and 
works here as a way of confirming our subjective, visual evaluation.

C. Qualitative Evaluation
As known, deutan and protan people only see some yellows and 

some blues, although with varying saturation and brightness. Thus, 
yellows and blues must remain unchanged after the recoloring a given 
image. Interestingly, greens look unsaturated greens, but indeed they 
are little saturated yellows. As shown in Fig. 4, the three algorithms 
leave the yellows unchanged somehow; the same applies to blues (Fig. 
5). Note that the original image in Fig. 5 exhibits the primary colors: 
red, green, and blue.

The differences between those three algorithms become noticeable 
when recoloring adjacent image elements that people with dichromacy 
perceive as similar. Recall that deutan and protan people mistake 
reddish colors (including pinks and oranges) with greenish colors. A 
glance at Figs. 4-5 shows the following:

Iaccarino et al.’s: Iaccarino et al.’s recoloring technique [24] does 
not significantly improve the original images when seen by deutan or 
protan people, though the yellows seem less vivid.

Ching and Sabudin’s: On the other hand, Ching and Sabudin’s 
technique [30] maps reds into yellows, which results in a loss of 
contrast between reds and yellows, i.e., between a primary color and a 
secondary color. Even worse it is the fact that greens map onto weak 
blues, so that deutan and protan people can no longer see greens (yet 
in the form of little saturated yellows).

RGBeat: Our recoloring technique preserves the colors seen by 
people with deuteranopy and protanopy, i.e., yellows and blues. Reds 
concerning hues (via RGB-HSV conversion) greater than zero (i.e., reds 
closer to oranges and yellows) map onto darkish yellows, while reds 
concerning hues less than 360 (i.e., reds close to pinks and magentas) 
are mapped to greyish blues.

D. Quantitative Evaluation
As mentioned in section I-B, RGBeat aims at eliminating the 

red-green ambiguity as much as possible.  However, unlike other 
recoloring algorithms, RGBeat eliminates such color ambiguity 
without compromising each dichromat individual’s lifelong color 
perceptual learning. Consequently, according to Ribeiro and Gomes 
[14], RGBeat must preserve the following properties: consistency, 
naturalness, and contrast. 

1) Consistency-based Evaluation: The three benchmarking 
algorithms are all consistent in terms of recoloring. This means that 
the equally colored pixels of an image will exhibit the same color after 
applying the same recoloring procedure.

Normal view Deuteranope view Protanope view

(a) Images without recoloring.  

   
(b) Image recoloring using Iaccarino et al.’s algorithm.

(c) Image recoloring using Ching-Sabudin algorithm.

 

   
(d) Image recoloring using our RGBeat algorithm.

Fig. 4. (a) Images without recoloring as seen by trichromat people (left), 
deuteranope people (middle), and protanope people (right); (b) images recolored 
by Iaccarino et al.’s algorithm as seen by trichromat people (left), deuteranope 
people (middle), and protanope people (right); (c) images recolored by Ching-
Sabudin algorithm as seen by trichromat people (left), deuteranope people 
(middle), and protanope people (right); (d) images recolored by the RGBeat 
algorithm as seen by trichromat people (left), deuteranope people (middle), 
and protanope people (right).

2) Naturalness-based Evaluation: As seen before in Section III, 
the color naturalness ensures that a mapped color will be close to 
the original color, as perceived by deutan and protan dichromats. 
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According to Flatla et al. [21], the naturalness of an image has the 
following formulation:

 (11)

where n = W × H denotes the image resolution, Pi the color of the 
i-th pixel, and Pi

* the color of the i-th pixel after the recoloring, while  
∆(Pi, Pi

*) denotes the color difference between Pi and Pi
* in conformity 

with the CIE76 color-difference formula expressed in CIE Lab space 
coordinates given by

 (12)

where (Li, ai, bi) and (Li
*, ai

*, bi
*) represent the Lab colors of Pi and 

Pi
*, respectively. The smaller the value of ν, the more natural is the 

recoloring procedure of each image.

Normal view Deuteranope view Protanope view

(a) Images without recoloring.
 

   
(b) Image recoloring using Iaccarino et al.’s algorithm.  

(c) Image recoloring using Ching-Sabudin algorithm.
 

   
(d) Image recoloring using our RGBeat algorithm.  

   

  

 

   
 

 

   
 

Fig. 5. (a) Images without recoloring as seen by trichromat people (left), 
deuteranope people (middle), and protanope people (right); (b) images 
recolored by Iaccarino et al.’s algorithm as seen by trichromat people (left), 
deuteranope people (middle), and protanope people (right); (c) images 
recolored by Ching-Sabudin’s algorithm as seen by trichromat people (left), 
deuteranope people (middle), and protanope people (right); (d) images 
recolored by our algorithm as seen by trichromat people (left), deuteranope 
people (middle), and protanope people (right).

Eq. (11) applies to trichromats. However, it also applies to deutan 
and protan dichromats since we consider that Pi and Pi

* are the colors 
seen by them before and after the recoloring procedure, respectively. 
The naturalness benchmarking of the three algorithms was carried out 
regarding a dataset of 100 still images (Fig. 6 shows 15 of them) possessing 
reddish colors (i.e., confusing colors for deutan and protan  dichromats): 

Iaccarino et al.’s: Regarding naturalness, Iaccarino et al.’s recoloring 
technique [24] ranks second, with a mean score of 𝜈̅ = 8.6 for the 
entire image dataset. We can explain this relatively high score as 
follows. First, even though Iaccarino et al.’s algorihm changes almost 
all colors, only a few of them change noticeably. Second, the hue 

rotation resulting from recoloring does not exceed 45° (albeit the 
cumulative adjustments in saturation and lightness). At the same time, 
the remaining colors suffer a less pronounced change (about 10% in 
saturation and lightness).

Ching and Sabudin’s: The algorithm proposed in [30] ranks third 
in terms of naturalness, with a mean score of 𝜈̅  = 20.76 for the entire 
image dataset. The reasons behind this high score are twofold. First, 
this happens because 2/3 of colors are subject to recoloring. Second, 
the reddish hues in the range [-60°, 60°] suffer a rotation that may 
attain 120°, and the same applies to greenish colors.

RGBeat: Our technique ranks first regarding naturalness, with a 
mean score of 𝜈̅  = 3.8 for the entire image dataset. To explain this fact, 
recall that 2/3 of colors remain unchanged, mainly because only those 
satisfying the condition R > G, B end up being changed. Furthermore, 
the remapped colors are subject to a rotation with a maximum 
amplitude of 30°.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Still images of a dataset with 100 images (350´270 resolution) that we 
used to study and benchmark algorithms in respect to the following properties: 
naturalness, contrast, and performance. All images possess reddish colors (i.e., 
confusing colors for deuteranope e protanope people), whose hues are in the 
range [-60°, +60°].

3) Contrast-based Evaluation: The contrast benchmarking of the 
three techniques was accomplished using the squared Laplacian (cf. 
[38]) as follows:

 (13)

where W × H denotes the image resolution, while G(x, y) is given by:

 (14)
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where I(x, y) is the intensity of the pixel (x, y), which in turn is 
given by (cf. [35]):

 (15)

The computation of contrast 𝐶 through Eq. (13) applies to any 
color space. Using Eq. (13), we measured the contrast of the entire 
image dataset in the deutan (resp., protan) color space. We used 
the simulation algorithm due to Vienot et al. [31] to generate the 
entire image dataset as seen by deutan people.  Therefore, our 
quantitative evaluation of contrast took place in the deutan color 
space. More specifically, in the deutan color space, we obtained 
a mean contrast value of 𝐶=0.0418 for the entire deutan image 
dataset before applying any recoloring procedure. 

The contrast-based evaluation of the benchmarking algorithms 
output the following results: 

Iaccarino et al.’s: Based on our testing, the algorithm due to Iaccarino 
et al. [24] does not show any contrast improvement because the mean 
contrast (in the deutan color space) after recoloring all dataset images is 
0.0417, i.e., slightly lower than the mean contrast before recoloring. We 
explain this fact by the small changes in hue, saturation, and brightness 
inherent to the recoloring procedure of the Iaccarino et al. algorithm.

Ching and Sabudin’s: Regarding Ching-Sabudin’s technique [30], 
we noted its ability to enhance the contrast since the entire dataset 
of images scored 0.047 in mean contrast (in the deutan color space), 
featuring an increase of 12.4% relative to the mean contrast before 
recoloring. However, this contrast increase arises at the cost of some 
loss of naturalness. Indeed, the recoloring procedure remaps 2/3 of 
colors; but, more importantly, it is the fact that reddish hues in the 
range [-60°,60°] are all mapped to yellows, when it would be more 
natural to remap hues in the subrange [-60°,0°[ to blues and hues in the 
subrange [0°,60°[ to yellows.

RGBeat: Our technique also improves the contrast, but not so much 
as Ching-Sabudin’s technique; it scored 0.045 in mean contrast (in 
the deutan color space), featuring an increase of 7.7% relative to the 
dataset images before recoloring. Recall that our recoloring technique 
only operates on the hue range [-60°,60°] (i.e., confusing hue range), so 
that hues in the subrange [-60°,0°[ are mapped to blues, while hues in 
the subrange [0°,60°[ are mapped to yellows.

Summing up, considering the color consistency, naturalness, and 
contrast requirements to maintain each dichromat individual’s lifelong 
color perceptual learning, RGBeat performs better than Iaccarino 
et al.’s and Ching-Sabudin’s algorithms. Indeed, they are all color-
consistent, but RGBeat is the only one that is capable of enhancing the 
contrast with negligible loss of color naturalness. 

E. Time Performance Evaluation
We encoded the three benchmarking algorithms in JavaScript. 

To assess their time performance, we used ten offline web pages 
containing a total of 160 images. Each page incorporates 16 images 
with identical resolution n × n, but the resolution increases 100 pixels 
wide and 100 pixels high from page to page, i.e., we have images with 
resolutions of n × n, with n = 100, 200, …, 1000. Fig. 7 shows how the 
algorithms behave over images with increasingly higher resolutions. 
More specifically, Fig. 7(a) shows how much the average time spent by 
those algorithms depends on the resolution of the images, while Fig. 
7(b) features the average time per pixel for each collection of images 
with identical resolution.

As expected, considering those three algorithms, the average time 
to recoloring images increases with the resolution (Fig. 7(a)). However, 
the average time per pixel decreases with the resolution, converging 
to a minimum that keeps constant when 𝑛 → ∞ (Fig. 7(b)). Therefore, 

the time complexity of the three algorithms is linear. To explain this 
fact, remind that not all the pixels are subject to recoloring. RGBeat is 
faster than Iaccarino et al.’s and Ching-Sabudin’s algorithms because 
its time spent per pixel is shorter than for the other two algorithms. 
Indeed, the average time per pixel is about 1.4ms, 0.8ms, and 0.06675ms 
for the algorithms of Iaccarino et al., Ching-Sabudin, and RGBeat, 
respectively, when 𝑛 → ∞.
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Fig. 7. Recoloring time performance: (a) average time per image against image 
resolution; (b) average time per pixel against image resolution.

VII.   Usability Assessment 

In section VI, we compared RGBeat with the other two methods 
from the algorithmic point of view. To make sure about the quality of 
the results produced by those algorithms, we proceeded to usability 
testing, i.e., testing from the user’s point of view.

A. The Universe of CVD People
Testing involved a universe of thirteen CVD male volunteers, with 

ages between 17 and 69 years old. These individuals previously did the 
D-15 Color Arrangement Test [39]. The results of this test revealed the 
following distribution: 

• 2 people with strong protanomaly (ages 32 and 49);

• 1 person with moderate protanomaly (age 27);

• 5 people with strong deuteranomaly (ages from 49 to 69);

• 4 people with moderate deuteranomaly (ages from 17 to 46); 

• 1 person with deuteranopy (age 35).

We extended the usability testing to deutan and protan trichromat 
people because those with moderate or strong anomalies may have as 
poor color discrimination as dichromat people [5].

B. The Questionnaire
Although some authors have adopted the Law of Comparative 

Judgment (LCJ) of L.L.Thurstone for statistical studies [25] [26], we do 
not follow that pathway because LCJ does not allow the comparison of 
four alternatives simultaneously. Instead, we use descriptive statistics 
techniques to compare more than two methods simultaneously [40] 
and [41]. More specifically, we have used questionnaires as one of 
such descriptive statistics techniques.

In the makeup of the web questionnaire (see http://rgbeat.ipcb.pt), 
we considered five categories of images: visualization of information 
(InfoVis), indoor scenes (Indoor), outdoor scenes (Outdoor), 
visualization of scientific information (SciVis), and signage (Signage). 
We elected six images for each category, making up 30, precisely 
those depicted in Appendix. We selected these images regarding the 
importance of using a representative set of images (see Shaffer and 
Zhang [41]) to reduce the sampling error and, consequently, get a 
significant statistical confidence interval.

The questionnaire was designed for web browsers (via Google 

http://rgbeat.ipcb.pt
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Forms) so that each category of images corresponds to a separate 
web page of the questionnaire. Each of these five pages displays 
6x4 images, i.e., six rows of 4 optional images organized randomly 
in a horizontal manner. Each row includes the original image and 
more three recolored images produced by the above recoloring 
algorithms (Iaccarino et al., Ching-Sabudin, and RGBeat); these four 
images concerning the same scene appear randomly in each row. The 
questionnaire asks the volunteer for his/her preference order (i.e., 
from 1 to 4) among four images of each row, considering the criteria 
of naturalness and contrast. Note that this ranking scale is adequate to 
situations where the ranking involves a maximum of five alternatives 
[42]. Then, the image ranked first is assigned the score 4, the second 
the score 3, the third the score 2, and the fourth the score 1 (see [43] 
for further details about the design of questionnaires). Four specialists 
on visual representation and color vision deficiency researchers did 
validate the questionnaire.

C. Data Collecting
Fig. 8 shows the raw quantitative results of the questionnaire, where 

the CVD people’s preferences are expressed relative to five categories 
of images mentioned in Section VIIB (see Figs. A1-A5 in Appendix A). 
Considering that we have a universe of 13 respondents and six images 
per category, the data sample size for each category is 78 responses (= 
6´13). For example, for the InfoVis category in Fig. A1, the data sample 
of the RGBeat is 78, as a result of summing up 16 responses with score 
1, 30 responses with score 2, 27 responses with score 3, and 5 responses 
with score 4. That is, we used scoring in the range [1,4], which has to 
do with the number of recoloring methods under benchmarking, those 
three above and the method without any adaptation (original images). 
Note that the overall data show up in Fig. 8(f). 

D. Data Analysis
We carried out data analysis based on descriptive statistics. 

Specifically, our descriptive statistics-based analysis builds upon 
data collected from the questionnaire. For that purpose, we used 
two descriptive analysis tools: (i) box-and-whisker diagrams; (ii) 
coefficient of variation. The box-and-whisker diagram is a type of 
data visualization tool that allows us to display the distribution (and, 
inherently, the concentration) of preferences of the CVD people, while 
the coefficient of variation is a metric that quantifies such dispersion/
concentration of preferences.

The box-and-whisker diagram is a data visualization tool to 
examine datasets graphically in a quick manner. Its central box at least 
features 50% of the preferences of the respondents relative to each 
method. This box consists of the second and third quartiles, separated 
by the median of the data sample (78 responses). A horizontal 
straight-line segment represents the median; a cross represents the 
arithmetic mean.

A glance at the diagrams depicted in Fig. 9, which represent the 
data listed in Fig. 8, shows us the following regarding each category 
of images:

• Infovis: The method without adaptation (MWA, for brevity) (i.e., 
original images without adaptation) and Iaccarino et al.’s method 
gathered more than 56% of preferences with the top scores 4 or 3 
(see Fig. 8(a) and Fig. 9(a)). Looking at box-and-whisker diagrams of 
these methods, we observe that their averages are similar (cf. Table 
I). However, Iaccarino et al.’s method preferences are much less 
dispersed, as its box is smaller than the others. Indeed, Iaccarino et 
al.’s standard deviation is less than the MWA’s (cf. Table I), and the 
same applies to the coefficient of variation. Thus, for InfoVis-type 
images, the best solution is to use Iaccarino et al.’s method.

• Indoor: In this case, either MWA or RGBeat reunites 70% of the 
preferences with scores 4 and 3. Besides, their arithmetic averages 
are similar (see Fig. 8(b) and Fig. 9(b)). Consequently, even looking 
at their box-and-whisker diagrams, it is difficult to say which is 
the top-ranked method of those two methods for Indoor-type 
images because they have similar visual dispersion (i.e., boxes of 
the same size). However, we see in Table I that RGBeat’s standard 
deviation is less than the MWA’s. Additionally, RGBeat’ coefficient 
of variation is also less than the one of the methods without 
recoloring. Thus, we conclude that RGBeat ranks first for Indoor-
type images.

• Outdoor: The results are similar to those obtained for the Indoor 
category. Indeed, MWA and RGBeat were scored with 4s and 3s in 
more than 68% of the preferences (see Fig. 8(c) and Fig. 9(c)). Note 
that their arithmetic averages and dispersion boxes are visually 
indistinguishable in their box-and-whisker diagrams, so we 
cannot draw any conclusion about the top-ranked method of those 
two for Outdoor-type images. However, from Table I, we observe 
that the RGBeat’s coefficient of variation (and standard deviation) 
is less than the MWA’s. Thus, RGBeat ranks first in this category.

• SciVis: MWA got the higher scored preferences, with approximately 
50% of preferences, and scored 4 (see Fig. 8(d) and Fig. 9(d)). 
Besides, its arithmetic mean is much higher than for the other 
methods, which aligns with the fact that its coefficient of variation 
is smaller than for any other method (cf. Table I). Thus, in SciVis-
type images, the best solution is to leave them as they stand, i.e., 
without color adaptation.

• Signage: Ching-Sabudin’s method reached 68% of responses scored 
as 4. Therefore, its arithmetic mean is higher than other methods’ 
one (see Fig. 8(e) and Fig. 9(e)), but its dispersion is significant. On 
the other hand, Iaccarino et al.’s method ranks second in terms 
of mean, but its coefficient of variation is smaller than any other 
method’s one. Thus, in Signage-type images, Iaccarino et al.’s 
method ranks first.
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Fig. 8. Distribution of the preferences per image category and per recoloring method: a) InfoVis; b) Indoor; c) Outdoor; d) SciVis; e) Signage; and (f) Overall.
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TABLE I. Statistical Results

Category Metric MWA Iaccarino et al. Ching-Sabudin RGBeat

InfoVis
𝑥̅ 2.69 2.63 2.41 2.27
σ 1.231 0.941 1.343 0.863
υ 46% 36% 56% 38%

Indoor
𝑥̅ 3.04 2.03 1.99 2.95
σ 0.973 1.081 1.168 0.771
υ 32% 53% 59% 26%

Outdoor
𝑥̅ 3.00 2.31 1.72 2.97
σ 0.953 0.916 1.237   0.805
υ 32% 40% 72% 27%

SciVis
𝑥̅ 3.10 2.17 2.23 2.50
σ 1.014 1.144 1.194 0.864
υ 33% 53% 54% 35%

Signage
𝑥̅ 2.13 2.58 3.06 2.23
σ 1.121 0.782 1.390 0.852
υ 53% 30% 45% 38%

Statistical metrics: 𝑥̅ : arithmetic mean; σ: standard deviation; υ: coefficient 
of variation.

In short, the RGBeat method ranks first in two categories, Indoor 
and Outdoor. Hence it preserves the naturalness more than any other 
method (see Section VI-D). On the other hand, Iaccarino et al.’s method 
gets on top in two other categories, InfoVis and signage, although it 
ranks second in terms of naturalness. However, its contrast varies only 
-0.24% compared to the contrast of the original images, while RGBeat’s 
contrast is +7.7% (see Section VI-D).

Interestingly, the MWA ranks first in the SciVis category, i.e., there 
is no variation in naturalness and contrast for apparent reasons. 
These results show us that the recoloring process must not noticeably 
change the colors for SciVis-type images to preserve the individual’s 
perceptual learning as much as possible. Recall that RGBeat only 
changes the red hues to close hues, whereas Iaccarino et al.’s method 
changes all hues to close hues. In contrast, the Ching-Sabudin method 
provokes significant color changes, i.e., the distance between an 
original hue and the mapped hue is greater than for the other two 
adaptation methods.

Overall, RGBeat ranks first because it ranks first in two categories 
(Indoor and Outdoor) and second in three categories (InfoVis, SciVis, 

and Signage), which explains why its coefficient of variation (34%) 
is lower than in any other method (see Table I). Moreover, it is the 
only method that outperforms the MWA, i.e., RGBeat images are 
perceptually better than original images.

VIII.   Discussion

Now, we are in a position of highlighting important points of the 
RGBeat algorithm and its discussion, namely:

• Color perceptual enhancement. Adaptation methods are worthy of 
being investigated because they may enhance the perception of 
CVD people. Recall that RGBeat makes a noticeable enhancement 
relative to the original images (MWA). We have also learned that 
we cannot change the colors too much if we strike on preserving 
each individual’s perceptual learning; otherwise, the naturalness and 
contrast may change significantly. We have demonstrated that it is 
possible to increase the color contrast without compromising the 
image naturalness and perceptual learning of CVD people, resulting 
in an augmented perception of CVD people. As shown in Table I, 
RGBeat is the only method that performs better than MWA because 
its coefficient of variation (34%) is less than the MWA’s (40%).

• Mathematical formulation. RGBeat’s mathematical formulation 
builds upon RGB and HSV color models, from which we have 
derived recoloring formulas that exclusively operate on the RGB 
color model (cf. Eqs. (7) and (10)).

• Deuteranope and protanope’s color space. By using Brettel et al.’s 
simulation [7], we show that the deutan and protan color space is 
2D, i.e., it consists of two coplanar half-planes (see Fig. 3), because 
deutan and protan individuals only see two different hues: 60° 
(yellow) and 240° (blue). A similar result was achieved by Brettel 
et al. for LMS color space and Meyer and Greenberg [34] for CIE 
XYZ color space.

• Generality. We have shown that RGBeat also applies to images 
and text in HTML documents. Supposedly, it also applies to video 
because a video is a sequence of frames. Considering RGBeat spends 
0.06675ms per pixel (see Section VI-E) on average, we conclude that 
recoloring video in real-time is feasible for images with 623,220 
pixels; for example, RGBeat can recolor youtube videos in the 
format 16:9 with resolutions 854×480 at most in real-time.
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• Time performance. RGBeat attains real-time performance and thus 
outperforms the other two adaptation methods, primarily because it 
avoids the explicit conversion between the RGB and HSV color spaces.

Summing up, our method guarantees a balanced trade-off of four 
requirements, color consistency, naturalness maintenance, contrast 
improvement, and speed. At the same time, it is capable of augmenting 
the perception of CVD people.

IX. Conclusions 

We have introduced a recoloring method, called RGBeat, that 
applies to HTML documents, including their images, videos, and 
text. The main novelty of this method is that it is the only one that 
produces images that are perceptually richer than the original images. 
RGBeat was capable of this accomplishment by stressing naturalness 
maintenance, which imposes limits to the increasing of contrast. 
Furthermore, RGBeat has revealed quite fast because it only operates 
on the range of reds, making it feasible to recolor video in real-time.

We have also developed an extension for the Chrome browser that 
automatically allows for online adaptation of web pages and their 
contents (e.g., text, still images, and video). Shortly, we intend to use 
some multi-threading or parallel processing tools (e.g., Web Workers 
API) to further speed up color-adaptive browsers in real-time.

Appendix A

As mentioned above, we used six images of each of the five datasets 
(InfoVis, Indoor, Outdoor, SciVis, and Signage) in the usability testing 
and assessment. Figs. A1-A5 show such images, as well as their 
corresponding images recolored by the three benchmarking algorithms.

MWA Iaccarino et al. Ching-Sabudin RGBeat

Fig. A1. Six images of the InfoVis dataset and recoloring algorithms.
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Fig. A2. Six images of the Indoor dataset and recoloring algorithms.
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Fig. A3. Six images of the Outdoor dataset and recoloring algorithms.
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Fig. A4. Six images of the SciVis dataset and recoloring algorithms.
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Fig. A5. Six images of the Signage dataset and recoloring algorithms.

Acknowledgment

The authors would like to thank Paulo Silveira and Carla S. Pedro for 
their support in the statistical analysis of the usability questionnaire, 
Marco Bernardo and Vasco Almeida for their criticism relative to color 
adaption techniques, as well as CVD participants for their help and 
time to answer the usability questionnaire. 

This work has been partially funded by FCT/MCTES through 
national funds and when applicable co-funded EU funds under the 
project UIDB/50008/2020. 

References

[1] E. Marieb and K. Hoehn, Anatomy & Physiology, Pearson, 2019.
[2] J. Birch, Diagnosis of Defective Colour Vision, Elsevier Science, 2001.
[3] J. Pokorny, V. C. Smith, and I. Katz, “Derivation of the photopigment 

absorption spectra in anomalous trichromats,” Journal of the Optical 
Society of America, vol. 63, no. 2, pp. 232–237, 1973.

[4] D. McIntyre, Colour Blindness: Causes and Effects. Dalton Publishing, 
2002.

[5] L. Sharpe, A. Stockman, H. Jagle, and J. Nathans, “Opsin genes, cone 
photopigments, color vision and color blindness,” in Color Vision, K. 
Gegenfurtner and L. Sharpe (Eds.), Cambridge University Press, 1999.

[6] S. Yang, Y. M. Ro, J. Nam, J. Hong, S. Y. Choi, and J.-H. Lee, “Improving 
visual accessibility for color vision deficiency based on MPEG-21,” 
Electronics and Telecommunications Research Institute Journal, vol. 26, no. 
3, pp. 195–202, 2004.

[7] H. Brettel, F. Vienot, and J. D. Mollon, “Computerized simulation of color 
appearance for dichromats,” Journal of the Optical Society of America.– A: 
Optics Image Science and Vision, vol. 14, no. 10, pp. 2647–2655, 1997.

[8] L. Petrich, “Color-blindness Simulators,” https://cutt.ly/nboQhuP, 
accessed on 2021-04-27, 2021.

[9] J. C. Gardner, M. Michaelides, G. E. Holder, N. Kanuga, T. R. Webb, J. D. 
Mollon, A. T. Moore, and A. J. Hardcastle, “Blue cone monochromacy: 
causative mutations and associated phenotypes,” Molecular Vision, vol. 
15, pp. 876–884, 2009.

[10] A. Reitner, L. T. Sharpe, and E. Zrenner, “Is colour vision possible with 
only rods and blue-sensitive cones?,” Nature, vol. 352, no. 6338, pp. 798–
800, 1991.

[11] Y. Miyake, “Rod monochromacy,” in Electrodiagnosis of Retinal Dis-eases. 
Springer Tokyo, 2006, pp. 136–137.

[12] OMIN (Online Mendelian Inheritance in Man), “An online catalog of 
human genes and genetic disorders,” Johns Hopkins University, https://
www.omim.org/ accessed on 2021-04-27, 2021.

[13] H. K. Kolb, E. F. Fernandez, and R. N. Nelson, “WebVision: The 
Organization of the Retina and Visual System,” University of Utah Health 
Sciences Center, https://webvision.med.utah.edu/, accessed on 2021-04-
27, 2021.

[14] M. Ribeiro and A. Gomes, “Recoloring Algorithms for Colorblind People: 
A Survey,” ACM Computing Sureys, vol. 52, no. 4, Art. 71, pp.1-37, 2019. 

[15] Y.-C. Chen and T.-S. Liao, “Hardware digital color enhancement for color 
vision deficiencies,” Electronics and Telecommunications Research Institute 
Journal, vol. 33, no. 1, pp. 71–77, 2011.

[16] B.Liu, M.Wang, Y.Linjun, W.Xiuquing, and H.Xian-Sheng, “Efficient 
image and video re-coloring for colorblindness,” in Proc. IEEE Int. Conf. 
Multimedia and Expo (ICME’09), 2009, pp. 906–909.

[17] G. M. Machado and M. M. Oliveira, “Real-time temporal-coherent color 
contrast enhancement for dichromats,” Computer Graphics Forum, vol. 29, 
no. 3, pp. 933–942, 2010.

[18] C.-R. Huang, K.-C. Chiu, and C.-S. Chen, “Temporal color consistency-
based video reproduction for dichromats,” IEEE Transactions on 
Multimedia, vol. 13, no. 5, pp. 950–960, 2011.

[19] J.-Y. Jeong, H.-J. Kim, T.-S. Wang, Y.-J. Yoon, and S.-J. Ko, “An efficient re-
coloring method with information preserving for the color- blind,” IEEE 
Transactions on Consumer Electronics, vol. 57, no. 4, pp. 1953–1960, 2011.

[20] J.-B. Huang, C.-S. Chen, T.-C. Jen, and S.-J. Wang, “Image recol- orization 
for the colorblind,” in Proc. IEEE Inter. Conf. Acoustics, Speech, and Signal 
Processing (ICASSP’09), Vols 1- 8. IEEE Press, 2009, pp. 1161–1164.

https://cutt.ly/nboQhuP
https://www.omim.org/
https://www.omim.org/
https://webvision.med.utah.edu/


Regular Issue

- 59 -

[21] D. R. Flatla, K. Reinecke, C. Gutwin, and K. Z. Gajos, “SPRWeb: preserving 
subjective responses to website colour schemes through automatic 
recolouring,” in Proc. Conf. Human Factors in Computing Systems 
(SIGCHI’13). ACM, 2013, pp. 2069–2078.

[22] M. Ichikawa, K. Tanaka, S. Kondo, K. Hiroshima, K. Ichikawa, S. Tanabe, 
and K. Fukami, “Web-page color modification for barrier-free color vision 
with genetic algorithm,” in Proc. Genetic and Evolutionary Computation 
(GECCO’03). Lecture Notes in Computer Science, vol 2724. Springer, 
Berlin, Heidelberg, 2003, pp. 2134–2146.

[23] K. Wakita and K. Shimamura, “Smartcolor: Disambiguation framework 
for the colorblind,” in Proc. 7th Int. ACM SIGACCESS Conference on 
Computers and Accessibility (ASSETS’05). ACM, 2005, pp.158–165.

[24] G. Iaccarino, D. Malandrino, M. Del Percio, and V. Scarano, “Efficient 
edge-services for colorblind users,” in Proc. 15th Int. Conf. World Wide 
Web (WWW ‘06). ACM Press, 2006, pp.919–920.

[25] J.-B. Huang, Y.-C. Tseng, S.-I. Wu, and S.-J. Wang, “Information 
preserving color transformation for protanopia and deuteranopia,” IEEE 
Signal Processing Letters, vol. 14, no. 10, pp. 711–714, 2007.

[26] G. Kuhn, M. Oliveira, and L. Fernandes, “An efficient naturalness- 
preserving image-recoloring method for dichromats,” IEEE Transactions 
on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1747–1754, 
2008.

[27] S. Oshima, R. Mochizuki, R. Lenz, and J. Chao, “Color-weakness 
compensation using Riemann normal coordinates,” in Proc. 2012 IEEE Int. 
Symp. Multimedia (ISM’12). IEEE Press, 2012, pp. 175–178.

[28] T. Kojima, R. Mochizuki, R. Lenz, and J. Chao, “Riemann geometric color-
weak compensation for individual observers,” in Proc. Int. Conf. Universal 
Access in Human-Computer Interaction (UAHCI’14). Lecture Notes in 
Computer Science, vol 8514. Springer International Publishing, 2014, vol. 
8514, pp. 121–131.

[29] C.Birtolo, P.Pagano, and L.Troiano,“Evolving colors in user interfaces 
by interactive genetic algorithm,” in Proc. World Congress on Nature & 
Biologically Inspired Computing (NaBIC’09). IEEE Press, 2009, pp. 349–
355.

[30] S.-L. Ching and M. Sabudin, “Website image colour transformation 
for the colour blind,” in Proc. 2nd Int. Conf. Computer Technology and 
Development (ICCTD’10). IEEE Press, 2010, pp. 255–259.

[31] F. Vienot, H. Brettel, and J. D. Mollon, “Digital video colourmaps for 
checking the legibility of displays by dichromats,” Color Research and 
Application, vol. 24, no. 4, pp. 243–252, 1999.

[32] A. Ford and A. Roberts, Colour Space Conversions. Westminster University, 
London, United Kingdom1998.

[33] A. R. Smith, “Color gamut transform pairs,” SIGGRAPH Computer 
Graphics, vol. 12, no. 3, pp. 12-19, 1978.

[34] G. Meyer and D. Greenberg, “Color-defective vision and computer 
graphics displays,” IEEE Computer Graphics and Applications, vol. 8, no. 
5, pp. 28-40, 1988.

[35] C. Poynton, Digital Video and HDTV: Algorithms and Interfaces, Morgan 
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[36] S. D. Cotton, “Colour, colour spaces and the human visual system,” 
University of Birmingham, United Kingdom, 1995.

[37] M. Tkalcic and J. F. Tasic, “Colour spaces: perceptual, historical and 
applicational background,” in Proc. IEEE Region 8 EUROCON 2003: 
Computer as a Tool, vol. A. IEEE Press, 2003, pp. 304–308.

[38] X. Xu, Y. Wang, J. Tang, X. Zhang, and X. Liu, “Robust automatic focus 
algorithm for low contrast images using a new contrast measure,” Sensors, 
vol. 11, no. 9, pp. 8281–8294, 2011.

[39] A. J. Vingrys and P. E. King-Smith, “A quantitative scoring technique 
for panel tests of color vision,” Investigative Ophthalmology and Visual 
Science, vol. 29, no. 1, pp. 50–63, January 1988.

[40] J. W. Tukey, Exploratory Data Analysis. Addison-Wesley, 1977.
[41] D. S. Shafer and Z. Zhang, Beginning Statistics. Saylor Foundation, 2012.
[42] S.Abeyasekera,J.Lawson-Macdowell,andI.Wilson,“Converting ranks to 

scores for an ad hoc assessment of methods of communication available 
to farmers,” DFID-funded work under the Farming Systems Integrated 
Pest Management Project, Malawi and DFID NRSP project R7033, 
Methodological Framework for Combining Qualitative and Quantitative 
Survey Methods., Tech. Rep., 2000.

[43] W. E. Saris and I. N. Gallhofer, Design, Evaluation, and Analysis of 
Questionnaires for Survey Research. John Wiley & Sons, 2007.

M. Madalena G. Ribeiro

M. Madalena G. Ribeiro Adjunct Professor in Web Design, 
Interfaces Design and Usability and Programming at 
Polytechnic Institute of Castelo Branco, Castelo Branco, 
Portugal. PhD in Computer Science (from the University 
of Beira Interior, Portugal), the research topics includes 
human computer interfaces, design of interfaces, color, 
color accessibility, color adaptation and image processing. 

Her publications include articles in international journals, as well as chapters 
in books and papers at conference’s proceeding. Among others, the scientific 
work includes articles reviewing. She is a researcher member of the Centro de 
Investigação em Património, Educação e Cultura. 

Abel J. P. Gomes

Abel J. P. Gomes is an Associate Professor in Computer 
Graphics at the University of Beira Interior, Portugal. 
He obtained a PhD degree in geometric modeling at 
Brunel University, England, in 2000. He has over 100 
publications, including journal and conference articles, 
and 1 book published by Springer-Verlag. He was Head 
of the Department of Computer Science and Engineering, 

University of Beira Interior, Portugal, and the leader of a research unit of 
Instituto de Telecomunicações, which is one of the biggest research centers 
in Portugal. He is also a licensed Professional Engineer and member of the 
IEEE, ACM, and Eurographics. His current research interests include color 
accessibility, computer graphics algorithms, molecular graphics, geometric 
computing, and implicit curves and surfaces. 




