
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 134 -

* Corresponding author.

E-mail addresses: jforneron@aplicadas.edu.py (J. Fornerón),
fagostini@conicet.gov.ar (F. Agostini), lrmdavid@exa.unne.edu.ar
(D. La Red Martínez)

Keywords

Aggregation Operators,
Communication
Between Groups Of
Processes, Computing
With Word, Fuzzy
Logic, Mutual Exclusion,
Operating Systems.

Abstract

The allocation of the resources to be shared in the context of a distributed processing system needs to be
coordinated through the mutual exclusion mechanism, which will decide the order in which the shared
resources will be allocated to those processes that require them. This paper proposes an aggregation operator,
which can be used by a module that manages the shared resources, whose function is to assign the resources
to the processes according to their requirements (shared resources) and the status of the distributed nodes in
which the processes operate (computational load), by using 2-tuple associated to linguistic labels.

DOI: 10.9781/ijimai.2023.02.009

Resource and Process Management With a Decision
Model Based on Fuzzy Logic
J. T. Fornerón Martínez1, F. Agostini2, D. L. La Red Martínez2

1 Faculty of Applied Sciences, National University of Pilar, Pilar (Paraguay)
2 Faculty of Exact and Natural Sciences and Surveying, Northeastern National University, Corrientes
(Argentine)

Received 28 June 2020 | Accepted 3 February 2023 | Published 14 February 2023

I. Introduction

Distributed systems, composed of multiple nodes and multiple
processes, cooperatively performing a given function, require

the use of decision models that allow the use of shared resources to
groups of processes that require them, accessed through the mutual
exclusion mode.

Solutions proposed for this problem are found in [1] and [2],
where the main synchronization algorithms in distributed systems
are described. [3] presents an efficient solution, also fault-tolerant, for
the problem of distributed mutual exclusion. [4], [5] and [6] present
algorithms for the management of mutual exclusion in computer
networks. [7] focuses on the main algorithms for the management
of distributed processes, distributed mutual exclusion and distributed
global states.

Solutions proposed for this problem are found in [1] and [2],
where the main synchronization algorithms in distributed systems
are described. [3] presents an efficient solution, also fault-tolerant, for
the problem of distributed mutual exclusion. [4], [5] and [6] present
algorithms managing mutual exclusion in computer networks. [7]
focuses on the main algorithms for the management of distributed
processes, distributed mutual exclusion and distributed global states.

In distributed systems, the allocation of resources to processes must
be done considering the priorities of the processes and the workload

status of the computational nodes in which the processes are executed.

Besides, solutions that we could call classic for several types of
distributed systems have been proposed in [8], [9], [10], [11] and [12].
Also, in [13] and [14] works focused on ensuring mutual exclusion are
presented. [15] presents an interesting distributed solution based on
permissions and [16] a solution based on process priorities. A solution
using consensus in resource allocation is presented in [17].

There are practical situations in which problems must be solved by
having vague and imprecise information. This means that information
is not always evaluated accurately with quantitative values, but with
qualitative values. This was solved by [18], by incorporating the
concept of the linguistic variable and applying it to decision making
as well as explained in [19]. Also [20] expressed that computing with
word (CWW) is a methodology in which words are used instead of
numbers for computation and reasoning and where fuzzy logic plays a
fundamental role in CWW and vice versa.

As mentioned in [21], based on the concept of symbolic translation,
Herrera and Martínez proposed the 2-tuple linguistic representation
model, which expresses linguistic assessment information using the
linguistic 2-tuple (𝑠𝑖, 𝛼), where the semantic element 𝑠𝑖 is a linguistic
label from a predefined linguistic variable, S, and 𝛼 is a numerical value
that represents the symbolic translation. Also, Zhang et al. introduced
interval-valued hesitant fuzzy soft sets by combining the interval-
valued hesitant fuzzy set and soft set models and evaluated their
operations. Tao et al. presented the 2-tuple linguistic soft set method,
incorporating the 2-tuple linguistic term set and soft set, to solve
complex group decision-making problems. Today, soft set methods are
widely applied to solve real-life decision-making problems (e.g., Ali
and Shabir; Chang; Deli and Cagman; Tang; Chang; Chang et al.). The
use of various algorithms to counteract uncertainty and incomplete

Regular Issue

- 135 -

information when trying to solve multi-criteria decision-making
problems (MCDM), where generally precise values and a single set of
linguistic terms are insufficient to deal with the complexity of selection
problems, where experts hesitate among sets of linguistic terms to
determine the values of evaluation attributes in said problems.

Different words can have different meanings for different people.
Answer about how can a Computing With Words (CWW) engine
be validated, what Fuzzy Set models should be used or what choices
should be made to keep the design of the CWW engine as simple as
possible, are analyzed and founded in [22].

The new decision models for allocating shared resources could be
executed in the context of a shared resource manager for the distributed
system, which would receive the shared resource requirements of the
processes running on the different distributed nodes, as well as the
computational load state of the nodes.

It has been worked with fuzzy variables using linguistic labels and
2-tuple to avoid losing precision in computing with words.

A computational model has been presented in [23], called
2-tuple linguistic computational model, in which a parameter was
incorporated to the basic linguistic representation to improve the
accuracy of linguistic calculations.

The fuzzy linguistic approach, although with the limitations at the
moment of being used in fusion processes on the linguistic values,
is used successfully in the resolution of many problems and presents
tools to improve the application of the fuzzy linguistic approach, in
relation to the loss of information caused by the need to express the
results in the initial expression domain, which is discrete through
an approximate process and implies a lack of precision in the final
results of the fusion of linguistic information. Linguistic information
is expressed through a 2-tuple, composed of a linguistic term and a
numerical value evaluated at [-0.5, 0.5], which allows to represent the
information obtained in an aggregation process. Together with the
2-tuple representation, a computational technique for word computing
(CWW) is developed [24].

A clear explanation about main CW concepts can be found in [25]:
granules and linguistic variables. A granule is defined as a clump of
objects (or points) which are drawn together by indistinguishability,
similarity, proximity, or functionality.

An example of granularity is a system that is composed of several
smaller subsystems and these smaller subsystems are in turn divided
into even smaller ones. The decomposition of the whole into parts
(granulation) is, in general, hierarchical in nature.

A linguistic variable is a variable whose values are not numbers
but words or sentences in a natural or artificial language. The main
purpose of using linguistic values (words or sentences) instead of
numbers is that linguistic characterizations are, in general, less specific
than numerical ones, but much closer to the way that humans express
and use their knowledge.

Other models have been presented in [23], [26], [27], [28] and [29].
These works show different advantages of this formalism to represent
linguistic information over classical models.

It is a continuous linguistic domain, where the linguistic calculation
model is based on linguistic tuples and performs word computation
processes easily and without loss of information, therefore, the results
of the word computation processes are always expressed in the initial
linguistic domain.

Due to these advantages, this model of linguistic representation
will be used to achieve the development of a procedure for the fusion
of linguistic and numerical information.

The 2-tuple model of linguistic representation represents linguistic
information by means of a 2-tuple, (s, α). In this work it will be used to

represent the load of the nodes, nodal preferences, and final priorities.
An example of this can be seen in Table I.

The symbolic translation of a linguistic term 𝑠𝑖 ϵ S = {𝑠o, ..., sg}
consists of a numerical value α𝑖 ϵ [-.5, .5) that supports the “information
difference” between an information count β evaluated in [0, g] obtained
after a symbolic aggregation operation (acting on the order index of
the labels) and the closest value in [0, ..., g] that indicates the index of
the closest linguistic term in S (𝑠𝑖).

TABLE I. 2-Tuple Linguistic Weighted Average Score

Criteria Aggregate
WeightC1 C2 C3 C4 C5

A1 (S5, 0.00) (S5, 0.31) (S6, 0.33) (S5, 0.50) (S5, 0.00)

A2 (S5, 0.00) (S6, 0.00) (S2, 0.00) (S5, 0.31) (S6, 0.00) (S5, -0.21)

A3 (S5, 0.31) (S5, 0.50) (S3, 0.00) (S6, 0.00) (S5, 0.00) (S5, -0.31)

A4 (S5, 0.00) (S5, 0.50) (S5, 0.50) (S5, 0.00) (S5, 0.31) (S5, -0.15)

A5 (S4, 0.00) (S5, 0.50) (S4, 0.00) (S5, 0.50) (S4, 0.00) (S4, 0.19)

Distributed systems are used in multiple solutions around the
world, smart container management, connected smart plants, banking
networks, the world wide web, etc., as seen in Fig 1.

Fig. 1. Samples of the internet of things, smart cities, industry 4.0 (industrial
robotics), etc.

In this paper, a new aggregation operator will be presented
specifically for the problem. This falls under the category of OWA
operators, more specifically Neat OWA. This will present an innovative
method for shared resource management in distributed systems.

The structure of this document is as follows: section II gives
guidelines about the premises and data structures to be used, section
III describes the steps of the proposed aggregation operator, section
IV explains details of an example of application of the proposed
aggregation operator, section V presents the conclusions and future
work and section VI mentions acknowledgement.

II. Data Structures to be Used

The following premises and data structures will be used.

These are groups of processes distributed in process nodes that
access critical resources. These resources are shared in the form of
distributed mutual exclusion and it must be decided, according to the
demand for resources in the processes, what the priorities will be for
assigning the resources to the processes that require them (in order to
be assigned in the processes, only the available resources will be taken
into account, that is, those that have not yet been assigned in certain

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 136 -

processes. All the premises, resources and processes running in the
different nodes, groups, cardinals, criteria, and categories to evaluate
the different weights and calculations required are those mentioned
in [30].

III. Description of the Aggregation Operator

The proposed operator consists of the following steps:

A. Calculation of the current computational load of the nodes.

B. Establishment of the categories of computational load and the
vectors of weights associated with them.

C. Calculation of the priorities or preferences of the processes
considering the state of the node (they are calculated in each node
for each process).

D. Expression of the calculated values in terms of 2-tuple using a set
of linguistic labels.

E. Calculation of the priorities or preferences of the processes to
access the shared resources available and determination of the
order and to which process the resources will be allocated.

Each of the steps above is described below.

A. Calculation of the Current Computational Load of the Nodes
To obtain an indicator of the current computational load of each

node, different criteria can be adopted; in this proposal the criteria will
be the percentage of CPU usage, the percentage of memory usage and
the percentage of use of input / output operation. The computational
load of each node, the number of criteria to determine the load of the
nodes, the criteria that apply and the calculation of the computational
load of each node, are those mentioned in [30].

B. Establishment of the Categories of Computational Load and
of the Vectors of Weights Associated Thereto

The current computational load categories of each node, the number
of categories to determine the load of the nodes, the categories that
apply, the vectors of weights associated with the current computational
load categories of each node. In this proposal, the criteria will be those
used in [30].

Establishment of vectors of weights (same for all nodes): weights = {wij}
con i = 1, …, a (categories number of computational load) y j = 1, …, e
(maximum number of criteria).

C. Calculation of the Priorities or Preferences of the Processes
Considering the Status of the Node (They Are Calculated in Each
Node for Each Process and Could Be Called Nodal Priorities)

These priorities are calculated at each node for each resource
request originated in each process; the calculation considers the
corresponding weight vector according to the current load of the node
and the vector of the values granted by the node according to the
evaluation criteria of the request.

The valuation vectors that will be applied for each request of a
resource by a process, according to the criteria established for the
determination of the priority that in each case and moment will fix
the node in which the request occurs, are the following: valuations
(rij pkl) = {cpm} con i = 1, …, n (node where the resource resides), j = 1,
…, r (resource on node i), k = 1, …, n (node where the process resides),
l = 1, …, p (process at node k) and m = 1, …, e (valuation criteria of the
requirement priority). As can be seen in Table II.

TABLE II. Valuations Assigned to the Criteria to Calculate
the Priority or Preference That Each Node Will Give to Each

Requirement of Each Process According to the Node Load

Resources - Processes Criteria

r11 p11 cp1 … cpm … cpe

… … … … … …

rij pkl cp1 … cpm … cpe

… … … … … …

rnr pnp cp1 … cpm … cpe

D. Expression of the Calculated Values in Terms of 2-Tuple Using
a Set of Linguistic Labels

The valuations expressed in a linguistic format using the linguistic
and semantic labels mentioned can be seen in Fig. 2, where in the
abscissa are indicated the linguistic labels and in the ordinates the
values of probability of belonging to them.

Probability
of belonging

label 1 label 2 label i

Linguistic labels

... label n-1 label n...

Fig. 2. Representation of the label set.

The next step is to transform these values into the 2-tuple format,
considering the linguistic labels proposed above. Therefore, each
criteria value will have to be compared with the average value of
each label, the minimum difference of that comparison will be the
appropriate label [24].

The first element of the 2-tuple will be the linguistic value of that
label. The second element will be the difference between the value of
the searched criteria and the average value of the selected label.

dm = the minimum difference between the cpm differences and the
most representative value of each language label.

Label valuations (rij pkl) = 2-tuple = T(labelm; dmm) where the sub-
index m corresponds to the linguistic labels defined above, as can be
seen in Table III.

TABLE III. Valuations Assigned to the Criteria for Calculating the
Priority or Preference That Each Node Will Give to Each Requirement

of Each Process According to the 2-Tuple Load of the Node

Resources /
Processes

2-tuple criteria

r11 p11 T(label1; dm1) … T(labelm; dmm) … T(labele; dme)

... ... … … … ...

rij pkl T(label1; dm1) … T(labelm; dmm) … T(labele; dme)

... ... … … … ...

rnr pnp T(label1; dm1) … T(labelm; dmm) … T(labele; dme)

To sum up, the nodal priority (to be calculated at the node where
the request occurs) of a process to access a given resource (which can
be at any node) is calculated by the scalar product of the mentioned
vectors: nodal priority (rij pkl) = Σ wom * T(labelm; dmm) = T(labeln; dmn)
= NPTijkl (Nodal Priority Tuple) with o indicating the weights vector
according to the load of the node, all other sub-index maintaining the
meanings explained above. With m and n indicating the corresponding
linguistic label within the adopted set defined above.

Regular Issue

- 137 -

This nodal priority must be transformed into the 2-tuple format,
considering the linguistic labels already mentioned. Therefore, it will
be necessary to compare each nodal priority value with the average
value of each label, the minimum difference of these comparisons will
indicate the corresponding label.

E. Calculation of Process Priorities or Preferences to Access
Available Shares. In Addition, Determining the Order in Which
the Resources Will Be Allocated, and to Which Process Each
Resource Will Be Allocated

Table IV is used to calculate the final priorities, in which the
priorities or nodal preferences calculated in the previous stage are
placed; in this table each row contains the information of the nodal
priorities of the different processes to access a certain resource.

Next, it is necessary to calculate the vector of final weights that
will be used in the process of aggregation to determine the order or
priority of access to the resources.

final weights = {wfkl} con k = 1, …, n (number of nodes) and l = 1, …, p
(Maximum number of processes per node), where np is the number of
processes in the system and prgi is the priority of the process group to
which the process belongs (explained in the previous section).

TABLE IV. Nodal Priorities of the Processes to Access Each Resource
in 2-Tuple

Resources 2-tuple

r11 NPT1111 … NPT11kl … NPT11np

… … … … … …

rij NPTij11 … NPTijkl … NPTijnp

… … … … … …

rnr NPTnr11 … NPTnpkl … NPTnrnp

The next step is to normalize the newly obtained weights by
dividing each by the sum of all of them.

Thus, a normalized weight vector (in the range of 0 to 1 inclusive)
is obtained and with the restriction that the sum of the elements of the
vector must give 1:

Σ {nwfkl} = 1 with k = 1, …, n (number of nodes) and l = 1,…, p
(maximum number of processes per node).

 The nodal priorities taken row by row for each resource will be
scalar multiplied by the normalized final weight vector. In this way, it
is possible to obtain each process’s final global access priorities to each
resource. It is indicated below how the order or priority with which
the resources will be allocated is obtained and to which process each
one will be assigned.

overall final priority (rij pkl) = NPTijkl = FGPTijkl (Final Global Priority
Tuple) with rij indicating the resource j of node i, NPTijkl is the 2-tuple
format, ij indicating the resource j of node i, kl the process l of node
k and the product of the overall final priority of the process to access
such resource, as can be seen in Table V.

TABLE V. Final Global Priority Tuple

Resources Nodal Process Priorities

r11 FGPT1111 … FGPT11kl … FGPT11np

… … … … … …

rij FGPTij11 … FGPTijkl … FGPTijnp

… … … … … …

rnr FGPTr11 … FGPTpkl … FGPTrnp

The next step is to normalize Table V between extreme values.
This will be done using the maximum, minimum and range values
calculated from Table VI and represented in Table VII.

TABLE VI. Calculation of the Maximum, Minimum and Range Values

Label Value

Maximum Value Maximum (FGPTijkl)

Minimum value Minimum (FGPTijkl)

Range Maximum (FGPTijkl) – Minimum (FGPTijkl)

TABLE VII. Normalized Final Global Priority Tuple

Resources 2-tuple

r11 NFGPT1111 … NFGPT11kl … NFGPT11np

… … … … … …

rij NFGPTij11 … NFGPTijkl … NFGPTijnp

… … … … … …

rnr NFGPTnr11 … NFGPTnpkl … NFGPTnrnp

The greater of these products made for the different processes in
relation to the same resource will indicate which of the processes will
have access to the resource.

 The addition of all these products in relation to the same resource
will indicate the priority that will have that resource to be assigned,
in relation to the other resources that will also have to be assigned.
This is what will be called Linguistic Distributed Systems Assignment
Function (LDSAF). Refer to (1).

LDSAF(rij) = Σ NFGPTijkl = resource allocation priority rij (1)

By calculating the LDSAF for all resources a 2-tuple vector will
be obtained, and by ordering its elements from highest to lowest,
the priority order of allocation of resources will be obtained. These
must be normalized guaranteeing that the 2-tuples obtained are in the
interval [0, 1]. The maximum, minimum and range values can be seen
in Table VIII.

TABLE VIII. Valuations to Normalize the LDSAF

Label Value

Maximum Value Maximum (LDSAF ijkl)

Minimum value Minimum (LDSAFijkl)

Range Maximum (LDSAFijkl) – Minimum (LDSAFijkl)

In addition, as already indicated, the largest of the products NFGPTijkl
for each resource will indicate the process to which the resource will
be assigned.

This is what will be called Normalized Linguistic Distributed
Systems Assignment Function (NLDSAF). Refer to (2).

NLDSAF(rij) = Σ (NFGPTijkl /(maximum (NFGPTijkl) - minimum
(NFGPTijkl))) = rij resource allocation priority normalized between
extreme values (2)

This can be seen in Table IX.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 138 -

TABLE IX. Order or Final Priority of Assignment of Resources and
Process to Which Is Allocated Each Resource in the First Iteration

Order of allocation of resources Process to which the resource will be assigned

1°: rij of the Max(NLDSAF(rij)) pkl of the Max(NFGPTijkl)
for the selected rij

2°: rij of the Max(NLDSAF(rij))
for unallocated rij

pkl of the Max(NFGPTijkl)
for the selected rij

... ...

last: rij no assigned
pkl of the Max(NFGPTijkl)
for the selected rij

The next step is to repeat the procedure but removing the requests
of already made allocations; it must be noted that the assigned
resources will be available once they are released by the processes,
and can therefore be allocated to other processes. Table VIII should be
recalculated by omitting the resource allocations already done.

F. Considerations for Aggregation Operations
The characteristics of the aggregation operations described allow to

consider that the proposed method belongs to the family of aggregation
operators Neat-OWA, which are characterized by [31] and [32].

The values of the variables are expressed by sets of linguistic labels
and 2-tuples [33], thus generalizing the model proposed in [30].

IV. Example and Discussion of Results

This section will explain in detail an example of application of the
proposed aggregation operator. The distributed processing system,
premises, resources, and processes running in the different nodes,
groups, cardinals, criteria, and categories to evaluate the different loads
and calculations needed, are those mentioned in [30], corresponding
to steps A and B.

Calculation of the priorities or preferences of the processes taking
the status of the node into account (they are calculated in each node
for each process and could be called nodal priorities).

The valuation vectors are applied for each requirement of a
resource made by a process, according to the criteria established for
the determination of the priority that in each case and moment fixes
the node in which the request occurs.

A. Expression of the Calculated Values in Terms of 2-Tuple Using
a Set of Linguistic Labels

The valuations expressed in a linguistic format using the linguistic
and semantic labels mentioned, with minimum, medium and maximum
values, can be seen in Fig. 2 and Table X.

TABLE X. Proposals for Priority Assessment

EH: Extremely High 0.83 1.00 1.00

VH: Very High 0.67 0.83 1.00

H: High 0.50 0.67 0.83

M: Medium 0.33 0.50 0.67

L: Low 0.17 0.33 0.50

VL: Very Low 0.00 0.17 0.33

EL: Extremely Low 0.00 0.00 0.17

The next step is to transform these values into the 2-tuple format,
considering the linguistic labels proposed above. Therefore, it will
be necessary to compare each criterion value with the average value
of each label, the minimum difference of this comparison will be the
appropriate label.

The minimum difference between the differences of each criterion
and the most representative value of each language label will be the
most representative value.

The first element of the 2-tuple will be the linguistic value of that
label, while the second element will be the difference between the value
of the searched criterion and the average value of the selected label.
This can be seen in Table XI, where “Process Priority” is represented
by the methods considered traditional [2], [3] and [4].

As mentioned in the previous stage, each vector of evaluations
of each requirement is scalar multiplied by the vector of weights
corresponding to the current load category of the node to obtain the
priority according to each criterion and the nodal priority granted to
each requirement. This can be seen in Table XII.

TABLE XI. The Valuations Assigned to the Criteria to Calculate
the Priority or Nodal Preference That Each Node Will Grant Each

Requirement of Each Process According to the Node Load

Res./Proc. Criteria

%CPU … Process Priority … %VM

r11p11 T(EB;0.0250) … T(EB;0.0800) … T(M;-0.0500)

r12p11 T(EB;0.0350) … T(EB;0.0300) … T(MB;0.0833)

r21p11 T(EB;0.0200) … T(MB;-0.0767) … T(MB;-0.0667)

r22p11 T(EB;0.0250) … T(EB;0.0800) … T(MB;0.0333)

r23p11 T(EB;0.0300) … T(MB;-0.0717) … T(B;0.0667)

r24p11 T(EB;0.0250) … T(EB;0.0600) … T(MB;-0.0667)

… … … … … …

r11p13 T(EB;0.0350) … T(EB;0.0600) … T(M;-0.0500)

r12p13 T(EB;0.0400) … T(MB;-0.0767) … T(MB;0.0833)

r13p13 T(EB;0.0300) … T(MB;-0.0767) … T(MB;-0.0667)

r21p13 T(EB;0.0200) … T(EB;0.0500) … T(MB;0.0333)

r22p13 T(EB;0.0450) … T(EB;0.0500) … T(B;0.0667)

r31p13 T(EB;0.0350) … T(EB;0.0800) … T(MB;-0.0667)

r32p13 T(EB;0.0450) … T(EB;0.0400) … T(M;-0.0500)

r33p13 T(EB;0.0100) … T(MB;-0.0767) … T(MB;0.0833)

… … … … … …

r12p23 T(MB;-0.0467) … T(MB;-0.0667) … T(EB;0.0300)

r24p23 T(EB;0.0400) … T(EB;0.0600) … T(EB;0.0700)

r31p23 T(EB;0.0200) … T(MB;-0.0267) … T(EB;0.0800)

r32p23 T(EB;0.0800) … T(EB;0.0800) … T(EB;0.0200)

r33p23 T(MB;-0.0467) … T(MB;0.0133) … T(EB;0.0200)

… … … … … …

r12p34 T(B;-0.0333) … T(EB;0.0700) … T(MB;-0.0667)

r13p34 T(MB;0.0733) … T(EB;0.0800) … T(MB;-0.0067)

r22p34 T(MB;0.0133) … T(MB;-0.0767) … T(MB;-0.0067)

r23p34 T(MB;-0.0467) … T(MB;-0.0767) … T(EB;0.0800)

r24p34 T(MB;0.0133) … T(EB;0.0700) … T(MB;0.0133)

r31p34 T(MB;0.0133) … T(EB;0.0700) … T(MB;-0.0667)

r32p34 T(MB;0.0133) … T(EB;0.0600) … T(MB;-0.0667)

r33p34 T(B;-0.0333) … T(MB;-0.0767) … T(MB;-0.0667)

… … … … … …

r11p37 T(MB;0.0133) … T(MB;-0.0767) … T(MB;-0.0467)

r12p37 T(B;-0.0633) … T(EB;0.0500) … T(MB;-0.0267)

r21p37 T(MB;0.0433) … T(EB;0.0600) … T(MB;-0.0467)

r32p37 T(B;-0.0633) … T(EB;0.0800) … T(EB;0.0600)

r33p37 T(MB;-0.0467) … T(EB;0.0800) … T(MB;-0.0067)

Regular Issue

- 139 -

TABLE XII. The Valuations Assigned to the Criteria to Calculate
the Priority or Nodal Preference That Each Node Will Grant Each

Requirement of Each Process According to the Node Load

Resources/
Processes

Criteria

%CPU … Process Priority … %VM

r11p11 T(M;0.000) … T(VH;-0.0333) … T(VH;0.0667)

r12p11 T(H;0.0333) … T(L;-0.0333) … T(M;0.0000)

r21p11 T(L;0.0667) … T(VH;0.0667) … T(VL;0.0333)

r22p11 T(M;0.0000) … T(VH;-0.0333) … T(L;0.0667)

r23p11 T(H;-0.0667) … T(EH;-0.05) … T(VH;-0.0333)

r24p11 T(M;0.0000) … T(H;-0.0667) … T(VL;0.0333)

… … … … … …

r11p13 T(H;0.0333) … T(H;-0.0667) … T(VH;-0.0333)

r12p13 T(VH;-0.0333) … T(VH;0.0667) … T(L;0.0667)

r13p13 T(H;-0.0667) … T(VH;0.0667) … T(VH;-0.0333)

r21p13 T(L;0.0667) … T(M;0.0000) … T(L;-0.0333)

r22p13 T(VH;0.0667) … T(M;0.0000) … T(L;-0.0333)

r31p13 T(H;0.0333) … T(VH;-0.0333) … T(H;-0.0667)

r32p13 T(VH;0.0667) … T(L;0.0667) … T(H;-0.0667)

r33p13 T(VL;0.0333) … T(VH;0.0667) … T(H;-0.0667)

… … … … … …

r12p23 T(H;-0.0667) … T(M;0.0000) … T(L;-0.0333)

r24p23 T(VL;0.0333) … T(L;-0.0333) … T(H;0.0333)

r31p23 T(VL;-0.0667) … T(H;0.0333) … T(VH;-0.0333)

r32p23 T(L;0.0667) … T(L;0.0667) … T(VL;0.0333)

r33p23 T(H;-0.0667) … T(VH;0.0667) … T(VL;0.0333)

… … … … … …

r12p34 T(EH;0.0000) … T(H;0.0333) … T(M;0.0000)

r13p34 T(EH;0.0000) … T(VH;-0.0333) … T(M;0.0000)

r22p34 T(VH;-0.0333) … T(VH;0.0667) … T(VH;-0.0333)

r23p34 T(H;-0.0667) … T(VH;0.0667) … T(VH;-0.0333)

r24p34 T(L;0.0667) … T(H;0.0333) … T(L;0.0667)

r31p34 T(H;-0.0667) … T(H;0.0333) … T(VH;0.0667)

r32p34 T(H;-0.0667) … T(H;-0.0667) … T(M;0.0000)

r33p34 T(H;-0.0667) … T(VH;0.0667) … T(M;0.0000)

… … … … … …

r11p37 T(H;-0.0667) … T(VH;0.0667) … T(H;-0.0667)

r12p37 T(VH;0.0667) … T(M;0.0000) … T(H;0.0333)

r21p37 T(H;0.0333) … T(H;-0.0667) … T(H;-0.0667)

r32p37 T(VH;0.0667) … T(VH;-0.0333) … T(L;-0.0333)

r33p37 T(L;0.0667) … T(VH;-0.0333) … T(VH;-0.0333)

In summary, the nodal priority (to be calculated at the node where
the request occurs) of a process to access a given resource (which
can be at any node) is calculated by the scalar product of the vectors
mentioned above.

This nodal priority must be transformed into the 2-tuple format,
considering the linguistic labels already mentioned. Therefore, it will
be necessary to compare each nodal priority value with the average
value of each label, the minimum difference of these comparisons will
indicate the corresponding label.

B. Calculation of the Priorities or Preferences of the Processes
to Access the Shared Resources Available (Calculated in the
Centralized Resource Manager) and Determining the Order in
Which the Resources Will Be Allocated, and Which Process Each
Resource Will Be Assigned

Table XIII and Table XIV are used to calculate the final priorities,
in which the priorities or nodal preferences calculated in the previous
stage are placed; in this table each row contains information of the
nodal priorities of the different processes to access a certain resource.

TABLE XIII. Nodal Priorities of the Processes to Access Each Resource
in 2-Tuple (P11, P13, P23)

Resources Nodal Process Priorities
p11 … p13 … p23

r11 NPT(H;0.0483) … NPT(H;0.0483) … -
r12 NPT(M;-0.0050) … NPT(M;0.0350) … NPT(H;-0.070)
r13 - … NPT(H;0.0733) … -
r21 NPT(L;0.0217) … NPT(M;-0.060) … -
r22 NPT(M;-0.0150) … NPT(M;-0.050) … -
r23 NPT(VH;-0.0483) … - … -
r24 NPT(L;0.0717) … - … NPT(L;-0.0008)
r31 - … NPT(H;-0.0370) … NPT(M;-0.0400)
r33 - … NPT(H;-0.070) … NPT(M;0.0200)
r33 - … NPT(H;-0.0517) … NPT(H;-0.0317)

TABLE XIV. Nodal Priorities of the Processes to Access Each Resource
in 2-Tuple (P34, P37)

Resources Nodal Process Priorities
… p34 … p37 …

r11 … - … NPT(H;0.0533) …
r12 … NPT(H;0.0058) … NPT(VH;-0.0733) …
r13 … NPT(H;0.0658) … - …
r21 … - … NPT(H;0.0283) …
r22 … NPT(VH;-0.0708) … - …
r23 … NPT(H;0.0083) … - …
r24 … NPT(M;0.0700) … - …
r31 … NPT(H;0.0258) … - …
r33 … NPT(H;0.0083) … NPT(H;-0.0192) …
r33 … NPT(H;-0.0492) … NPT(H;-0.0541) …

Next, the final weight vector to be used in the final aggregation
process to determine the order or priority of access to resources must
be calculated. In addition, the recently obtained weights will have to
be normalized by dividing each one by the sum of all of them.

The nodal priorities indicated in Table XIII and Table XIV taken row
by row, i.e., for each resource, will be multiplied by the final standardized
weight vector mentioned above. See in Table XV and Table XVI.

TABLE XV. Final Global Priority Tuple (P11, P13, P23)

Resources
Nodal Process Priorities

p11 … p13 … p23

r11 NPT(EL;0.069) … NPT(EL;0.069) … -
r12 NPT(EL;0.048) … NPT(EL;0.052) … NPT(EL;0.058)
r13 - … NPT(EL;0.072) … -
r21 NPT(EL;0.034) … NPT(EL;0.043) … -
r22 NPT(EL;0.047) … NPT(EL;0.044) … -
r23 NPT(EL;0.076) … - … -
r24 NPT(EL;0.039) … - … NPT(EL;0.032)
r31 - … NPT(EL;0.061) … NPT(EL;0.045)
r33 - … NPT(EL;0.058) … NPT(EL;0.050)
r33 - … NPT(EL;0.06) … NPT(EL;0.061)

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 140 -

The next step is to normalize Table XV and Table XVI between the
extreme values. To do this, subtract the numerical value of the 2-tuple
from the minimum value of both tables and divide it by the range,
which is the difference between the maximum and minimum values of
the two. As can see in Table XVII and Table XVIII.

The largest of these products made for the different processes in
relation to the same resource will indicate which of the processes will
have access to the resource.

TABLE XVI. Final Global Priority Tuple (P34, P37)

Resources
Nodal Process Priorities

… p34 … p37

r11 … - … NPT(EL;0.07)
r12 … NPT(EL;0.065) … NPT(EL;0.074)
r13 … NPT(EL;0.071) … -
r21 … - … NPT(EL;0.067)
r22 … NPT(EL;0.074) … -
r23 … NPT(EL;0.065) … -
r24 … NPT(EL;0.055) … -
r31 … NPT(EL;0.067) … -
r33 … NPT(EL;0.065) … NPT(EL;0.063)
r33 … NPT(EL;0.060) … NPT(EL;0.059)

TABLE XVII. Normalized Final Global Priority Tuple (P11, P13, P23)

Resources
Nodal Process Priorities

p11 … p13 … p23

r11 NFGPT(VH;0.06) … NFGPT(VH;0.06) … -
r12 NFGPT(M;0.060) … NFGPT(H;-0.046) … NFGPT(VH;-0.052)
r13 - … NFGPT(EH;-0.068) … -
r21 NFGPT(L;0.014) … NFGPT(M;-0.023) … -
r22 NFGPT(M;0.045) … NFGPT(M;-0.008) … -
r23 NFGPT(EH;0.00) … - … -
r24 NFGPT(M;-0.076) … - … NFGPT(L;0.007)
r31 - … NFGPT(VH;-0.068) … NFGPT(M;0.051)
r33 - … NFGPT(H;0.053) … NFGPT(H;-0.017)
r33 - … NFGPT(H;0.075) … NFGPT(VH;-0.061)

TABLE XVIII. Normalized Final Global Priority Tuple (P34, P37)

Resources
Nodal Process Priorities

… p34 … p37

r11 … - … NFGPT(VH;0.068)
r12 … NFGPT(VH;-0.004) … NFGPT(EH;-0.038)
r13 … NFGPT(EH;-0.080) … -
r21 … - … NFGPT(VH;0.030)
r22 … NFGPT(EH;-0.034) … -
r23 … NFGPT(VH;-0.00) … -
r24 … NFGPT(H;0.007) … -
r31 … NFGPT(VH;0.026) … -
r33 … NFGPT(VH;-0.00) … NFGPT(VH;-0.042)
r33 … NFGPT(H;0.079) … NFGPT(H;0.072)

The summation of all these products in relation to the same resource
will indicate the priority that this resource will have to be assigned, in
relation to the other resources that will also have to be assigned. This
constitutes the Linguistics Distributed System Assignment Function
(LDSAF). Refer to (3).

LDSAF(rij) = Σ NFGPTijkl = rij resource assignment priority (3)

By calculating the LDSAF for all resources, a 2-tuple vector will
be obtained and, by ordering its elements from highest to lowest, the
priority order of resource allocation will be obtained, which should be

normalized ensuring that the 2-tuples obtained are in the interval [0,
1]. As can be seen in Table XIX.

TABLE XIX. Valuations to Normalize the LDSAF (First Iteration)

Label Value
Maximum Value 5.2364
Minimum value 1.8255

Range 3.4109

In addition, as indicated above, the largest of the NFGPTijkl for
each resource will indicate the process to which the resource will be
assigned.

The result of normalizing the 2 tuples constitutes what will be called
Normalized Linguistics Distributed System Assignment Function a
(NLDSAF). Refer to (4)

NLDSAF(rij) = Σ (NFGPTijkl / (Maximum (NFGPTijkl) - Minimum
(NFGPTijkl))) = rij resource assignment priority normalized
between extreme values (4)

This can be seen in Table XX.

TABLE XX. Normalized Linguistics Distributed System Assignment
Function Ordered By Highest Priority Resource (First Iteration)

Assignment order of
resources

Priority of the
resource

Process at which assign
the resource

r33 T(EH;0.0000) p23

r12 T(EH;-0.0326) p37

r31 T(H;-0.0028) p34

r11 T(H;-0.0355) p37

r22 T(M;0.0423) p34

r21 T(M;0.0337) p37

r13 T(M;0.0274) p13

r32 T(M;-0.0334) p34

r23 T(L;-0.0591) p11

r24 T(EL;0.0000) p34

The next step is to repeat the procedure but removing the requests
of already made allocations; it must be noted that the assigned
resources will be available once they are released by the processes
and can therefore be allocated to other processes. Table XIX should
be recalculated by omitting the resource allocations already done. As
can see in Fig. 3.

Fig. 3. Process of self-regulation and calculation of NLDSAF.

Regular Issue

- 141 -

Since the system regulates itself by releasing the resources already
assigned to the processes in the previous step, and because there are
resource requests from the processes that have not yet been satisfied,
the calculations in Table XIX and XX are repeated with their respective
values, omitting the processes already completed.

Normalized the 2-tuples in the second iteration can be seen in Table
XXI.

TABLE XXI. Valuations to Normalize the LDSAF (Second Iteration)

Label Value

Maximum Value 4.8503

Minimum value 1.2514

Range 3.5989

The result of normalizing the 2-tuples for the second iteration can
be seen in Table XXII.

TABLE XXII. Normalized Linguistics Distributed System Assignment
Function Ordered By Highest Priority Resource (Second Iteration)

Assignment order of
resources

Priority of the
resource

Process at which assign
the resource

r33 T(EH;0.0000) p34

r12 T(VH;0.0758) p34

r31 T(H;-0.0392) p13

r11 T(M;0.0813) p11

r21 T(M;-0.0076) p25

r22 T(M;-0.0298) p11

r13 T(M;-0.0347) p34

r32 T(M;-0.0676) p37

r23 T(VL;0.0173) p34

r24 T(EL;0.0000) p11

The final tables with the results of all the iterations will be shown
below.

The valuations to normalize the LDSAF of each iteration can be
seen in Table XXIII.

TABLE XXIII. Valuations to Normalize the LDSAF (of Each Iteration).

Maximum Value Minimum value Range Iteration

5.2364 1.8255 3.4109 1

4.8503 1.2514 3.5989 2

4.1598 0.8147 3.3451 3

4.0308 0.5616 3.4692 4

3.9955 0.4695 3.526 5

3.6488 0.2681 3.3807 6

2.6775 0.0000 2.6775 7

2.4275 0.0000 2.4275 8

2.9932 0.0000 2.9932 9

1.5946 0.0000 1.5946 10

1.0000 0.0000 1.0000 11

0.0169 0.0000 0.0169 12

The result of normalizing the 2 tuples for each iteration can be seen
in Table XXIV, ordered by highest priority resource (of each iteration).

V. Example of a decision Model Applied to One of the
Traditional Algorithms

A particular case of the proposed decision model is to visualize
how some of the methods considered traditional in this work, are a
particular case of this method.

As the traditional methods do not consider groups of processes,
the calculation will only be done with independent processes and the
column that considers whether a process is part of a group of processes
should be disabled, see Table XXV.

TABLE XXV. Weights Assigned to the Processes for the Calculation
of Priorities

Processes Group of processes Independent processes

p11 - wf11=1/np

…. - ….

pkl - wfkl=1/np

…. -

pnp - wfnp=1/np

The methods considered traditional do not consider most of
the criteria contemplated in the proposed model (in addition to
not considering the representation by means of linguistic labels
or 2-tuples), they are only based on the calculation of the “Process
Priority” criterion. The weights assigned to the criteria in Table XXVI,
to calculate the global priority, only the “Process Priority” criterion
will be considered, disabling the other criteria.

 For each requirement of a resource made by a process, the
assessment vectors are applied according to the criteria established for
the determination of the priority. This is done in the node where the
requirement occurs. To obtain the node priority, each rating vector of
each requirement must be scaled and multiplied by the weight vector
corresponding to the current load category of the node.

TABLE XXVI. Weights Assigned to the Criteria for Calculating
Priority

Categories Process priority Other Criteria

High 0.1000 -

Medium 0.2000 -

Low 0.1000 -

Although the decision model obtains the information of all the
criteria, it should be noted that for the traditional methods, from the
weight vector Table XXVI, only the criterion “Process Priority” will
affect the calculation of the priority.

The valuations assigned to the criteria for calculating the priority
or preference that each node will give to each requirement of each
process according to the node load, will be those used in TABLE XII.
To calculate the priorities or preferences of the processes, taking into
account the state of the node, Table XX will be used, but disabling
all the criteria, except “Process Priority”. Nodal priorities, final
weights and overall process priorities for accessing resources must
be calculated.

Table XXVII, Table XXVIII, Table XXIX, Table XXX and Table XXXI
are constructed from the nodal priority values, which for this example
matches the “Process Priority” criteria.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 142 -

Assignment order
of resources

Priority of the
resource

Process at which
assign the resource

Iteration

r33 T(EH;0.0000) p23 1

r12 T(EH;-0.0326) p37 1

r31 T(H;-0.0028) p34 1

r11 T(H;-0.0355) p37 1

r22 T(M;0.0423) p34 1

r21 T(M;0.0337) p37 1

r13 T(M;0.0274) p13 1

r32 T(M;-0.0334) p34 1

r23 T(L;-0.0591) p11 1

r24 T(EL;0.0000) p34 1

r33 T(EH;0.0000) p34 2

r12 T(VH;0.0758) p34 2

r31 T(H;-0.0392) p13 2

r11 T(M;0.0813) p11 2

r21 T(M;-0.0076) p25 2

r22 T(M;-0.0298) p11 2

r13 T(M;-0.0347) p34 2

r32 T(M;-0.0676) p37 2

r23 T(VL;0.0173) p34 2

r24 T(EL;0.0000) p11 2

r33 T(EH;0.0000) p34 3

r12 T(VH;0.0758) p34 3

r31 T(H;-0.0392) p13 3

r11 T(M;0.0813) p11 3

r21 T(M;-0.0076) p25 3

r22 T(M;-0.0298) p11 3

r13 T(M;-0.0347) p34 3

r32 T(M;-0.0676) p37 3

r23 T(VL;0.0173) p34 3

r24 T(EL;0.0000) p11 3

r33 T(EH;0.0000) p37 4

r12 T(VH;0.0255) p13 4

r31 T(H;-0.0739) p23 4

r22 T(M;-0.0178) p13 4

r21 T(M;-0.0721) p12 4

r11 T(L;0.0082) p12 4

r13 T(L;-0.0337) p21 4

r32 T(L;-0.0762) p23 4

r23 T(EL;0.0489) p32 4

r24 T(EL;0.0000) p35 4

r33 T(EH;0.0000) p12 5

r12 T(VH;0.0431) p11 5

Assignment order
of resources

Priority of the
resource

Process at which
assign the resource

Iteration

r31 T(H;-0.0777) p31 5

r22 T(M;-0.0467) p12 5

r21 T(L;0.0674) p22 5

r13 T(L;-0.0824) p32 5

r11 T(VL;0.0273) p32 5

r32 T(VL;-0.0591) p36 5

r23 T(EL;0.0230) p33 5

r24 T(EL;0.0000) p36 5

r33 T(EH;0.0000) p31 6

r12 T(VH;-0.0133) p12 6

r31 T(M;0.0638) p12 6

r22 T(L;0.0275) p21 6

r21 T(L;-0.0106) p11 6

r13 T(VL;0.0815) p36 6

r11 T(VL;0.0443) p36 6

r32 T(VL;-0.0604) p35 6

r23 T(EL;0.0032) p24 6

r24 T(EL;0.0000) p24 6

r33 T(EH;0.0000) p21 7

r12 T(VH;-0.0348) p21 7

r31 T(M;0.0040) p22 7

r13 T(VL;0.0742) p35 7

r21 T(VL;0.0682) p33 7

r11 T(VL;0.0631) p33 7

r22 T(VL;0.0580) p35 7

r32 T(VL;-0.0553) p33 7

r33 T(EH;0.0000) p22 8

r12 T(EH;-0.0210) p33 8

r31 T(M;-0.0299) p36 8

r21 T(VL;0.0191) p36 8

r13 T(VL;0.0110) p33 8

r22 T(VL;0.0078) p33 8

r11 T(VL;-0.0035) p24 8

r12 T(EH;0.0000) p36 9

r33 T(VH;-0.0117) p33 9

r31 T(L;-0.0534) p35 9

r22 T(EL;0.0000) p36 9

r12 T(EH;0.0000) p24 10

r33 T(VH;0.0734) p35 10

r12 T(EH;0.0000) p32 11

r33 T(H;-0.0196) p36 11

r12 T(EH;0.0000) p35 12

TABLE XXIV. Concatenated Normalized Linguistics Distributed System Assignment Function (CNLDSAF)

Regular Issue

- 143 -

TABLE XXVII. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple (p11, p12, p13)

p11 p12 p13

r11 NPT(EL;0.0800) NPT(VL;-0.0667) NPT(EL;0.0600)

r12 NPT(EL;0.0300) NPT(EL;0.0800) NPT(VL;-0.0767)

r13 - - NPT(VL;-0.0767)

r21 NPT(VL;-0.0767) NPT(EL;0.0800) NPT(EL;0.0500)

r22 NPT(EL;0.0800) NPT(EL;0.0800) NPT(EL;0.0500)

r23 NPT(VL;-0.0717) - -

r24 NPT(EL;0.0600) - -

r31 - NPT(EL;0.0300) NPT(EL;0.0800)

r32 - - NPT(EL;0.0400)

r33 - NPT(EL;0.0300) NPT(VL;-0.0767)

TABLE XXVIII. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple (p21, p22, p23)

p21 p22 p23

r11 - - -

r12 NPT(VL;-0.0267) - NPT(VL;-0.0667)

r13 NPT(VL;-0.0267) - -

r21 - NPT(VL;-0.0467) -

r22 NPT(VL;-0.0667) NPT(VL;0.0133) -

r23 NPT(VL;-0.0667) - -

r24 - - NPT(EL;0.0600)

r31 NPT(VL;0.0133) NPT(EL;0.0800) NPT(VL;-0.0267)

r32 - - NPT(EL;0.0800)

r33 NPT(EL;0.0800) NPT(VL;-0.0067) NPT(VL;0.0133)

TABLE XXIX. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple (p24, p25, p31)

p24 p25 p31

r11 NPT(VL;-0.0667) - -

r12 NPT(VL;0.0133) - -

r13 - - NPT(EL;0.0700)

r21 - NPT(EL;0.0800) -

r22 - - -

r23 NPT(VL;-0.0067) - -

r24 NPT(EL;0.0600) - -

r31 - - NPT(EL;0.0700)

r32 - - -

r33 - - NPT(VL;-0.0767)

TABLE XXX. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple (p32, p33, p34)

p32 p33 p34

r11 NPT(VL;-0.0767) NPT(EL;0.0600) -

r12 NPT(EL;0.0800) NPT(EL;0.0300) NPT(EL;0.0700)

r13 NPT(VL;-0.0767) NPT(EL;0.0300) NPT(EL;0.0800)

r21 - NPT(EL;0.0800) -

r22 - NPT(EL;0.0700) NPT(VL;-0.0767)

r23 NPT(EL;0.0600) NPT(EL;0.0600) NPT(VL;-0.0767)

r24 - - NPT(EL;0.0700)

r31 - - NPT(EL;0.0700)

r32 - NPT(EL;0.0400) NPT(EL;0.0600)

r33 - NPT(EL;0.0600) NPT(VL;-0.0767)

TABLE XXXI. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple (p35, p36, p37)

p35 p36 p37

r11 - NPT(EL;0.0800) NPT(VL;-0.0767)
r12 NPT(VL;-0.0767) NPT(EL;0.0800) NPT(EL;0.0500)
r13 NPT(VL;-0.0767) NPT(EL;0.0800) -
r21 - NPT(EL;0.0700) NPT(EL;0.0600)
r22 NPT(EL;0.0800) NPT(EL;0.0800) -
r23 - - -
r24 NPT(EL;0.0600) NPT(EL;0.0800) -
r31 NPT(EL;0.0800) NPT(EL;0.0800) -
r32 NPT(EL;0.0400) NPT(EL;0.0800) NPT(EL;0.0800)
r33 NPT(EL;0.0800) NPT(EL;0.0800) NPT(EL;0.0800)

As mentioned, traditional methods do not consider groups of
processes. The calculation will only consider that the processes are
independent. In the example there are 15 processes and the calculation
of the weights is wfij equal to 1/np for independent processes, where
np is the number of processes in the system (15), the calculation for
the weights of each process (wpij) is equal to 1/15. For the calculation
of the standardized weights (nwpij) each wpij value is divided by the
sum of all wpij, this can be seen in the tables above. The final weight
vector to be used in the final aggregation process should be calculated
to determine the order or priority of access to resources. In addition,
the recently obtained weights should be normalized by dividing each
one of them by the sum of all of them. For this particular situation,
all processes will have the same weight value, since they are only
considered as independent processes. The normalized weight vector
will have the same value for all processes, this value will be 1/15,
which results in 0.0066.

The nodal priorities indicated in Table XXVII, Table XXVIII, Table
XXIX, Table XXX and Table XXXI taken row by row, that is, for each
resource, will be multiplied by the normalized weight vector (nwpij).
This can be seen in Table XXXII, Table XXXIII, XXXIV, Table XXXV
and Table XXXVI.

TABLE XXXII. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple (p11, p12, p13)

p11 p12 p13

r11 NPT(EL;0.005) NPT(EL;0.007) NPT(EL;0.004)
r12 NPT(EL;0.002) NPT(EL;0.005) NPT(EL;0.006)
r13 - - NPT(EL;0.006)
r21 NPT(EL;0.006) NPT(EL;0.005) NPT(EL;0.003)
r22 NPT(EL;0.005) NPT(EL;0.005) NPT(EL;0.003)
r23 NPT(EL;0.006) - -
r24 NPT(EL;0.004) - -
r31 - NPT(EL;0.002) NPT(EL;0.005)
r32 - - NPT(EL;0.003)
r33 - NPT(EL;0.002) NPT(EL;0.006)

TABLE XXXIII. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple (p21, p22, p23)

p21 p22 p23

r11 - - -
r12 NPT(EL;0.009) - NPT(EL;0.007)
r13 NPT(EL;0.009) - -
r21 - NPT(EL;0.008) -
r22 NPT(EL;0.007) NPT(EL;0.012) -
r23 NPT(EL;0.007) - -
r24 - - NPT(EL;0.004)
r31 NPT(EL;0.012) NPT(EL;0.005) NPT(EL;0.009)
r32 - - NPT(EL;0.005)
r33 NPT(EL;0.005) NPT(EL;0.011) NPT(EL;0.012)

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 144 -

TABLE XXXIV. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple (p24, p25, p31)

p24 p25 p31

r11 NPT(EL;0.007) - -
r12 NPT(EL;0.012) - -
r13 - - NPT(EL;0.005)
r21 - NPT(EL;0.005) -
r22 - - -
r23 NPT(EL;0.011) - -
r24 NPT(EL;0.004) - -
r31 - - NPT(EL;0.005)
r32 - - -
r33 - - NPT(EL;0.006)

TABLE XXXV. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple (p32, p33, p34)

p32 p33 p34

r11 NPT(EL;0.006) NPT(EL;0.004) -
r12 NPT(EL;0.005) NPT(EL;0.002) NPT(EL;0.005)
r13 NPT(EL;0.006) NPT(EL;0.002) NPT(EL;0.005)
r21 - NPT(EL;0.005) -
r22 - NPT(EL;0.005) NPT(EL;0.006)
r23 NPT(EL;0.004) NPT(EL;0.004) NPT(EL;0.006)
r24 - - NPT(EL;0.005)
r31 - - NPT(EL;0.005)
r32 - NPT(EL;0.003) NPT(EL;0.004)
r33 - NPT(EL;0.004) NPT(EL;0.006)

TABLE XXXVI. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple (p35, p36, p37)

p35 p36 p37

r11 - NPT(EL;0.005) NPT(EL;0.006)
r12 NPT(EL;0.006) NPT(EL;0.005) NPT(EL;0.003)
r13 NPT(EL;0.006) NPT(EL;0.005) -
r21 - NPT(EL;0.005) NPT(EL;0.004)
r22 NPT(EL;0.005) NPT(EL;0.005) -
r23 - - -
r24 NPT(EL;0.004) NPT(EL;0.005) -
r31 NPT(EL;0.005) NPT(EL;0.005) -
r32 NPT(EL;0.003) NPT(EL;0.005) NPT(EL;0.005)
r33 NPT(EL;0.005) NPT(EL;0.005) NPT(EL;0.005)

The next step is to normalize Table XXXII, Table XXXIII, Table
XXXIV, Table XXXV and Table XXXVI between the extreme values.
To do this, you must subtract the numerical value of the 2-tuple by the
minimum value of all of them and divide it by the range. The range is
the difference between the maximum value and minimum value of the
tables already mentioned. This can be seen in Table XXXVII.

TABLE XXXVII. Normalization Assessments

Label Value

Maximum Value 0.012

Minimum value 0.002

Range 0.010

The result of this standardization can be seen in Table XXXVIII,
Table XXXIX, Table XL, Table XLI and Table XLII. The largest of these
products made for the different processes in relation to the same
resource will indicate which of the processes will have access to the
resource.

TABLE XXXVIII. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple Normalized (p11, p12, p13)

p11 p12 p13

r11 NFGPT(L;0.000) NFGPT(M;-0.033) NFGPT(VL;0.033)

r12 NFGPT(EL;0.000) NFGPT(L;0.000) NFGPT(L;0.067)

r13 - - NFGPT(L;0.067)

r21 NFGPT(L;0.067) NFGPT(L;0.000) NFGPT(VL;-0.033)

r22 NFGPT(L;0.000) NFGPT(L;0.000) NFGPT(VL;-0.033)

r23 NFGPT(M;-0.067) - -

r24 NFGPT(VL;0.033) - -

r31 - NFGPT(EL;0.000) NFGPT(L;0.000)

r32 - - NFGPT(EL;0.067)

r33 - NFGPT(EL;0.000) NFGPT(L;0.067)

TABLE XXXIX. Nodal Priorities of the Processes to Access Each
Resource in 2-Tuple Normalized (p21, p22, p23)

p21 p22 p23

r11 - - -

r12 NFGPT(H;0.067) - NFGPT(M;-0.033)

r13 NFGPT(H;0.067) - -

r21 - NFGPT(H;-0.067) -

r22 NFGPT(M;-0.033) NFGPT(EH;0.000) -

r23 NFGPT(M;-0.033) - -

r24 - - NFGPT(VL;0.033)

r31 NFGPT(EH;0.000) NFGPT(L;0.000) NFGPT(H;0.067)

r32 - - NFGPT(L;0.000)

r33 NFGPT(L;0.000) NFGPT(VH;0.033) NFGPT(EH;0.000)

TABLE XL. Nodal Priorities of the Processes to Access Each Resource
in 2-Tuple Normalized (p24, p25, p31)

p24 p25 p31

r11 NFGPT(M;-0.033) - -

r12 NFGPT(EH;0.000) - -

r13 - - NFGPT(L;-0.067)

r21 - NFGPT(L;0.000) -

r22 - - -

r23 NFGPT(VH;0.033) - -

r24 NFGPT(VL;0.033) - -

r31 - - NFGPT(L;-0.067)

r32 - - -

r33 - - NFGPT(L;0.067)

TABLE XLI. Nodal Priorities of the Processes to Access Each Resource
in 2-Tuple Normalized (p32, p33, p34)

p32 p33 p34

r11 NFGPT(L;0.067) NFGPT(VL;0.033) -

r12 NFGPT(L;0.000) NFGPT(EL;0.000) NFGPT(L;-0.067)

r13 NFGPT(L;0.067) NFGPT(EL;0.000) NFGPT(L;0.000)

r21 - NFGPT(L;0.000) -

r22 - NFGPT(L;-0.067) NFGPT(L;0.067)

r23 NFGPT(VL;0.033) NFGPT(VL;0.033) NFGPT(L;0.067)

r24 - - NFGPT(L;-0.067)

r31 - - NFGPT(L;-0.067)

r32 - NFGPT(EL;0.067) NFGPT(VL;0.033)

r33 - NFGPT(VL;0.033) NFGPT(L;0.067)

Regular Issue

- 145 -

TABLE XLII. Nodal Priorities of the Processes to Access Each Resource
in 2-Tuple Normalized (p35, p36, p37)

p35 p36 p37

r11 - NFGPT(L;0.000) NFGPT(L;0.067)
r12 NFGPT(L;0.067) NFGPT(L;0.000) NFGPT(VL;-0.033)
r13 NFGPT(L;0.067) NFGPT(L;0.000) -
r21 - NFGPT(L;-0.067) NFGPT(VL;0.033)
r22 NFGPT(L;0.0000) NFGPT(L;0.000) -
r23 - - -
r24 NFGPT(VL;0.033) NFGPT(L;0.000) -
r31 NFGPT(L;0.000) NFGPT(L;0.000) -
r32 NFGPT(EL;0.067) NFGPT(L;0.000) NFGPT(L;0.000)
r33 NFGPT(L;0.000) NFGPT(L;0.000) NFGPT(L;0.000)

The sum of all these products in relation to the same resource
will indicate the priority that should be assigned to this resource,
in relation to the other resources that should also be assigned. This
constitutes the Linguistic Distributed System Assignment Function
(LDSAF). Refer to (5).

LDSAF(rij) = Σ NFGPTijkl with rij resource allocation priority (5)

When calculating the LDSAF for all resources, a 2-tuple vector will
be obtained. Sorting their elements from highest to lowest, you will
get the priority order of resource allocation. This should be normalized
by ensuring that the 2-tuples obtained are in the range [0, 1]. This can
be seen in Table XLIII.

In addition, as indicated above, the largest of the NFGPTijkl of
each resource will indicate the process to which the resource will be
assigned.

TABLE XLIII. Assessments to Normalize the LDSAF

Label Value

Maximum Value 4.5999

Minimum value 1.4003

Range 3.1996

The result of the standardization of the 2-tuples constitutes
what will be called the Normalized Linguistic Distributed System
Assignment Function (LDSAF). Refer to (6).

LDSAF(rij) = Σ (NFGPTijkl / (Maximum (NFGPTijkl) - Minimum
(NFGPTijkl)) = rij priority of resource allocation normalized
between extreme values (6)

This is shown in Table XLIV.

TABLE XLIV. Assessments to Normalize the LDSAF

Order of resource
assignment

Priority of assignment Process selected

r33 T(EH;0.0000) p23

r12 T(EH;-0.0625) p24

r31 T(H;0.0209) p21

r22 T(H;0.0209) p22

r13 T(M;-0.0418) p21

r11 T(M;-0.0626) p12

r21 T(L;0.0417) p22

r23 T(L;0.0311) p24

r24 T(EL;0.0000) p36

r32 T(EL;0.0000) p23

The next step is to repeat the procedure but eliminating the
requests for assignments already made. It should be noted that the
allocated resources will be available once the processes release them
and therefore, they can be allocated to other processes. The system
is self-regulating by releasing the resources already assigned to the
processes in the previous step.

The resource requests from the processes that have not yet been
satisfied, that is, the calculations in Table XLIII and Table XLIV are
repeated with their respective values, omitting the processes already
completed.

The result of the concatenation of all allocation rounds for this
example can be seen in Table XLV. The diagram in Fig. 4 shows a
graph that allows the flow and relationship between the different
rounds of resource allocation to processes to be represented.

Round Resource Process

1

2

3

4

5

6

7

9

8

10
11
12

12

11

23

33

31

13

23

21

24

32

22

37

34

13
11
25
21
22
31
12
32

35
36

33
24

Fig. 4 Flow and relationships between different rounds of resource allocation.

VI. Comparison of Results Obtained With Traditional
Methods

Table XLV of this scenario is compared to Table XXIV of scenario
E1 and look for each first round allocation of the latter in Table XLV.

In Table XLVI you can see the order of assignments for the first
round of the E1 scenario, while Table XLVII represents the order in
which the same assignments appear but for the traditional method,
in which round they appear and in which position with respect to
each round.

TABLE XLVI. Values Corresponding to the First Round of Iteration of
Scenario E1 (ONLDSAF)

Pos. Resource 2-tuple Process Round

1 r33 T(EH;0.0000) p23 1

2 r12 T(EH;-0.0326) p37 1

3 r31 T(H;-0.0028) p34 1

4 r11 T(H;-0.0355) p37 1

5 r22 T(M;0.0423) p34 1

6 r21 T(M;0.0337) p37 1

7 r13 T(M;0.0274) p13 1

8 r32 T(M;-0.0334) p34 1

9 r23 T(L;-0.0591) p11 1

10 r24 T(EL;0.0000) p34 1

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 146 -

Resource 2-tuple Process Round

r33 T(EH;0.0000) p23 1

r12 T(EH;-0.0625) p24 1

r31 T(H;0.0209) p21 1

r22 T(H;0.0209) p22 1

r13 T(M;-0.0418) p21 1

r11 T(M;-0.0626) p12 1

r21 T(L;0.0417) p22 1

r23 T(L;0.0311) p24 1

r24 T(EL;0.0000) p36 1

r32 T(EL;0.0000) p23 1

r33 T(EH;0.0000) p22 2

r12 T(EH;-0.079) p21 2

r31 T(H;-0.0613) p23 2

r22 T(H;-0.0614) p21 2

r11 T(M;-0.0001) p24 2

r13 T(M;-0.0791) p13 2

r21 T(L;0.0351) p11 2

r23 T(VL;0.0832) p21 2

r24 T(EL;0.0000) p34 2

r32 T(EL;0.0000) p36 2

r33 T(EH;0.0000) p13 3

r12 T(EH;-0.0333) p23 3

r22 T(H;0.0335) p34 3

r31 T(M;0.0669) p13 3

r11 T(M;0.0666) p32 3

r13 T(M;-0.0001) p32 3

r21 T(M;-0.0665) p12 3

r23 T(VL;0.0832) p11 3

r24 T(EL;0.0333) p11 3

r32 T(EL;0.0000) p37 3

r33 T(EH;0.0000) p31 4

r12 T(EH;-0.069) p13 4

r22 T(H;0.0231) p11 4

r31 T(H;-0.0803) p22 4

r11 T(M;0.0517) p37 4

r13 T(M;-0.0172) p35 4

r21 T(M;-0.0516) p25 4

r23 T(VL;0.0402) p34 4

r24 T(VL;-0.0632) p23 4

r32 T(EL;0.0000) p34 4

r33 T(EH;0.0000) p34 5

r12 T(EH;-0.0769) p35 5

Resource 2-tuple Process Round

r22 T(H;0.0257) p12 5

r31 T(M;0.077) p35 5

r11 T(M;0.0001) p11 5

r13 T(M;-0.0769) p34 5

r21 T(M;-0.0769) p33 5

r23 T(VL;-0.0513) p32 5

r24 T(VL;-0.0513) p24 5

r32 T(EL;0.0000) p13 5

r33 T(EH;0.0000) p21 6

r12 T(VH;0.0714) p12 6

r22 T(H;0.0000) p35 6

r31 T(M;0.0238) p36 6

r11 T(M;-0.0714) p36 6

r13 T(L;0.0000) p36 6

r21 T(L;0.0000) p36 6

r23 T(EL;0.0476) p33 6

r24 T(EL;0.0476) p35 6

r32 T(EL;0.0000) p33 6

r33 T(EH;0.0000) p35 7

r12 T(VH;0.0556) p32 7

r22 T(H;-0.0556) p36 7

r31 T(M;-0.0556) p31 7

r11 T(L;0.0000) p13 7

r21 T(L;-0.0556) p37 7

r13 T(VL;0.0556) p31 7

r32 T(EL;0.0556) p35 7

r33 T(EH;0.0000) p36 8

r12 T(VH;0.0128) p36 8

r22 T(M;-0.0385) p33 8

r31 T(L;-0.0256) p34 8

r11 T(VL;0.0641) p33 8

r21 T(VL;-0.0128) p13 8

r33 T(EH;0.0000) p37 9

r12 T(VH;-0.0833) p34 9

r22 T(L;-0.0833) p13 9

r33 T(EH;0.0000) p33 10

r12 T(H;0.0000) p37 10

r12 T(EH;0.0000) p11 11

r13 T(M;0.0000) p33 11

r31 T(M;0.0000) p12 11

r33 T(M;0.0000) p12 11

r12 T(EH;0.0000) p33 12

TABLE XLV. Concatenation of All Assignment Rounds (CNLDSAF) for Traditional Methods

Regular Issue

- 147 -

TABLE XLVII. Values Corresponding to the Same Process Resource
Assignments From the ONLDSAF Table of the First E1 Iteration Found

in the CNLDSAF Table of the Traditional Methods

Pos. Resource 2-tuple Process Round
1 r33 T(EH;0.0000) p23 1
2 r12 T(H;0.0000) p37 10
4 r31 T(L;-0.0256) p34 8
5 r11 T(M;0.0517) p37 4
3 r22 T(H;0.0335) p34 3
6 r21 T(L;-0.0556) p37 7
6 r13 T(M;-0.0791) p13 2
10 r32 T(EL;0.0000) p34 4
8 r23 T(VL;0.0832) p11 3
9 r24 T(EL;0.0000) p34 2

The first element of Table XLVII, assignment of r33 to p23, is the only
one that occurs in the same iteration (first), all other assignments in
the example of traditional methods occur in different rounds and in
different positions. It has been seen that in this comparison, the results
of assignments in the traditional methods are not the same as those
in the proposed model. This is because traditional methods consider
only one type of criterion (process priority), and do not consider the
number of processes, %CPU, %Mem, %MV, etc., that is, the load of each
node and the overall state of the system.

In this sense, it can be said that besides being the traditional
methods, a particular case of the proposed method. This new model
allows a more approximate evaluation to the real state of the system,
which would allow to obtain better results in the assignments.

The global model, for the example of the traditional methods, does
not consider the collection of information on the overall state of the
system, nor the predisposition (nodal priority), nor the load of the
node, only the process priority is considered.

It should be noted that the results obtained are adjusted to each
particular scenario. That is, when the conditions of the scenario
change, the results obtained in the application of the Decision Model
may be different.

The Fig. 5 shows the different values of the nodal loads. It is
observed that the process p36 requests the resource r13, whose nodal
load has a value of 6.4. By the intensity of the color, you can see that
this node is highly loaded.

In the traditional methods, the order of assignment is made only
considering the initial priority of the processes. Following this
premise, the assignment of resource r13 to process p36 is made in the
first position.

processes

r
e
s
o
u
r
c
e
s

11

11

0 3.2 6.4

p36, r13: 6.4

12 13 21 22 23 24 25 31 32 33 34 35 36 37

12

13

21

22

23

24

31

32

33

Fig. 5. Heat map showing sample values of nodal loads. The heat map has been
created with AMCharts v4 JavaScript library.

As explained above, the proposed method evaluates a set of criteria
(including initial priority and nodal load) to determine the order of
allocation. Considering that, the same assignment of the previous
example, for this method, is in position 56. This is because the node
where the assignment is made is heavily loaded. This can be seen in
the Table XLVIII.

TABLE XLVIII. Comparison of the Traditional Method With the
Proposed Method

Nodal
Preference

Traditional Method Proposed Method
Process Resource Pos. Process Resource Pos.

6.4 p36 r13 1 p36 r13 56
6.2 p32 r23 2 p32 r23 48
6.2 p37 r11 3 p37 r11 35
6.1 p36 r31 4 p36 r31 54
6.0 p32 r12 5 p32 r12 62
6.0 p32 r13 6 p32 r13 26
6.0 p36 r11 7 p36 r11 55
6.0 p12 r11 8 p12 r11 6
5.9 p34 r22 9 p34 r22 23
5.9 p11 r23 10 p11 r23 28

VII. Discussions and Comments

It highlights the dynamism, the magnitude of the nodes, processes
and the number of requirements that can be applicable to large
systems, through a global solution, or to systems with fewer nodes and
requirements. The load of traffic, processes and requirements varies,
so that systems that were operating stop operating because they end
and others appear, or because nodes with resources and processes
that are needed are activated. The nodes can be active, but they are
incorporated to the algorithm when some process requests some
resource, or some resource is requested by another process of another
node. A node can be active but not part of the assignment evaluations.

In each node, an interface is defined between the applications
and the operating system, which through a Runtime (software at
runtime complementary to the operating system) included in that
interface, manages the processes and shared resources, and defines
the corresponding scenario, as can see in Fig. 6.

In addition, the Runtimes interact with each other to exchange
information and in one of the nodes there is a global coordinating
Runtime that evaluates and executes the decision model and the
corresponding aggregation operator.

Here the decision model is executed with its aggregation operators

This Runtime is indicated by the type of scenario required by
applications, processes and process groups

Users Applications

Runtime manager
of processes

and resources
distributed

Access to
resources

on the part of
the processes

This is replicated
for each node

Operating
system

Fig. 6. Runtime global coordinator.

The proposed model manages to establish a consensus that allows
groups of processes to access all their resources sequentially and
that these cannot be removed until the same group of processes
that maintains them, releases them. The order of allocation will be
determined by the overall average priority of all the allocations of

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 148 -

each group. The distributed system constantly regulates and updates
the local status of each node. The decisions of access to the resources
modify these states so it must be readjusted repeatedly, guaranteeing
the mutual exclusion, and reordering new priorities. The method
should be repeated whenever there are groups of processes that
require shared resources.

An important feature to note about the Neat OWA operators used
is that the values to be added do not need to be ordered for processing.
This implies that the formulation of a neat operator can be defined
using the arguments directly instead of the sorted elements.

In the proposed aggregation operator, the weights are
calculated based on the context values from which the values to
be aggregated arise.

The characteristics of the Decision Model allow us to evaluate the
possible alternatives and consequences and thus be able to clearly
define the objectives. The best optimization has been achieved by
selecting the best possible alternative in each particular case. As the
main objective of the proposed model, the environment of distributed
execution of processes was considered, the access to shared resources
was established according to different consensus requirements.
This allows the generation of the sequence of resource allocation
to the processes that request them by using the most appropriate
aggregation method for each possible scenario, respecting the mutual
exclusion in the access to such resources. It has been explained that
the decision model uses a Runtime that manages the shared processes
and resources and defines the corresponding scenario. The traditional
models have been compared by means of an example of application
with respect to the proposed model and the considerations of the
aggregation operators developed have been commented on.

The aggregation method used, and the data structure mentioned in
this work are not fully covered by traditional methods, for example,
do not contemplate the predisposition (nodal priority), node load,
the nodal state (nodes, processes, groups, resources.) or the overall
system state, for the calculation of priorities in resource allocations
to processes.

VIII. Conclusions

The proposed model makes it possible for the distributed system
to self-regulate repeatedly according to the local state of the n nodes,
resulting in an update of their local states, as a consequence of the
evolution of their respective processes and the decisions of access to
resources: the distributed system in whose groups of processes access
to critical resources is executed, produces access decisions to resources
that modify the state of the system and readjusts it repetitively, also
guaranteeing the mutual exclusion in access to the shared resources,
indicating the priority of granting access to each resource and the
process to which it is assigned. This process is repeated if there are
processes that request access to shared resources.

In this work, fuzzy logic has been used as a tool to innovatively
solve the management of resources and processes in distributed
systems. The use of the 2-tuple linguistic model allows to improve
accuracy and facilitate word processing by treating the linguistic
domain as continuous but maintaining the linguistic base (syntax and
semantics), through symbolic translation.

What makes the proposed method innovative is that it allows system
self-regulation, respects the initial priority of the processes, maintains
the status of the nodes updated through the self-regulation, the mutual
exclusion is guaranteed, the symbolic translation is incorporated for
nodes that use different types of tags, the collaborative nodal priority is
established that collaborates in the self-regulation of the system and also
includes traditional methods as particular cases of the proposed method.

A prototype simulator has been developed to evaluate the
performance of the new decision models and aggregation operators
proposed against the main traditional models.

In this research, a software has been developed that simulates
the execution of a central runtime of a node located in a distributed
system, it is a web application that has been developed with the php
language.

When evaluating the results obtained with the simulator, it was
possible to verify that the solution produced contemplates an adequate
workload balancing, according to the theoretical support used for the
development of the simulator. It was also possible to demonstrate that
the proposed theoretical solution is more adequate than traditional
algorithms that allocate resources to processes only according to the
priority of the processes. The values for the figures 4 and 5 has been
obtained from the simulator.

For future work, it is planned to develop variants of the proposed
method considering other aggregation operators (especially the OWA
family) and the possibility of being used by a resource manager shared
(instead of centralized as in the proposed method).

It is also planned to continue the development of a simulator with
other scenarios.

Acknowledgment

This work has been supported by the Project: “Decision models
for resource and process management in distributed systems
considering process migration, data imputation and fuzzy logic in
new aggregation operators.”, code 20F005 of Northeastern National
University (Argentine), and the Project: “Development of a simulator
for the evaluation of classical and new algorithms for the management
of shared resources in distributed systems contemplating mutual
exclusion.”, code PI 126/20 of the National University of the Southern
Chaco (Argentine).

References

[1] A. S. Tanenbaum, Sistemas Operativos Distribuidos, México: Prentice -
Hall Hispanoamericana S.A., 1996.

[2] A. S. Tanenbaum, Sistemas Operativos Modernos. 3ra. Edición: México,
Pearson Educación S. A., 2009.

[3] D. Agrawal, A. El Abbadi, “An Efficient and Fault-Tolerant Solution of
Distributed Mutual Exclusion,” ACM Transactions on Computer Systems.
Vol. 9, USA, 1991 pp. 1-20.

[4] G. Ricart, A. K. Agrawala, “An Optimal Algorithm for Mutual Exclusion
in Computer Networks”. Communication of the ACM. Vol. 24, USA, 1981,
pp. 9-17.

[5] G. Cao, M. Singhal, “A Delay-Optimal Quorum-Based Mutual Exclusion
Algorithm for Distributed Systems”. IEEE Transactions on Parallel and
Distributed Systems. Vol. 12, no. 12, USA, 2001, pp. 1256-1268.

[6] S. Lodha, A. Kshemkalyani, “A Fair Distributed Mutual Exclusion
Algorithm”. IEEE Transactions on Parallel and Distributed Systems. Vol.
11, no. 6, USA, 2000, pp. 537-549.

[7] W. Stallings, Sistemas Operativos. 5ta. Edición. Madrid, España, Pearson
Educación S.A., 2005.

[8] G. Andrews, Foundation of Multithreaded, Parallel, and Distributed
Programming. Reading, MA, USA, Addison Wesley, 2000.

[9] R. Guerraoui, L. Rodrigues, Introduction to Reliable Distributed
Programming. Springer-Verlag, Berlin, Germany, 2006.

[10] N. Lynch, Distributed Algorithms, San Mateo, CA, USA, Morgan
Kauffman, 1996.

[11] G. Tel, Introduction to Distributed Algorithms. 2nd ed., Cambridge, UK,
Cambridge University Press, 2000.

[12] H. Attiya, J. Welch, Distributed Computing Fundamentals, Simulations,
and Advanced Topics, 2nd ed., New York, USA, John Wiley, 2004.

[13] P. Saxena, J. Rai, “A Survey of Permission-based Distributed Mutual

Regular Issue

- 149 -

Jorge Tomás Fornerón Martínez

Jorge Tomás Fornerón Martínez received the diploma
degree in Information Systems Analysis from the
Autonomous University of Asunción (Paraguay) in 2015
and the MSc degree in Informatic and Computation from
the National University of Pilar (Paraguay) in 2020. He
is professor of General Systems Theory and is Thesis
Director in National University of Pilar (Paraguay), since

2015. Currently, he holds the position of Dean at Faculty of Applied Sciences
in the same University, and its lines of research are focused on distributed
operating systems.

Federico Agostini

Federico Agostini received the diploma degree in
Information Systems from the National University of
the Northeast (Argentine) in 2013, and the MSc degree
in Telecommunications Systems and Networks from the
National University of the Northeast (Argentine), in 2019.
He is professor of Data Communications and Operating
Systems at the same University, since 2013. Currently,

he is working at the Northeast Botanical Institute (National University of the
Northeast - National Council for Scientific and Technical Research), and its
lines of research are focused on bioinformatics.

David L. la Red Martínez

David L. la Red Martínez received the diploma degree
in Information Systems from the National University
of the Northeast (Argentine) in 1979, the MSc degree in
Informatic and Computation from the National University
of the Northeast (Argentine), in 2001, the Specialist degree
in University Teaching from the National University of the
Northeast (Argentine), in 2003 and the Doctoral degree

in Computer Systems Engineering from the University of Malaga (Spain), in
2011. He made a postdoctoral research stay in cyber-physical security systems
at Florida Atlantic University (USA), in 2019. He is professor of Databases,
Data Communications and Operating Systems at the National University of the
Northeast (Argentine), since 1983. Currently, its lines of research are focused on
distributed systems and data mining.

Exclusion Algorithms”. Computer Standards and Interfaces, vol. (25)2, pp
159-181, 2003.

[14] M. Velazquez, “A Survey of Distributed Mutual Exclusion Algorithms”.
Technical Report CS-93-116, University of Colorado at Boulder, 1993.

[15] S.-D. Lin, Q. Lian, M. Chen, Z. Zhang, “A Practical Distributed Mutual
Exclusion Protocol in Dynamic Peer-to-Peer Systems”. Proceeding of the
Third International Workshop on Peer-to-Peer Systems, vol. 3279 of Lecture
Notes in Computer Sciences, (La Jolla, CA). Springer-Verlag, Berlin, 2004.

[16] L. Sha, R. Rajkumar, J. P. Lehoczky, “Priority inheritance protocols: An
approach to real-time synchronization”. Computers, IEEE Transactions on,
vol. 39(9), pp 1175– 1185, 1990.

[17] F. Agostini, D. L. La Red Martínez, J. C. Acosta. “Modeling of the consensus
in the allocation of resources in distributed systems”. International
Journal of Advanced Computer Science and Applications (IJACSA). The
Science and Information (SAI) Organization, England, U.K. Vol. 9, no. 12.,
2018.

[18] L. A. Zadeh, “The Concept of a Linguistic Variable and its Application to
Approximate Reasoning-I”, Information Sciences, Volume 8, Issue 3, pp
199-249, 1975, DOI: 10.1016/0020-0255(75)90036-5.

[19] C. González García, E. R. Núñez-Valdez, V. García-Díaz, B. C. Pelayo
G Bustelo, J. M. Cueva Lovelle, “A Review of Artificial Intelligence in
the Internet of Things”, International Journal of Interactive Multimedia
and Artificial Intelligence - IJIMAI Journal, 2019, DOI: 10.9781/
ijimai.2018.03.004

[20] L. A. Zadeh, “Fuzzy Logic = Computing with Words”, IEEE Transactions
On Fuzzy Systems, VOL. 4, NO. 2, 103-111, 1996.

[21] Ta-Chun Wen, Kuei-Hu Chang, Hsin-Hung Lai, “Integrating the 2-tuple
linguistic representation and soft set to solve supplier selection problems
with incomplete information”, Engineering Applications of Artificial
Intelligence, Vol. 87, January 2020.

[22] Jerry M. Mendel, “Computing with Words: Zadeh, Turing, Popper and
Occam”, IEEE Computational Intelligence Magazine, pp 10-17, November
2007.

[23] F. Herrera, L. Martinez. “An Approach For Combining Linguistic
And Numerical Information Based On The 2-Tuple Fuzzy Linguistic
Representation Model In Decision-Making”. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 8, No. 5, pp
539-562, 2000.

[24] F. Herrera, L. Martínez, “A 2-Tuple Fuzzy Linguistic Representation
Model for Computing with Words”. IEEE Transactions On Fuzzy Systems,
VOL. 8, NO. 6, pp. 746-752, December 2000

[25] F. Herrera, E. Herrera-Viedma, S. Alonso, F. Chiclana: “Computing with
Words in Decision Making: Foundations, Trends and Prospects”, Fuzzy
Optimization and Decision Making, 8, 337-364, 2009 (ISSN: 1568-4539).
doi:10.1007/s10700-009-9065-2

[26] S. Zapata, D. Fuentealba, G. Valenzuela. “Aplicación del modelo de
representación de información lingüística 2-tuplas con información
multigranular”. Revista Trilogía: Ciencia, Tecnología y Sociedad. Vol. 27,
Nº 37, pp 110-127, July 2015. Facultad de Ingeniería UTEM.

[27] Jiménez, G.E. and Zulueta, Y., “A 2-tuple linguistic multi-period decision
making approach for dynamic green supplier selection”. DYNA, 84(202),
pp. 199-206, September 2017.

[28] M. Ying. “A Formal Model of Computing With Words”. IEEE Transactions
On Fuzzy Systems, VOL. 10, N° 5, October 2002.

[29] J. Liu, L. Yi and Z. Pei, “A new linguistic term transformation method
in linguistic decision making”. Journal of Intelligent & Fuzzy Systems 35,
2403–2412, IOS Press, 2018, DOI:10.3233/JIFS-17987.

[30] David L. la Red Martínez, “Aggregation Operator for Assignment of
Resources in Distributed Systems”, (IJACSA) International Journal of
Advanced Computer Science and Applications, Vol. 8, No. 10, 2017.

[31] R. Yager. “On Ordered Weighted Averaging Aggregation Operators in
Multi-Criteria Decision Making”. IEEE Transactions On Systems, Man and
Cybernetics 18: 183-190, 1988.

[32] R. Yager and G. Pasi. “Modelling Majority Opinion in Multi-Agent
Decision Making”. International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems, 2002.

[33] F. Herrera and L. Martínez, “A model based on linguistic 2-tuples for
dealing with multigranular hierarchical linguistic contexts in multi-expert
decision-making,” IEEE Transactions on Systems, Man and Cybernetics.
Part B (Cybernetics), vol. 31, no. 2, 2001, doi: 10.1109/3477.915345.

