
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 224 -

* Corresponding author.

E-mail address: beasai@uva.es

Keywords

Android Applications,
Decentralized, Deep
Learning, Framework,
Images, TensorFlow.

Abstract

Not all frameworks used in machine learning and deep learning integrate with Android, which requires some
prerequisites. The primary objective of this paper is to present the results of the analysis and a comparison of
deep learning development frameworks, which can be adapted into fully decentralized Android apps from a
cloud server. As a work methodology, we develop and/or modify the test applications that these frameworks
offer us a priori in such a way that it allows an equitable comparison of the analysed characteristics of interest.
These parameters are related to attributes that a user would consider, such as (1) percentage of success; (2)
battery consumption; and (3) power consumption of the processor. After analysing numerical results, the
proposed framework that best behaves in relation to the analysed characteristics for the development of an
Android application is TensorFlow, which obtained the best score against Caffe2 and Snapdragon NPE in the
percentage of correct answers, battery consumption, and device CPU power consumption. Data consumption
was not considered because we focus on decentralized cloud storage applications in this study.

DOI: 10.9781/ijimai.2023.04.006

Adaptation of Applications to Compare Development
Frameworks in Deep Learning for Decentralized
Android Applications
Beatriz Sainz-de-Abajo1 *, Sergio Laso2, Jose Garcia-Alonso3, Javier Berrocal3

1 Universidad de Valladolid, Valladolid (Spain)
2 Global Process and Product Improvement S.L., Cáceres (Spain)
3 Universidad de Extremadura, Cáceres (Spain)

Received 24 April 2022 | Accepted 14 March 2023 | Published 19 April 2023

I. Introduction

THE availability of large volumes of data allows the evolution of
artificial intelligence (AI) [1], [2]. For the first time in the history

of humankind, systems can analyse the information generated at
exponentially faster speeds.

Machine learning (ML) is the practice of using algorithms to
analyse data, learn from it and make a prediction about something
[3]. ML and deep learning (DL) algorithms must manage a lot of
information to produce results that accurately describe reality [4], [5].
That information can draw conclusions about what we think and feel.

These models have drawn ever-increasing research interest due
to their intrinsic capability to overcome the drawbacks of traditional
algorithms [6]. ML, DL and IA have grown in their use given their
benefits in different contexts [7]. In recent years, many studies have
shown that combining ML and DL techniques is especially useful in
image analysis [8], [9]. DL have proven effectiveness in object and
image recognition, natural language processing, speech recognition,
robot navigation systems, self-driving cars and health care. [10], [11].
This allows the precise detection of a disease, locating stolen and
sold objects via the Internet, searching for missing persons, etc. Due
to its great potential, this technique is applied in a large number of

sectors such as security, health, finance, automotive and agriculture.
However, DL takes ML to a more detailed level, reducing the margin
of error and increasing the accuracy of the conclusions it reaches [12],
[13]. In this case, the system goes through layers or neuronal units.
While in ML, to perform a classification, it is necessary to indicate
the characteristics; in DL, the algorithm will perform the classification
during the training by itself.

Each layer processes the information and returns a result in the
form of weighting. The second layer that analyses the image will
combine the result obtained by the first layer with its own judgement.
As a result, the weighting will change. The third layer will use this
new modified weighted result to perform its calculations, reducing
the margin of error and thus increasing the accuracy of its results.
The system trains itself due to a large amount of information being
considered, improving its weighting.

Data storage and preparation tasks for further processing require
the most time [14] but are essential because AI algorithms develop
complex processes of understanding and interpreting data and
therefore need them to provide value.

Although existing ML and DL services use cloud computing and
servers to run, and therefore require an Internet connection, there
is a trend towards decentralization [15], [16]. [17] argues that
decentralizing AI opens the door for more equitable development.
Instead of connecting to data centre-based services, queried
through mobile communications, AI capabilities will reside on the
device itself.

Regular Issue

- 225 -

ML and DL are the key technologies on which new functionalities,
personalization and connectivity with other devices in the Internet of
Things (IoT) will be based.

II. Tasks and Methods

This study has been structured into three tasks: (A) revision of the
most well-known frameworks; (B) test application development; and
(C) analysis and comparison. Finally, we show the results of this study.
Fig. 1 shows the flow chart followed in this study.

Start

Review of frameworks for the development
of Machine Learning & Deep Learning

Test application deployment

Analysis and Comparision

Results

Fig. 1. Flow chart.

A. Review of Frameworks for the Development of Machine
Learning & Deep Learning

The eight most commonly used frameworks globally were reviewed
[18]. Table I shows links to the official websites that list the best
features of each framework and indicates whether integration with
Android is allowed.

TABLE I. ML & DL Frameworks

Name Official Web Android
integration

1 TensorFlow [19]-[21] https://www.tensorflow.org/ Yes

2 Caffe [22] https://caffe.berkeleyvision.org/ No

3 Caffe2 a [23] https://pytorch.org/ Yes

4 Amazon Machine
Learning [24]

https://aws.amazon.com/es/machine-
learning/ No

5 CNTK [25]
https://docs.microsoft.com/en-us/

cognitive-toolkit/ No

6 Torch [26] http://torch.ch/ No

7 Snapdragon NPE https://developer.qualcomm.com/software/
qualcomm-neural-processing-sdk Yes

8 DeepLearning4J [27] https://deeplearning4j.konduit.ai/ Yes
a Caffe2 and PyTorch projects are merging now [23].

After a first filter, we analyse the frameworks that are exportable
to Android. Table II summarizes the requirements to be executed on a
smartphone and its uses.

B. Test Application Deployment
We define the functional requirements (FR) and non-functional

requirements (NFR) of applications to be developed or adapted.

All applications have the same requirements so that they behave in
a similar way.

• FR-1. Through the trained model, the included images can be
recognized.

• FR-2. The applications show the recognition result together with a
percentage of success probability.

• FR-3. The recognition will be static from a photograph included in
the application.

• NFR-1. The applications must achieve reasonable response times
when executing the deep learning model.

• NFR-2. The applications will be functional for smartphones with
an Android OS 6.0 or higher operating system.

For each framework, we implement the corresponding application.
Whenever possible, we use the test applications from the official
repositories because it would take a long time to implement the
integration of these frameworks in Android from the beginning.
If necessary, we make adjustments and developments, such as
modifications to the code so that all applications have the same features.

The primary goal of this study is not to create commercial
applications but rather to provide simple functionality to facilitate the
objective of this study: to compare frameworks under equal conditions.

The applications include an image gallery. The user clicks on each
image, and the application shows the result of the recognition and the
probability of success of the clicked image.

Listed below are the changes implemented in each application and
the problems found:

1. TensorFlow app.

The TensorFlow app was retrieved from the official TensorFlow
repository [28]. The most important change was to modify the
primary functionality of the application. TensorFlow originally
used a live camera to recognize objects, but this was changed to
measure parameters correctly in the subsequent comparison. The
functionality changed to a list of images where the user clicks an
image, and the application returns the recognition result.

2. Caffe2 app.

The AICamera application was obtained from the official
repository [29]. The most important change was the same as
that in the TensorFlow application. Caffe2 integrates with C++ to
perform model recognition and execution.

3. Snapdragon NPE app.

The SNPE Image Classifier application was obtained from the SDK,
available on the official Qualcomm Developer Network repository
[30]. No changes were necessary because the application provided
the functions that were proposed in the requirements. Its
development is only possible on Linux because it uses Snapdragon
libraries that are included in the repository and only compatible
on Linux.

4. Deeplearning4J app.

The DL4JImageRecognitionDemo application was obtained from
the official repository [31]. Due to its limited development to date,
it has not been possible to use this application. Although it was
modified, the result was unsuccessful. The application did not
compile correctly, possibly due to bugs with the libraries or some
type of incompatibility. Because implementing an application that
integrates the framework from the beginning requires a long time,
this application was discarded for the testing phase.

When defining the requirements of the model before training, the
authors agreed to use a pre-trained DL model that was available in the
frameworks because each framework has a different format.

The operation is the same for all three applications, which have
a list of images that the user clicks on. The apps then display the
recognition result along with the probability of success, which the
model thinks is the clicked product. At this stage, we make a limited
number of attempts.

https://www.tensorflow.org/

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 226 -

Fig. 2, Fig. 3 and Fig. 4 show the image recognition of each
application. We highlight with a red circle the image pressed during
the preliminary evaluation tests.

Fig. 2 shows the test performed with TensorFlow when clicking on
the photo of a cheeseburger. The percentage of success is 63.91%, and
those of the other images were less than 10%.

In the test with Caffe2, the percentage is 93.62% after choosing the
photo of bananas, with the other options near 0% (see Fig. 3)

In Fig. 4, after testing on the Snapdragon NPE, we also obtained a
high success rate (87.38%) when selecting zucchini.

C. Analysis and Comparison
As basic applications, there are no differences in the aspects

related to code optimization. The proposed analysis parameters were
(1) success rate; (2) battery consumption; and (3) processor power
consumption.

1. Success rate: The result is determined by the success or failure of
each food. When all frameworks obtain the same successes or
failures, by of the highest percentage of probability, i.e., the one
with the highest probability of success for each detection. For
this purpose, the same gallery with 20 food images was included
in each application. After this, a round was performed in which
each image was clicked on, and the result of the prediction was
saved in a table. We checked the results in all cases along with the
percentage of the probability of success (see Table III).

2. Battery consumption: Nowadays, we are always on the lookout
for our smartphone’s battery to reach the end of the day without
running out, because with the multimedia content we watch and
the hours of use we give it, few smartphones have large battery
capacities. For this reason, it is essential to choose the framework
that consumes the least so that the user notices it as little as possible.
In order to evaluate this parameter, the new versions of Android,

TABLE II. Frameworks Compatible With the Android Operating System

Name Characteristics Requirements Uses
TensorFlow • Execution of neural models.

• Hardware acceleration thanks to the Android
Neural Networks API.

• Android API 23 (Marshmallow) or later
and NDK 12b or later.

• Computer vision.
• Voice and image recognition.
• Medical applications.
• Intelligent searches.
• Intelligent answers in emails.

Caffe2* • Execution of neural models.
• Hardware acceleration thanks to the Android

Neural Networks API.
• Offers conversion from Torch models to Caffe2.

• Android API 21 (Lollipop) or higher. • Computer vision.
• Voice and image recognition.
• Translation.
• Chatbots.
• IoT.
• Medical applications.

Snapdragon NPE • Execution of neural models.
• Compatibility with TensorFlow, Caffe and Caffe2.
• Developed on Linux.

• For GPU: Qualcomm Snapdragon 845,
820, 835, 625, 626, 650, 652, 653, 660,
630, 636, and 450.

• For Adreno GPU: libOpenCL.so

• Object classification.
• Face detection.
• Natural language understanding.
• Speech recognition.
• Security/authentication.
• Resource management.

DeepLearning4J • To create & train a neural network on an Android
device.

• Android API 21 (Lollipop) or higher. • Object and speech recognition.
• Natural language processing.
• Data prediction.

Fig. 2. Test in TensorFlow. Fig. 3. Test in Caffe2. Fig. 4. Test in Snapdragon NPE.

Regular Issue

- 227 -

TABLE III. Percentage of Correct Answers

Food Image TensorFlow Caffe2 Snapdragon NPE (CPU) Snapdragon NPE (GPU)

Artichoke Artichoke 83.24% Artichoke 99.99% Artichoke 99.74% Artichoke 99.70%

Banana Banana 80.10% Banana 93.91% Banana 51.02% Banana 51.66%

Beer Bottle Beer Bottle 67.65% Scale 55.14% Beer Bottle 54.38% Beer Bottle 54.68%

Broccoli Broccoli 83.18% Broccoli 99.74% Broccoli 99.56% Broccoli 99.51%

Burrito Burrito 82.31% Burrito 99.93% Pinwheel 19.58% Pinwheel 15.36%

Carbonara Carbonara 83.17% Carbonara 99.07% Swab 41.59% Swab 36.49%

Cheeseburger Cheeseburger 83.17% Hot Dog 47.40% Cheeseburger 72.18% Cheeseburger 70.55%

Consommé Consommé 78.59% Consommé 98.19% Washbasin 60.95% Washbasin 69.87%

Cucumber Cucumber 83.20% Cucumber 98.95% Cucumber 99.85% Cucumber 99.80%

Guacamole Guacamole 82.98% Guacamole 98.86% Mortar 37.96% Mortar 40.62%

Hotdog Hot Dog 82.86% Hot Dog 99.87% Jellyfish 3.62% Jellyfish 3.32%

Ice Cream Ice Cream 24.05% Honeycomb 33.80% Pedestal 12.36% Pedestal 15.29%

Meat Loaf Meat Loaf 83.13% Meat Loaf 67.83% Ice Lolly 22.66% Ice Lolly 28.56%

Orange Orange 77.62% Orange 77.56% Orange 43.36% Orange 41.82%

Pineapple Pineapple 77.76% Spaghetti squash 51.51% Necklace 23.38% Necklace 20.78%

Pizza Pizza 80.11% Pizza 99.19% Wall clock 13.53% Wall clock 13.64%

Pretzel Pretzel 83.27% Pretzel 99.40% Pretzel 90.92% Pretzel 89.79%

Strawberry Strawberry 83.22% Strawberry 94.68% Golf Ball 82.70% Golf Ball 82.47%

Wine bottle Red Wine 69.69% Whistle 30.39% Wine Bottle 82.07% Wine Bottle 80.71%

Zucchini Zucchini 79.95% Cucumber 78.24% Zucchini 88.22% Zucchini 87.30%

Correct 20 14 11 11

Wrong 0 6 9 9

Percentage of correct answers 100% 70% 55% 55%

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 228 -

Google offers a web service called Battery Historian [32], in which
we enter a log obtained from Batterystats. Batterystats.bin is a file
that works as a registry, where Android saves the consumption
data of the mobile device either via hardware or software services.
The operating system uses this file to monitor consumption and
battery level, and to display consumption statistics. The operating
system is programmed to reset the file when the battery is fully
recharged. When the battery is discharged, we record new data
about battery use and charging. With the tool, we will evaluate (1)
device estimated power use; (2) device estimated power use due to
CPU usage; and (3) CPU user time.

3. Processor power consumption: One of the factors affecting the
battery is CPU consumption. For this reason, we will measure
what percentage is consumed each time an image recognition
is performed. Another factor is that the lower the CPU power
consumed, the faster and smoother the app will experience on
lower-end devices with a more moderate processor, so the app
will cover more of the market. To measure the power consumed,
the Android Profiler tool from Android Studio was used [33].
This tool provides real-time data related to the CPU, memory
and network activity of an application. You can perform sample-
based method tracing for time code execution, capture dumps,
view memory allocation, and inspect information from files
transmitted over the network. In this study, we focus on the CPU
Profiler, which shows the power that the CPU is consuming on
any interaction that we make in the system or after selecting a
specific application in real time.

One of the premises of this study is that the application is integrated
into the device and, therefore, decentralized with respect to any server.
Thus, it is not necessary to measure data traffic.

D. Resources Used
The hardware resources used in this study included the following:

• PC Asus X54HR

• Smartphone Xiaomi Mi3

 - To test the test applications.

 - To measure the parameters to compare the test applications.

• Smartphone Xiaomi Redmi Note 4

 - To test the analysis with the GPU offered by the Snapdragon
Neural Processing Engine (Snapdragon NPE), because its
processor and GPU are compatible with the framework for
that function.

The tools for the implementation and development of the
applications are as follows:

• Android Studio.

• Inception V3 model.

 - Trained by ImageNet content (https://image-net.org/) with
data from 2012.

 - This model is composed of more than 1000 different classes:
objects, animals, food, etc.

III. Results

The framework that stands out in a single parameter is not the best
but the one that is more balanced considering all parameters. Next, we
show the results for each framework.

A. Success Rate
To perform tests whose results are comparable, every time the

test on each application was performed, all system applications were
closed; having applications open in the background may influence

the measurements. Regarding the Snapdragon NPE application, a
smartphone compatible with GPU analysis was used to verify the
differences between frameworks. Table III shows the results obtained.

Tensorflow has a 100% success rate. It also shows a stable behaviour,
i.e., it obtains a high probability percentage in the cases it gets right,
with a small exception. In the detection of the Ice Cream image, the
prediction is correct but the probability percentage is low (24.05%).

Caffe2 is in second place with a success rate of 70%. Despite not
achieving a 100% hit rate, the behaviour is also stable. In the cases
it succeeds it obtains high probability percentages, and in the cases
it fails it gets low probability percentages no higher than 55%.
Therefore, we can easily detect whether a detection is wrong based
on the probability percentage. Regarding the wrong predictions, in
most cases the result is not similar or interpretable with the original.
For example, with Pineapple the framework has detected Spaghetti
squash, or with Wine bottle the detection obtained has been Whistle.

Snapdragon NPE is in third and last place with a success rate of
55%. Its results have been fair/poor, even with the GPU analysis that
supposedly increases performance. The behaviour has not been as
stable as in the previous frameworks. In certain successful results it
gets a low percentage of probability, for example Banana (51.02%) or
Orange (43.36%). The opposite also occurs. With Strawberry, it detects
Golf Ball with 82.70%. Regarding the wrong predictions, some of the
wrong results obtained, if they can resemble with the original, e.g.
Guacamole and Mortar or Strawberry and Golf Ball.

Although the three applications use the same image recognition
model (Inception V3), the model has to be adapted to each framework,
so performance may change [34]. It can also affect the software
optimization of each framework in the operating system (OS). In this
case, Tensorflow is developed by Google, the same developer as the
Android OS, so it could be better optimized and therefore get better
results [35].

B. Battery Consumption
A 2-minute execution test was performed in which each image was

analysed 2 times.

Before starting the test and running the applications, we reset
the device’s consumption log file and its history using the “adb shell
dumpsys batterystats” command. Fig. 5, Fig. 6 and Fig. 7 show the
captures made by the battery historian tool.

The frameworks that consume less power are Caffe2 and
TensorFlow. Snapdragon NPE performs the worst, with a difference of
10% (estimated battery consumption) compared to TensorFlow.

The “CPU user time” in TensorFlow and Caffe2 is 13.430 s and 34.320
s, respectively, while in Snapdragon NPE, it is 112.530 s, indicating
much higher consumption with Snapdragon NPE. While TensorFlow
and Caffe2 seem to use the CPU only when they parse the image or
update the display, Snapdragon NPE constantly consumes resources.

Application

App StatsSystem Stats History Stats

Version Name
Version Code
UID
Device estimated power use
Foreground
CPU user time
CPU system time
Device estimated power use due to CPU usage

android.example.com.tflitecamerademo
1.0
1
10299
0.01%
1 times over 2m 2s 985ms
13s 430ms
2s 300ms
0.02%

Fig. 5. Tersorflow battery test.

Regular Issue

- 229 -

Application

App StatsSystem Stats History Stats

Version Name
Version Code
UID
Device estimated power use
Foreground
CPU user time
CPU system time
Device estimated power use due to CPU usage

facebook.f8demo
1.0
1
10292
0.03%
1 times over 2m 0s 737ms
34s 320ms
2s 930ms
0.03%

Fig. 6. Caffe2 battery test.

Application

App StatsSystem Stats History Stats

Version Name
Version Code
UID
Device estimated power use
Foreground
CPU user time
CPU system time
Device estimated power use due to CPU usage

com.qualcomm.qti.snpe.imageclassifiers
1.0
1
10298
0.11%
1 times over 2m 15s 367ms
1m 52s 530ms
8s 370ms
0.07%

Total number of wakeup alarms 0

Fig. 7. Snapdragon NPE battery test.

TABLE IV. Battery Consumption

Device
estimated
power use

Device estimated
power use due to

CPU usage
CPU user time

TensorFlow 0.01% 0.02% 13s 430ms

Caffe2 0.03% 0.03% 34s 320ms

Snapdragon NPE 0.11% 0.07% 1min 52s 530ms

C. CPU Power Consumption
In this test, we connect the mobile device to a PC to use an Android

CPU Profiler. With this tool, we can measure the power consumed by
the application when it analyses an image.

We report the average calculation in a given timeframe in which the
application analyses ten images. After the calculations, we obtain an
average consumption for the analysis of a single image (see Table V).

TABLE V. CPU Power Consumption

Average consumption per image analysis

TensorFlow 38%

Caffe2 35%

Snapdragon NPE 43%

D. Summary
Although there are no noticeable differences, Snapdragon NPE

consumes more CPU time to analyse an image than Caffe2 and
TensorFlow.

After the tests, a summary of the results of the comparison is shown
in Table VI.

TABLE VI. Comparison Summary

Percentage of
correct answers

Battery
consumption

CPU power
consumption

TensorFlow 100% 0.01% 38%

Caffe2 70% 0.03% 35%

Snapdragon NPE 55% 0.11% 43%

IV. Conclusion and Future Lines of Work

There are more and more developers in the application market and,
therefore, more competition. For this reason it is necessary to choose
the framework with the best results, so that the user does not feel
disappointed.

TensorFlow and Caffe2 produce have much better results than
Snapdragon NPE, which also exhibited highest battery consumption
and a fair to poor response success rates.

The battery and CPU consumptions are similar for TensorFlow and
Caffe2, but the response rate is better with TensorFlow. Additionally,
TensorFlow is a Google framework, has a large community on both
Github and Stack Overflow, and is well documented with questions,
reviews and tutorials online. TensorFlow also keeps a close eye on
these user communities to improve their platform. Thus, based on
this study’s results, TensorFlow is the most recommended for the
implementation of an Android application.

There are different areas where image recognition is applied that
could benefit from this type of development. The most interesting are
the areas of health and wellness. First, through the diagnosis of diseases,
after analysing the alterations in the X-rays. In the second, improving
the management of food purchases. With a simple application on the
mobile, the user could check the lack of products in the pantry.

Having selected this framework, we plan to develop an assistance
application for food that will allow a user to take one or more photos
with a smartphone camera and recognize food using the trained
model. Next, we plan to transfer the list of products from a kitchen
pantry to a smartphone. Using the same recognition function, we plan
to generate a shopping list by checking which products are missing in
the pantry and which we should buy.

Acknowledgment

This study was supported in part by the DIN2020-011586 Grant,
funded by MCIN/AEI/10.13039/501100011033 and the European Union
“NextGenerationEU/PRTR,” and by the Interreg V-A España-Portugal
2014-2020, under Project 0786_CAP4ie_4_.

It was also supported by the “movilidad investigadores e
investigadoras UVa-BANCO SANTANDER 2022” grant.

References

[1] Y. Duan, J. S. Edwards, and Y. K. Dwivedi, “Artificial intelligence for
decision making in the era of big data – evolution, challenges and
research agenda,” International Journal of Information Management, vol.
48, pp. 63–71, 2019, doi: 10.1016/j.ijinfomgt.2019.01.021.

[2] L. Spector, “Evolution of artificial intelligence,” Artificial Intelligence, vol.
170, no. 18. pp. 1251–1253, Dec. 2006, doi: 10.1016/j.artint.2006.10.009.

[3] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine learning for internet of things data analysis: a
survey,” Digital Communications and Networks, vol. 4, no. 3. pp. 161–175,
2018, doi: 10.1016/j.dcan.2017.10.002.

[4] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and
architectures,” IEEE Access, vol. 7. pp. 53040–53065, 2019, doi: 10.1109/

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2

- 230 -

ACCESS.2019.2912200.
[5] W. Samek and K. R. Müller, “Towards explainable artificial intelligence,”

in Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11700
LNCS, 2019, pp. 5–22.

[6] N. Bouchra, A. Aouatif, N. Mohammed, and H. Nabil, “Deep belief
network and auto-encoder for face classification,” International Journal
of Interactive Multimedia and Artificial Intelligence, vol. 5, no. 5, p. 22,
2019, doi: 10.9781/ijimai.2018.06.004.

[7] F. J. García-Peñalvo et al., “Application of artificial intelligence algorithms
within the medical context for non-specialized users: The cartier-ia
platform,” International Journal of Interactive Multimedia and Artificial
Intelligence, vol. 6, no. 6, 2021, doi: 10.9781/ijimai.2021.05.005.

[8] S. H. Chen, C. W. Wang, I. H. Tai, K. P. Weng, Y. H. Chen, and K. S.
Hsieh, “Modified yolov4-densenet algorithm for detection of ventricular
septal defects in ultrasound images,” International Journal of Interactive
Multimedia and Artificial Intelligence, vol. 6, no. 7, 2021, doi: 10.9781/
ijimai.2021.06.001.

[9] M. I. Khattak, M. Al-Hasan, A. Jan, N. Saleem, E. Verdú, and N. Khurshid,
“Automated detection of covid-19 using chest x-ray images and ct scans
through multilayer-spatial convolutional neural networks,” International
Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 6,
2021, doi: 10.9781/ijimai.2021.04.002.

[10] A. Venkat, T. Rusira, R. Barik, M. Hall, and L. Truong, “SWIRL: high-
performance many-core CPU code generation for deep neural networks,”
International Journal of High Performance Computing Applications, vol.
33, no. 6, 2019, doi: 10.1177/1094342019866247.

[11] S. S. Nisha, M. M. Sathik, and M. N. Meeral, “Application, algorithm,
tools directly related to deep learning,” in Handbook of Deep Learning in
Biomedical Engineering: Techniques and Applications, 2020.

[12] Y. Xin et al., “Machine learning and deep learning methods for
cybersecurity,” IEEE Access, vol. 6, pp. 35365–35381, 2018, doi: 10.1109/
ACCESS.2018.2836950.

[13] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A survey of deep
learning and its applications: a new paradigm to machine learning,”
Archives of Computational Methods in Engineering, vol. 27, no. 4, pp.
1071–1092, 2020, doi: 10.1007/s11831-019-09344-w.

[14] N. El Aboudi and L. Benhlima, “Big data management for healthcare
systems: architecture, requirements, and implementation,” Advances in
Bioinformatics, vol. 2018. 2018, doi: 10.1155/2018/4059018.

[15] F. L. Koch, “Decentralized network management using distributed
artificial intelligence,” Journal of Network and Systems Management, vol.
9, no. 4, pp. 375–388, 2001, doi: 10.1023/A:1012976206591.

[16] I. Gupta, “Decentralization of artificial intelligence: analyzing
developments in decentralized learning and distributed AI networks,”
Researchgate.Net, no. May, 2020, doi: 10.13140/RG.2.2.17018.93124.

[17] G. A. Montes and B. Goertzel, “Distributed, decentralized, and
democratized artificial intelligence,” Technological Forecasting and Social
Change, vol. 141. pp. 354–358, 2019, doi: 10.1016/j.techfore.2018.11.010.

[18] Z. Wang, K. Liu, J. Li, Y. Zhu, and Y. Zhang, “Various frameworks and
libraries of machine learning and deep learning: a survey,” Archives of
Computational Methods in Engineering, 2019, doi: 10.1007/s11831-018-
09312-w.

[19] Google, “TensorFlow Lite guide,” TensorFlow, 2020.
[20] Tutorials Point, “TensorFlow tutorial,” Tutorials Point Pvt. Ltd., p. 90, 2019.
[21] M. Abadi et al., “TensorFlow: a system for large-scale machine learning,”

in Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA, 2016, pp.
265–283, doi: 10.5555/3026877.3026899.

[22] Y. Jia et al., “Caffe: convolutional architecture for fast feature embedding,”
in MM 2014 - Proceedings of the 2014 ACM Conference on Multimedia, Nov.
2014, pp. 675–678, doi: 10.1145/2647868.2654889.

[23] Facebook, “Caffe2 and PyTorch join forces to create a research +
production platform PyTorch 1.0,” Caffe2 Documentation, 2018.

[24] A. Mishra, “Amazon machine learning,” in Machine Learning in the AWS
Cloud, 2019, pp. 317–351.

[25] F. Seide and A. Agarwal, “CNTK : Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 2016,
pp. 2135-2135, doi: 10.1145/2939672.2945397.

[26] R. Collobert, C. Farabet, and K. Kavukcuoğlu, “Torch | Scientific
computing for LuaJIT.,” NIPS Workshop on Machine Learning Open Source
Software, 2008.

[27] S. Lang, F. Bravo-Marquez, C. Beckham, M. Hall, and E. Frank,
“WekaDeeplearning4j: a deep learning package for Weka based on
deeplearning4j,” Knowledge-Based Systems, vol. 178, pp. 48–50, Aug. 2019,
doi: 10.1016/j.knosys.2019.04.013.

[28] M. Abadi et al., “TensorFlow, Large-scale machine learning on
heterogeneous systems.” 2015, doi: 10.5281/zenodo.4724125.

[29] Facebook, “AICamera application,” 2017. https://github.com/
facebookarchive/AICamera (accessed Jul. 28, 2022).

[30] ©2022 Qualcomm Technologies Inc. and/or its affiliated companies,
“Qualcomm neural processing SDK for AI,” 2022. https://developer.
qualcomm.com/software/qualcomm-neural-processing-sdk (accessed
Jul. 28, 2022).

[31] Eclipse Foundation, “deeplearning4j,” github.com, 2019. https://github.
com/eclipse/deeplearning4j (accessed Jul. 28, 2022).

[32] Google Developers, “Analyze power use with battery historian,” 2022.
https://developer.android.com/topic/performance/power/battery-
historian (accessed Jul. 28, 2022).

[33] Google Developers, “The Android profiler,” 2022. https://developer.
android.com/studio/profile/android-profiler (accessed Jul. 28, 2022).

[34] A. Chowanda and R. Sutoyo, “Convolutional neural network for face
recognition in mobile phones,” ICIC Express Letters, vol. 13, no. 7, pp.
569–574, 2019, doi: 10.24507/icicel.13.07.569.

[35] H. C. Takawale and A. Thakur, “Talos App: on-device machine learning
using TensorFlow to detect Android malware,” in 2018 Fifth International
Conference on Internet of Things: Systems, Management and Security, Oct.
2018, pp. 250–255, doi: 10.1109/IoTSMS.2018.8554572.

Beatriz Sainz-de-Abajo

She is currently an Associate Professor in
Telecommunications Engineering at the University of
Valladolid in Spain. She received the Ph.D. degree (summa
cum laude) in the University of Cordoba in 2009 and has
a master’s degree in Data Networks and Transportation
Networks from Lucent Technologies. Her fields of action
are the development and evaluation of e-Health systems,

m-Health, medicine 2.0., cloud computing, etc., focuses on topics related to
electronic services for the information society. She belongs to the GTe Research
Group, integrated within the UVa Recognized Research Group “Information
Society”. Actually, she also collaborates with the research “Quercus Software
Engineering Group” of the University of Extremadura, Spain. Among the lines
of research, the group works to develop innovative solutions in the field of
health that help patients improve their quality of life and facilitate the work of
health professionals.

Sergio Laso-Mangas

He received the Industrial Ph.D. degree in computer
science from the University of Extremadura, Spain, in
2023. He is currently a researcher at the company Global
Process and Product Improvement, Cáceres, Spain. His
research interests include mobile computing, pervasive
systems, the Cloud-to-thing continuum, Quality of Service
and the Internet of Things

José Manuel García-Alonso

He is an Associate Professor at the University of
Extremadura, Spain and co-founder of Gloin, a software-
consulting company and Health and Aging Tech an eHealth
company. He got his PhD on software engineering at the
University of Extremadura in 2014. He is currently working
in the department of Computer and Telematics Systems
Engineering, in the area of Languages and Computer

Systems. He is part of the research “Quercus Software Engineering Group” and
his research interests include quantum software engineering, mobile computing,
pervasive computing, eHealth, gerontechnology.

Regular Issue

- 231 -

Javier Berrocal

He received the Ph.D. degree in computer science from
the University of Extremadura, Spain, in 2014. In 2016,
he obtained an Associate position at the University of
Extremadura. He is currently working in the department
of Computer and Telematics Systems Engineering in the
University of Extremadura. He is part of the research
“Quercus Software Engineering Group”, and his main

research interests are mobile computing, context awareness, pervasive systems,
crowd sensing, the Internet of Things, and fog computing. He is a cofounder of
the company Gloin, which is a software-consulting company, and Health and
Aging Tech an eHealth company.

