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Abstract

Physical inactivity is one of the main risk factors for mortality, and its relationship with the main chronic 
diseases has experienced intensive medical research. A well-known method for assessing people’s activity is the 
use of accelerometers implanted in wearables and mobile phones. However, a series of main critical issues arise 
in the healthcare context related to the limited amount of available labelled data to build a classification model. 
Moreover, the discrimination ability of activities is often challenging to capture since the variety of movement 
patterns in a particular group of patients (e.g. obesity or geriatric patients) is limited over time. Consequently, 
the proposed work presents a novel approach for Human Activity Recognition (HAR) in healthcare to avoid this 
problem. This proposal is based on semi-supervised classification with Encoder-Decoder Convolutional Neural 
Networks (CNNs) using a combination strategy of public labelled and private unlabelled raw sensor data. In this 
sense, the model will be able to take advantage of the large amount of unlabelled data available by extracting 
relevant characteristics in these data, which will increase the knowledge in the innermost layers. Hence, the 
trained model can generalize well when used in real-world use cases. Additionally, real-time patient monitoring 
is provided by Apache Spark streaming processing with sliding windows. For testing purposes, a real-world case 
study is conducted with a group of overweight patients in the healthcare system of Andalusia (Spain), classifying 
close to 30 TBs of accelerometer sensor-based data. The proposed HAR streaming deep-learning approach 
properly classifies movement patterns in real-time conditions, crucial for long-term daily patient monitoring.
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I. Introduction

Physical inactivity is one of the main risk factors for chronic 
diseases such as cardiovascular, cancer and diabetes [1], [2]. 

Knowing the habits and types of activity carried out by people and 
their relationship with these diseases is a key task to design treatment 
strategies and prevention recommendations. Numerous advances in 
Human Activity Recognition (HAR) has been crucial to deepen in 
high-level knowledge about people’s daily life [3]. One of the main 
objectives of HAR is to provide long-term monitoring of people’s daily 
activities to allow medical doctors to get additional information of 
their patients to design care plans that may prevent or help against 
chronic diseases.

HAR has gained much attention in healthcare due to its wide range 
of applications, such as monitoring of geriatric patients specially focused 
on fall detection [4]–[6], as well as many other studies related to chronic 

diseases such as Parkinson, obesity, cardiovascular and neurodegenerative 
diseases [7]–[10]. These research activities have shown that HAR can 
effectively improve the quality of health care for some groups of people 
suffering from some pathologies or chronic diseases.

HAR mainly focus on two types of methods: video-based and 
sensor-based. Video-based methods provide a dense feature space to 
allow fine-grained analysis in HAR. However, it is exposed with a 
high complex background of images, since an environment with very 
strict conditions, such as well-positioned cameras and individuals, 
is required for data collection process with a high cost at the level 
of computing resources, energy consumption and price. Therefore, 
video-based methods remain limited in epidemiological studies where 
the evaluation of daily physical activity requires a reliable, accurate, 
and low-cost methodology. Sensor-based methods are widely used in 
scientific physical activity studies since they provide better adaptability 
in variable environments, high recognition accuracy and low power 
consumption. Furthermore, in [3] the use of accelerometers is exposed 
as the most used sensor in the literature since most wearable devices 
are equipped with them and have easy access. Additionally, the use 
of accelerometer is considered a reasonably competent sensor for 
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recognising of many types of activities since most of them are simple 
body movements. This work is motivated by an ongoing collaboration 
project in the context of a real-world healthcare system (in Andalusia, 
Spain). We focus on a sensor-based approach, with the main propose 
of discriminating basic posture change movements or activities of 
a group of patients with obesity and cardiovascular problems. The 
goal of the project is to provide tools to practitioners to follow the 
daily routine of their patients and thus prevent sedentary lifestyle. In 
this sense, many related studies in the literature have reported high 
classification accuracy [11]–[14]. However, most of them have been 
tested in academic datasets on young, healthy subjects, that can hardly 
resemble the conditions of a real patient’s environment. Besides, 
most of these experiments have been carried out under controlled 
environments, where activity conditions are restricted.

However, as observed in actual healthcare scenarios, a series of 
critical issues arise related to the limited amount of available labelled 
data to build a classification model regarding to the total volume and 
velocity of sensorised data. In addition, the discrimination ability 
of features is often difficult to capture for different classes, since 
the variety of movement patterns in certain group of patients, e.g. 
obesity and/or geriatric patients, is bounded and maintained over 
time. Another issue is the usual class imbalance of data registered in 
this kind of sensor data streams. Due to samples representing specific 
constant postures, such as sleeping, sitting, active, inactive, etc., are 
perceptually abundant, compared other ones (running, up-stairs, etc.). 
Therefore, these challenges demand the design and development of 
hybrid data-driven approaches, where semi-supervised models can act 
at the core of data processing workflows, usually involving modern 
Big Data technologies.

In this study, a streaming classification model for Human Activity 
Recognition in healthcare systems, is proposed for patient monitoring 
in real-time. This proposal is based on a combination strategy of public 
labelled/private unlabelled raw data integration, semi-supervised 
classification with Convolutional Neural Networks (CNNs) and Spark 
streaming processing.

Guided by practical requirements, accelerometer sensor-based 
data have been considered in this work since low power consumption 
and use of resources are mandatory through long-term daily patient 
monitoring in uncontrolled environments. In this sense, as sensorised 
samples are mostly unlabelled, a data fusion task is conducted with 
commonly used datasets in the literature (WISDM [15], PAMAP2 
[16], HUGADB [17] and USC-HAD [18]). These datasets have been 
previously labelled according to systematic procedures and share 
common attributes. This way, labelled and unlabelled samples are 
integrated for feeding the semi-supervised models to classify new 
incoming flows of data, through Spark streaming processing engine, 
by following a sliding window strategy.

In this approach, semi-supervised models are generated with 
Encoder-Decoder CNNs [19], which allows data augmentation by 
considering unlabelled samples and statistical features, hence embracing 
the global properties of the accelerometer time series. For testing 
purposes, a real-world case study is conducted with a group of more 
than 300 overweight patients in the healthcare system of Andalusia 
(Spain), classifying close to 30 TBs of accelerometer sensor-based data.

The main contributions of this study are summarised as follows:

• A streaming semi-supervised HAR strategy is proposed for 
monitoring overweight patients in the context of a real-world 
healthcare system, involving a data fusion task of accelerometer 
sensorised data from labelled/unlabelled samples.

• Thorough experimentation is conducted for model selection and 
validation, where a semi-supervised CNN-Encoder-Decoder is 
evaluated with varying amounts of unlabelled data.

• The resulting analysis workflow is deployed on a cluster of Spark 
nodes, so the continuous classification of 30 TBs sensor data is 
predicted for a group of patients. The proposed HAR streaming 
deep-learning approach properly classifies movement patterns in 
real-time conditions, which is crucial for long-term daily patient 
monitoring.

The remainder of this paper is structured as follows. Section II 
presents a review of related studies in the current state of the art. In 
Section III, methodology and approach are described. The experimental 
procedure is explained and results are analysed in Section IV. Finally, 
Section V contains concluding remarks and future work.

II. Related Work

The discovery of patterns of human activity has led to several 
studies on how to analyze the data collected through activity bracelets, 
smartwatches and smartphones [20]. Many classification methods 
have been used in previous studies, especially conventional approaches 
using Machine Learning algorithms [21] such as Extra Trees, AdaBoost, 
Random Forest (RF), Naive Bayes, k-nearest Neighbours (kNN) or 
Support Vector Machines (SVM). To name some representative studies 
of them, in [22] SVM was used to carry out the classification problem 
of HAR, collecting inertial sensor data through a smartphone mounted 
in the waist of the individuals. C4.5 Decision Tree and Naive Bayes 
classifiers were used to recognize 20 daily activities in [23]. In [24] 
kNN was declared the best classifier in comparison with C4.5 (J48) 
Decision Tree, Multilayer Perceptron Neural Network, Naive Bayes, 
logistic regression, and ensembles based on boosting and bagging. 
However, they still showed classification failures in similar activities.

Even when conventional approaches have obtained promising 
results with high-level classification accuracies in different controlled 
environments, these methods rely on feature-based classification 
guided by human domain knowledge, which supposes a heavily 
effort in the pre-processing data stage. Besides, the discrimination of 
very similar activities for these methods is still a difficult task. Deep 
Learning (DL) algorithms seem to be a good solution to overcome 
these problems since they conduct layer-by-layer structural modelling 
for specific feature extraction and allow the classification process after 
the segment pre-processing of raw data. One of the first approaches 
can be found in [25], where HAR classification is carried out with 
CNNs by extracting features without any domain-specific knowledge 
about raw-data. Also in [11], Convnets is proposed to perform 
efficient and effective HAR using smartphone sensors by exploiting 
the inherent characteristics of activities and 1D time-series signals, at 
the same time providing a way to automatically and adaptively extract 
robust features from raw data. Various state-of-the-art classification 
techniques under different scenarios are compared in [12], showing 
how deep neural networks perform with the best accuracy when the 
training data volume is drastically reduced.

Many other HAR studies have been implemented with deep 
learning methods, such as convolutional and recurrent approaches 
[9], [13], [14], [26]. In this sense, a thorough survey is reported in 
[3] where new challenges and trends are identified for this area. In 
concrete, two of these main challenges are related to the online/
streaming processing or sensorised data, and the requirement of 
dealing with unlabelled data. These are, in fact, the direct consequence 
of working in real-world environments, requiring the management 
of high volumes of continuously sensorised data. Recent proposals 
[19], [27] are based on suitable semi-supervised frameworks to cope 
with these issues, although they are still limited when tackling with 
scalable data processing.

Moreover, in order to alleviate some of the drawbacks encountered 
in the literature, we have made an exhaustive study of general features 
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in the existing methods, as exposed in [3], [20], [28]–[31]. We have 
distinguished four main challenges pertaining to human activity 
recognition. These features are presented below:

• Design issues:
1. Cost: Cost is a key factor for any technique. If accuracy of a 

solution is good but cost is too high, then it is of no practical use. 
Accelerometers are inexpensive, require relatively low power, 
and are embedded in most of today’s cellular phones [32].

2. Obtrusiveness: To be successful in practice, HAR systems 
should not require the user to wear many sensors nor interact 
too often with the application. There are systems which require 
the user to wear four or more accelerometers or carry a heavy 
rucksack with recording devices. These configurations may be 
uncomfortable, invasive, expensive, and hence not suitable for 
activity recognition.

3. Energy consumption: extending the battery life is a desirable 
feature, especially for medical applications that are compelled 
to deliver critical information (Long term monitoring).

4. Sampling rate (frequency): low sampling frequencies tend to 
lose information in specific movements.

• Data collection protocol drawbacks:
5. Real world environments (No controlled environment): The 

procedure followed by the individuals while collecting data is 
critical in any HAR. In [33] demonstrated 95.6% of accuracy 
for ambulation activities in a controlled data collection 
experiment, but in a natural environment (i.e., outside of the 
laboratory), the accuracy dropped to 66%!

6. Large volume of data: A comprehensive study should consider 
a large number of individuals.

7. Long term patient monitoring: most studies do not offer patient 
monitoring over time, which is essential to improve the 
problem of HAR.

8. Data collection Flexibility: people perform activities in a 
different manner which means that an acceptable number of 
subjects is needed for the study so that the trained model is 
flexible enough to work with other subjects.

• Model selection drawbacks:
9. Semi-supervised learning: Typically, HAR systems rely on large 

amount of labelled training data. However, annotating data 
can be challenging in some situations, especially when the 
granularity of the activities is great or the user is unwilling 
to help with the gathering process. Using semi-supervised 
learning, these unlabelled data can still be used to train a 
recognition model.

10. Deep Learning: Deep learning algorithms attempt to learn 
high-level features from data in an incremental manner. 
Nevertheless, in classical machine learning, domain experts 
must extract features from raw sensor data in order to make 
the patterns more visible for the learning algorithm.

• Model evaluation drawbacks:
11. Model generalisation: People certainly perform activities in a 

different manner due to particular physical characteristics. 
We have proposed to evaluate activity recognition systems 
based on the subjects rather than of the segmented windows. 
This prevents over-fitting on the subjects and helps to achieve 
better generalisation results.

12. Latency: Latency is a critical factor. If a solution is accurate but 
takes long time to provide the results, it is not practical.

13. Real time classification/real-time decision making: This is 
important for human activity recognition because getting the 
results in real time is a compulsion in many situations.

Table I shows a comparison between our approach and a set of 
related works found in the literature of HAR in this section, according 
to the list criteria exposed above. As can be observed, desirable features 
related to real-world environments as real-time processing of the 
sensorised data, dealing with unlabelled data and managing of high 
volumes of continuously sensorised data are covered by our approach, 
which represent an advantage with regards to these compared works.

The proposed approach is conceived to cope with these limitations 
by combining semi-supervised Encoder-Decoder CNN dynamic 
models with Spark streaming processing in the context of real-world 
healthcare environments.

TABLE I. Comparison of Related Works Found in the Literature in Human Activity Recognition. The Comparison Has Been Made According to 
Four Main Challenges Encountered in the State of the Art Pertaining to Human Activity Recognition. Additionally, Our Streaming Semi-

Supervised Deep-Learning Approach (SSSDA) Is Presented in This Table as SSSDA. It Is Worth to Note That Our Approach Represents an Advantage 
With Regards to these Compared Works in Terms of Real-Time Classification in Real-World Environments.

Features/HAR refs [22] [23] [24] [25] [11] [9] [13] [14] [26] [19] [27] SSSDA

1. Cost            
2. Obtrusiveness            

3. Energy            

4. Sampling-rate   -        ≈ 

5. Real-environment  ≈   - ≈      

6. Large data-volume        -    

7. Long-monitoring    ≈        

8. Data-flexibility        ≈  -  

9. Semi-supervised      ≈      

10. Deep-Learning            

11. Model-generalisation            

12. Latency -  - -  ≈    -  

13. Real-time classify -   ≈  ≈      
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III. Methodology and Approach

This section is devoted to present the data acquisition strategy 
and data pre-processing tasks conducted for data consolidation. The 
semi-supervised deep learning model used is also described. After 
this, the overall approach is detailed to illustrate how all the elements 
are integrated.

A. Data Acquisition Strategy
In this work, we have followed a combined strategy for data 

acquisition that consists in merging private patient’s sensor data 
and academic datasets. The former source comprises data streams of 
unlabelled attributes (patients’ movements) that have to be classified. 
The latter one considers a series of labelled datasets from related 
studies of human activity recognition time-series in the literature. 
The main purpose of this strategy is to generate an enriched dataset 
that, after a feature engineering process for data fusion, is suitable 
for feeding semi-supervised models, avoiding bias and overfitting 
problems as much as possible.

Sensor data are generated using GENEActiv1 wearable devices, 
which incorporate a MEMS triaxial accelerometer placed on the non-
dominant wrist of the study subjects.

Each measurement of this bracelet contains three real values on 
each of the sensor axes (’x-y-z’) with a sampling rate at 100Hz, range of 
+/- 8g and resolution of 12 bits. In this way, after a weekly observation 
period, a total amount of 30 TBs of raw movement data was collected 
from 300 patients’ daily activities. This final time series dataset is a 
set of observations X =  where each one is recorded at a 
specific time T and L as a length of time-step.

Nevertheless, as commented before, sensorised data still lacks class 
labelled features, which are required for model training. Therefore, a  
series of widely used datasets in the literature have been considered 
in the proposed approach, each one of them contributing with labelled 
samples for different, sometimes overlapping, activities. These datasets 
are: WISDM (Actitracker) [34], PAMAP2 [35], USC-HAD [36] and 
HuGaDB [37]. These datasets were previously labelled according to 
systematic procedures and sharing common attributes. The time-series 
recorded in these datasets have been collected from heterogeneous 
devices (smartphones and bracelets) located in different parts of 
the body, considering a different number of individuals and with a 
different sampling frequency (e.g. WISDM at 20Hz, HUGADB at 50Hz, 
USC-HAD and PAMAP2 at 100Hz) in the study. Moreover, they have 
been modelled to consider different sets of daily activities, which are 
recorded through different time intervals.

Therefore, a thorough pre-processing phase has been carried out to 
homogenise all these data sources, including those commonly detected 
activities among all the individuals in observation. In concrete, these 
shared activities are: running, walking, sitting, standing, up stairs 
and down stairs, which are used as labelled categories for the semi-
supervised models worked in this proposal.

B. Data Pre-Processing
Besides, raw data have been normalised through Z-score 

Normalisation. Feature standardisation makes the values of each 
feature in the raw data have zero-mean and unit-variance. This 
normalisation is formulated in (1), where x is the original feature 
vector, x' is the normalised value,  = average(x) is the mean of that 
feature vector, and σ is its standard deviation.

 (1)

 

1  https://www.activinsights.com/products/geneactiv/

Also, linear interpolation have been conducted to tackle with missing 
values and to fill gaps in raw data time series. This method searches 
for a straight line that passes through the end points xA and xB, as 
formulated in (2), where xi are observed data, Xi are the interpolated 
value(s) of missing data and α is the interpolation factor that varies 
from 0 to 1.

 (2)

However, the most relevant task in this regard has been re-sampling 
data. In particular, down-sampling and up-sampling are performed on 
data, since when dealing with “waves” in time-series, it is observed 
that low sampling frequencies tend to lose information in specific 
movements, where a high frequency is required to identify them 
correctly. For this reason, we must determine the wave frequency 
according to the type of recognition faced. Fig. 1 shows an example 
where raw data of a patient’s activities (“walking” and “cycling”) are 
collected by an accelerometer sensor on a wrist. After re-sampling, data 
are transformed for each activity at frequencies of 100Hz (top), 50Hz 
(middle) and 20Hz (bottom). The effect of this re-sampling is illustrated 
and it is possible to identify some losses in the data information as 
long as the frequency is decreasing. It can be observed in Fig. 1 a), 
where different waves peaks “disappear” provoking inconsistent data 
representations at different sampling frequencies. Therefore, a high 
re-sampling (100Hz) is performed to keep informative level in samples, 
while making data homogeneous for all the sources.

Another quite common, yet important, issue registered in HAR 
datasets is the class imbalance. Even more in real-world sensor 
data from the particular case of obesity patients, where the balance 
between classes is not guaranteed and biased to sedentary activities. 
For example, the “sitting” activity is more frequent in the case 
of overweight patients than the “running” activity, producing an 
important class imbalance that could lead learning models to behave 
with a bias towards majority classes. As a consequence, algorithms 
will fail in the classification of the underrepresented minority classes, 
which provokes a severe decreasing in the overall accuracy of the 
results [38].

In order to cope with class imbalance, several approaches have 
been used such as oversampling and under-sampling methods at the 
data level and many other solutions at the algorithmic level trying 
to trade-off the class imbalance in modelling time . In the context 
of HAR, Synthetic Minority Oversampling Technique (SMOTE) is 
a common over-sampling method used to generate new synthetic 
data of the minority classes. It has shown a great deal of success in 
several applications where SMOTE helps to enhance the classification 
accuracy for imbalanced datasets. For example, in data balancing was 
used through SMOTE oversampling approach, leading the worked 
model to reach high accuracy results.

By default, SMOTE re-samples all classes excepting the majority 
class, that is, the minority classes are increased to reach the total 
number of the majority class. However, the study in [39] suggested 
combining SMOTE with random under-sampling of the majority class, 
since a high over-sampling could provoke model over-fitting. For this 
propose, our methodology addresses class imbalance at training stage 
by balancing classes in two separate steps: firstly, SMOTE oversampling 
technique is used to over-sample those minority classes to have 50% of 
the number of examples of the majority class. Then, under-sampling 
using random elimination is performed on the majority classes, to 
have 20% more than the minority class. Then a difference of 20% 
between classes of samples is obtained, which helps the model to avoid 
problematic class imbalance, preventing the generation of synthetic 
data in a high percentage.
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C. Semi-Supervised Modelling
One of the main challenges arising in this study is the possibility of 

taking advantage of dealing with labelled and unlabelled data. In this 
sense, the use of semi-supervised learning techniques constitutes a 
suitable option to perform predictive analysis, since they allow to train 
models with, labelled and unlabelled samples, which mainly improve 
generalisation and avoid over fitting [19].

In particular, the use of CNN based approaches has been shown 
to perform successfully for HAR, since they provide hidden 
representations of data and to identify patterns in activity time-series 
[25], [27]. Therefore, considering a dataset with N pairs (x1, t1), (x2, t2), ..., 
(xN, tN), being xi a sliding window input with length T and ti the label 
representing a given activity, we adopt a similar semi-supervised 
strategy to a CNN Encoder-Decoder [27] in our approach. In this, 
labelled samples {(xi, ti)| 1 ≤ i ≤ N} are used together with unlabelled 
ones {xi | N + 1 ≤ i ≤ N + M} in training, to fit the model with both data 
sources (sensorised and academic).

In general, the encoder network maps a given input signal x ∈ X 
⊂  to a feature space z ∈ Z ⊂ , whereas the decoder takes this 
feature map as an input, process it and produce an output y ∈ Y ⊂ 

The rationale behind the CNN Encoder-Decoder for semi-
supervised classification is to include noise into all the layers of the 
network, so it works to minimise the distance between the clean input 
and the reconstructed decoder one. In this way, the learning procedure 
can be summarised in the following steps:

1. Labelled and unlabelled data are processed by the clean encoder to 
compute hidden variables in the middle layers ;

2. Both labelled and unlabelled data are corrupted with Gaussian 
noise and transformed to an abstract representation , by the 
noisy encoder;

3. Labelled data ( i, 1 ≤ i ≤ N) are used to perform the prediction task 
on a softmax based on cross entropy cost. The predicted classes 
are denoted with i;

4. The decoder works to reconstruct unlabelled samples  
( i, N + 1 ≤ i ≤ N + M) which are denoted with , so they should be 
as close as possible to the corresponding input (xi). To measure this 
similarity, square error is computed.

The cost function is formulated in (3) as an aggregation of the 
supervised cross entropy of the noisy output i predicting the class 
activity ti for the input xi (first term in this equation), whereas the 
unsupervised cost (second term in this equation) is the denoising 
square error between clean input xi and their noisy reconstruction 
output .

 (3)

Therefore, the semi-supervised CNN Encoder-decoder allows 
unlabelled samples from sensor streaming sources to take part in the 
learning model in training time, so it will avoid bias to certain classes 
and promote generality.

D. Overall Approach
A general overview of the proposed approach is illustrated in Fig. 2, 

where all the elements are organised, from data acquisition to model 
evaluation and human activity prediction. It partially follows the so-
called activity recognition chain (ARC), extensively studied in [44] as a 
general-purpose framework for processing time-series sensorised data, 
training and evaluating HAR workflows. These steps are thoroughly 
described next:

1. Data acquisition. As commented before, we have followed a 
combined strategy of self data collection from sensors together with 
public datasets, with the aim of feeding a semi-supervised model 
with unlabelled and labelled samples, respectively. Nevertheless, 
public datasets have been generated with different devices and 
human conditions, sometimes far from the habits observed in our 
patients (with obesity), so a preliminary exploration phase has been 
conducted to select that public dataset containing distributions 
more similar to our self-collected (private) data. In this regard, Fig. 
3 shows the boxplot distributions of the three accelerometer axis 
(x,y,z) for each of the four considered public datasets (WISDM, 
PAMAP2, USC-HAD and HuGaDB), taking into account the 6 
activities which have in common these datasets (walking, running, 
sitting, standing, downstairs, upstairs), as well as for our private 
data. After this process, the WISDM dataset is selected to provide 
our model with labelled samples, since it contains in overall the 
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Fig. 1. Raw data from accelerometer sensor of different activities: Walking (a) and cycling (b) at 100 Hz (top) and resampled data at 50 Hz (middle) and 20 Hz 
(bottom). It can be noticed that as the sampling rate decreases, aspects at high frequency are removed from the wave.
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closest axis distributions to the sensorised data of our patients. 
Therefore, we avoid the model to underfit with excessive data 
variation. When the instances are augmented using the WISDM 
dataset the model became more stable with smaller standard 

deviation. On the contrary, using all datasets together to train 
the model add additional variation and it deteriorates the model 
too much. In concrete, WISDM (Actitracker) dataset considers 6 
activities registered in a controlled environment: jogging, walking, 
ascending stairs, descending stairs, sitting and standing. A number 
of 36 individuals have taken part in these measures.

2. Data pre-processing. A second step of data processing is performed 
(as explained before) on labelled and unlabelled data, which 
involves interpolation for missing data imputation, re-sampling, 
class imbalance processing and normalisation. It is worth to 
note, we re-sampling WISDM dataset from 20Hz to 100Hz (same 
frequency of our private dataset) in order to keep data information 
as commented before in Fig. 1. The labelled dataset is then split 
into two subsets with 80% of selected samples for training and 20% 
of remaining ones for testing.

3. Segmentation. At this step, data samples are still structured in the 
time domain, since all the axis points are collected at a certain time 
instant from sensors. Therefore, a segmentation stage is required 
to transform these input data into the frequency domain, more 
suitable for training deep learning models as signal processing 
prediction tasks. To do so, for each axis attribute in the dataset, 
a temporal sliding window with size of 400, corresponding to 
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to roughly 4 seconds of physical activity data, and overlap of 100 (1 second) is performed to labelled and unlabelled data. (4) Feature extraction and model 
training: a CNN Encoder-Decoder model is trained with labelled and unlabelled, capturing the most relevant characteristics of the training data in order to 
provide activity inference of the 30TB of unlabelled data. (5) Model evaluation: the model is evaluated with the test sets where confusion matrix and deviated 
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roughly 4 seconds of physical activity data, and overlap of 100 
(1 second), is performed. This overlapping among windows 
guarantees high numerosity of training and testing samples to 
train the model. To match the input shape of the CNN-Encoder-
Decoder, it is necessary to reshape the sample obtained in the 
previous step. Therefore, each window comes in the form of a 
matrix of values, of shape N x 400 x 3, where N is the number 
of samples resulting of the segmentation, 400 is the time window 
and 3 is the number of features to train the model (x-axis, y-axis, 
z-axis). In this segmentation, sliding windows are checked to 
contain samples from just one human activity.

4. Feature extraction and model training. This step entails the semi-
supervised learning task, which merges the labelled segments 
in the training set with those unlabelled from sensors. The CNN 
Encoder-Decoder involves up-sampling for maxpooling decoding, 
as well as convolutional operation for deconvolution [27]. As 
argued in [27], using this semi-supervised CNN Encoder-Decoder, 
it is possible to learn the network and features simultaneously 
from the data.

5. Model evaluation. Once the model is built, an evaluation step is 
carried out with regards to the test set, where confusion matrix 
and deviated metrics are obtained (Precision, Recall, F1-score, etc). 
It is worth noting that this test set is completely obtained from the 
public dataset (in this case WISDM), although the model has been 
trained with both, public and private data, so final predictions are 
expected to show certain model generalisation with moderate 
accuracies. The final goal is to get a prediction model suitable for a 
very dynamic data flow environment, but not for a specific dataset 
in a certain time period.

6. Streaming processing and activity recognition. Finally, a 
streaming processing task is deployed through an Apache Spark 
environment, in which new sensorised data are pre-processed to 
be predicted according to the model previously built. An internal 
segmentation step is carried out with streaming data by using a 
similar sliding window size as used in model training phase. This 
is then a continuous process of human activity label assignation of 
new samples regarding patient’s movements, which can be now 
monitored by practitioners.

The whole process is repeated with a certain frequency to rebuild 
models with updated data. Therefore, the framework to monitor 
patient’s movements will consider new individuals in a transparent 
way to the learning model, since new sensor data will be in the same 
Spark streaming source.

IV. Experimental Results and Analysis

In this section, we investigate the effects of training a semi- 
supervised CNN Encoder-Decoder using labelled data from one public 
dataset (WISDM) and unlabelled data from our private dataset.

The goal is to be able to classify the 30 TB of unlabelled data. The 
Convolutional Encoder will compress the input signal x into a space 
of latent variables (h = f(x)) , then learning how to reconstruct the 
data back from the reduced encoded representation. Meanwhile, the 
Convolutional Decoder works to reconstruct the input signal based 
on the information previously collected (r = g(h)), as observed in Fig. 
4. Therefore, the latent variable space h will capture the most relevant 
characteristics of the training data.

In this regard, the algorithm learns how to reconstruct the input 
by using the Adam optimiser [45] and using the mean square error 
as a loss function. Therefore, the model will be able to extract more 
significant characteristics from the unlabelled data that will help us to 
make predictions.
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Fig. 4. General structure of the CNN Encoder-Decoder, contains a clean 
convolutional Encoder, noisy convolutional encoder, and a convolutional decoder. 
Labelled and unlabelled data are processed by clean convolutional encoder and 
then corrupted with Gaussian noise. Then the convolutional decoder works to 
reconstruct the clean inputpxq from high-level representation r = g(h).

A. Model Selection
The full structure of our CNN-Encoder-Decoder model is shown 

in Fig. 2.

Encoder: The encoder network consists of three down-sampling 
blocks. Each down sampling block is composed of 1D convolutional 
layers with kernel size of 3, followed by a max-pooling layer. 
Additionally, for each block a batch normalisation is added to reduce 
internal co-variate shift [46], accelerating the training process of 
the model, and a dropout layer was added to improve generalisation 
performance and avoid over fitting. It then follows an structure 
[Conv1D + BatchNorm + MaxPooling1D + Dropout]

Decoder: Each encoder layer has a corresponding decoder layer. 
Thus, the decoder network consists of three up-sampling blocks 
composed of 1D convolutional layers with a kernel size of 3, followed 
by an up-sampling layer. As for the encoder, for each up-sampling 
block, batch normalisation and dropout layers were added, with a 
structure [Conv1D + BatchNorm + UpSampling1D + Dropout].

Bayesian optimisation has been used for efficient hyper-parameter 
tuning [47]. The hyper-parameters were tuned by performing 10-
fold Stratified Shuffle Split cross-validation on the training set using 
Bayesian optimisation, obtaining a filter size of 64 for each of the 1D 
convolutional layers, which is activated by the Restricted Linear Unit 
(ReLU) function. Moreover, each of the max-pooling and up-sampling 
layers contains a pooling size of 2 and the dropout was set to 0.1 for 
each one. The Bayesian optimisation was executed with a batch size of 
50, 500 and 1000, obtaining the best results with 50.
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In order to assess the performance of our classification methodology 
system, we split the available dataset into 80% train data and 20% 
test data. This was done based on the subjects rather than of the 
segmented windows. In this regard, train data contain from subjects 1 
to 32 of WISDM dataset and test data include the rest of the subjects 
(32 to 36). Thus, for each experiment four subjects out of 36 are always 
kept isolated to evaluate the model. This prevents over-fitting on the 
subjects and helps to achieve better generalisation results.

To comprehensively evaluate the model, we used several evaluation 
metrics to evaluate the classification results: accuracy, precision, recall, 
F1-score, loss function, receiver operating characteristic (ROC) and 
normalised discounted cumulative gain (NDCG), as shown in Table II. 
It should be noted, we opted to estimate the mean F1-score (Fm-score), 
that is the mean F1-score across all the classes. It’s shown in (4) and 
(5), where TP is the number of true positives in prediction, FP are the 
false positives and FN are the number of false negatives.

 (4)

 (5)

The CNN Encoder-Decoder has been implemented in TensorFlow 
using Keras. The experiments to evaluate the model have been 
executed on a machine with 16 CPUs (Intel(R) Xeon ® Gold 6130 CPU 
2.10GHz). After each epoch of training, we evaluate the performance 
of the model on the validation set. Each model is trained for at least 
50 epochs. Training stop condition is configured if there is no increase 
in validation performance for 10 subsequent epochs. We select the 
epoch that showed the best validation-set performance and apply the 
corresponding model to the test set.

B. Sensitivity to Unlabelled Sample Size
In this section, we study the performance of our semi-supervised 

CNN Encoder-Decoder model trained with varying amounts of 
unlabelled data. The amount of the unlabelled data will be proportional 
to a percentage of samples of the labelled data used for training. 
Therefore, we evaluate the metrics of our model trained using 
unlabelled data of 10%, 20%, 30%, 50%, 80%, 100%, 150% proportion of 
labelled data used for training, as shown in Table II. The number of 
unlabelled samples varies from 97,814 (10% of train labelled data) to 
1,467,222 (150% of train labelled data).

Fig. 5 shows how the Fm-score evolves when varying the number 
of unlabelled examples in the experimental results. Fm-score generally 
decreases when there are more unlabelled samples as expected. This 
is explained by the fact that unlabelled data comes from a different 

dataset then including variation. However, it can be observed in Fig. 
5 that for percentages of unlabelled data less than 100%, we obtain a 
high Fm-score in the result.

TABLE II. Metrics Obtained With Varying Number of Unlabelled 
Examples in Training Set. The Amount of Unlabelled Data Is Taken 
As a percentage of the Training Set of the Labelled Data (WISDM 

Dataset). The Number of Unlabelled Samples Varies From 97,814 (10% 
of Train Data) to 1,467,222 (150% of Train Data)

Metrics: Public data (labelled) + Private data (Unlabelled)
% acc loss recall Fm-score roc ndcg
0 0.981 0.069 0.981 0.981 0.998 0.998
10 0.976 0.075 0.977 0.967 0.995 0.997
20 0.971 0.076 0.949 0.949 0.992 0.993
30 0.951 0.148 0.940 0.938 0.991 0.990
50 0.947 0.151 0.925 0.926 0.990 0.988
80 0.905 0.292 0.905 0.903 0.987 0.985
100 0.875 0.319 0.872 0.871 0.983 0.984
150 0.685 0.601 0.685 0.655 0.941 0.981
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Fig. 5. Fm-scores obtained with varying number of unlabelled examples in 
training set.

Thus, our approach can potentially learn the network and features 
simultaneously from the data using unlabelled data in our CNN 
Encoder-Decoder model. Therefore, it is possible to use this model 
as core predictor. To do so, we have chosen the amount of 80% of 
unlabelled data to classify the 30 TB from sensors, since at this point, 
the model is still getting good results (Fm-score = 0.90).

More in depth, Fig. 6 shows the resulting confusion matrices when 
varying the amount of unlabelled data with 10%, 50% and 80% in the 
model training. It can be observed that the model achieves promising 
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Fig. 6. Illustration of confusion matrices showing the sensitivity of the networks for each individual class when varying 10%, 50% and 80% of unlabelled data 
when training the semi-supervised CNN-Encoder-Decoder.
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predictions for activities walking, running, sitting, standing and upstairs 
even when increasing the number of unlabelled samples. In contrast, 
the model start to show limited predictions in detecting downstairs, 
since, if we see the patterns between walking and downstairs, they 
are characterised with very close signal shapes in movements, as 
mentioned in [15]. This is general an acceptable precision, since even 
for 80% unlabelled data it still gets good predictions for all classes.

As we know, it is hard to assess performance in unlabelled data, 
but we still need to know if it passes “the eye test”. For this propose, 
we classify a randomly chosen sample of unlabelled data in order to 
demonstrate that the distributions of the predictions are reasonable. 
It is shown in Fig. 7 (format date is month-day hour) how the main 
activity is resting (sitting and standing) as we expected. It’s normal 
since this unlabelled data correspond to one of the 300 overweight 
patients in the healthcare system of Andalusia. In the same way, 
during the night (from 00:00 to 08:30 approximately) the patient is 
totally resting (sitting) . Later, the patient is standing and starts to 
be more active. Then around 12:00, the patient seems to starts to do 
moderate physical activity (running and upstairs). It can be seen that 
on both days at 12:00 (06-05 12:00 and 06-06 12:00) the patient carries 
out physical activity. This could be explained by the fact that patients 
follow the doctors’ instructions doing daily exercise to avoid sedentary 
life. Afterwards, the patient does some short movements and finally, 
after 00:00 resting is the main activity.

It should be note, the classification has been carried out according to 
the labels that we have from the WISDM dataset, however our private 
dataset provide us a long-term monitoring of patient’s daily activities 
where we can find more activities and transitions between activities. 
Even so, the results obtained in Fig. 7 seem quite reasonable to us for 
this first approach in which we try to address the problem of HAR in 
a real world case without previously labelled activities in our dataset.

C. Additional Experiments
Additional experiments have been implemented to demonstrate 

the feasibility of the proposed semi-supervised methodology. A first 
experiment was carried out to see whether the model was able to 
pass “the eye test” without taking into account the semi-supervised 
approach. In consequence, the model was trained only with raw data 
from WISDM dataset. After that, a classification task was performed 
from a randomly chosen sample from our 30TB private unlabelled 
dataset. As expected, the model didn’t pass “the eye test” without using 
unlabelled private data in the training phase (Fig. 11).

Moreover, the proposed methodology has been synthetically 
evaluated by using another public dataset as a simulation of the 

unsupervised portion. In this sense, HUGADB dataset has been 
considered as “unlabelled dataset” and WISDM as labelled dataset. 
HUGADB dataset was classified with and without considering our 
proposed semi-supervised methodology. Finally, the model was 
evaluated if it can predict the activities in HUGADB dataset. In this 
experiment, we concluded that using the semi-supervised approach 
give us better predictions as observed in Table IV in Appendix. 
The same experiment was carried out with PAMAP2 as “unlabelled 
dataset”. See Appendix for more details in the experiments.

D. Computational Performance
To carry out the streaming classification process, a deployment 

of the complete approach has been conducted on a virtualisation 
environment operating on an on-premise high-performance cluster 
computing platform. This infrastructure is located at the Ada Byron 
Research Center of the University of Malaga (Spain). It comprises 
several units of virtualisation that allows to visualise the performance 
of the cluster. Concretely, this platform has 10 virtual machines, each 
one with 16 cores (CPU 16 x 2.10 GHz), 128 GB RAM and 1 TB of 
virtual storage (adding up to 176 cores, 1408 GBs of memory and 10 
TB HD storage). These virtual machines have been used with the 
role of Worker node (Apache Spark) to make the activity predictions. 
The Master node, which runs the Keras CNN Encoder-Decoder, 
is hosted in a different machine with 16 cores at 2.10 GHz, 128 GB 
RAM and 5,000 TB of virtual storage space. All these nodes use Linux 
4.15.0-118-generic 64-bit distribution. The whole cluster uses Spark 
3.0.1.

Additionally, an NFS distributed file system has been configured 
to be able to access the sensorised data from all the machines. The 
Master node will physically store the data (server), while the Worker 
nodes will behave as clients to access the data remotely. In this way, 
it is possible to perform the activity prediction in parallel from the 
different machines connected to the same network to access remote 
files as if they were local ones.

For the parallelisation of Spark streaming processes the 
classification of activities accessing a directory at the NFS distributed 
system. The data is passed in streaming from the repository. Each of 
the CSV files that are included in the directory will behave as a Spark 
streaming batch that will go through a segmentation process by time 
windows (400 rows corresponding to 4 seconds of monitoring activity) 
as observed in Fig. 2. Finally, the CNN Encoder-Decoder model trained 
will predict the activity of each batch in streaming. The results are 
saved in text files using the same name as the original CSV files (See 
Code Snippet 1).
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Code Snippet 1: Spark streaming segmentation and classification by 
batch
//Read csv in Streaming with Spark from directory
df = spark.readStream(directory)
//Load the CNN-Encoder-Decoder model 
model = keras.load(model)

classify(batch, batch_id, model):
     // we set time window to 400 (4 seconds of activity)

     time_window = 400
     // raw data segmentation by time Window
     batch.map(lambda x,y: [raw_data],time_window)
     // group by time_window 
     batch.reducebyKey(lambda x,y: x+y)
     // activity prediction of raw data 
     batch.map(lambda r: model.predict(r))
     // save the result 
     batch.saveAsTextFile(batch_id+ .txt)

// Streaming classification for each batch
df.foreachBatch(classify(batch, batch_id, model))

The performance of the proposed streaming solution has been 
evaluated through a series of experiments to measure the performance 
in terms of Speedup (SN) and the Efficiency (EN). Thus we analyse the 
computational effort and the data management process. The standard 
formula of the Speedup calculates the ratio of T1 over TN, where T1 is 
the running time of the analysed algorithm in 1 processor and TN is 
the running time of the parallelised algorithm on N processing units 
(processors or cores), while the Efficiency (EN) is calculated as shown 
in (6).

 (6)

Table III shows the running time in seconds used by the Spark 
streaming classification approach running on 40, 80 and 160 cores 
with different batch sizes of raw data. This way, we have centred on 
file sizes of 64 MB, 128 MB, 256 MB, 512 MB and 1 GB, since they 
are the average size of CSV files that are in the 30 TB of data. In this 
sense, we measure the computational influence of using different 
number of cores with different batch size. This table also contains 
the corresponding Speedup and Efficiency values to the resulting 
times. As mentioned, the running time is reduced in relation to the 
increase in the number of cores used in the parallel model. The highest 
reduction in time is obtained when our approach is configured with 40 
cores in parallel, for which the running time is reduced from 28.10 s to 
6.29 s in the case of the smallest batch size (64 MB), and from 462.75 
s to 8.18 s with the biggest batch size (1 GB) used in the experiments. 
Also, in terms of efficiency, the highest percentage, 141.48%, is reached 
with 40 cores with a batch size of 1 GB reaching the best efficiency. 
In contrast, it decreases as the number of resources gets larger. 
This behaviour was somewhat expected as the particular cluster 
configuration involves computing overheads due to virtualisation 
and network communications, so a trade-off setting is reached with 

less nodes, but stabilising from 80 nodes in advance. Considering the 
results, it is worth mentioning that both cluster configurations (80 and 
160 cores) yield similar speedup and efficiency values, which indicates 
that the bottleneck is due to the parallel infrastructure, so increasing 
the number of cores do not compensate the synchronisation and 
communication costs.

Therefore, according to the results the best configuration to obtain 
the maximum performance in the streaming classification process 
with Spark, are observed when using the cluster resources with 40 
cores and a batch size of 1 GB (Fig. 8). In this regard, we can consider 
our Spark streaming classification methodology as a real-time 
classification since we can classify 1 GB in 8.18s, that is approximately 
12,000,000 of samples rows, what is equivalent to almost one week 
of daily patient activities monitoring ( 30 TBs in 2 days and 8 hours).
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Fig. 8. Running time in seconds (logarithmic scale) of the Spark Streaming process 
classification executed on 40, 80 and 160 cores in the cluster computing platform.  

In terms of computational effort, we have plotted the Load one 
measure of the entire cluster while running experiments with 40 and 160 
cores with a batch size of 1 GB in Fig. 9 and Fig. 10 respectively, to check 
the overall CPU load. In particular, the Load one computes the number of 
threads at kernel level that are running and being queued while waiting 
for CPU resources, averaged over the last minute. We could interpret this 
number in relation with the number of hardware threads available on 
the machine and the time it takes to drain the run queue. Fig. 9 captures 
a short time (close to minute 8:00) in which the master node (Spark 
driver) delivers tasks to the worker nodes and they start to undertake 
data processing jobs when we run the experiment with 40 cores and 1 
GB of batch size. The Load one measure in Fig. 10 shows an increasing 
activity in minute 9:20 approximately, even more than in the previous 
experiment when increasing the number of cores to 160.

V. Conclusions

This article presents a novel approach for Human Activity 
Recognition in healthcare systems for obesity patient monitoring. It 
comprises a combination of public (labelled) and private (unlabelled) 
raw data integration, semi-supervised classification with CNN 
Encoder-Decoder and Spark streaming processing with sliding 

TABLE III. Experimental Results Spark Streaming Computational Performance

Running Time (seconds) Speedup Efficiency
Batch Size T1 T40 T80 T160 S40 S80 S160 E40 E80 E160

64 MB 28.10 6.29 7.15 7.08 4.46 3.93 3.96 11.16% 4.91% 2.47%
128 MB 69.17 4.71 4.03 4.22 14.68 17.16 16.39 36.71% 21.45% 10.24%
256 MB 124.65 5.74 10.44 10.94 21.72 11.92 11.39 54.29% 14.92% 7.12%
512 MB 244.28 5.85 34.34 34.05 41.76 7.11 7.17 104.39% 8.89% 4.48%

1 GB 462.75 8.18 124.56 115.21 56.57 3.72 4.02 141.48% 4.64% 2.51%
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window, to allow continuous activity recognition. The proposal has 
been validated in the context of a real-world case study with a group 
of 300 overweight patients in the healthcare system of Andalusia 
(Spain), classifying close to 30 TBs of accelerometer sensor-based data 
in real-time conditions, which is crucial for long-term daily patient 
monitoring.

The experimental results demonstrate that our proposed method 
can achieve significant Fm-scores training the model even with 
100% of unlabelled data (proportion of data labelled used for train), 
since from this point the results decrease below to 0.8 of Fm-score. 
Finally, we choose the amount of 80% of unlabelled data, since at 
this percentage, the model reach a trade-off result (Fm-score = 0.90) 
between Fm-score and amount of unlabelled data added to the model. 
Moreover, in order to demonstrate the performance of our model we 
observe that the distributions of the predictions in unlabelled data are 
reasonable, as shown in Fig. 7.

In addition, an Spark streaming process for the activity classification 
was implemented in a cluster computing platform to be able to classify 
the raw data sensor in real-time. For this propose, we found out the 
best configuration to minimise the running computation time of the 

streaming classification, using the cluster with 40 cores and predicting 
with streaming batch size of 1 GB, being able to classify one week of 
daily patient monitoring in approximately 8 seconds.

The proposed approach represents a step forward to meet the 
challenges identified in a recent survey [3], which mainly consist 
in the generation of real-time activity recognition platforms and 
the development of more accurate unsupervised modelling for this 
problem. As argued by authors of this survey, the performance of 
deep learning still relies on labelled samples to a large extent, which 
added to the fact that acquiring sufficient activity labels is expensive 
and time-consuming, makes unsupervised activity recognition an 
urgent task. Our semi-supervised deep learning on Spark streaming 
processing is a solution in this direction.

Future lines of research include the generation of advanced 
visualisations and alarms system to support practitioners in healthcare 
in patient monitoring. From the perspective of prediction models, the 
development and use of new ensemble semi-supervised methods will 
enhance the precision in this kind of environments, where unlabelled 
data continuously flow in streams and should be properly processed 
as fast as they are captured.
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Appendix

In the following we present the complete list of Additional 
Experiments presented in section IV subsection C. These experiments 
have been carried out to study the impact of specific design decisions 
in the context of the downstream task.

A. First Experiment
In this first experiment, we wanted to see whether the model 

was able to pass “the eye test” without taking into account the semi-
supervised approach. For this propose, the model was trained only with 
labelled data from WISDM dataset without considering our private 
unlabelled data in the training phase. Afterwards, the prediction 
of a randomly chosen sample (five days prediction) from our 30TB 
private unlabelled data set was performed, as shown in Fig. 11. Can 
be observed that the model predicts running and walking downstairs 
as the main activities of the patient even during the nights and rarely 
predicts the activities of standing and sitting, despite the fact that these 
are the most prevalent behaviours among obese patients. Overall, it 
may be said the model is not able to make reasonable predictions if the 
unsupervised task is not used in the training regime.

B. Second Experiment
In a second experiment, the proposed semi-supervised 

methodology has been synthetically evaluated by using another 

public dataset as a simulation of the unsupervised portion. In this 
sense, HUGADB dataset has been considered as “unlabelled dataset” 
since it contains in overall the closest axis distributions to the 
sensorised data of WISDM dataset and the lowest standard deviation 
in the data as shown in Fig. 3. Hence, we study the performance of 
our semi-supervised CNN Encoder-Decoder model trained with a 
combination of WISDM as public annotated data WISDM and 70% 
of HUGADB dataset as a simulation of the unsupervised portion to 
classify the activities in HUGADB, as observed in Fig. 12. First, the 
model has been trained only with labelled data from WISDM without 
considering unlabelled data in the training phase. Afterwards, the 
model has been validated in the remaining 30% of HUGADB dataset, 
as shown in Fig. 12a. Subsequently, to demonstrate the feasibility of 
our semi-supervised approach the model has been trained again but 
this time 70% of HUGADB has been taken into account as a simulation 
of the unsupervised portion in the training phase. As previously, the 
model has been validated in the remaining 30% of HUGADB dataset, 
as shown in Fig. 12b. It can be appreciated that our semi-supervised 
approach improves the predictions results from 0.414 to 0.704 in terms 
of Fm-score, as shown in Table IV.

This second experiment has been repeated with another public 
dataset as a simulation of the unsupervised portion to verify the 
quality of the semi-supervised approach. In this case PAMAP2 has 
been selected since it contains different axis distributions to the 
sensorised data of WISDM dataset and the highest standard deviation 
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in the data as shown in Fig. 3. It’s shown in Table IV, how the semi-
supervised methodology increases the predictions results from 0.129 
to 0.667 in terms of Fm-score. Also, in Fig. 13 the semi-supervised 
strategy increases the accuracy in all the classes.

TABLE IV. Metrics Evaluation With Varying Number of Unlabelled 
Examples in Training Set. HUGADB and PAMAP2 Datasets Have Been 
Taken as a simulation of the Unsupervised Portion to Synthetically 

Evaluate the Proposed Semi-supervised Methodology

Metrics: Public data (labelled) + Public data (Unlabelled)

Labelled/Unlabelled % acc recall Fm-score
WISDM/HUGADB 0% 0.461 0.461 0.414
WISDM/HUGADB 70% 0.722 0.722 0.704
WISDM/PAMAP2 0% 0.173 0.173 0.129
WISDM/PAMAP2 70% 0.667 0.667 0.667

In spite of improving the quality of results with our semi-
supervised approach, the model starts to show limited predictions 
in detecting some activities. For example, for the model it’s difficult 
to predict downstairs and walking, since, if we see the patterns 
between walking and downstairs, they are characterised with very 
close signal shapes in movements, as commented before in the paper. 
Furthermore, static activities can be recognised easily than periodic 
activities (running, walking, etc.). However, highly similar postures 
(sitting and standing) create great complexities in case of separation 
due to notable overlapping in feature space as observed in Fig. 13b. 
In general, the dimensionality of HAR classification problem can be 
reduced by classifying into three basic types: Non Activity (sitting    
and    standing), Moderate Activity (walking, walking downstairs and 
walking upstairs) and Intense Activity (running) as shown in Fig. 12c 
and Fig. 13c. It’s worth to note that we can obtain promising results 
that will allow us to provide patient activity information to doctors 
which is essential to prevent obesity. In conclusion, it can be said that 
the semi-supervised approach achieve improvements in the results, 
when trying to predict activities from a dataset that the model has 
never seen before. With the semi-supervised strategy the model can 
extract important features from the unlabelled data that help us to 
make better predictions.
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