
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 38 -

* Corresponding author.

E-mail addresses: 2019rcp9153@mnit.ac.in (R. Saxena), 2018uee1353@
mnit.ac.in (S. P. Patil), 2019rcp9050@mnit.ac.in (A. K. Verma),
mahipaljadeja.cse@mnit.ac.in (M. Jadeja), 2018ucp1444@mnit.ac.in
(P. Vyas), bhateja.vikrant@ieee.org (V. Bhateja), jerrylin@ieee.org
(J. C.-W. Lin).

Keywords

Graph Convolution
Network (GCN), Graph
Theory, Link Prediction,
Network Centrality,
Social Networks.

Abstract

The task of determining whether or not a link will exist between two entities, given the current position of the
network, is called link prediction. The study of predicting and analyzing links between entities in a network
is emerging as one of the most interesting research areas to explore. In the field of social network analysis,
finding mutual friends, predicting the friendship status between two network individuals in the near future,
etc., contributes significantly to a better understanding of the underlying network dynamics. The concept
has many applications in biological networks, such as finding possible connections (possible interactions)
between genes and predicting protein-protein interactions. Apart from these, the concept has applications in
many other areas of network science. Exploration based on Graph Neural Networks (GNNs) to accomplish
such tasks is another focus that is attracting a lot of attention these days. These approaches leverage the
strength of the structural information of the network along with the properties of the nodes to make efficient
predictions and classifications. In this work, we propose a network centrality based approach combined with
Graph Convolution Networks (GCNs) to predict the connections between network nodes. We propose an
idea to select training nodes for the model based on high edge betweenness centrality, which improves the
prediction accuracy of the model. The study was conducted using three benchmark networks: CORA, Citeseer,
and PubMed. The prediction accuracies for these networks are: 95.08%, 95.07%, and 95.3%. The performance
of the model is comprehensive and comparable to the other prior art methods and studies. Moreover, the
performance of the model is evaluated with 90.13% for WikiCS and 87.7% for Amazon Product network to show
the generalizability of the model. The paper discusses in detail the reason for the improved predictive ability of
the model both theoretically and experimentally. Our results are generalizable and our model has the potential
to provide good results for link prediction tasks in any domain.

DOI: 10.9781/ijimai.2023.02.001

An Efficient Bet-GCN Approach for Link Prediction
Rahul Saxena1,2, Spandan Pankaj Patil3, Atul Kumar Verma1, Mahipal Jadeja1, Pranshu Vyas1, Vikrant
Bhateja4, Jerry Chun-Wei Lin5 *

1 Department of Computer Science and Engineering, Malaviya National Institute of Technology Jaipur, Jaipur (India)
2 Department of Information Technology, Manipal University Jaipur, Jaipur (India)
3 Department of Electrical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur (India)
4 Department of Electronics Engineering, Faculty of Engineering and Technology, Veer Bahadur Singh Purvanchal University,
Shahganj Road, Jaunpur-222003, Uttar Pradesh (India)
5 Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western
Norway University of Applied Sciences, Bergen (Norway)

Received 5 July 2022 | Accepted 12 October 2022 | Early Access 1 February 2023

I. Introduction

Social Networks have been the primary source of information
exchange between people for more than a decade now. The flow of

information in this era depends heavily on the interactions of people
with their peers and friends, such as liking a post, following a page,
buying products, etc. Both the social networking websites and the
e-commerce website are influenced by this fact. Miao et al. [1] discusses
the impact of online customer reviews on product returns. The study

found that the influence is even greater for sellers with good quality
or branded products. Ullal et al. [2] also concluded in their study that
customer reviews can significantly influence the selling and buying
behavior of e-commerce companies. There are many such studies that
prove how important the connections a person has are. A person’s
opinion and thinking are strongly influenced by the views and activities
of their social environment. This ideology, in turn, is used by companies
to identify the potential customers/buyers in the near future. This is
done by analyzing the network of existing customers and identifying
people who have the same preferences, characteristics, etc. This
correlation in the characteristics of the two people forms the basis for
a friendship relationship between them. This concept of link analysis
and prediction is not only useful in product recommendation, but also
in various areas of network science. Link prediction in network science
is an important research area to understand the growth and evolution
of the network. The idea of link prediction [3], [4] and analysis is of
great importance in community detection, influence analysis, anomaly

 Special Issue on AI-driven Algorithms and Applications in the Dynamic and Evolving Environments

- 39 -

detection, recommendation, etc. [5] where the available information
plays an important role in identifying the linking patterns. Further,
link prediction has a substantial role in the study of protein-protein
interaction patterns and prediction of the linkage between the
unconnected protein molecules [6]. Similarly, Marcus et al. [7] have
used the link prediction to study the time-evolving criminal network.
Likewise, there are many applications and related areas where link
prediction has played a significant role. Although researchers have
proposed various link prediction models and methods, still there is a
lot of scope for improvement. With the advancements in deep learning
for graphs, the task of link prediction has gained increased attention.
This is because deep learning techniques for graphs provide highly
accurate predictions over the limited training data.

In this paper, we present the task of link prediction using a Graph
Convolutional Network (GCN). The key to this idea lies in the selection
of the training pool based on network centrality. This idea is explored
in detail in section 4 of the paper. As a result, the link prediction
task has higher accuracy given a limited training dataset, since the
aggregation of the neighborhood improves due to the selection of
edges based on their importance. Therefore, the contributions of the
manuscript can be highlighted as follows:

• We proposed an efficient GCN-based link prediction technique
where the links of the training set are selected based on edge
betweenness centrality.

• The utilized justification of edge betweenness centrality is based
on the selection of the training set for GCN.

• Detailed comparison of the results obtained with the current state
of the art methods for link prediction.

The flow of the paper is organized as follows: Section I gives a brief
introduction to link prediction, its applicability, and the contribution
of the manuscript. Section II gives an overview of the state of the art in
link prediction methods. Also, Graph Convolutional Networks (GCN)
and their applicability to the task of link prediction are discussed in
this section. Section III discusses the proposed method, its correctness
and modification of the conventional GCN-based link prediction.
The section also addresses the importance of network centrality
to the link prediction task. Section IV highlights the experimental
setup, description of the considered datasets and explanation of the
proposed model. Section V discusses the results obtained with the
proposed model. In addition, the results are compared with other
state-of-the-art implementations over the datasets. Finally, Section
VI summarizes the results of the study and highlights some future
directions to be further explored.

II. Literature Survey

This section gives a brief literature review of the state of the art,
highlighting link prediction and Graph Convolutional Networks. It
also discusses the latest graph deep learning based architectures and
frameworks to tackle the task of link prediction. The section focuses
on the need and scope of deep learning techniques for link prediction.

A. Link Prediction
The task of link prediction can be defined as predicting whether or

not two nodes will form a link in the future.

So, given a graph, if two nodes are not connected at time t, what is
the probability that they will be connected at time (t + 1)? Taking this
idea further, there may be many unconnected nodes in the graph at a
given time. So the task is to correctly predict the possible connections
between nodes at a given time in the network.

To formulate this more formally, consider a graph G(V, E) defined
as follows:

V: Set of vertices or nodes in the graph such that

V = {v1, v2, … vn} ∀ n ≥ 1
E: Set of edges or links as E = {e1, e2, … em} ∀ m ≥ 1
This is the graphical structure at time t0. At some time t1 > t0 the

graphical structure evolves as G(V, E') suchthat E' = {e1, e2, … ek} ∀ m ≥ 1
and k ≥ m. Our goal is to predict the edge set E'' for the graph G
with the same number of nodes and an increased number of edges
as a result of linkages between the disconnected nodes of the graph
based on the information at time t0 of the graph. This edge set should
approximate the actual edge set E'.

Fig. 1 shows a graphical network in which the dashed edges
represent the possible connections between the unconnected nodes at
a given time in the near future. An interesting fact about the creation
of connections is that each group of nodes tries to complete its Triadic
closure [8]. According to Granovetter’s theory of Strength of Weak Ties
[9], if there is a connection between nodes A-B and A-C, then there
is a strong tendency for linkage between B-C. The statement is about
the triadic closure property for graphical networks. As an extension
to this, there are many node groups in the network in which a pair
of nodes attempts to close triads. The links between such pairs of
nodes have a high probability of appearing in the future. This is one
of the main ideas behind link prediction. Another idea for predicting
a link between pairs of nodes is based on the different degree of
expansion of the network inside and outside the group. According
to Bi et al. [10], the network expansion inside the community is
high. The nodes outside the community have fewer linkages, or
very few nodes are connected. Apart from these, there are several
other concepts for building networks such as stochastic block model
[11], stochastic block model with Bayesian context, and stochastic
block model with spectral clustering [12], which is the basis for link
establishment between nodes. Another class of concepts are measures
of proximity of nodes such as common neighbors, Jaccard coefficient
[13], Adamic/Adar [14], Preferential Attachment Model [15] etc.,
based on which link establishment between nodes can be expected.
These are the conventional approaches to link prediction that have
evolved over time. Various improvements to these general ideas have
been developed to achieve better and more efficient results. However,
the increasing size of networks, aggregation of features in the form of
node attributes and information, dynamic evolution of the network,
and many other factors pose challenges to the computational ease
and predictive ability of the methods. Machine learning/deep
learning based approaches to the problem of link prediction are
therefore attracting increasing attention. Combining these general
ideas with artificial intelligence (AI) and machine learning (ML)
based approaches has proven to be successful. The results obtained
are very accurate. The remainder of the discussion in this section
therefore focuses on the current state of the art in deep learning-
based approaches to link prediction over the graph.

?

?
?

?

A

B

C D

E

Fig. 1. Network as Graph with possible edges or links between the nodes.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 40 -

B. Graph Convolutional Networks (GCN)
Graph Convolutional Networks (GCNs) have emerged in recent

years as powerful machine learning methods for graph processing
[16]. The basic idea behind the operation of convolutional networks is
neighborhood aggregation, where the features of each node play a crucial
role in decision making. Unlike an image, the structure of the graph is
irregular and cannot be mapped to a fixed grid (see Fig. 2). Therefore,
the structure of the graph also plays an important role. For this reason,
the conventional Convolutional Neural Network (CNN) based approach
cannot be used for graph structures. A GCN uses both the network
structure and the features of the neighboring node to evaluate the folded
value over the considered node. This additional information about
the context of the node in the form of the network structure plays an
important role in the prediction and classification tasks.

Fig. 2. Image structure v.s. graph structure [17].

The task of modeling a Graph Convolutional Network (GCN) for
a graph is solved by two mathematical approaches: Spectral Graph
Theory and Spatial Graph Theory. Spectral Graph Theory requires a
Fourier transform based computation of translation in the frequency
domain to create a graph Laplacian [17]. Since this requires a detailed
mathematical explanation, we will only explain the main steps here.
At a high level, the spectral graph convolution in the Fourier domain
is defined by applying the filter gθ to the input signal x:

 (1)

gθ: A diagonal matrix diag(θ) parameterized by θ ∈ Rn

Since the operator based on spectral graph convolution is a position
invariant of the nodes of the graph, the graph Laplacian matrix L for a
graph G of dimensions N × N is given as:

 (2)

Here A stands for Adjacency Matrix, I for Identity Matrix, and D
for Diagonal Matrix. Their product gives the aggregate sum and D−1/2

normalizes this product to suppress the effect of high degree nodes.
Moreover, L can be factorized using U, which contains eigenvectors of
L and Λ with the corresponding eigenvalues. Since L is a positive semi-
definite matrix and U is the Fourier basis, the Fourier transform over x
can be defined as follows:

 (3)

Hence the inverse is presented as:

 (4)

If F is the Fourier domain space, the graph convolution operator can
be defined as an elementwise product:

 (5)

Comparing equation (5) with equation (1), the final convolution
equation of the graph can be given as follows:

 (6)

such that:

 (7)

With gθ filled with the learning parameters , the output on layer
k can be defined as follows:

 (8)

Here, fk1−1 and fk are the number of input and output channels in
layer k, respectively, is the output channel in layer k.

However, this spectral convolution has certain limitations. First,
computing the eigenvalues of the graph matrix is a computationally
intensive task. Second, for very large graphs, the aggregation of
neighborhoods for large values of k becomes computationally
intensive and degrades the aggregation results. To solve these
problems, only a neighborhood of a few hops should be considered
in the localization of the filtering process. Therefore, spatial graph
convolution methods have gained increasing attention. Thus, by
adding formal parameters to the equation (2) and approximating the
depth of the network to two, an embedding based on a 2-layer GCN
model can be defined as follows:

 (9)

Here K is defined as D−1/2AD−1/2. The ultimate task is to learn the
weights for the model, where C × H are the trainable weights for W(0).
Similarly, HXF are trainable weights for W(1). Here, C refers to the
dimensions of the feature vectors, 'F' refers to the dimensions of the
resulting vectors, and 'H' is the number of hidden layers. The expression
in equation (9) can be further extended depending on the hidden layers
in the network. The depth of the network is based on the intuition of
the contribution of the k path length of the neighborhood. However,
in general, graph networks do not have much impact on neighborhood
interactions beyond 2 − 3 path lengths [18]. Therefore, the results of
GCN networks at 2 − 3 level are remarkable and impressive; otherwise,
the model suffers from the overfitting condition. The final layer of this
spatial GCN model is guided by a softmax function to make predictions.
The cross-entropy loss function is considered for training the model:

 (10)

Here YI is the set of values with their respective labels. The
hyperparameters of the model are set to optimize this loss metric,
including the learning rate, epochs, layer sizes, etc. A detailed
discussion of these parameters can be found in section V of the paper.
Further improvements to the model, such as changing the aggregation
function, using weighting preferences to cluster the neighborhood,
etc., provide a path to advanced versions of GCN such as Graph
Attention Model, GraphSage, etc. In the following subsection, we
discuss the state of the art regarding the role of GCN/GNN in efficient
link prediction execution.

C. Graph Neural Network Based Approaches to Link Prediction
Since the last decade, the world has been experiencing a boom in

the research area of graphical neural networks. GNN is a special kind
of neural networks characterized by the structures of graphs. Semi-
supervised link prediction using label propagation was first introduced
by Kashima et al. [19]. This model of link prediction is applicable to
multirelational domains and uses auxiliary information such as node
similarity. A new fast and scalable algorithm for semi-supervised link
prediction was proposed by Raymond et al. [20] for both static and
dynamic graphs.

 Special Issue on AI-driven Algorithms and Applications in the Dynamic and Evolving Environments

- 41 -

Menon et al. [21] proposed a model that predicts links through
Matrix factorization. This model gains knowledge of latent features
from the topological structure of the graph. Moreover, the author
considered the problem of class imbalance during optimization with
stochastic gradient descent and scales. Gao et al. [22] addressed the
problem of predicting temporal link prediction. This model integrates
the information of graph proximity, global network structure, and
node content. The prediction approach called SLiPT (self-training
based link prediction using a temporal network) shows better
prediction accuracy and was proposed by Zeng et al. [23]. Berton
et al. [24] dealt with graph construction in supervised and semi-
supervised classification.

To improve performance, Kipf et al. [25] proposed VGAE
(Variational Graph Auto-Encoder). This approach uses latent variables
and gives better results in predicting links in citation networks.
Another approach by Yang et al. [26] defines a new proximity matrix
and formulates BANE (Binarized Attributed Network Embedding). In
contrast to these methods, Tran et al. [27] focused on a simple but
effective architecture. This architecture, named MTGAE (Multi-Task
Graph Auto-Encoder), works for unsupervised link prediction and
semi-supervised node classification. In the same year, Hisano et al.
[28] worked on performance improvement using a simple discrete-
time graph embedding approach for link prediction for both temporal
cross-sectional network structures. Pan et al. [29] defines (ARGE and
ARVGE) adversarial graph embedding framework and demonstrates
the efficiency of the algorithm through experiments.

To reduce the information loss, Di et al. [30] recently presented
an approach to expand the normal neighborhood when aggregating
GNNs. This approach is suitable for graph link prediction,
supervised and semi-supervised graph classification, and graph edge
classification. Recently, Zhang et al. [31] have advanced research
in link prediction using the SegNMF method. This method claims
to provide better accuracy in temporal link prediction than the
previously developed method.

All the state of art methods discussed above take into account the
spatial embeddings of the node into account where the nodes are
selected randomly for training the model. Further, the test data taken
for predicting the accuracy of the model for link prediction task is very
small (5 - 10%). Further few recent state of art models proposed for link
prediction task in [27], [32], [33] are designed for solving problems of
specific domain only. The complexity of these models tend to increase
with the increase in the size of the network. So, the models do not
guarantee to generalize well for networks of different nature, size
and domain. Thus, the applicability of GNNs for this task on various
problems in different domains can still be improved and extended. In
summary, following gaps are identified and these gaps motivate us to
propose the solution:

• There are no/limited approaches for predicting links between
nodes in a graph with limited information available for training
the network [34], [35].

• There is no centrality-based approach that can improve the
prediction capability of GCN model to identify connections
between nodes.

• There is a need for a generalized model which is dependent upon
the structural aspects of the underlying network and independent
of the application [27], [32],[33].

III. Bet-GCN Approach to Link Prediction

This section discusses how edge betweenness centrality measure in
combination with Graph Convolutional Network (GCN) enhances the
task of predicting links between unconnected nodes of the network.

The content of this section has been divided into the following
subsections:

• Basics of edge betweenness centrality.

• Link prediction as a binary classification problem.

• Justification of edge betweenness based training set selection.

A. Basics of Edge Betweenness Centrality
The concept of network was proposed by Roethlisberger et al.

[36]. This concept defines the importance of a node based on various
attributes such as the degree of a node, closeness with the nodes in its
neighborhood, the number of nodes for which it is central, etc., i.e.,
it identifies the potential of the underlying node in terms of guiding
and channeling the flow of information in the network. Based on
this, there can be several centrality measures, e.g., degree centrality,
closeness centrality, PageRank and hits centrality and betweenness
centrality, etc. In the paper by Saxena and Jadeja [37], all these
centrality measures are discussed in detail. Moreover, we investigate
the suitability of the centrality measures to find out important nodes
depending on the problem or task. In this section, we restrict ourselves
to the betweenness centrality measure. The interconnectedness
centrality measure is a centrality measure based on the shortest path.
Thus, the importance of a node is recognized based on the maximum
number of shortest paths in which it participates. This path-based
measure, proposed by Freeman et al. [38] has two conjectures: i) node
betweenness ii) edge betweenness. However, one is the implication of the
other. The notion of edge betweenness centrality suggests that an edge
is involved in the maximum number of shortest paths. Looking at the
Fig. 3, the edge AB has the highest betweenness centrality compared
to other edges in the network. This is because the edge AB is part of
most shortest paths between any pair of vertices of the given graph.
Consider two sets: set X = {A, F, G, H} and set Y = {B, C, E}. All shortest
paths from any vertex of set X to any vertex of set Y use edge AB.

B

C E

A

F

G
H

Edge with high
betweenness

centrality

Fig. 3. Graphical network with edge AB as high betweenness centrality edge.

Formally, to identify the betweenness centrality of node x, we have:

 (11)

Here σyz is the total number of shortest paths leading from y to
z, and σyz(x) refers to the number of these paths that pass through
x. Thus, the more shortest paths emanating from node x, the more
central node x is. Edges that have one of these nodes as an endpoint
have high edge betweenness centrality. Edges with high betweenness
centrality are especially important in a large network. Endpoint nodes
of an edge with high betweenness centrality are more reachable in

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 42 -

the network with shorter path lengths. Thus, this property allows
us to take advantage to increase node coverage. We use this concept
to improve the performance of the GCN. An in-depth analysis and
execution of this concept is presented in Section IV of the paper. In the
following subsection, we discuss the approach to link prediction in a
given network as a binary classification problem.

B. Link Prediction as a Binary Classification Problem
The task of link prediction is to determine whether or not a pair

of nodes will have a link between them in the future. Consider
a graph G(V, E) at a given time t with V as a set of nodes and E
as a set of edges, as shown in Fig. 4a. The graph shows various
possible links between pairs of nodes that can occur at time t + δt
(represented by dotted lines). At time t + δt, as shown in Fig. 4b,
some expected connections appear (shown by bold edges in the
graph), while some of them do not. Graph Convolution Networks
(GCN) captures the properties of the nodes in addition to the
topological and structural information of the network. This helps in
finding close correlations and probable neighbors of a node based
on their behavioral similarities in the network. However, to do this,
we must first model the problem in a structure of < feature, target >
pairs to apply a graph-based machine learning model.

(a) Graphical network at time t

(b) Graphical network at time t + δt

A

B

C

D

F

E

A

B

C

D

F

E

Fig. 4. Evolution of Graph G from time t to time t + δt.

Each node has a feature set (vector) associated with it. It consists
of a collection of information about the node, its properties, etc., that
define and identify that node in the network. An edge has two nodes
as its endpoint, so the final feature set in this case is a combination of
the feature vectors of the two nodes that form the edge. If we consider
the edge as (u, v), where u and v are the nodes under consideration,
the final feature vector is as follows:

feature vector = feature vector(u) ⋃ feature vector(v)
Further, depending upon whether the two nodes u and v are

connected or not, target (label) can be defined as:

target = 1 , if (u, v) is connected

 = 0 , otherwise

Thus, by separating the connected and disconnected nodes with the
labels 1 and 0, respectively, we can create a pair (see Table I). It is now
possible to process the data with a machine learning model to make
predictions. For the given graph G, we can select a pool of edges for
training the GCN model. Here, each edge is accompanied by its label.
Also, the GCN model uses the node feature information to train the

model. The edges of the test dataset can be randomly selected to test
the accuracy of the model for the binary classification problem, i.e.,
predict 1 for each connected pair and 0 for each unconnected pair.

TABLE I. Graph Edges With Labels

Connected Edge Label Unconnected Edge Label
A-B 1 B-C 0
A-C 1 C-E 0
B-D 1 C-D 0
B-F 1 D-F 0
E-F 1 E-D 0

For real networks, the model is created by randomly hiding some
edges from the network. The remaining network is then used to train
the GCN. The hidden edges are then used to test the adequacy of the
model. This simulative technique is as good as analyzing the temporal
transition of the graph because: i) we do not have timestamp snapshots
of the real networks at persistent intervals and ii) the network
changes its structure gradually. Thus, the network is not significantly
perturbed. For these two reasons, we consider only a single real graph
as input. In the following subsection, we discuss and analyze how
edge betweenness centrality based training set selection improves the
efficiency of the GCN model for link prediction.

C. Justification of Edge Betweenness Centrality Based Training
Set Selection

So far, we have discussed the edge betweenness centrality measure
and the strategy for solving the link prediction. In this subsection, we
will analyze the basis of our proposal:

Training set selection based on edge betweenness centrality
improves GCN training efficiency. For this purpose, let us consider
a graph G(V, E) for which holds:

V: Set of vertices or nodes defined as {v1, v2, ..., vn} ∈ V
E: Set of edges or links defined as {e1, e2, ..., ek} ∈ E such that n, k > 1
Let X be the feature matrix defined as:

 (12)

In general, we have n > m (size of training data (number of nodes)
> length of a feature vector) to avoid the condition of overfitting
during the training process.

Now a set of edges is chosen from the set E to generate a test set
t1 containing t1. The t1 is a subset of E containing all connected pairs
of nodes. For all these edges (or node pairs), the class label set l1 is
defined as 1. Now, a few random unconnected node pairs are selected
from the set Complement(E) or to generate another test set t2. The
corresponding label set for the node pairs of the set t2 is defined as l2
with label value 0. Combining the test sets t1 and t2, the final test set t
can be defined as:

 (13)

Corresponding to it, the label set L for this test set t can be defined as:

 (14)

Deleting edges from the graph G creates a graph G', where the
edge set of G' is defined as E' = E − t. From this residual graph, the
training set is constructed in the same way as the test set. Based on
this training set, the predicted set of labels for the edges selected from
the test set t is obtained as L'. Thus, the objective of the problem can
be formulated as follows:

(1) To obtain predicted label set L', we use the GCN model for the
edges in test set t, which approximates the label set L i. e., Min.
(L' - L) ∀ edges in t.

 Special Issue on AI-driven Algorithms and Applications in the Dynamic and Evolving Environments

- 43 -

(2) With respect to identification of such a subset, the following
observations are made:

• The subset of edges (or node pairs) selected based on the
betweenness centrality measure improves the training
efficiency of the model.

• The probability of random selection of such an edge set to
produce a predicted label set L' is nearly zero.

(3) Let us try to infer the validity of the first statement.

• E'' contains subset of edges chosen randomly. Let this subset
be named as E1.

• E'' contains top d edges based on the betweenness centrality
score. Let this subset be named as E2.

Further, it is assumed that Cardinality(E1) and Cardinality(E2) are
the same. Let us consider the first edge from each subset. Let a be the
edge chosen from E1 and b be the edge chosen E2. Let σb represent
the edge betweenness centrality of node b and σa refer to the edge
betweenness centrality of node a. Thus, it is obvious that:

 (15)

Further, we also assumed that the edge sets E1 and E2 are disjoint,
i.e., no edges are common to the two sets. Then, extending the above
expression for 1 ≤ i ≤ l:

 (16)

Equation (16) holds for a fixed path length p, for the paths covered
by the edges in E1 and E2. As can be seen from the description of GCN
in Section II, it is well known that the neighborhood contribution
beyond path length 2 or 3 is not beneficial because of the vanishing
gradient problem over the graph Laplacian. So the value of p is ∈ {1, 2}.
As per Section III, edges with high betweenness centrality allow for
greater network coverage with shorter path length. This means that
the node coverage (number of reachable nodes) from the nodes of the
set E2 (say ϕ) will be larger than the number of reachable nodes from
the nodes of the set E1 (say α), i.e.,:

 (17)

For a GCN model, training efficiency (η) depends on feature
availability (f.a.), i.e., the more features available to the model for
learning, the better the training of the model. Feature availability
increases when the number of nodes reachable from a fixed set of
nodes is high, since each node is associated with a feature vector X.
Thus, feature availability again depends on node coverage or node
reachability (κ). Based on all these discussions, a relationship can be
established that looks like the following:

 (18)

Considering equations (17) and (18) synchronously, the set E2
will cover more neighborhood nodes, which means greater feature
availability since each node is associated with a feature vector X. This
increases the training efficiency of the model compared to selecting
the training set based on E2. To test this observation empirically,
let us consider a small example according to Fig. 5. Consider
E1 = {(A, F), (B, C)} as the edge set selected for training. For a fixed
path length 2, the node coverage of the set is E1:

 (19)

Now consider another edge set E2 = {(A, B), (E, D)} where the two
edges with high betweenness centrality value are selected for training.
For the same path length 2, t,he node coverage is the same for this
training set:

 (20)

Since E2 has a larger number of nodes in its neighborhood, the
availability of features will also be larger. And finally, it can be
confirmed that the training efficiency of the model improves. Thus,
it has been successfully analyzed that the selection of the training set
based on the edge betweenness centrality improves the learning of the
GCN-based training model for link prediction. On this basis, we can say
that a mapping L' can be obtained which is approximately equal to L.

In the proposed method, the training is edge based, not node based.
Hence, the criteria of edge set selection based on the betweenness
centrality of edges makes sense. On the other hand, edge selection
based on nodes having high degrees is not feasible. The reason for this
is a high degree node has many edges associated with it. Each edge
associated with the node will have equal weightage. Hence, all the edges
incident on the high degree vertex will be selected for training. In such
a situation, the model may miss out a significant portion of the network
required for training since only edges which are incident to the high
degree vertices will be selected. Clearly, this selection fails to capture
the crucial structural properties of the of the network. Also, this degree-
based selection will not allow the training set to capture diverse feature
vectors which is essential for efficient training of the model.

On the other hand, consider the betweenness centrality-based
approach for edge selection as discussed in subsection B of section
III. This high betweenness edge centrality based selection will lead
to generation of computation graphs with more number of nodes (in
average) during training. Since, feature set aggregation is directly
proportional to number of nodes in the underlying computational
graph, a better training of the GCN model is guaranteed using
proposed approach. This in turn enhances the prediction capability
of the model.

Next, we need to ensure that the probability of randomly selecting
the edge set E2 is close to zero. Let us consider the total number of
edges in the network as k, such that k > 1. The number of ways to
choose a subset of length w (subset of w edges) is given as kCw. Our
goal is to find the probability of choosing the subset E2 from these kCw
subsets. Thus, let us consider an event Q as: choosing the subset E2 of
the set E, where E is the set of all edges of the graph such that |E| = k.
The probability of this event will be:

 (21)

Let us assume that 45% of the edges are used for training. Thus, we
have w = (9/20)k. Putting this value of w into the equation (21), we get,

 (22)

In general, the number of edges for real network graphs is on
the order of more than 104. Plugging the value of k as 104 into the
expression, we get,

 (23)

Node coverage when selected edge
set for training is {(A, F), (B, C)}

Node coverage when selected edge
set for training is {(A, B), (E, D)}

A

B

C
E

D

F

G

H

I

J M L

K

A

B

C
E

D

F

G

H

I

J M L

K

A

B

C
E

D

F

G

H

Fig. 5. Node coverage of graph G(V,E) based on training edge selection.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 44 -

Finally, we can also successfully show that the probability of
randomly choosing the edge set E2 is close to zero. Thus, the section
successfully verifies the two arguments: i) selecting the training set
based on edge centrality improves the performance of the model. ii) the
probability of randomly selecting an ordered set based on the centrality
score is close to zero. In the next section, we detail the proposed method
and its design along with the description of the dataset.

IV. Dataset and Model Description

In this section we discuss mainly about the datasets, the proposed
model formulation, and aspects related to its implementation.

A. Dataset Description
To assess the performance of the proposed model, three famous

state of the art datasets have been chosen: CORA, Citeseer and PubMed.
The datasets have been summarized in Table II.

TABLE II. Dataset Description

Dataset Nodes Edges Classes Features Type

Cora [25] 2,708 5,429 7 1,433
Citation
Network

Citeseer [25] 3,312 4,732 6 3,703
Citation
Network

PubMed [25] 19,717 44,338 3 500
Citation
Network

Amazon [39] 13,752 491,722 10 767
Amazon
Product
Network

WikiCS [40] 11,701 216,123 10 300
Wikipedia
Network

The first three datasets considered are essentially citation networks
where node stands for papers and edge stands for the citation links.
The CORA citation network consists of 2708 scientific publications
classified into one of the following seven classes: neural networks,
rule learning, reinforcement learning, probabilistic methods, theory,
genetic algorithms, and case-based. For each node, there is a feature
word vector of length 1433. Thus, the size of the feature matrix is
2708 × 1433. The Citeseer dataset consists of 3312 scientific papers
classified into six classes: Agents, AI, DB, IR, ML, and HCI. The feature
matrix has order 3312 × 3703. The PubMed citation network consists
of 19,717 scientific publications with the following classification
classes: 1, 2, 3 i.e., diabetes type-1, 2 and 3. The feature vector for
each node consists of a TF/IDF vector with 500 unique words. The
accuracy of the proposed model with GCN-based training was
tested using these three benchmark datasets. The consistency of the
results obtained with these networks highlights the effectiveness
of the proposed solution. To prove the applicability of the proposed
solution to other types of networks, two other graphical networks are
considered. Amazon Computer [39] is a segment of the Amazon co-
purchase graph, which is a network collected by crawling the Amazon
website and contains product metadata and rating information about
various products. The nodes in the graph represent items, while the
edges indicate that two or more goods are usually purchased together.
The goal is to assign items to the appropriate product categories by
using product ratings as node attributes. WikiCS [40] is a novel dataset
derived from Wikipedia to benchmark Graph Neural Networks. The
dataset contains 11701 nodes corresponding to computer science
articles, with edges based on hyperlinks, and 10 classes representing
different branches of the field.

It is common for real-life applications with graphs to have limited
training data because labels will often be sparse, despite having vast
quantities of data. This is true for all the datasets considered in this

manuscript. Hence, they are limited training datasets. In the context
of link prediction, labels are edge labels (0 for not edge and 1 for an
edge). And for training, a very small fraction of labels are known. For
example, for Cora, labels of only 5429 edges are known (label 1) out
of 3665278 possible edges. Labels of the remaining 3659849 edges are
unknown. Hence, the Cora dataset is a limited training dataset. The
same is true for other datasets too as shown in Table III.

TABLE III. Dataset With Actual V/s Possible Eddges in the Graphical
Networks

Dataset Nodes Total possible
edges

Total edges in
actual graph

Cora 2708 3665278 5429

Citeseer 3312 5483016 4732

PubMed 19717 194370186 44338

Amazon 13752 94551876 491722

WikiCS 11701 68450850 216123

Following this, the next subsection explains the implementation
design and operation of the proposed model.

B. Proposed Framework and Experimental Setup
To construct a Graph Convolution Network based training model

architecture, Stellar Graph library [41] was used. In addition, the graph
library NetworkX [42] is used to capture the structural information of
the network. The input data set for the GCN model consists of an edge
list and a feature matrix along with labels.

The relationship that exists between the data points (nodes) of the
graph is represented by the links between them, defined by the edge
list. To prepare the test dataset, an Edge Splitter () function from the
Stellar Graph library was used. This function randomly takes some
pairs of nodes from the original graph G. For each connected pair, the
associated label is 1. Also, some unrelated pairs are randomly selected
and these pairs are assigned the label 0. Thus, we obtain the final test
set tuple t for which the label set L is defined with labels 0 and 1 for
each unconnected and connected pair of nodes, respectively.

Let us now consider the training dataset. After removing the edges
in the test set t from the graph G, the training dataset is selected
from the residual graph G'. The training dataset contains the top k
edges with high values of betweenness centrality computed using
the NetworkX graph library (nx.edge_betweenness_centrality()). This
part of the training dataset is denoted as tr1 with the corresponding
label set as trl1 with all label values as 1. Furthermore, few edges are
sampled using the edgesplitter() function to include some unconnected
pairs. Let this part of the training dataset as tr2 with the label set trl2.
Thus we have the final training dataset defined as:

 (24)

with training label set defined as:

 (25)

Fig. 6 explains the steps to generate a training dataset (55%) and a
test dataset (upto 45%). The input graph dataset consists of edge list
information along with node feature vectors. Note that each node
has a feature vector associated with it. To create the test dataset, edge
splitter function randomly pools the edges, marked as label ‘1’, and
an equal number of node pairs amongst which no direct edge exists,
marked as label ‘0’. A similar procedure is adopted by the function to
create the train dataset. However, in addition to the edges selected, top
‘k’ betweenness centrality metric-based edges are also appended in
the training dataset. Finally, the train and test datasets are supplied to
the GCN model. Since the connectivity of the graph must be ensured,

 Special Issue on AI-driven Algorithms and Applications in the Dynamic and Evolving Environments

- 45 -

it is not possible to extract a very high percentage of edges from the
graph for the creation of the test dataset. Therefore, the test dataset
here is a combination of validation test dataset.

Graph
Convolutional

Neural Network
(GCN)

Train Data Set with edge
labels (0 or 1)

Test Data Set with edge
labels (0 or 1)

+

+

Centrality Dataset
ranked based on

betweenness score

Edge betweenness
centrality()

Edge List
of the network

Feature Matrix (n x m)

Node 1

Node 2

Node n

...........

Feature 1

Feature 1

Feature 1

...........

Feature 2

Feature 2

Feature 2

...........

Feature m

Feature m

Feature m

......................

Label

Label

Label

...........

Edge Spli�er()

Fig. 6. Proposed Framework: Feeding train and test set to GCN.

Using the node feature matrix defined for each node for the nodes
involved according to the training set selection, the model is fed with
the input. The function FullBatchnode Generator() defines the neural
network (NN) for the graphical network. The defined neural network
has three layers: the input layer, the hidden layer, and the output layer.
The number of hidden layers is best determined from the experimental
simulations. However, in the case of GCNs, the number of hidden
layers corresponds to the diameter of the graph. This refers to the
number of neighbors that are a path length k away from the node
under consideration. The value of k is generally kept very low because
the vanishing gradient problem affects the performance of the model.
Other hyperparameters of the model such as kernelsize, learningrate,
epochs, activationfunction, etc. are chosen to minimize the error. The
hidden layers have a Rectified Linear Unit (ReLU) activation function
with a hidden layer size on the order of 4, 096 × 4, 096. However, the
size of the kernel varies depending on the size of the network. Other
parameters of the network such as learning rate is set to 0.0001 with
Adam Optimizer and Cross Entropy as loss functions. The output layer
of the model uses a Softmax function to predict the presence of an edge
between a pair of edges over the test dataset. Fig. 7 explains the GCN-
based training and classification process.

Training Set

Test Set

Classification
Accuracy

So�max
Function

Predicted
Labels

Binary
Cross

Entropy
Loss

function
Learning rate (∝)
Activation Function
(ReLu)
Dropout rate (𝜃𝜃)

Training Parameters:

Input Layer Output LayerHidden Layer

ReLu Activation
Function
∝= 0.0001
𝜃𝜃 = 0.00001

ReLu Activation
Function
∝= 0.0001
𝜃𝜃 = 0.00001

ReLu Activation
Function
∝= 0.0001
𝜃𝜃 = 0.00001

Fig. 7. GCN Based Training of the model.

Fig. 8 sums up the entire process in a block diagram. The algorithmic
steps in training of Bet-GCN model are as shown in algorithm Bet-
GCN. The input to the model is an input graph dataset G(V, E) where
V represents set of vertices and E represent set of edges. Each node in
the graph has feature vector associated with it. Let A be the adjacency
matrix for the graph and X be the feature matrix (as mentioned in

equation 12). The algorithm will yield a trained model m which
can predict whether an edge exists (edge label 0) or not (edge label
1) between two given pair of nodes (binary classification problem).
In step 1, edge splitter function randomly pools a set of edges from
graph G to prepare training dataset (say Tr). The training set consist
of edges which exist in the graph labelled as 1 and edges which do not
exist in the graph labelled as 0. In step 2, from the remaining graph
(say G'), edge splitter function constructs the test dataset (say Te) in a
similar manner. Step 3 and Step 4 identifies the top k edges in order
of edge betweenness centrality. The top k edges identified in step 4 are
added in step 5 to Tr to generate the final training dataset. In step
6, the GCN model is fed with Tr, G and the model hyperparameters
like learning rate, layer size, ReLu activation function. The input layer
is fed with an aggregation function defined as A.X. The hidden layer
further performs feature aggregation using a layer size 4, 096 × 4, 096
at a learning rate 0.0001. The ReLu activation function is applied to
obtain the convoluted vector (neighborhood aggregation) matrix at
each layer. At each layer gradients are determined and based upon the
error function gradients, using backpropagation algorithm weights are
adjusted. This whole process iterates till the error gradient functions
at each layer evaluates out to be zero. In this condition, we obtained a
finalized weight vector matrix at output layer and the trained model m.
Finally, in step 7, the trained model is tested over Te using SoftMax()
classification function to generate the classification report.

Trained Model

GCN training model

Input layer (training vectors)

Edge list
of graph

G

Hidden layers
(Feature aggregation) Edges

with edge
label ‘0’

Edges
with edge
label ‘1’

So�Max
function

Output layer
(Finalized trained weight vectors)

Edge
betweenness

centrality based
edge selection

Edge
spli�er

function

Test
edge set

Train
edge set

Input feature
vectors per node

Fig. 8. Pictorial block diagram for Bet-GCN model.

V. Results and Analysis

This section mainly focuses on the experimental results and
performance of the proposed Bet-GCN model. It highlights the
significant results of the model in three benchmark datasets, namely
Cora, Citeseer and PubMed, and the comparative analysis with the
respective state-of-the-art methods. The results of our proposed model
Bet-GCN (Edge betweenness centrality with Graph convolutional
networks) are summarized in Table IV. The performance of the model
improves considering that the model performs well on a large test data
set. All of the state-of-the-art methods discussed work over 5 10% test
data. The Bet-GCN based results are analyzed over upto 45% test data
with at least 30% unseen node pairs in the test dataset.

TABLE IV. Citation Networks Accuracy

Method Cora Citeseer PubMed Test
Dataset

VGAE [25] 0.920 0.914 0.965 -
MTGAE [27] 0.946 0.949 0.944 5-10%

GLP [32] 0.9455 0.8612 - 5-55%
GCN [33] 0.9050 0.8701 0.9694 -
GAT [33] 0.8979 0.8731 0.9436 -

EdgeConv [33] 0.8528 0.8294 0.8665 -
EdgeConvNorm [33] 0.9178 0.8754 0.8991 -
Bet-GCN(proposed) 0.9508 0.9507 0.953 upto 45%

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 46 -

As summarized in Table IV, most models consider methods
such as random walks (where only local node similarity is used)
or maximum likelihood estimation methods for link prediction. It
can be observed that none of these methods materialise the node
features, the structure of the underlying network, or the importance
of the edges completely. In comparison, GCN, which considers
the structure of the dataset as a graph, significantly improves link
prediction performance. Traditional Graph Convolutional Networks
(GCN) directly convolve the structure of the connected graph as a
filter to perform neighbourhood mixing. Graph Attention Networks
(GAT), on the other hand, apply a shared linear transformation to
each node, followed by a computation of attention coefficients using
a joint attention mechanism. The performance of link prediction with
these two models is impressive and promising. A more recent state
of the art, the Variational Graph Auto-Encoder (VGAE), uses a graph
convolutional network as an encoder that maps the node features
into a latent representation, followed by a decoder that generates
conditional probabilities of the adjacency matrix [25]. While Multi-
Task Graph Autoencoders (MTGAE [27]) learns a joint representation
of latent embeddings from a local graph and explicit node features.
These two methods are significantly better than the traditional GCN
model due to the inclusion of autoencoders. In addition, GLP [32], a
gravitational link based unsupervised approach is used. Here, the main
idea is to decompose the graph into a local structure (by extracting
subgroups) and a global structure (by detecting communities). The
method showed promising results on large complex networks, but
is highly dependent on the network structure. Two recent link
prediction methods based on Graph Convolution Learning were
also proposed: EdgeConv and EdgeConvNorm [33]. The methods
performed well on the three networks, as the over-smoothing of Edge
Convnorm helps to better learn link prediction based on the node and
its neighborhood representation.

Our proposed model (Bet-GCN) is a modification of the traditional
GCN model, as it uses edges based on their betweenness centrality
in the graph along with node features. Our proposed prediction
model achieves an accuracy of 95.08% in Cora, 95.07% in Citeseer,
and 95.32%in PubMed. These results are competitive with the current
state-of-the-art models, which can be observed in Table IV.

The model extrapolates the structure of the underlying graph
for sampling positive edges when training the model for prediction.
BET-GCN architectural hyperparameters were fine-tuned for the
Cora, Citeseer, and PubMed networks. A 0.70 and 0.35 fraction of
the original network is randomly sampled for positive and negative
edges as training and test edges, respectively. The positively sampled
training edges are replaced with the edges sorted based on the edge
betweenness centrality score. A two-layer GCN model is used, where
4, 096 is the dimension of the node features in each hidden layer.
The Rectified Linear Unit (ReLU) activation function is used. For the
final link classification, a pair of node embeddings from the GCN
model is used and the binary operator inner product (ip) is applied.
This produces the corresponding link embedding, which is passed
through a dense layer. A learning rate of 0.0001 for Adam Optimizer
is used to train the model. Our model is trained with 500 epochs.
These hyperparameter settings are the same for Cora and Citeseer
citation networks. The PubMed dataset consists of 10x more edges and
therefore has different hyperparameter values. The training accuracy
and loss curves of the model for the three datasets are shown in Fig. 9,
Fig. 10, and Fig. 11, respectively. Based on the obtained results, it can
be confirmed that the proposed method performs best for the three
collaboration networks.

Area Under the Curve (AUC) curves of the model obtained for the
three datasets are shown in Fig. 12, Fig. 13 and Fig. 16. The AUC curves
show the ability of the classifier to distinguish correctly between
positive and negative classes. The high AUC value for all three datasets
CORA (94.02%), Citeseer (94.24%), and PubMed (97.96%) indicates the
consistency of the model in terms of performance.

The hyperparameters’ settings depend upon the size and structure
of the network for training GCN models. The basic parameter settings’
have been considered based upon Thomas N Kipf and Max Welling
[1] paper. The parameters that are varied are layer size, learning rate
and iterations due to varied network structures and sizes. In general,
ReLu activation function has been used for 4, 096 × 4, 096 layer size

1.0

0.9

0.8

0.7

0.6

0.5

0

0 100 200 300 400 500

1

2

3

4

5

6

7

train

ac
c

lo
ss

epoch

0 100 200 300 400 500

validation

Fig. 9. CORA: Training and Loss curve.

Algorithm 1. Bet-GCN

Require: An input graph dataset G(V, E) where V represents set of
vertices and E represent set of edges

Output: The trained model, m
Step 1. Tr ← edgesplitter(G)
▷ Generating training set Tr by random selection of edges from
graph G
Step 2. Te ← edgesplitter(G)
▷ Generating test set Te by random selection of edges from graph G
Step 3. e ← edge_betweenness_centrality(G)
▷ Evaluating edge betweenness centrality of edges of graph G
Step 4. e' ← sorted(e[1:k])
▷ Selecting top k edges based on edge betweenness centrality of
edges of graph G
Step 5. Tr ← Tr ∪ e'
▷ Adding edges form step 4 to Tr
Step 6. m ← GCN(G, Tr, learningrate, layersize, ReLu)
▷ Obtaining the trained GCN model m
Step 6. classication_report ← SoftMax(m, Te)
▷ Testing the model over test set and generating classification report

 Special Issue on AI-driven Algorithms and Applications in the Dynamic and Evolving Environments

- 47 -

1.0

0.9

0.8

0.7

0.6

0.5

0.0
0 500 1000 1500 2000 2500 35003000 4000

0 500 1000 1500 2000 2500 35003000 4000

0.5

1.0

1.5

2.0

2.5

3.0

train

ac
c

lo
ss

epoch

validation

Fig. 11. PubMed: Training and Loss curve.

1.0

0.9

0.8

0.7

0.6

0.4

0 100 200 400300 500

0 100 200 400300 500

0.6

0.8

1.0

1.2

1.4

1.6

train

ac
c

lo
ss

epoch

validation

Fig. 13. AUC Curve for Citeseer network with accuracy (94.24%).

1.0

0.9

0.8

0.7

0.6

0.5

0

0 100 200 300 400 500

1

2

3

4

5

6

7

train

ac
c

lo
ss

epoch

0 100 200 300 400 500

validation

Fig. 10. Citeseer: Training and Loss curve.

1.00

0.90

0.95

0.85

0.80

0.75

0.70

0.65

0 100 200 300 400 500

0 100 200 300 400 500

0.4

0.6

0.8

1.0

1.2

train

ac
c

lo
ss

epoch

validation

Fig. 12. AUC Curve for CORA network with accuracy (94.02%).

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 48 -

of hidden layer which yield the best results. The number of iterations
is identified based upon the training accuracy curve trajectory and,
hence, the number of iterations is different for each network. The
iterations’ convergence happens when the training accuracy starts to
dip for several continuous iterations. So, further increasing the number
of iterations will not yield good results and may tend the model to
overfit. Similarly, the best results are obtained for a learning rate of
0.0001 for the three benchmark datasets into consideration (CORA,
Citeseer and PubMed). Fig. 14 shows that further reducing the learning
rate causes a drop in the performance efficiency of the model for CORA
dataset. Fig. 15 presents the trend analysis of the performance of the
model with number of epochs. At 500 epochs, keeping the learning rate
fixed at 0.0001 and hidden layer size of 4096 4096, the performance
attained by the model is optimum. Further increasing the number of
epochs for model training is not helping the cause and the performance
tends to deteriorate as the model starts overfiting. A similar analogy can
be drawn for the size of hidden layer. Further, a similar kind of analysis
can also be obtained for the two other kind of networks (Citeseer and
PubMed). Thus, it can be inferred that learning rate of 0.0001 and
hidden layer size of 4, 096 × 4, 096 is suitable for networks of different
variety and structural formation in order to have an efficient training
through Bet-GCN model. Number of epochs to attain the optimum
accuracy may differ depending on the size of the network. However,
all of these parameter settings are network dependent and vary slightly
depending on the nature of the task.

Learning Rate v/s Bet-GCN model’s Accuracy

A
cc

ur
ac

y
(%

)

Learning Rate

91

91.5

92

92.592.04

93.5 93.6

94.8
95.08

93.02

94

0.1 0.01 0.001 0.0001 0.000010.05 0.005

93

93.5

94

94.5

95

95.5

Fig. 14. CORA: Learning Rate v/s Bet-GCN accuracy curve.

Epochs v/s Bet-GCN model’s accuracy

A
cc

ur
ac

y
(%

)

Epochs

86

87

88

89

89.24

95.08 94.9

93.2 93.05

91.7

94

100 500 1500 3000 50001000 2000

90

91

92

93

94

95

96

Fig. 15. CORA: Epochs v/s Bet-GCN accuracy curve.

VGAE and GAE [25] uses a Gaussian prior distribution over the
input features to learn embeddings. However, this has not proven to
be a very good choice. MTGAE [27] gives impressive results for link
prediction, but the accuracy of the method decreases when a larger
number of edges are removed from the graph. This is because only the
contribution of the available edges is considered. GLP [32] involves a
lot of preprocessing, such as community identification, followed by
extraction of optimized subgraphs. The link prediction task is then
performed over these distributed subgraphs. The method is not suitable
for networks with large diameters. The other link prediction strategies
mentioned in the work of Gu et al. [33] are GCN-based methods where
the selection of the training set is random. Our proposed method Bet-

GCN is also a variation of GCN technique where the training set is
selected based upon the betweenness centrality score. This helps in
capturing more neighborhood contribution for the model’s training. As
a result, there is more neighborhood aggregation in the computational
graphs. This will help the model to leverage the feature-based learning
and generate more accurate embeddings. Traditional GCN approaches
use random selection and, hence, they are not able to capture features
which are betweenness centrality based. It is due to this reason that the
method performs well in comparison to the other state of art methods.

In addition, the Bet-GCN model was also tested on two different
types of networks (since all three networks mentioned above were
citation networks): Amazon Product [39] and WikiCS [40]. The
Amazon Product network was collected by crawling the Amazon
website and contains product metadata and review information for
548552 different products (Books, music CDs, DVDs, and VHS video
tapes). WikiCS [40] is a web graph of Wikipedia hyperlinks collected
in September 2011. Bet-GCN link prediction model for both datasets
perform equally well as for the citation networks. Table V lists the
accuracy and respective F1-score values for the network.

TABLE V. Accuracy and F1-score Values for Amazon Product and
WikiCS Networks

Network Accuracy F1-Score Test Dataset
Amazon Product 0.879 0.8801 upto 45%

WikiCS 0.9113 0.90 upto 45%

Fig. 17 and Fig. 18 show the training accuracy curves for both
networks using the Bet-GCN model. The results for the network
indicate that the approach is scalable with network size and applicable
to graphical networks of different domains. The results for these two
networks were evaluated with the same parameter settings used for
CORA, Citeseer, and PubMed, except for the layer size. Fig. 19 refers to
the confusion matrix for all the five graphical networks, which shows
the prediction capability of the proposed model Bet-GCN. Given the

1.0

0.9

0.8

0.7

0.6

0.5

0.35

0.40

0 1000 1500500 2000 2500 40003000 3500

0.45

0.50

0.55

0.60

0.65

0.70

train

ac
c

lo
ss

epoch

validation

Fig. 16. AUC Curve for PubMed network with accuracy (97.96%).

 Special Issue on AI-driven Algorithms and Applications in the Dynamic and Evolving Environments

- 49 -

large number of edges in the networks, the convolutional layer size
used for the hidden layer is 512 × 512. As one increase the number
of layers, the number of parameters that can be trained also increases,
and so does the execution time. This may improve the performance of
the model by a small percentage, but the tradeoff is very high.

The Betweenness centrality range for the networks in consideration
is shown in Table VI. The betweenness centrality measure denotes that
how often a particular edge (say ‘x’) gets visited among the total paths
in the network across any two nodes. This value, thus, will be in the
range 0 to 1. Also, availability of such paths passing through edge ‘x’
in comparison to the total number of paths between any two nodes in
the network will be very low. Hence, the betweenness centrality value
evaluated for each edge as per explanation in subsection B of section
3, this value will be a very small number. However, the values can be
normalized to any range/interval, but it will not affect the result as the

magnitude of the betweenness centrality value increases for each edge
by same factor.

TABLE VI. Citation Networks Accuracy

Network Minimum Maximum
CORA 0 0.0359

Citeseer 0 0.0462
PubMed 0 0.0134
Amazon 0 0.0055
WikiCS 0 0.0165

Bet-GCN performance over Facebook-Pages-Food Dataset:
To further demonstrate the generalizability of Bet-GCN model in
the perspective of social links of a social media platform, the model
has been tested over Facebook-Pages-Food [43] network dataset.

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.2

0.4

0 1000 1500500 2000 2500 3000

0 1000 1500500 2000 2500 3000

0.6

0.8

1.0

1.2

1.4

1.6

train

ac
c

lo
ss

epoch

validation

Fig. 18. Training and Loss Accuracy Curves for WikiCS Weblink Network.

0.9

0.8

0.7

0.6

0.5

1

0

2

0 100 200 400 500300

0 100 200 400 500300

3

4

5

6

7

8

train

ac
c

lo
ss

epoch

validation

Fig. 17. Training and Loss Accuracy Curves for Amazon Product Network.

CORA Citeseer PubMed
True

Positive
True

Negative
True

Positive
True

Negative
True

Positive
True

Negative

Predicted
Positive 2609 105

Predicted
Positive 2233 124

Predicted
Positive 20356 1813

Predited
Negative 163 2551

Predited
Negative 109 2248

Predited
Negative 344 23625

Amazon WikiCS
True

Positive
True

Negative
True

Positive
True

Negative

Predicted
Positive 277349 17684

Predicted
Positive 252262 6773

Predited
Negative 47810 247223

Predited
Negative 39511 219524

Fig. 19. Confusion Matrix for the graphical networks.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 50 -

Most social media platforms, including Facebook, can be structured
as graphs. The registered users are interconnected in a universe of
networks. The objective of link prediction is to identify pairs of nodes
that will either form a link or not in the future. Here, we worked on a
graph dataset in which the nodes are Facebook pages of popular food
joints and well-renowned chefs from across the globe and if any two
pages (nodes) like each other, then there is an edge (link) between
them. For calculating node embeddings we have applied node2vec [44]
on the graph. Then, Bet-GCN model is trained on 2259 edges and tested
for 2522 edges. On training for 1500 epochs we get f1-score of 0.9442,
which is a major improvement when compared to f1-score of 0.7817
for logistic regression in [43]. The model hyperparameter settings
have been kept same as for the above models. The training and loss
accuracy curves have been shown in Fig. 20 represents the training
and loss accuracy curve for the same. This further demonstrates the
prediction capability of Bet-GCN model with high accuracy on a
different variety of real world graphical networks.

Reason of selection of GCN based methods over classical
Machine learning and neural network techniques: The problem
with social media data is the availability of the feature for every
node in the graphical network. So, using correlational analysis and
belief propagation techniques are not suitable as these techniques
require features to be compared to calculate the similarity between
the nodes and their behavior. In the absence of feature-based
information, graphical structure information needs to be employed.
The proposed high betweenness edge centrality based selection will
lead to generation of computation graphs with more number of nodes
(in average) during training. Since, feature set aggregation is directly
proportional to number of nodes in the underlying computational
graph, a better training of the GCN model is guaranteed using
proposed approach. This in turn enhances the prediction capability of
the model. In the state of the art literature there are many evidences
where GCN based methods are outperforming traditional machine
learning methods. Jiang et al. [45] have shown that the performance

of GCN model to predict synergistic drug combinations in particular
cancer cell lines in comparison to classical machine learning
algorithms like Support Vector Machine, Radial Basis Function, Deep
Neural Networks etc. is much better. Tayal et al. [46] have shown that
the performance of GCN based techniques for text classification task
is superior in comparison to other ML and DL techniques like TF-
IDF with Logistic regression, CNN, Char CNN etc. The performance
improvement is of approximately 2% with reduced dataset for training.
Cao et al. [47] have shown in their comprehensive review article that
how GCNs surpassed the performance of various CNN models. From
these discussions, we can conclude that GCNs have high prediction
capability due to added power of network structural information.
Moreover, they can work well with limited feature availability and
information about many data points in the network.

Lastly, lets have a look on the computational complexity of the
model. The time complexity for calculating betweenness centrality of
edges in the network is given as O(|V|.|E|) [48], where, |E| are the
number of edges and |V| are the number of nodes or vertices in the
network. Further, the time complexity of GCN based training is given
as O(L.|V|.|F2|) [49]. Here, ‘L’ represents the number of layers of the
neural network, ‘V’ represents number of vertices and ‘F’ represent
feature vector corresponding to each node of the graphical network.
Then, overall complexity for the algorithm can be given as:

 (26)

For real world networks, |E| > > |V|, but |E| < |V|2. Therefore,

 (27)

Also, L<<|V| and is a constant value, so it can be omitted. Since,
F<|V|, this means that F2<<V2. Therefore, from equations (26) and
(27), we have,

 (28)

Hence, the overall time complexity of Bet-GCN model evaluates
out to be of cubic order as a function of number of vertices. This
means that solution is attainable in polynomial time. Moreover, the
training process takes into consideration only 50 - 55% nodes into
consideration. Given the advancements in computational power
of modern day computers having GPU processors, the task can be
accelerated significantly despite of cubic order time complexity of the
process. Also, it is to be noted that even in case of traditional GCN the
time complexity will be upper bounded by O(L.|V|.F2) ≈ O (|V|3). So,
betweenness centrality based calculation do not hurt the overall time
complexity of the task.

VI. Conclusions

The paper presents a variation of the traditional Graph
Convolutional Network approach for the task of link prediction.
An approach based on betweenness centrality was chosen for the
selection of the edges to be trained. Thus, the top-k edges are selected
to create the training set of edges that have a high value for edge
centrality. This idea contributes to a significant improvement in model
accuracy. The proposed model outperforms other state of the art based
deep learning methods as the results are promising even with a high
percentage of test dataset. The accuracy of the model was tested for up
to 45% test dataset, while most state of the art models have reported
accuracy over 5 - 10% test dataset. The reason for this improvement is
the increased neighborhood span, which helps in generating rich node
embeddings in GCN-based training for the model. The effectiveness
of the results in the three datasets: CORA Citeseer and PubMed, was
confirmed by the AUC curves. Moreover, the model has achieved
impressive results on Amazon Product, WikiCS and Facebook Food

0.9

1.0

0.8

0.7

0.6

1

0

2

0 200 400 1000 1200 1400600 800

0 200 400 1000 1200 1400600 800

3

4

5

train

ac
c

lo
ss

epoch

validation

Fig. 20. Training and Loss Accuracy Curves for Facebook FoodWeb Pages.

 Special Issue on AI-driven Algorithms and Applications in the Dynamic and Evolving Environments

- 51 -

Web Page networks, which are very large and belong to a different
category than the previous three, showing that the method is generic
and can be applied to graphical networks of different domains. In
summary, the key contributions of the manuscript are:

• Proposing an efficient GCN-based link prediction technique where
the training set is selected based on edge betweenness centrality.

• Mathematical and experimental justifications of the improvement
in GCN based training for link prediction.

• Detailed comparison of the results with the current state of the
art methods for link prediction by performing experimental
simulations over 6 different networks.

In future, the model can be tested with a larger number of complex
network datasets to further verify the robustness of the proposed
model. Moreover, the same model can be tested to determine the
performance improvement on other tasks such as node classification,
graph classification etc.

References

[1] M. Sun, J. Chen, Y. Tian, Y. Yan, “The impact of online reviews in the
presence of customer returns,” International Journal of Production
Economics, vol. 232, p. 107929, 2021, doi: 10.1016/j.ijpe.2020.107929.

[2] M. S. Ullal, C. Spulbar, I. T. Hawaldar, V. Popescu, R. Birau, “The impact
of online reviews on e-commerce sales in india: A case study,” Economic
Research- Ekonomska Istraživanja, vol. 34, no. 1, pp. 2408–2422, 2021, doi:
10.1080/1331677X.2020.1865179.

[3] M. Caro-Martínez, G. Jiménez-Díaz, J. A. Recio- García, “Local model-
agnostic explanations for black- box recommender systems using
interaction graphs and link prediction techniques,” International Journal
of Interactive Multimedia and Artificial Intelligence, pp. 1–11, 2021, doi:
10.9781/ijimai.2021.12.001.

[4] D. Medel, C. González-González, S. V. Aciar, “Social relations and
methods in recommender systems: A systematic review,” International
Journal of Interactive Multimedia and Artificial Intelligence, vol. 7, no. 4,
pp. 7– 17, 2022, doi: 10.9781/ijimai.2021.12.004.

[5] N. N. Daud, S. H. Ab Hamid, M. Saadoon, F. Sahran, N. B. Anuar,
“Applications of link prediction in social networks: A review,” Journal
of Network and Computer Applications, vol. 166, p. 102716, 2020, doi:
10.1016/j.jnca.2020.102716.

[6] S. Sledzieski, R. Singh, L. Cowen, B. Berger, “Sequence- based prediction
of protein-protein interactions: a structure-aware interpretable deep
learning model,” bioRxiv, 2021, doi: 10.1016/j.cels.2021.08.010.

[7] M. Lim, A. Abdullah, N. Jhanjhi, M. K. Khan, M. Supramaniam, “Link
prediction in time-evolving criminal network with deep reinforcement
learning technique,” IEEE Access, vol. 7, pp. 184797–184807, 2019, doi:
10.1109/ACCESS.2019.2958873.

[8] H. Huang, J. Tang, L. Liu, J. Luo, X. Fu, “Triadic closure pattern analysis
and prediction in social networks,” IEEE Transactions on Knowledge
and Data Engineering, vol. 27, no. 12, pp. 3374–3389, 2015, doi: 10.1109/
TKDE.2015.2453956.

[9] M. S. Granovetter, “The strength of weak ties,” American journal of
sociology, vol. 78, no. 6, pp. 1360– 1380, 1973.

[10] Y. Bi, W. Wu, L. Wang, “Community expansion in social network,” in
International Conference on Database Systems for Advanced Applications,
2013, pp. 41–55, Springer.

[11] E. Abbe, A. S. Bandeira, G. Hall, “Exact recovery in the stochastic block
model,” IEEE Transactions on information theory, vol. 62, no. 1, pp. 471–
487, 2015, doi: 10.1109/TIT.2015.2490670.

[12] C. Matias, V. Miele, “Statistical clustering of temporal networks through
a dynamic stochastic block model,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 79, no. 4, pp. 1119–1141, 2017.

[13] A. K. Gupta, N. Sardana, “Significance of clustering coefficient over
jaccard index,” in The International Conference on Contemporary
Computing, 2015, pp. 463– 466, IEEE.

[14] D. Liben-Nowell, J. Kleinberg, “The link-prediction problem for social
networks,” Journal of the American society for information science and
technology, vol. 58, no. 7, pp. 1019–1031, 2007, doi: 10.1145/956863.956972.

[15] S. Cohen, B. Kimelfeld, G. Koutrika, “A survey on proximity measures for
social networks,” in Search computing, 2012, pp. 191–206, Springer.

[16] S. Zhang, H. Tong, J. Xu, R. Maciejewski, “Graph convolutional networks:
a comprehensive review,” Computational Social Networks, vol. 6, no. 1, pp.
1–23, 2019, doi: 10.1186/s40649-019-0069-y.

[17] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y. Philip, “A comprehensive
survey on graph neural networks,” IEEE transactions on neural networks
and learning systems, vol. 32, no. 1, pp. 4–24, 2020, doi: 10.1109/
TNNLS.2020.2978386.

[18] T. Derr, Y. Ma, W. Fan, X. Liu, C. Aggarwal, J. Tang, “Epidemic graph
convolutional network,” in Proceedings of the 13th International Conference
on Web Search and Data Mining, 2020, pp. 160–168.

[19] H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, K. Tsuda, “Link
propagation: A fast semi-supervised learning algorithm for link
prediction,” in Proceedings of the 2009 SIAM international conference on
data mining, 2009, pp. 1100–1111, SIAM.

[20] R. Raymond, H. Kashima, “Fast and scalable algorithms for semi-
supervised link prediction on static and dynamic graphs,” in Joint
european conference on machine learning and knowledge discovery in
databases, 2010, pp. 131–147, Springer.

[21] A. K. Menon, C. Elkan, “Link prediction via matrix factorization,” in
Joint european conference on machine learning and knowledge discovery in
databases, 2011, pp. 437–452, Springer.

[22] S. Gao, L. Denoyer, P. Gallinari, “Temporal link prediction by integrating
content and structure information,” in Proceedings of the 20th ACM
international conference on Information and knowledge management, 2011,
pp. 1169–1174.

[23] Z. Zeng, K.-J. Chen, S. Zhang, H. Zhang, “A link prediction approach using
semi-supervised learning in dynamic networks,” in The International
Conference on Advanced Computational Intelligence, 2013, pp. 276–280,
IEEE.

[24] L. Berton, J. Valverde-Rebaza, A. de Andrade Lopes, “Link prediction in
graph construction for supervised and semi-supervised learning,” in The
International Joint Conference on Neural Networks, 2015, pp. 1–8, IEEE.

[25] T. N. Kipf, M. Welling, “Variational graph auto- encoders,” arXiv preprint
arXiv:1611.07308, 2016.

[26] H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, C. Zhang, “Binarized
attributed network embedding,” in IEEE International Conference on Data
Mining, 2018, pp. 1476– 1481, IEEE.

[27] P. V. Tran, “Multi-task graph autoencoders,” arXiv preprint
arXiv:1811.02798, 2018.

[28] R. Hisano, “Semi-supervised graph embedding approach to dynamic link
prediction,” in International Workshop on Complex Networks, 2018, pp.
109–121, Springer.

[29] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, “Adversarially
regularized graph autoencoder for graph embedding,” arXiv preprint
arXiv:1802.04407, 2018.

[30] X. Di, P. Yu, R. Bu, M. Sun, “Mutual information maximization in
graph neural networks,” in The International Joint Conference on Neural
Networks, 2020, pp. 1–7, IEEE.

[31] T. Zhang, K. Zhang, X. Li, L. Lv, Q. Sun, “Semi- supervised link prediction
based on non-negative matrix factorization for temporal networks,”
Chaos, Solitons & Fractals, vol. 145, p. 110769, 2021, doi: 10.1016/j.
chaos.2021.110769.

[32] E. Bastami, A. Mahabadi, E. Taghizadeh, “A gravitation-based link
prediction approach in social networks,” Swarm and evolutionary
computation, vol. 44, pp. 176–186, 2019, doi: 10.1016/j.swevo.2018.03.001.

[33] W. Gu, F. Gao, R. Li, J. Zhang, “Learning universal network representation
via link prediction by graph convolutional neural network,” Journal
of Social Computing, vol. 2, no. 1, pp. 43–51, 2021, doi: 10.23919/
JSC.2021.0001.

[34] M. Shabaz, U. Garg, “Predicting future diseases based on existing health
status using link prediction,” World Journal of Engineering, 2021, doi:
10.1108/WJE-10-2020- 0533.

[35] M. Wang, L. Qiu, X. Wang, “A survey on knowledge graph embeddings
for link prediction,” Symmetry, vol. 13, no. 3, p. 485, 2021, doi: 10.3390/
sym13030485.

[36] F. J. Roethlisberger, W. J. Dickson, Management and the worker, vol. 5.
Psychology press, 2003.

[37] R. Saxena, M. Jadeja, “Network centrality measures: role and importance

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 52 -

in social networks,” in Principles of Social Networking, 2022, pp. 29–54,
Springer.

[38] U. Brandes, S. P. Borgatti, L. C. Freeman, “Maintaining the duality of
closeness and betweenness centrality,” Social Networks, vol. 44, pp. 153–
159, 2016, doi: 10.1016/j.socnet.2015.08.003.

[39] O. Shchur, M. Mumme, A. Bojchevski, S. Günnemann, “Pitfalls of graph
neural network evaluation,” arXiv preprint arXiv:1811.05868, 2018.

[40] P. Mernyei, C. Cangea, “Wiki-cs: A wikipedia-based benchmark for
graph neural networks,” arXiv preprint arXiv:2007.02901, 2020.

[41] Z. Zhang, X. Wang, W. Zhu, “Automated machine learning on graphs: A
survey,” arXiv preprint arXiv:2103.00742, 2021.

[42] M. Kaur, H. Kaur, “Implementation of enhanced graph layout algorithm
for visualizing social network data using networkx library,” International
Journal of Advanced Research in Computer Science, vol. 8, no. 3, 2017, doi:
10.26483/ijarcs.v8i3.2998.

[43] R. Rossi, N. Ahmed, “The network data repository with interactive graph
analytics and visualization,” in Twenty-ninth AAAI conference on artificial
intelligence, 2015.

[44] A. Grover, J. Leskovec, “node2vec: Scalable feature learning for networks,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, 2016, pp. 855–864.

[45] P. Jiang, S. Huang, Z. Fu, Z. Sun, T. M. Lakowski, P. Hu, “Deep graph
embedding for prioritizing synergistic anticancer drug combinations,”
Computational and structural biotechnology journal, vol. 18, pp. 427–438,
2020, doi: 10.1016/j.csbj.2020.02.006.

[46] K. Tayal, R. Nikhil, S. Agarwal, K. Subbian, “Short text classification using
graph convolutional network,” in NIPS workshop on Graph Representation
Learning, 2019.

[47] P. Cao, Z. Zhu, Z. Wang, Y. Zhu, Q. Niu, “Applications of graph
convolutional networks in computer vision,” Neural Computing and
Applications, pp. 1–19, 2022, doi: 10.1007/s00521-022-07368-1.

[48] N. Kourtellis, G. D. F. Morales, F. Bonchi, “Scalable online betweenness
centrality in evolving graphs,” IEEE Transactions on Knowledge and
Data Engineering, vol. 27, no. 9, pp. 2494–2506, 2015, doi: 10.1109/
ICDE.2016.7498421.

[49] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, C.-J. Hsieh, “Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional
networks,” in Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, 2019, pp. 257–266.

Rahul Saxena

He is currently working as an Assistant Professor in
Department of Information technology, Manipal University
Jaipur, since 2015 and pursuing PhD from Malaviya
National Institute of Technology, Jaipur since 2019. He
completed his Masters from Manipal University Jaipur in
the year 2015. He has been awarded with Gold Medal for
Excellence in Education in Masters. He completed his B.E.

from Birla Institute of Technology, Mesra in year 2013. His areas of research
and interest includes Social Networks Analysis, Machine Learning, Graph
Algorithms, Parallel processing etc. He has several conference, journal articles
and book chapters published in Springer, IEEE etc. in the related domains of
research.

Spandan Pankaj Patil

She received B.tech in Electrical engineering degree in
2022 from NIT Jaipur. She is currently working as a full-
time Data Scientist at Micron Technology. Her research
interests include Graph neural networks, social network
analysis, machine learning, and computer vision.

Pranshu Vyas

He received his B. Tech. in computer science and
engineering from MNIT Jaipur. He is currently working as
a software developer at D. E. Shaw India Private Limited.
His fields of interest are Data structure, Algorithms, and
Machine learning, with a special focus on Neural network
approaches for graphical data such as GCN.

Atul Kumar Verma

He received his B.Tech degree in computer science and
engineering from VBS Purvanchal University, Jaunpur,
UP, India in 2009 and M.Tech degree in computer science
and engineering from Dr. A.P.J. Abdul Kalam Technical
University UP, India in 2016. He is currently pursuing PhD
at the Department of computer science and engineering,
Malaviya National Institute of Technology, Jaipur India.

His areas of interest are Social Networks Analysis, Machine Learning, Deep
Learning and Graph Algorithms.

Mahipal Jadeja

He received his Ph.D. degree from Dhirubhai Ambani
Institute of Information and Communication Technology
(DA-IICT) in the field of Theoretical Computer Science.
He currently works at Malaviya National Institute of
Technology (MNIT Jaipur) as an assistant professor. His
research interests include Theoretical Computer Science,
Social Network Analysis, and Machine Learning on

Graphs (Graph Neural Networks). He has published several journal articles,
book chapters, and a reference book (Springer) in these domains. His research
work is presented at reputed international conferences including GSB-SIGIR
2015 (Chile), WAAC 2016 (Japan), and SCAI-ICTIR 2017 (Netherlands).

Vikrant Bhateja

Vikrant Bhateja is associate professor in Department
of Electronics Engineering Faculty of Engineering and
Technology, Veer Bahadur Singh Purvanchal University,
Jaunpur, Uttar Pradesh, India. He holds a doctorate in ECE
(Bio-Medical Imaging) with a total academic teaching
experience of 19+ years with around 190 publications in
reputed international conferences, journals and online book

chapter contributions; out of which 35 papers are published in SCIE indexed
high impact factored journals. Among the international conference publications,
four papers have received “Best Paper Award ''. Among the SCIE publications,
one paper published in Review of Scientific Instruments (RSI) Journal (under
American International Publishers) has been selected as “Editor Choice Paper
of the Issue” in 2016. He has been instrumental in chairing/co-chairing around
30 international conferences in India and abroad as Publication/TPC chair and
edited 50 book volumes from Springer-Nature as a corresponding/co-editor/
author on date. He has delivered nearly 20 keynotes, invited talks in international
conferences, ATAL, TEQIP and other AICTE sponsored FDPs and STTPs. He has
been Editor-in-Chief of IGI Global--International Journal of Natural Computing
and Research (IJNCR) an ACM & DBLP indexed journal from 2017-22. He has
guest edited Special Issues in reputed SCIE indexed journals under Springer-
Nature and Elsevier. He is Senior Member of IEEE and Life Member of CSI.

Jerry Chun-Wei Lin

He received his Ph.D. from the Department of Computer
Science and Information Engineering, National Cheng
Kung University, Tainan, Taiwan in 2010. He is currently
a full Professor with the Department of Computer Science,
Electrical Engineering and Mathematical Sciences, Western
Norway University of Applied Sciences, Bergen, Norway.
He has published more than 500+ research articles in

refereed journals (with 90+ ACM/IEEE transactions journals) and international
conferences (IEEE ICDE, IEEE ICDM, PKDD, PAKDD), 16 edited books, as
well as 33 patents (held and filed, 3 US patents). His research interests include
data mining and analytics, natural language processing (NLP), soft computing,
IoTs, bioinformatics, artificial intelligence/machine learning, and privacy
preserving and security technologies. He is the Fellow of IET (FIET), ACM
Distinguished Member (Scientist), and IEEE Senior Member.

