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Abstract

Coronavirus disease 2019 has had a pressing impact on people all around the world. Ceasing the spread of 
this infectious disease is the urgent need of the hour. A vital method of protection against the virus is wearing 
masks in public areas. Not merely wearing masks but wearing masks properly can ensure that the respiratory 
droplets do not get transmitted to other people. In this paper, we have proposed a deep learning-based model, 
which can be used to detect people who are not wearing their face masks properly. A convolutional neural 
network model based on the concept of transfer learning is trained on a self-made dataset of images and 
implemented with light-weighted neural network called MobileNetV2 for mobile architectures. OpenCV is 
used with Caffe framework to detect faces in an input frame which are further forwarded to our trained 
convolutional neural network for classification. The method has been implemented on various input images 
and classification results have been obtained for the same. The experimental results show that the proposed 
model achieves a testing accuracy and training accuracy of 93.58% and 92.27% respectively. Optimal results 
with high confidence scores and correct classification have also been achieved when the proposed model was 
tested on individual input images.
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I. Introduction

THE coronavirus disease 2019 (COVID-19) is an infectious disease 
that can result in mild to severe illnesses in people infected by 

it. It is transmitted mainly through respiratory droplets of saliva or 
discharge from the nose when a person infected with coronavirus 
coughs or sneezes. Thus, it is essential to practice a proper respiratory 
protocol such as covering our face while sneezing or coughing [1]. 
The mucous membranes of the face should be covered properly with 
protective equipment to protect oneself and others from the continual 
transfer of the disease.

Face masks are being used by people all over the world now. In 
many countries, it is now compulsory to wear a face mask when 
stepping out of home. However, many people do not wear face masks 
properly. They fidget with their masks and pull them under their 
noses or completely off their faces to rest under their chins without 
realizing that improperly wearing a mask leads to an increased risk 
of contamination. Wearing a face mask limits the spread of the virus 
from someone who knows or does not know they have an infection 
or not. It also reminds others to continue the practice of physical 
distancing [2]. Moreover, the presence of asymptomatic spreaders 
of the COVID-19 virus means that wearing a face mask should be a 

part of lessening the cases of COVID-19 [3]. Thus, the masks must 
be worn properly covering the mouth and nose appropriately to 
prevent respiratory droplets from spreading. A recent study [4] has 
pointed out that surgical face masks can prevent the transmission 
of coronavirus and influenza viruses from symptomatic people. 
Another study [5] states that the reproductive rate of COVID-19 is 
higher as compared to the SARS coronavirus, and thus it is essential 
to wear masks properly as a measure to keep public health in mind. 
Countries have been exiting the lockdown lately to reduce the effect 
of the pandemic on the economy, but the coronavirus persists as an 
inevitable danger in most of the countries. Since the outbreak of this 
disease is not only the concern of a single country but of the entire 
world. The stringent measures implemented by the government have 
been effective in combating the spread of COVID-19 disease [6]. For 
instance, China has been using mass surveillance to monitor people 
and track the spread of coronavirus. Other nations are also deploying 
technologies like video camera footage, credit card information, and 
location tracking as they race against the outbreak. Surveillance of 
activities of people can be effective as we can monitor whether people 
are properly taking protective measures, and by not letting them enter 
a public place if they are careless about protection. A recent study [7] 
has established that face masks have been effective in the containment 
of COVID-19 in South Korea. This study further states that in addition 
to maintaining social distancing and sanitizing hands, properly 
wearing appropriate masks has been efficacious in lessening severe 
cases in South Korea. Another study [8] focuses on how the universal 
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use of covering the face by even a simple cloth mask, if not a surgical 
mask, can help in acting as a preventive measure.

With this study, we would contribute to public healthcare by 
detection of people not wearing their masks properly at places where 
the chances of getting infected are high. People present at places 
where there are low chances of enforcing social distancing, can be 
checked for wearing their masks properly, especially in severely 
affected zones of countries. We intend to use mobile devices to check 
whether someone is wearing their masks properly or not. The main 
contributions of the paper are:

1. A dataset containing images of people wearing masks properly 
and improperly.

2. A model for the detection and classification of faces wearing 
masks properly and improperly.

3. Experiments to evaluate the performance of the proposed model 
on a dataset using various evaluation metrics.

This paper is organized as follows: Section II discusses the 
background and the work related to our study. Section III describes the 
detailed methodology used for the proposed model. Further, Section 
IV presents the analysis and visualization of the experimental results 
followed by the conclusion in Section V.

II. Related Work

This section discusses the related research work behind the 
proposed model for detecting improperly worn face masks.

A. Convolutional Neural Networks
Convolutional neural network (CNN) is a class of deep learning 

models that largely deals with the analysis of visually descriptive 
data. CNNs can extract important features from visual data without 
human supervision with the help of various layers. Different layers 
perform different kinds of transformations on the data. CNNs treat 
data as spatial and can simplify the complexity of images to be better 
understood and processed by the machine and hence are widely used 
for pattern recognition. A classic CNN is composed of multiple layers 
namely convolutional layers and pooling layers which are used for 
the extraction of important features from input data. It also has some 
layers in the end which take the output from the two mentioned 
layers and help in classifying the data into labels. CNNs have wide 
applications like face detection and recognition, classification of 
malware applications [9], classification of X-ray images [10], etc. 
Image classification is one of the most popular applications of CNN. 
Sultana et al. [11] have done a study where they explained different 
architectures of CNN used for image classification. Shinet et al. [12] 
explored and evaluated different CNN architectures and discussed 
when and why transfer learning from pre-trained ImageNet CNN 
models can be valuable. Demir et al. [13] extracted distinctive face 
features using CNN and used the Softmax classifier to classify faces in 
the fully connected layer of CNN. In [14], the inception network has 
been proposed for allowing the network to learn the best combination 
of kernels, leading to an effective image classification method as well. 
Wang et al. [15] proposed the residual attenuation network for image 
classification achieving 0.6% top-1 accuracy improvement as compared 
to ResNet-200. They focused on the depth of the network and used the 
attention mask mechanism to take image classification to a new level.

B. Object Detection
Object detection is a computer vision approach used to identify 

the objects present in images or videos. Many deep learning-based 
frameworks for object detection have been proposed in the literature, 
covering various aspects of its applications in the real world like facial 
recognition, face detection, detection of obstacles for self-driving cars, 

and more. A review on some object detection architectures has been 
carried out by Zhao et al. [16]. Other fast techniques like You Only 
Look Once (YOLO) [17] have also been proposed for object detection. 

C. Face Detection
Face detection is a popular application of object detection that 

is being widely used today. A comprehensive survey of various 
techniques for facial detection in digital images is due to Kumar et 
al. [18]. Sivaram et al. [19] proposed a technique that uses recurrent 
neural networks (RNN) and deep neural networks (DNN) to take in 
the shape of the face for accurate facial detection. A camera-based 
PCA facial recognition system has been built by Khan et al. [20] 
using programming on technologies like OpenCV, Haar Cascade, 
and Python.

Face detection or recognition systems have been in demand for 
several security-based applications too, like surveillance or tracking 
of suspected people, access management, etc. Zhang et al. proposed 
a framework for serving better surveillance functionality for ATMs. 
The technique included tackling severely occluded faces by fusing the 
features of faces like skin color and facial structure; it achieved 98.56% 
accuracy on detection of face occlusion [23].

D. Face Mask Detection
Face mask detection has also been explored by researchers to tackle 

the situation of COVID-19 for ensuring if people are wearing masks 
or not. In [21], Meenpal et al. have studied facial mask detection using 
semantic segmentation. They have proposed a binary face classifier 
that can detect any face in the frame. Their method uses pre-trained 
weights of VGG-16 architecture for feature extraction and the 
experimental results give a mean pixel-level accuracy of 93.88% for 
the segmented face masks. Besides, Jiang et al. [22] have proposed a 
face mask detector that is able to detect face masks. They have tried 
to distinguish between people wearing masks and people merely 
covering their mouths with their hands. 

This pandemic certainly demands the need for proper mask 
detection for the security of the health of citizens. However, in the 
aforementioned studies, the authors have not considered whether a 
person is wearing a face mask properly. The algorithms proposed in 
these studies only detect if the person is wearing a face mask or not. In 
this paper, we have proposed a CNN-based model that addresses this 
task of checking if the person is wearing the mask properly.

III. Proposed Methodology

This section describes the proposed methodology for the detection 
of improperly worn masks. Fig. 1 shows the complete workflow of the 
used methodology.

A dataset consisting of images of people wearing masks both 
properly and improperly is created and used in this work. These images 
were collected from the local, existing datasets, and the Internet. The 
images were pre-processed to enhance their generalization during the 
training of the CNN. Further, CNN is trained on the created dataset 
for classification purpose. For visualization of results, OpenCV and 
Caffe framework are used. The model creates a bounding box around a 
person’s face in the input image classifying whether the mask worn is 
proper or improper. Finally, the experimental results are analyzed and 
visualized. The various steps of the proposed methodology are further 
elaborated in the following sections.

A. Data Acquisition
The images of people wearing proper face masks are collected 

from the images present in existing datasets [24] and various other 
Internet sources. Since these datasets had fewer images of improperly 
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worn masks, we collected such images from the Internet and local lab. 
Finally, our dataset consists of 500 images, equally distributed among 
properly and improperly worn mask categories. Figs. 2 and 3 show the 
sample images from the dataset of people with proper and improper 
masks, respectively.

Fig. 2.  Sample images of the dataset belonging to the class – proper mask.

Fig. 3.  Sample images of the dataset belonging to class – improper mask.

B. Data Pre-processing
The dataset consists of images of different sizes, and thus, these 

images are converted into a uniform size of 224 × 224 pixels. After the 
application of RGB reshaping, a 224 × 224 × 3 image is given as input 
to the proposed model. The class labels are one-hot encoded. These 
pre-processed images and encoded labels are added to separate lists, 
one for the pre-processed images and the other for the class labels. 
Furthermore, data augmentation strategies like random rotation, shift, 
shear, zoom and flip, are applied on the images for increasing the 
generalization of data which help in improving the performance of 
the model.

C. Proposed Model
This section describes the proposed model. The neural network 

for classification is built and trained after setting the various hyper-
parameters and hidden layers. Thereafter, the trained classifier is 
applied to input image for classification into ‘proper’ and ‘improper’.

1. Training the Neural Network
The problem for our proposed model is to learn the interpretation 

of various features in images and classify them accordingly. CNNs 
help in leveraging the spatial information in images. Fig.4 presents 
a basic architecture of CNN which consists of the input images, the 
layers of the network, and the corresponding output.

We have split our dataset into training set and testing set in such 
a way that 80% data is used for the training purpose and 20% data is 
used for the testing purpose. For achieving the optimum results on 
our dataset, we use an aspect of deep learning called transfer learning. 
Transfer learning is the act of transferring the knowledge previously 
gained by one model on a specific task to a new similar task that will 
benefit from some or all the layers of the previously built model. To 
aid the use of our model on mobile devices, we used MobileNetV2 
as the base model. It has less computation cost and is an efficient 
mobile-oriented model for transfer learning [25]. Additionally, it is 
an effective feature extractor used for object detection that improves 
the performance of our detection. The pre-trained weights for the 
ImageNet [26] dataset have been used as the backbone. 

Unlike the typical convolution, MobileNetV2 utilizes an advanced 
version of convolutional operation called the depth-wise separable 
convolution which leads to a lesser number of computations and 
transformations on the images than the conventional convolution. It 
gets applied to images in two parts [27]. The first part is the depth-
wise convolution used to perform the filtering stage and the second 
part is pointwise convolution for the combining stage. It is a light-
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weight model with low-latency which provides comparable accuracy 
to other heavy and complicated models. Since the size of our dataset is 
small and its affinity to ImageNet is not that high, we fine-tune the top 
layers of MobileNetV2 for our work. The head layers of the pre-trained 
MobileNetV2 CNN architecture are unfrozen while importing it and 
are replaced with new custom layers. The weights for the input to 
this pre-trained MobileNetV2 architecture are set by default. All base 
layers (we call these as BaseModel) below the head of the MobileNetV2 
architecture are frozen to prevent their weights from getting updated 
during backpropagation. The first layer in the network is a fully 
convolutional layer with input size 224 × 224 × 3. 

The fundamental building block of MobileNetV2 architecture 
is a bottleneck depth-separable convolution with residuals, so the 
input layer is followed by residual bottleneck layers [27]. Each block 
of the model consists of 3 convolutional layers as shown in Fig.5. 
First is a 2D convolutional layer (expansion layer) which performs  
1 × 1 convolution for expansion of the number of channels in the data, 
then batch normalization and ReLU6 non-linearity are applied, which 
limits the maximum value of activation to 6. The default expansion 
factor is taken as 6 in the expansion layers. The second is a depth-
wise convolution layer, again with batch normalization and ReLU6 
non-linearity. Some of the convolutional layers have a stride of 2 for 
achieving spatial down-sampling since there are no conventional 
pooling layers, other layers are kept at a stride of 1. The third layer 
known as a pointwise convolutional layer (projection layer) performs 
linear convolution to reduce the dimensionality of input (also known 
as a bottleneck layer) and again accompanied by batch normalization 
[27]. The first block of the model is different as it comprises 3 × 3 
convolution with 32 channels rather than the default 1 × 1 convolution 
which happens in the expansion layer.

The last five custom layers (we call these as HeadModel) which 
produce output for the model include the average pooling 2D layer 
with pool size 7 × 7, reducing the dimensionality by acquiring average 
values from each region of the image. This layer precedes a flatten 
layer that reshapes the pooled feature map to a single column vector. 

The simple feature vector is now put into a dense layer of 128 units of 
size accompanied by ReLU activation by using (1).

 (1)

A dropout layer is applied on this dense layer to prevent the model 
from overfitting, with a threshold value of 0.5. Then a final dense layer 
is applied with Softmax non-linear activation by using (2) to provide 
two output values, i.e., probabilities of the image belonging to the 
proper and improper mask groups, respectively.

 (2) 

where x is a vector of the inputs in the form of images to the output 
layer and i indexes the output unit such that i − 1, 2, 3, ... f. The detailed 
summary of our proposed model consisting of the MobileNetV2 
model (BaseModel) and the custom layers (HeadModel) is provided 
in Appendix A.

We use Adam optimizer for the optimization of the CNN and binary 
cross-entropy as loss function as shown in (3). This loss function is 
used in a binary classification problem. 

 (3)

Here, y is the label (which has been one-hot encoded) and p(y) is the 
predicted probability of one of the labels. 

The initial learning rate is set to 0.0001. A learning rate decay 
schedule (represented by (4)) is created which helps in increasing the 
model accuracy and descend into areas of lower loss. Table I shows 
hyperparameters used in our CNN Model.

 (4)

Where α and α0 represent the learning rate and initial learning rate 
respectively, and

decay = α0/total number of epochs
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Fig. 4.  Elementary CNN architecture for image classification.
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TABLE I. Hyperparameters Used in Our CNN Model

Parameter Name Value

Kernel Size 3 x 3

Activation Function ReLU6 (BaseModel), ReLU (HeadModel)

Average Pooling 7 x 7 (HeadModel)

Optimizer Adam

Loss Function Binary cross entropy

Dropout 0.5

Epochs 50

Batch Size 32

Initial Learning Rate 0.0001

Fully Connected 
(Activation Function)

Softmax

2. Detection of Region of Interest (ROI)
After training the CNN, we have used a deep learning framework, 

Caffe, along with an open-source computer vision library (OpenCV) 
for face detection using static input images. For extracting the region 
of interest (ROI) in the image, the DNN module of OpenCV is used with 
Caffe. The network model which is stored in Caffe framework format 
(with the learned network) and a file containing the text description of 
the network architecture is read using OpenCV DNN module. The file 
with the Caffe framework format has been provided by the OpenCV 
for face detection [28], [29] and contains the weights for the actual 
layers. The Caffe model is based on the Single Shot MultiBox Detector 
(SSD) framework which uses ResNet as a base network for facial 
recognition [30]. 

The trained model is used on various static input images to detect 
whether the person is wearing the mask properly over his nose. An 
input image is first uploaded and pre-processed using OpenCV DNN 
module. The spatial dimensions of the input image are extracted and 
converted into a 4D Binary Large OBject (BLOB) which is further used 
to perform functions like scaling, mean subtraction, and resizing on 
the input image. The scale factor is set to 1.0. After normalizing the 
input image to create a BLOB, it is passed through the DNN to obtain 
face detections. The detections obtained are further checked for the 
probability or confidence which is used to classify the input image as 
proper or improper. The threshold confidence (or probability) is kept at 
0.5 to filter all the weak detections. Further, OpenCV is used to extract 
the region of interest (ROI) of the face which helps in displaying the 
bounding box. The extracted face ROI is converted from BGR to RGB 
ordering of channels and the image size is set to 224 × 224 pixels to pass 
it through the trained model. Finally, this pre-processed input image 
is passed through the trained model to determine if the mask is worn 
correctly or not. This can finally be visualized by a bounding box labelled 
with the class score in the image. The class score is the probability that 
the image contains a face with a proper or an improper mask.

3. Algorithm
The proposed algorithm (as shown in Algorithm I) is based on 

transfer learning and facial detection using OpenCV. θ is the initial 
learning rate which is used to update weights during the training phase. 
It has a value that is often in the range of 0.0 to 1.0. β denotes batch size 
which refers to the number of training images that are used in a single 
iteration. ϕ represents epochs which define the total number of times 
the model will iterate over the training images. The values of these 
three hyper-parameters (θ, β and ϕ) can be tuned based on Steps 3-5 
in a hit and trial way to achieve better accuracy results. The updated 
output weights (ω) are stored in a .h5 file which are used further to get 
predictions on other random input images. δ gives the number of face 

detections that are obtained on our static input image. α is used to filter 
out all the weak face detections in our input image and is known as the 
confidence (or probability) for detection of facial features.

The algorithm advances by using the architecture of MobileNetV2 
as the base layers (refer to Step 4) and the addition of custom head 
layers (refer to Step5). A for loop is applied in the range of the total 
number of defined epochs which updates the weights of only the 
custom layers through forward and back propagation (refer to Steps 
8-10). The input static image is uploaded, and features extracted for 
facial detection (refer to Steps 11-13). Another for loop is applied to 
detect the region of interest in the input image and plot a bounding 
box with the indicative predicted probability as a label (refer to Steps 
13-16). Finally, the trained model is applied to the input image only if 
facial features are detected (refer to Step 17).

Algorithm I. Algorithm for Detection of People Wearing Proper and 
Improper Face Masks

Input: Images of size h×w×d; where h→height of image,w→width 
of image,d→number of channels in the RGB image.
 θ → initial learning rate
 β → number of samples of images trained in one iteration
 ϕ → number of epochs
 δ → number of face detections on input image
 α → numeric constant to filter out weak detections
Output: classified output image with probability of prediction
Begin: 
1.  Split the input images randomly into training set (σ1) and testing 

set (σ2) using 80% data for the training set and the remaining 20% 
for the test set.

2.  Construct the image generator for augmentation of images.
3.  Initialize the CNN parameters θ, βand ϕ.
4.  Determine the base layers of CNN architecture, i.e., MobileNetV2.
5.  Set the head layers, CNNaveragepooling2D, CNNflatten, CNNdense, CNNdropout

6.  Set the last layer (at the end of the fully connected layers) that 
contains labels for classification.

7.  Train the CNN to compute ω.
    for every ϕ:

8. Select a mini batch of size β from σ1.
9. Forward propagation and compute loss (binary cross-entropy) 

via θ.
10. Back propagation only on the head layers, update ω with 

Adam optimizer.
    end
11.  Upload static input image and convert it into a 4-D Binary 

Large OBject (BLOB).
12.  Initialize α (confidence).
13.  Set the Caffe framework for obtaining face detections.
14.  Pass BLOB image through the network to obtain face 

detections on the input image. 
    for every δ :

15.  Extract probability (confidence) associated with 
the detection.

16.  Filter weak detections by comparison with α
17.  Extract face ROI in the input image, add bounding 

box and labels on face.
    end
18.  Apply the trained model to the image only if a face is 

detected.
End.  
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IV. Evaluation

This section describes the evaluation parameters and the outcomes 
of the proposed solution. The experimental results are further analyzed 
and visualized using the performance evaluation metrics. 

A. Performance Parameters
The description of various evaluation parameters is given as follows:

• Confusion Matrix: A confusion matrix is an n-way matrix where 
the n is the number of classes for the classification purpose. It is 
based on four important parameters: True Positive (TP), True 
Negative (TN), False Positive (FP), and False Negative (FN). The 
following parameters are calculated using the confusion matrix:

Accuracy: It is calculated by using (5).

 (5)

Precision: It is another evaluation metric that tells how many 
predictions are actually correct out of all the correct predictions. 
It is given by (6).

 (6)

Recall: defined as the number of positive predictions made by the 
model out of the total actual positive classes. It is calculated by (7).

 (7)

F1-score: It is calculated by using precision and recall as shown 
in (8).

 (8)

Sensitivity: It measures how correctly we have detected the 
positive classes. It is calculated by using (9).

 (9)

Specificity: It measures how exact or accurate is the assignment to 
the positive class. It is calculated by using (10).

 (10)

• Learning Curves: A learning curve is a plot for the graphical 
visualization of the model performance while it is training on 
the dataset. It is a plot of the accuracy/loss versus the number of 
epochs.  It shows how the accuracy/loss of the model changes 
during its training phase with the increase in the number of epochs.

• Receiver Operating Characteristics: The ROC represents a plot 
between the true positive rate (TPR) and false negative rate (FNR), 
and is a trade-off between the specificity and sensitivity [31]. AUC 
uses the ROC curve and is calculated by using the trapezoidal 
method, i.e., dividing the area into a number of sections with equal 
width. Here, the trapezoid (T) refers to integration of points (a, 
b) from a functional form which is divided into n equal pieces. 
The addition of the area of each section of the trapezium formed 
when the upper end is replaced by a chord and the sum of these 
approximations provides the final AUC value. The trapezoidal 
formula is indicated as an integral of the function , and the 
points of integration (a, b) are labelled as {x0, x1 ,…, xn}; where {x0 = 
a, xn = b, xr = x0 + r (b - a)/n} as given in [32].

B. Evaluation Results
In our evaluation, we noted the model performance in terms of 

accuracy, precision, recall, F-score, sensitivity, specificity, and area 
under curve (AUC) of receiver operating characteristics (ROC). The 

training history of the model is also plotted for a credible analysis 
of the loss and accuracy of the training set and the validation set. 
Confusion matrix is calculated on the test set as shown in Table II.

TABLE II. Confusion Matrix Obtained on Test Data

Predicted Classes
Proper Improper

Actual Classes
Proper TP = 47 FN = 3
Improper FP = 4 TN = 55

By calculating the overall accuracy of the proposed model by using 
the confusion matrix on the testing data, we have attained an overall 
accuracy of 93.58%. We have achieved a precision and recall of 92.15% 
and 94% respectively. Further, we have achieved F-1 score of 93.10. A 
sensitivity of 94% has been calculated. This means that out of 50 total 
people who are wearing the masks properly, 47 have been detected 
wearing the mask properly from the test set.

We have achieved a specificity of 93.22%. This implies that out 
of 59 people who are wearing the masks improperly, we are able to 
correctly predict the person wearing an improper mask with an error 
rate of only 6.78%. These evaluation parameters are calculated from 
the confusion matrix as indicated in Table III.

TABLE III. Summary Table of Computed Metrics Using the Confusion 
Matrix

Evaluation Metric Value (in %)
1. Accuracy 93.58
2. Precision 92.15
3. Recall 94.00
4. F-1 score 93.10
5. Sensitivity 94.00
6. Specificity 93.22

The model has been trained for 50 epochs, with an initial learning 
rate of 0.0001. After the proposed model is trained on the training set 
data, we observed the training accuracy as 92.27% and the validation 
accuracy is 93.58% as shown in Fig. 6. The validation set data is used to 
provide an unbiased evaluation and tune the hyper-parameters of the 
model, while the model is fit on the training set data. It further helps in 
determining the error rate in the model by holding out a subset of the 
data from the fitting process and evaluation of the loss of the model at 
the end of each epoch. The high training accuracy can be considered 
as a good measure to assess our classification model. Fig. 7 depicts 
learning curves which gives the values of training and validation loss 
as 0.1693 and 0.1595, respectively. 
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Fig. 6.  Learning curves for evaluation of Accuracy.
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Table IV depicts the relevant results obtained from the training 
curves to determine and compare the loss and accuracy of the training 
and validation data, respectively. Fig. 8 shows the plotted AUC of ROC 
curve of the proposed model which is above the threshold level and is 
calculated as 0.9361.

TABLE IV. Inference of Accuracy and Loss From Obtained Curves and 
Their Training Vs Validation Comparison

Accuracy/Loss Value (in %)

1. Training Accuracy 92.27

2. Validation Accuracy 93.58

3. Training Loss 0.1693

4. Validation Loss 0.1595
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Fig. 8.  ROC curve for test data.

The images that were not used in training are provided as input 
to the proposed model to predict whether they are wearing the mask 
properly. Fig. 9 depicts that the proposed model is able to categorize 
faces into two classes: proper and improper, with high confidence 
scores. Clockwise from top left, confidence scores are 99.06% 
(Improper), 96.23% (Proper), 59.90% (Improper), 74.18% (Proper), and 
99.81% (Proper).

We have not compared our results to any existing work since these do 
not focus on whether the person is wearing a face mask properly or not.

IMPROPER: 99.06%

IMPROPER: 59.90%

PROPER: 96.23%

PROPER: 99.81%

PROPER: 74.18%

Fig. 9.  A sample of results showing successful classification achieved by the 
model on input images.

V. Conclusion

The COVID-19 disease is the greatest challenge that the world 
has faced since World War II. To prevent its rapid spread, face masks 
must be worn properly by people over their noses. People at crowded 
places, hospitals, offices, and working spaces can be checked for 
improperly worn masks to ensure safety. Application of the proposed 
model can serve as a preventive measure in the COVID- 19 crisis 
and benefit in safekeeping the health of society. The government 
can also leverage the model to mobile devices or any device with 
low computational power for the detection of improperly worn face 
masks at public places.

Some research work had been done in detecting masks worn and 
not worn. However, our model specifically focused on classifying the 
mask worn by a person into two classes: proper and improper. This 
will be much significant in the various stages of unlocking all over 
the world as it will contribute to public safety and healthcare. The 
architecture of the model consists of the light weighted MobileNetV2 
neural network as the backbone which overcomes computational 
issues as it can be used efficiently on devices with low computational 
power. Transfer learning has been adopted to use weights that have 
been used for a similar task like face detection and already trained on 
a very large dataset. Furthermore, OpenCV with the Caffe framework 
has been used to detect facial features on experimental input images 
and used on the pre-trained model with our dataset, to produce 
classification results with indicative results, such as labels and a 
bounding box. We are able to attain a testing accuracy of 93.58% and 
an AUC measure of 0.936.

Appendix

The appendix summarizes the complete structure of the proposed 
model. It includes information about the layers and their order in 
the model, the output shape of each layer and the information about 
the parameters (weights). The number of parameters in each layer 
and the total number of parameters in the model are obtained by 
using the model summary. A total of 2,422,210 parameters (164,226 
trainable parameters and 2,257,984 non-trainable parameters) is 
present in our model. 
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Layer(type) Output Shape Param #

input_1 (InputLayer) [(None, 224, 224, 3) 0

Conv1_pad (ZeroPadding2D) (None, 225, 225, 3) 0

Conv1 (Conv2D) (None, 112, 112, 32) 864

bn_Conv1 (BatchNormalization) (None, 112, 112, 32) 128

Conv1_relu (ReLU) (None, 112, 112, 32) 0

expanded_conv_depthwise (DepthwiseConvolution) (None, 112, 112, 32) 288

expanded_conv_depthwise_BN (BatchNormalization) (None, 112, 112, 32) 128

expanded_conv_depthwise_relu (ReLU) (None, 112, 112, 32) 0

expanded_conv_project (Conv2D) (None, 112, 112, 16) 512

expanded_conv_project_BN  (BatchNormalization) (None, 112, 112, 16) 64

block_1_expand (Conv2D) (None, 112, 112, 96) 1536

block_1_expand_BN (BatchNormalization) (None, 112, 112, 96) 384

block_1_expand_relu (ReLU) (None, 112, 112, 96) 0

block_1_pad (ZeroPadding2D) (None, 113, 113, 96) 0

block_1_depthwise (DepthwiseConvolution) (None, 56, 56, 96) 864

block_1_depthwise_BN (BatchNorm (None, 56, 56, 96) 384

block_1_depthwise_relu (ReLU) (None, 56, 56, 96) 0

block_1_project (Conv2D) (None, 56, 56, 24) 2304

block_1_project_BN (BatchNormalization) (None, 56, 56, 24) 96

block_2_expand (Conv2D) (None, 56, 56, 144) 3456

block_2_expand_BN (BatchNormalization) (None, 56, 56, 144) 576

block_2_expand_relu (ReLU) (None, 56, 56, 144) 0

block_2_depthwise (DepthwiseConvolution) (None, 56, 56, 144) 3456

block_2_depthwise_BN (BatchNormalization) (None, 56, 56, 144) 96

block_2_depthwise_relu (ReLU) (None, 56, 56, 144) 0

block_2_project (Conv2D) (None, 56, 56, 24) 3456

block_2_project_BN (BatchNormalization) (None, 56, 56, 24) 576

block_2_add (Add) (None, 56, 56, 24) 0

block_3_expand (ne, 56, 56, 144) 0

block_3_expand_BN (BatchNormalization) (None, 56, 56, 144) 1296

block_3_expand_relu (ReLU) (None, 56, 56, 144) 576

block_3_pad (ZeroPadding2D) (None, 57, 57, 144) 0

block_3_depthwise (DepthwiseConvolution) (None, 28, 28, 144) 4608

block_3_depthwise_BN (BatchNormalization) (None, 28, 28, 144) 128

block_3_depthwise_relu (ReLU) (None, 28, 28, 144) 6144

block_3_project (Conv2D) (None, 28, 28, 32) 768

block_3_project_BN (BatchNormalization) (None, 28, 28, 32) 0

block_4_expand (Conv2D) (None, 28, 28, 192) 1728

block_4_expand_BN (BatchNormalization) (None, 28, 28, 192) 768

block_4_expand_relu (ReLU) (None, 28, 28, 192) 0

block_4_depthwise (DepthwiseConvolution) (None, 28, 28, 192) 6144

block_4_depthwise_BN (BatchNormalization) (None, 28, 28, 192) 768

block_4_depthwise_relu (ReLU) (None, 28, 28, 192) 0

block_4_project (Conv2D) (None, 28, 28, 32) 1728

block_4_project_BN (BatchNormalization) (None, 28, 28, 32) 768

block_4_add (Add) (None, 28, 28, 32) 0

block_5_expand (Conv2D)  (None, 28, 28, 192) 6144

block_5_expand_BN (BatchNormalization) (None, 28, 28, 192) 128

block_5_expand_relu (ReLU) (None, 28, 28, 192) 0

block_5_depthwise (DepthwiseConvolution) (None, 28, 28, 192) 6144

block_5_depthwise_BN (BatchNormalization) (None, 28, 28, 192) 128
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Layer(type) Output Shape Param #

block_5_depthwise_relu (ReLU) (None, 28, 28, 192) 0

block_5_project (Conv2D) (None, 28, 28, 32) 6144

block_5_project_BN (BatchNormalization) (None, 28, 28, 32) 768

block_5_add (Add) (None, 28, 28, 32) 0

block_6_expand (Conv2D) (None, 28, 28, 192) 0

block_6_expand_BN (BatchNormalization) (None, 28, 28, 192) 1728

block_6_expand_relu (ReLU) (None, 28, 28, 192) 768

block_6_pad (ZeroPadding2D) (None, 29, 29, 192) 0

block_6_depthwise (DepthwiseConvolution) (None, 14, 14, 192) 12288

block_6_depthwise_BN (BatchNormalization) (None, 14, 14, 192) 256

block_6_depthwise_relu (ReLU) (None, 14, 14, 192) 24576

block_6_project (Conv2D) (None, 14, 14, 64) 1536

block_6_project_BN (BatchNormalization) (None, 14, 14, 64) 0

block_7_expand (Conv2D) (None, 14, 14, 384) 24576

block_7_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_7_expand_relu (ReLU) (None, 14, 14, 384) 0

block_7_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_7_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_7_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_7_project (Conv2D) (None, 14, 14, 64) 24576

block_7_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_7_add (Add) (None, 14, 14, 64) 0

block_8_expand (Conv2D) (None, 14, 14, 384) 24536

block_8_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_8_expand_relu (ReLU) (None, 14, 14, 384) 0

block_8_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_8_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_8_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_8_project (Conv2D) (None, 14, 14, 64) 24576

block_8_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_8_add (Add)   (None, 14, 14, 64) 0

block_9_expand (Conv2D) (None, 14, 14, 384) 24576

block_9_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_9_expand_relu (ReLU) (None, 14, 14, 384) 0

block_9_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_9_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_9_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_9_project (Conv2D) (None, 14, 14, 64) 24576

block_9_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_9_add (Add) (None, 14, 14, 64) 0

block_10_expand (Conv2D) (None, 14, 14, 384) 24576

block_10_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_10_expand_relu (ReLU) (None, 14, 14, 384) 0

block_5_expand_BN (BatchNormalization) (None, 28, 28, 192) 128

block_5_expand_relu (ReLU) (None, 28, 28, 192) 0

block_5_depthwise (DepthwiseConvolution) (None, 28, 28, 192) 6144

block_5_depthwise_BN (BatchNormalization) (None, 28, 28, 192) 128

block_5_depthwise_relu (ReLU) (None, 28, 28, 192) 0

block_5_project (Conv2D) (None, 28, 28, 32) 6144

block_5_project_BN (BatchNormalization) (None, 28, 28, 32) 768

block_5_add (Add) (None, 28, 28, 32) 0
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Layer(type) Output Shape Param #

block_6_expand (Conv2D) (None, 28, 28, 192) 0

block_6_expand_BN (BatchNormalization) (None, 28, 28, 192) 1728

block_6_expand_relu (ReLU) (None, 28, 28, 192) 768

block_6_pad (ZeroPadding2D) (None, 29, 29, 192) 0

block_6_depthwise (DepthwiseConvolution) (None, 14, 14, 192) 12288

block_6_depthwise_BN (BatchNormalization) (None, 14, 14, 192) 256

block_6_depthwise_relu (ReLU) (None, 14, 14, 192) 24576

block_6_project (Conv2D) (None, 14, 14, 64) 1536

block_6_project_BN (BatchNormalization) (None, 14, 14, 64) 0

block_7_expand (Conv2D) (None, 14, 14, 384) 24576

block_7_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_7_expand_relu (ReLU) (None, 14, 14, 384) 0

block_7_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_7_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_7_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_7_project (Conv2D) (None, 14, 14, 64) 24576

block_7_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_7_add (Add) (None, 14, 14, 64) 0

block_8_expand (Conv2D) (None, 14, 14, 384) 24536

block_8_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_8_expand_relu (ReLU) (None, 14, 14, 384) 0

block_8_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_8_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_8_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_8_project (Conv2D) (None, 14, 14, 64) 24576

block_8_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_8_add (Add)   (None, 14, 14, 64) 0

block_9_expand (Conv2D) (None, 14, 14, 384) 24576

block_9_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_9_expand_relu (ReLU) (None, 14, 14, 384) 0

block_9_depthwise (DepthwiseConvolution) (None, 14, 14, 384) 3456

block_9_depthwise_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_9_depthwise_relu (ReLU) (None, 14, 14, 384) 0

block_9_project (Conv2D) (None, 14, 14, 64) 24576

block_9_project_BN (BatchNormalization) (None, 14, 14, 64) 256

block_9_add (Add) (None, 14, 14, 64) 0

block_10_expand (Conv2D) (None, 14, 14, 384) 24576

block_10_expand_BN (BatchNormalization) (None, 14, 14, 384) 1536

block_10_expand_relu (ReLU) (None, 14, 14, 384) 0

block_15_project (Conv2D) (None, 7, 7, 160) 153600

block_15_project_BN (BatchNormalization) (None, 7, 7, 160) 640

block_15_add (Add) (None, 7, 7, 160) 0

block_16_expand (Conv2D) (None, 7, 7, 960) 153600

block_16_expand_BN (BatchNormalization) (None, 7, 7, 960) 3840

block_16_expand_relu (ReLU) (None, 7, 7, 960) 0

block_16_depthwise (DepthwiseConvolution) (None, 7, 7, 960) 8640

block_16_depthwise_BN (BatchNormalization) (None, 7, 7, 960) 3840

block_16_depthwise_relu (ReLU) (None, 7, 7, 960) 0

block_16_project (Conv2D) (None, 7, 7, 320) 307200

block_16_project_BN(BatchNormalization) (None, 7, 7, 320) 1280

Conv_1 (Conv2D) (None, 7, 7, 1280) 409600
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