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Abstract

For the past few years, segmentation for medical applications using Magnetic Resonance (MR) images is 
concentrated. Segmentation of Brain tumors using MRI paves an effective platform to plan the treatment and 
diagnosis of tumors. Thus, segmentation is necessary to be improved, for a novel framework. The Particle 
Imperialist Deep Convolutional Neural Network (PI-Deep CNN) suggested framework is intended to address 
the problems with segmenting and categorizing the brain tumor. Using the Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) Algorithm, the input MRI brain image is segmented, and then features 
are extracted using the Scatter Local Neighborhood Structure (SLNS) descriptor. Combining the scattering 
transform and the Local Neighborhood Structure (LNS) descriptor yields the proposed descriptor. A suggested 
Particle Imperialist algorithm-trained Deep CNN is then used to achieve the tumor-level classification. Different 
levels of the tumor are classified by the classifier, including Normal without tumor, Abnormal, Malignant tumor, 
and Non-malignant tumor. The cell is identified as a tumor cell and is subjected to additional diagnostics, with 
the exception of the normal cells that are tumor-free. The proposed method obtained a maximum accuracy of 
0.965 during the experimentation utilizing the BRATS database and performance measures.
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I. Introduction

The structure of the human brain is highly complex, which is bound 
inside the skull such that the diagnosis of the diseases becomes a 

hectic phenomenon. Brain tumors are abnormally growing clumps of 
brain cells that are visible [1]. Gliomas are a prevalent type of brain 
tumor that have significant fatality rates [2], [3]. After the diagnosis 
of Gliomas, the survival of patients is not more than 14 months [4]. 
A brain tumor diagnosis is made through surgery, radiotherapy, or 
a combination of all [5], [6], which is a hectic process. The tumors 
can be of two types benignor malignant [7]. For the benign tumor, 
the tumor mass does not affect the nearby healthy cells, and they are 
non-cancerous, whereas the malignant tumors develop as a cancerous 
mass leading to death when untreated [8], [1]. The modalities of X-ray, 
CT, Ultrasonography, and MRI are used to collect information on brain 
tumors so that clinicians can better understand the tumors' textural 
properties and choose the best course of treatment. The association of 
the manual analyzing and segmenting the brain tumor images can lead 
to computational segmentation and classification [9].

MRI offers a better imaging mechanism and assists in accessing the 
gliomas in such a way to obtain the MRI sequences that yield effective 
information [2], [6]. Using the diverse features of brain tumors, MRI 

renders viable information regarding the tumor of various tissues[10], 
[11]. With the advances in medical imaging technologies, tumor 
segmentation methods [12], [13] assure the automatic, repeatable, and 
accurate tumor segmentation algorithm rendering variability both in 
inter-and intra-rater, with difficulty to reproduce [14], [15]. There are 
numerous techniques for improving the accuracy and dependability 
of brain tumor segmentation in the literature [16]. Automatic 
segmentation [17] helps in better planning of the diagnostic followed 
by the surgical operations [18] because segmentation is a hectic and 
demanding component. The manual segmentation for planning in the 
clinical routines [19] results in human errors and it is time-consuming. 
Moreover, the radiologists require additional knowledge regarding the 
pathology and inflexible nature [20], [21] of the existing algorithms 
led to the real clinical practice because of the development of the non-
reliable method using the ill-trained information and parameters that 
are inflexible in various datasets [10].

The segmentation method uses the brain tumor images for extracting 
the abnormal tissues for learning the shape and the growth with time. 
At the same time, tumor delineation using manual methods is a tedious 
process as a large number of incremental medical data is available 
without considering the time and visual perception of the health 
professionals. The above demerits are tackled using computational 
methods as they are highly accurate and faster [16]. For the last 
decade, several brain tumor segmentation methods, which are grouped 
into two categories, semi-automatic and automatic, are available. The 
first group of methods includes level-set models [22], active contour 
models [23], and Tumor Cut (TC) model [24] and these models 
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operate independently without the need for humans, but the results 
are not satisfactory [15]. The automatic approaches for segmenting 
brain tumors make use of manually created characteristics, and the 
models incorporate the standard machine learning process [25]. An 
alternative approach to model the task-adapted feature understands 
the hierarchy based on the highly complex features straight from the 
in-domain data. On the other hand, deep neural networks [26] render 
better learning including feature hierarchies [25]. 

The paper’s main aim engages in classifying the levels of the tumor 
using MRI brain images through a novel framework, and it consists 
of three steps. DBSCAN is initially used to segment the picture of 
the brain tumor. The SLNS descriptor, which combines the scattering 
transform and LNS descriptors, is then used to the feature extraction. 
The suggested PI Deep CNN, which uses feature vectors created using 
the histogram of the output from the SLNS descriptor and the grid-
based shape features, is then used to advance the classification of 
brain tumors. The created descriptor effectively renders the extremely 
durable texture features for categorization. The classifier focuses 
at detecting cancers and its level is divided into four classes, such 
as Normal without tumor, Abnormal, Malignant tumor, and Non-
malignant tumor. Deep CNN is optimally tuned using the proposed 
PI algorithm.

The contributions:

proposed classifier for the particle imperialist deep convolutional 
neural network (PI-deep CNN): The classifier’s goal is to categorize 
the brain tumor using the features that were derived from the MRI 
input image segments in order to identify the different levels of the 
tumor. The suggested PI algorithm, which combines PSO and the 
Imperialist colony algorithm, is used to optimize the tuning of the 
DEEP CNN classifier.

Scatter Local Neighborhood Structure (SLNS) description that has 
been proposed: The suggested descriptor, SLNS, which combines the 
LNS and scattering transform descriptors, extracts texture information 
in a way that the robust features support accurate tumor categorization.

The remainder of this essay is structured as follows: The methods 
for segmenting and categorizing brain tumors that are currently used 
in the literature are reviewed in Section 2. The automatic segmentation 
utilizing DBSCAN for tumor-level categorization using a deep 
learning system is described in Section 3. The results and comments 
are explained in Section 4, and the paper is wrapped up in Section 5.

II. Motivation

The review of the existing methods for segmentation is demonstrated 
in this section that deliberates the need for the new model for effective 
segmentation. The methods developed by various authors and their 
demerits associated with tumor detection are discussed. Finally, the 
challenges of the methods are described laying out a smooth pathway to 
propose an effective brain tumor segmentation and classification method.

A. Related Works
This section is an overview of the literature on several techniques  

for MRI image segmentation of brain tumors. Based on segmentation 
of brain tumors, these research papers are selected and evaluated in 
accordance with the most recent years of publication. As a result, the 
following 8 research publications are chosen for reviews:

Convolutional Neural Networks (CNN) were utilized by Sergio 
Pereira et al. [6] to automatically segregate the brain tumors from 
the MRI images. Although the strategy reduced computing time, it 
performed poorly when there were several feature maps present. Elisee 
Ilunga-Mbuyamba and colleagues [16] created an alternative Active 
Contour Model (ACM) that is based on the Multi-population Cuckoo 

Search (MCSS) algorithm, which solved the segment’s energy reduction 
issue. It rendered better accuracy with minimal computational times, 
but the method was more expensive than the existing technique. A 
total of five PCA algorithms were used by Irem Ersoz Kaya et al. [9] 
that aimed at dimensionality reduction but suffered from overfitting 
problems. Chaiyanan Sompong et al. [10] used a framework that 
improved brain tumor segmentation. The presence of the ambiguous 
tumor boundaries was tackled using the Gray-Level Co-Occurrence 
Matrix-based Cellular Automata (GLCM-CA) that transformed the 
original image as the target featured image, which is highly complex. 
Lubna Farhi et al. [1] designed an adaptive stochastic segmentation 
algorithm to model the energy-based stochastic segmentation that 
possessed a highly flexible topology with high speed and segmentation 
accuracy. It involved minimum iterations and less computation time 
with the help of the internal and external forces, but the invariability 
of the contour radius minimized the requirement of user intervention. 
A sparse representation-based algorithm developed by Yuhong Li et al. 
[15] offered better likelihood estimation but did not use deep learning 
and failed to render accurate results. Yuhong Li et al. [25] modeled an 
automatic method using the Deep Neural Networks (DNNs) that was 
fast and accurate in segments, but the presence of a large number of 
the outliers was a drawback. Elisee Ilunga-Mbuyamba et al. [27] used 
Localized Active Contour with Background Intensity Compensation 
(LACM-BIC) method for determining the abnormal tissue, but the 
assumption of the method regarding the tumor mass was a real failure. 

B. Challenges
• GLCM-CA [10] offered better results inthe case of the regions 

of white matter that possess similar intensities of tumor region. 
Additionally, the patch weight distance based on the tumor voxels 
is exceedingly complicated to compute using the Improved Tumor 
Cut method (ITC).

• In an adaptive stochastic segmentation algorithm [1], the lack of 
the possibility to automatically change the contour radius insists 
on the need for human intervention. Moreover, the algorithm is 
inapplicable for a 3Dform of images.

• The existence of the invariability of the inter and intra intensities 
among the training and test data poses a huge challenge regarding 
the segmentation of the enhancing and core parts. Mainly these 
parts are not clear in the BRATS-HG0117 and HG0307 [15].

• The LACM-BIC framework [27] assumes that the images are 
initially grouped as tumor mass. In the case of the absence of the 
classified datasets, the segmentation results in inaccurate results.

• The segmentation is highly complex and time-consuming and 
does not focus on highly robust and accurate methods that need 
improving the computational speed in real-time applications.

• CNN [6] for segmenting the brain tumor suffered from the 
computational complexity and needed more training data. 

III. Automatic Segmentation Using DBSCAN for Tumor-
Level Classification Using Deep Learning Algorithm

The automatic classification of brain tumor reduces the time 
spend on the MRI images for segmenting and detecting the affected 
regions of the brain. Moreover, the detection of the affected region 
through traditional vision-based techniques is a tedious process. 
Therefore, the suggested method of PI-based Deep CNN is utilized 
to categorize the affected region utilizing the histogram and shape 
aspects of the segments, making it easier and more automated to 
detect brain tumors. The DBSCAN clustering technique is used 
to advance the segmentation, which groups the MRI brain image 
slices into tumor and non-tumor regions. Using the suggested grid-
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based SLNS descriptor, which combines the effects of the scattering 
transform and the LNS descriptor, the characteristics of the segments 
are retrieved. The afflicted areas of the brain can be identified using 
Deep CNN, an artificial classifier that was developed using the 
Imperialist Competitive Algorithm. The architecture of the tumor-
level classification is depicted in Fig. 1.
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Fig. 1. Schematic diagram of the tumor classification.

For classification, MRI brain images are used that possess four 
modalities, FLAIR, T1, T2, and T1C, and let us denote the database as, 
D. Each modality possesses la slice and is subjected to segmentation 
using the DBSCAN clustering algorithm.

A. Formation of Segments Using DBSCAN Clustering
The goal of segmentation is to identify the affected regions 

in the MRI brain image using their modalities. The segments are 
generated from the image in such a way that these segments share 
identical properties, like contrast, color, boundary, and texture. The 
segmentation is done using the DBSCAN clustering algorithm [28], a 
density-based algorithm, which offers better segmentation accuracy 
through geometric constraints. The segmentation algorithm exhibits a 
faster generation of the super-pixels and renders improved boundary 
adherence in such a way that the pixels exhibiting homogeneous 
appearance (color and shape) form compact clusters. During clustering, 
two sets are initialized, candidate and unlabeled sets along with it.The 
top-down image pixel is named as the seed which is grouped with 
the labeled set. Thus, there are a total of three types of pixels, such as 
labeled, unlabeled, and seed. Initially, determine the four unlabeled 
pixels corresponding to the neighboring pixel of the labeledpixel such 
that the distance from the unlabelled pixel to the seed is computed. 
Whenever the distance is found to be less than the threshold, the 
unlabeled set is added to the candidate cluster that replaces the labeled 
set in such a way that the unlabelled pixel obtains the label of the 
seed. The stages are continued until the halting requirement, which 
is dependent on the total number of pixels and the empty set, is met. 
The threshold is calculated by dividing the image size by the total 
number of user-specified superpixels. Below is provided the DBSCAN 
clustering algorithm’s pseudo-code.

The DBSCAN algorithm forms the segments using the input brain 
tumor image that is given in (1),

 (1)

where 𝑛 signifies the segments that represent the tumor and the 
non-tumor region.

Algorithm for DBSCAN Clustering

DBSCAN clustering
1   Input: Image S, superpixel ρ, threshold T, labeled set L, Candidate 
set C
2   Output: Label of ρ, L(ρ)
3   Read the input image S
4       Set the initial pixel as ‘0.’

5         For a pixel with new label 

6            do
7               Determine seed s such that s ∈ L
8                  While L = { } or pixels in ρ > T do
9                     For individual pixel 𝑖 in L do

10                        For individual 𝑘 pixel around 𝑖 pixel do

11       Compute the clustering distance  with seed s and 

           pixel 𝑖
12                               If  then
13                                  Set 𝑘 ∈ C
14                               End if
15                        Enf For

16                     End For

17                        Set L = C
18                 End while

19       End For

B. Extraction of the Features From the Segments Using the 
Proposed Scatter Local Neighborhood Structure Descriptor (SLNS)

Feature extraction ensures accurate and effective classification 
through the dimensionally-reduced significant features of the 
segments. The features used include the SLNS features and the shape 
features that are obtained using the proposed SLNS descriptor and the 
grid-based shape descriptor. The segments describe the tumor and the 
non-tumor region of the image in such a way that the texture features 
from both the regions are extracted separately using the proposed 
SLNS and grid-based descriptors.

The suggested SLNS descriptor, which combines the work of the 
scattering wavelet transform [29] and LNS descriptor [30], is used 
to extract features from the segments extracted using the DBSCAN 
clustering algorithm. The importance of SLNS lies in its ability to 
successfully extract textural information from the segments in order 
to facilitate the precise classification of the tumor level. Each of the 
segments of the image is subjected to the proposed SLNS descriptor, 
which yields the features by multiplying the output from scattering 
transform and LNS descriptor. The steps of the proposed SLNS 
descriptor are deliberated below. 

Step 1: Application of scattering transform: The Morlet wavelet 
of different scales and orientation is extracted using the Scattering 
Transform (ST) [31] from separate segments to produce a highly 
resilient and locally invariant feature. To begin with, the segments’ 
non-linear invariants are obtained using the modulus and average 
pooling functions. The ST steps are:

i) Preserving the image using local affine transformation: The 
local affine transformation, which is carried out by convoluting the 
individual image segments, and the low-pass filter, which functions 
based on the scaling factor, are used to safeguard the image against 
deformations. The components with high frequency are eliminated by 
the local affine transformation.
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ii) Morlet filters for capturingthe high-frequency components: By 
averaging the coefficients generated from wavelet modulus, which are 
the unique results of the Morletor bandpass and the average filters, the 
high-frequency components are caught.

iii) Generation of the scattering coefficients: The wavelet modulus 
transformations are applied to the coefficients of wavelet modulus 
to produce the scattering coefficients. Convoluting the wavelet 
modulus coefficients with the generated wavelets of different scales 
and orientations yields the high-order scattering coefficients. Higher-
order coefficients are required because they provide robustfeatures 
that are extremely stable and invariant locally. The features extracted 
from the segments using the scattering transform are denoted as, Kscat.

Step 2: Application of LNS descriptor:The segmented region 
is fed to the LNS descriptor [30] such that the individual pixel is 
thresholded using the neighborhood pixels of the image with the 
reference value. The reference value is fixed using the center pixel 
of the image and the mean absolute deviation computed using the 
difference in the neighboring pixels. The threshold is determined 
using equation (2).

 (2)

 (3)

where Gn represents the gray values J that are spaced equally in the 
neighboring pixels and 𝑛 vary between 0 and J − 1.The gray value of 
the center pixel is denoted as Gc. dr represents the difference in the 
local neighborhood and it is calculated using equation (3). 

The mean absolute deviation offers robust features and renders 
the statistical features. The feature vector is obtained through the 
subtraction of the new threshold from the gray values in the circular 
neighborhood as given in (4).

 (4)

where υ belongs to the joint distribution of J differences and W 
symbolizes the texture patterns obtained from the neighborhood 
pixels, whih is computed using (5). The representation is given in 
binary such that the gray values of the pixels exceeding the threshold 
are marked as ‘1’ and the gray values lying below the threshold are 
filled as ‘0’ as given in (6). 

 (5)

 (6)

where ν(𝑥) specifies the sign function. To extract the pattern, the 
binomial 2J is multiplied with the individual ν(𝑥), and all the individuals 
are added together to represent the texture pattern. Thus, the LNS 
feature corresponding to each segment of the image is denoted as, KLNS. 

Step 3: SLNS feature generation: The third step is integrating the 
SLNS features using the proposed SLNS descriptor that is developed 
through the integration of the scattering features and LNS features. 
The generation of the SLNS features is described in (7).

 (7)

where K refers to the SLNS features. The features obtained from the 
ST and the LNS descriptor are denoted as, KScat and KLNS , respectively.

Step 4: Histogram-based features using the SLNP-generated 
output:The histogram features of the SLNP are determined such that 
the histogram of the SLNP features belonging to the tumor and the 
non-tumor region enable the robust and accurate classification of the 
tumor level. The histogram features for the tumor segment and the 
non-tumor segment are denoted as p1 and p2.

3.2.2 Grid-based shape feature: The grid method is employed 
for extracting the shape features for which initially, the input image 
is subdivided with the grid lines. The image is scanned on the top-
bottom and the left-right approach so that the grid space that covers 
the space partially or fully is assigned ‘1’, whereas the grid space with 
no shape is filled with ‘0’. The shape feature is indicated as, g.

3.2.3 Feature vector: The feature vector represents the features 
obtained from the segments of the image, and is given in (8).

 (8)

The dimension of the feature vector is denoted as, [1 𝗑 128].

C. Brain Tumor Classification Using PI-Based Deep CNN Classifier
The Deep CNN classification module receives the extracted features 

from the segments, tumor and non-tumor, and the PI algorithm is used 
to optimize the classifier’s weights. The PI algorithm, which is the 
modification of PSO [32] with the Imperial Competitive Algorithm 
[33] in such a way that the PI-Deep CNN classifies the input features 
corresponding to the input image to derive four classes. The classes 
include normal, abnormal, malignant, and non-malignant that are 
graded as four levels. The feature vector includes the histogram 
features of the tumor region, non-tumor region, and shape features 
of the input MRI brain image to facilitate the effective classification of 
the tumor level with better accuracy.

Comparing the PSO method to mathematical algorithms and other 
heuristic optimization techniques reveals that it is computationally 
efficient, simple to implement, robust to control factors, and has a 
straightforward idea.PSO follows the swarm behavior exhibiting 
easy implementation,and it requires only a few adjustable parameters 
compared with the Genetic Algorithm (GA). The particles in the 
search space are initialized randomly,and the optimal solution is 
derived through the frequent update of the solutions in the individual 
iterations. PSO follows the bird flocking behavior in such a way that the 
birds fly in groups in search of food randomly with certain velocities 
that direct the bird to fly to various locations. The optimal position 
of the particle is based on minimal error. The exploration abilities of 
PSO are high improving the optimal convergence faster. Moreover, 
PSO depends on intelligence and is applicable both in scientific and 
engineering applications. On the other hand, the Imperial Competitive 
Algorithm depends on the political-social developments of humans, 
and the competition among the imperials begins with the advent 
of the primary imperials. The decision is made based on the power 
such that the imperial with high power leaves the competition and 
the one with the highest power becomes the empire. The inclusion 
of the Imperial Competitive Algorithm increases the global optimum 
and minimal global solutions that assure the accuracy of classification.

a) Architecture of the Deep Convolutional Neural Network
Convolutional (Conv) layers, pooling (POOL) layers, and a fully 

connected (FC) layer make up the deep CNN [34], [35], whose 
structure is shown in Fig. 2. Each layer more accurately carries out its 
task of extracting the feature maps, sub-sampling, and classification. 
The pooling layer, which is used to generate the output maps in the FC 
layer, subsamples the feature maps created using the conv layer. The 
quantity of conv layers is used to improve classification accuracy by 
making the feature maps smaller when more conv layers are added.

Convolutional layers: Convolutional layers are the feature 
maps of neurons that extract patterns from the features of the input 
image. Using trainable weights, the neuron’s receptive fields connect 
the neuron in the preceding layer to the neuron in the following 
convolutional layer. The trainable weights are used to convolute the 
input features and create a feature map, which is then applied to the 
subsequent layers using a non-linear activation function. Using the 
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same neurons in a single feature map with varied weights in a single 
conv layer ensures the extraction of the variable features from diverse 
places. The feature vector serves as the input to the convolution layers 
of the deep CNN, and the convolution layers are represented in (9).

 (9)

where m refers to the totalconv layers. The conv layers process the 
inputs and generate the output and the unit at (y, z) generates the 
output based on equation (10). 

 (10)

where, * denotes the convolutional operator for extracting the 
local patterns using the output of the alternate layers in conv layer, 
and   symbolizes the fixed feature map. The feature maps from 
the previous conv layer  form the input to the jth conv layer. The 
arbitrary filter  specifies the weights of jth conv layer, which 
is trained using the proposed PI algorithm. The filter  links the qth  
feature map of ( j − 1)th conv layer and the uth feature map in jth conv 
layer. The bias matrix of the corresponding jth conv layer is, . ReLU 
is the activation function for eradicating the negative values toassist 
simplicity and effectiveness. The jth non-linear layer is fed with the 
feature maps, and the output is given in (11).

 (11)

where f𝑛( ) denotes the activation function in convlayer j. The 
ReLU layer is significant because it allows Deep CNN to run faster and 
handle a large number of networks.

Pooling (POOL) layers
Complexity is reduced by the POOL layer, which includes neurons 

connecting the square-shaped space along its width and height of the 
preceding levels. The POOL layers perform a specified action even 
though they lack bias or training weights.

Fully connected layers: Abstract characteristics from the pooling 
and conv layers make up the input to the fully connected layer. The 
outcome of the fully connected layer can be seen in (12).

 (12)

where  refers to the weight that connects the unit (y, z) in 
the qth feature map of the layer ( j − 1) and uth unit in the layer j.

b) Training Phase: Steps to Determine the Optimal Weights for Deep CNN
As shown in fig. 4, the algorithmic procedures for determining the 

best weights to train the deep CNN are explored further below.

a) Initialization: The swarm population is initialized in the first 
phase, and let’s assume that there are a certain number of solutions, 
as shown in (13).

 (13)

b) Fitness Evaluation:The fitness of the solutions is evaluated 
for individual iteration to choose the optimal solution. The fitness 
depends on the minimal error that is obtained by taking the square of 
the absolute difference of the estimated and the target output The MSE 
error is given in (14).

 (14)

where E is the estimated output and O is classifier output. The total 
input samples are denoted as, M.

c) Computing the optimal position based on the minimum value 
of the error: The position of the particles using the minimal error. 
The position update follows either of the algorithms, namely the PI 
algorithm and Stochastic Gradient Descent (SGD) [36] algorithm. 
Whenever the error corresponding to the PI algorithm is less than the 
error corresponding to the SGD algorithm, the position of the particles 
is updated based on the PI algorithm, or else the position update 
follows the SGD algorithm. The position update is based  on (15),

 (15)

where  refers to the position update based on SGD algorithm 
that is given in (16).

 (16)

where Y indicates the training sample and Y ∈ (A, B). A specifies the 
input feature vector and B refers to the categories for the individual 
training sample. The position updated based on the PI algorithm is 
denoted as,  and the derivation of the proposed equation follows 
as below:

i) Update equation for the PI algorithm: The optimal weights for 
training the deep CNNare derived using PI optimization. The position 
update of the particles is based on the PI algorithm and the update 
equation is obtained through modifying the PSO equation with the 
Imperialist Colony algorithm. The standard equation for the PSO 
algorithm is given in (17).

 (17)

Substitute the velocity of the particle in (17), the position update  is 
modified and it is given in (18).

 (18)

where Z τ refers to the position of the particle at a time τ. Ωτ and Pτ are 
the global and the personal best solutions of the particles at iteration τ. 
h1 and h2 are the constants specifying the cognitive learning factor and 
acceleration factor, and t1, t2 are the random numbers. ντ indicates the 
velocity of the particle at iteration τ and ω specifies the inertial weight. 
Equations (19), (20), and (21) are obtained by rearranging the equation 
(18), the position of the particle at iteration τ is derived based on the 
local and the global position of the particles as given in equation (21).

  (19)

  (20)

 (21)

The standard equation of the Imperialist Colony algorithm is given 
as in equation (22) that depicts that the position at iteration τ + 1 is 
based on the global best position and the position of the particle at τ.

 (22)
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Fig. 2.The architecture of Deep CNN.
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where γ denote the constant and its value exceeds 1 and φ denotes 
the distance among the colony and imperialist countries. Ωτ signifies 
the global best solution and Z 

τ+1 is the position at the time τ+1. 
Substituting equation (21) in equation (22), the equations (23) to (27) 
are obtained.

  (23)

 (24)

 (25)

 (26)

 (27)

The equation (27) makes it abundantly evident that the particle’s 
position in the current iteration is dependent on its location, individual 
best, and overall best position in the previous iteration.

d) Stopping criterion: Updating positions is done repeatedly until the 
best overall solution is found.

Algorithm for deriving optimal weights to tune deep CNN

Optimal weight formulation for deep CNN
1   Input: Swarm Population Za; (1 ≤ a ≤ N)
2   Output: Best position of the particle Z 

τ+1

3       Swarm Initialization

4       Evaluation of the fitness ε
5                #Position Update

6   If (εSGD < εPI)
7                                {
8   Update the position of the particle using equation

9                                   Else

10   Update the position based on equation

11                                }
12   Repeat steps 4 to 11
13   End

IV. Results and Discussion

In order to demonstrate the efficiency of the suggested approach 
in estimating tumor levels, the section in question deliberates on 
the findings of the produced method when compared to the existing 
methods. 

A. Setup Used
The PI-Deep CNN is implemented using MATLAB software 

operating on PC with Windows 8OS. The BRATS database, where the 
MRI images specific to each patient are maintained and there are four 
different modalities, including T1, T2, T1C, and FLAIR for each patient, 
is used to test and assess the approaches [37]. It also comprises feature 
and textural patterns, such as co-occurrence matrices, specified block 
sizes, mean and variance of slice or radial distance, etc. Performance is 

considerably improved. For every segmentation task, fixed groupings 
of algorithmic segmentations consistently outperformed the best 
individual segmentation algorithm. Online evaluation serves as the 
BRATS benchmark’s main component.

B.  Segmentation Output
The sample results are demonstrated in Fig.3 and Fig. 4, respectively 

that show the results obtained using the SLNS descriptor. Fig.3depicts 
the segmentation output of the SLNS descriptor using image 1. Slice 
76 and 106 of the input image 1are depicted in fig.3 a) and fig.3 c), 
respectively. The segmented output for slice 76 and slice 106 are 
demonstrated in fig.3 b) and fig.3 d), respectively.

(a) (b)

(c) (d)

Fig. 3. Segmentation results using Input image 1 (a) Slice 76 of Input image 1, (b) 
Segmented output of (a), (c) Slice 106 of Input image 1, d) Segmented output of (c).

Fig.4 shows the segmentation results using image 2. The slices 116 
and 81 of image 2are pictured in Fig.4 a) and Fig.4 c), respectively, 
whereas the segmented output of the slices is pictured in Fig.4b) and 
Fig. 4 d), respectively.

(a) (b)

(c) (d)

Fig. 4. Segmentation results using Input image 2 a) Slice 116 of Input image 2, b) 
Segmented output of (a), c) Slice 81 of Input image 2, d) Segmented output of (c).

The tumor and non-tumor zones that the proposed SLNS descriptor 
identified are shown in FIGS. 5A and 5B, respectively. To guarantee 
the classification accuracy of the classifiers, the input MRI image’s 
tumor and non-tumor regions are subjected to feature extraction.
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(a)

(b)

Fig. 5.Results of proposed SLNS descriptor a) Tumor region b) Non-tumor 
region.

C. Competing Methods
In order to demonstrate the effectiveness of the proposed method, it 

is compared with a number of other methods, including Convolutional 
Neural Networks (CNN) [6], PSSW+MCSS [16], Principle Component 
Analysis (PCA) [9], GLCM-CA [10], Markov-random field [15], Deep 
Neural Networks (DBN) [25], KNN [38], and NN [39].

D. Comparative Analysis
Sensitivity, specificity, accuracy, and ROC are used in a comparative 

examination of the suggested classifier’s performance using the BRATS 
database. The suggested classifier is contrasted with techniques like 
KNN, NN, PCA, DBN, CNN, and PI-deep CNN in order to evaluate the 
performance effectively.

a) Analysis Using Image 1
Figures 6.a, 6.c, and 6.b, respectively, show the analysis of accuracy, 

specificity, and sensitivity using image 1 for the training percentage. 
For a training percentage of 70%, the accuracy of the comparative 
methods KNN, NN, PCA, DBN, GLCM-CA, PSSW+MCSS, Markov-
random field, CNN, and PI-Deep CNN is 0.8871%, 0.89%, 0.94%, 

0.942%, 0.95%, 0.899%, 0.952%, 0.945%, and 0.965%, respectively. This 
demonstrates that the proposed method is more accurate than all 
of the methods. The suggested technique is superior to the existing 
methods, as shown by the sensitivity of KNN, NN, PCA, DBN, 
GLCM-CA, PSSW+MCSS, Markov-random field, CNN, and PI-Deep 
CNN, which is 0.8046%, 0.8533%, 0.9214%, 0.9470%, 0.8896%, 0.9019%, 
0.9122%, 0.965%, and 0.9821%, respectively, for 70% training data. For 
70% training data, the specificity of the competing methods—KNN, 
NN, PCA, DBN, GLCM-CA, PSSW+MCSS, Markov-random field, 
CNN, and PI-Deep CNN—is, respectively, 0.8448%, 0.85%, 0.9413%, 
0.958%, 0.9025%, 0.9131%, 0.9245%, 0.9782%, and 0.9951%.

Figures 7.a, 7.b, and 7.c show the analysis using picture 1, 
respectively. According to the cross-fold validation 10 results, the 
accuracy of the comparative methods KNN, NN, PCA, DBN, GLCM-
CA, PSSW+MCSS, Markov-random field, CNN, and PI-Deep CNN 
is 0.8845, 0.8873, 0.9371, 0.9391, 0.9471, 0.8945, 0.9491, 0.9421, and 
0.9621, respectively. This demonstrates that the proposed method is 
more accurate than the existing methods. The cross-fold validation10 
shows that the proposed method outperforms the existing methods 
in terms of sensitivity with sensitivity values of 0.7749, 0.8465, 
0.9140, 0.9394, 0.8923, 0.9046, 0.9149, 0.9572, and 0.9742, respectively, 
for the comparative methods of KNN, NN, PCA, DBN, GLCM-CA, 
PSSW+MCSS, Markov-random field, CNN, and PI-Deep. For the cross-
fold validation 10, the specificities of KNN, NN, PCA, DBN, GLCM-
CA, PSSW+MCSS, Markov-random field, CNN, and PI-Deep CNN are, 
respectively, 0.8397, 0.85, 0.9356, 0.9522, 0.9125, 0.9261, 0.9397, 0.9679, 
and 0.9892. Thus, it has been established that PI-Deep CNN performs 
better in terms of sensitivity, specificity, and accuracy than the current 
approaches.

b) Analysis Using Image 2
The analysis based on the metrics, like accuracy, specificity, and 

sensitivity using image 2 based on the training percentage is depicted 
in Fig.8.a, Fig. 8.c, and Fig. 8.b,respectively. The accuracy of the 
comparative methods, KNN, NN, PCA, DBN, GLCM-CA, PSSW+MCSS, 
Markov-random field, CNN, and PI-Deep CNN, is 0.7670%, 0.89%, 
0.94%, 0.9424%, 0.9374%, 0.9355%, 0.9305%, 0.945%, and 0.9469%, 
respectively, for 70% training data, which proves that the proposed 
method is superior over the existing methods in terms of accuracy. 
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Fig. 7. Comparative analysis based on cross-fold using the image 1 a) accuracy 
b) sensitivity c) specificity.
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The sensitivity of the comparative methods, KNN, NN, PCA, DBN, 
GLCM-CA, PSSW+MCSS, Markov-random field, CNN, and PI-Deep 
CNN, is 0.7612%, 0.8291%, 0.8533%, 0.8866%, 0.9549%, 0.9066%, 0.9589%, 
0.9161%, and 0.9684%, respectively, for 70% training data, which proves 
that the proposed method is superior over the existing methods in 
terms of sensitivity. The specificity of the comparative methods, 
KNN, NN, PCA, DBN, GLCM-CA, PSSW+MCSS, Markov-random 
field, CNN, and PI-Deep CNN, is 0.8448%, 0.8831%, 0.9271%, 0.9604%, 
0.9816%, 0.9856%, 0.9523%, 0.9618%, and 0.9951%, respectively, for 70% 
training data, which proves that the proposed method is superior over 
the existing methods in terms of sensitivity. 

Figures 9.a, 9.b, and 9.c, respectively, display the analysis of 
accuracy, sensitivity, and specificity utilizing image 2 based on the 
cross-fold validation. According to the cross-fold validation 10 results, 
the accuracy of the comparative methods KNN, NN, PCA, DBN, 
GLCM-CA, PSSW+MCSS, Markov-random field, CNN, and PI-Deep 
CNN is 0.7647, 0.8873, 0.9371, 0.9395, 0.9246, 0.9326, 0.9346, 0.9421, and 

0.9441, respectively. This demonstrates that the proposed method is 
more accurate than the existing methods. The cross-fold validation 10 
shows that the proposed method outperforms the existing methods 
in terms of sensitivity with sensitivity values of 0.7551, 0.8135, 
0.8465, 0.8795, 0.9472, 0.8993, 0.9512, 0.9088, and 0.9607, respectively, 
for the comparative methods of KNN, NN, PCA, DBN, GLCM-CA, 
PSSW+MCSS, Markov-random field, CNN, and PI-Deep The KNN, 
NN, PCA, DBN, GLCM-CA, PSSW+MCSS, Markov-random field, 
CNN, and PI-Deep CNN comparative methods have specificities of 
0.8397, 0.8778, 0.9216, 0.9546, 0.9757, 0.9466, 0.9685, 0.9561, and 0.9892, 
respectively, for the cross-fold validation 10; this demonstrates that 
the proposed method is more sensitive than the existing methods.

c)  Analysis of ROC
The ROC curve is shown using images 1 and 2, respectively, in 

Figures 10.a and 10.b. The TPR for the minimal value 0.1 of FPR is 
0.9514, as can be observed in Fig. 10.a, but for methods like KNN, 
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Fig. 9. Comparative analysis based on cross-fold using the image 2 a) accuracy 
b) sensitivity c) specificity.
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NN, PCA, DBN, GLCM-CA, PSSW+MCSS, Markov-random field, and 
CNN, it is 0.6680, 0.6945, 0.7905, 0.8358, 0.6805, 0.7080, 0.7214, and 
0.84. Similar to this, in fig.10.b, the TPR for the proposed approach 
is 0.8853 when the FPR of the PI-Deep CNN is at a minimum value 
of 0.1, but it is 0.5158, 0.6716, 0.7302, 0.8388, 0.5441, 0.7162, 0.7277, 
0.8435, and 0.8435 for methods like KNN, NN, PCA, DBN, GLCM-CA, 
PSSW+MCSS, Markov-random field, and CNN.

E. Analysis Using the Best Performance of the Comparative 
Methods

The analysis employing the tumor categorization techniques 
based on performance indicators is shown in Table I. For 70% training 
data, the accuracy of the methods KNN, NN, PCA, DBN, GLCM-CA, 
PSSW+MCSS, Markov-random field, CNN, and suggested PI-Deep 
CNN, respectively, is 0.8871%, 0.89%, 0.945, 0.942%, 0.95%, 0.899%, 
0.952%, 0.945%, and 0.965%. The accuracy of PI-Deep CNN is 0.9621 
for the cross-fold 10, compared to 0.8845, 0.8873, 0.9371, 0.9391, 0.9471, 
0.8945, 0.9491, 0.9421, and 0.9621 for KNN, NN, PCA, DBN, GLCM-CA, 
PSSW+MCSS, Markov-random field, and CNN, respectively. Table 1 
makes it evident that the proposed method, which was based on cross-
fold validation and the training percentage, obtained the highest levels 
of accuracy, sensitivity, and specificity.

TABLE I. Discussion of the Comparative Methods

Based on 
training 

percentage

Training percentage =70

Sensitivity Accuracy Specificity
KNN 0.8046 0.8871 0.8448
NN 0.8533 0.89 0.85
PCA 0.9214 0.94 0.9413
DBN 0.947 0.942 0.958

GLCM-CA 0.889 0.95 0.9025
PSSW+MCSS 0.901 0.899 0.9131

Markov-
random field

0.9122 0.952 0.9245

CNN 0.965 0.945 0.9738
PI-Deep CNN 0.9821 0.965 0.9951

Based 
on the 

Crossfold

Crossfold validation =10
Methods Sensitivity Accuracy Specificity

KNN 0.7749 0.8845 0.8397
NN 0.8465 0.8873 0.85
PCA 0.9140 0.9371 0.9356
DBN 0.9394 0.9391 0.9522

GLCM-CA 0.8923 0.9471 0.9125
PSSW+MCSS 0.9046 0.8945 0.9261

Markov-
random field

0.9149 0.9491 0.9397

CNN 0.9572 0.9421 0.9679
PI-Deep CNN 0.9742 0.9621 0.9892

V. Conclusion

Using a novel brain tumor segmentation framework and MRI brain 
tumor images, the segmentation and classification of brain tumors is 
advanced. The main step that is necessary for the accurate classification 
of the level of brain tumor is segmentation. The DBSCAN Clustering 
Algorithm is used to partition the brain picture, creating clusters 
that are then subjected to feature extraction. The LNS descriptor and 
scattering transform are combined in SLNS, which captures textural 
characteristics for accurate tumor level categorization. The grid-based 
shape features, which are retrieved from both the tumor and non-
tumor regions, make up the feature vector. The Deep Convolutional 
Neural Network classifier, which was trained using the suggested PI 

technique, is given the features. In order for the doctor to make an 
accurate diagnosis, the tumor class is finally determined using the 
classifier as Normal without tumor, Abnormal, Malignant tumor, and 
Non-malignant tumor. The proposed method obtained an accuracy of 
0.965, a sensitivity of 0.9821, and a specificity of 0.9951, according to 
the experimentation utilizing the BRATS database.
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