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Abstract

Digital image compression is the technique in digital image processing where special attention is provided 
in decreasing the number of bits required to represent a digital image. A wide range of techniques have been 
developed over the years, and novel approaches continue to emerge. This paper proposes a new technique 
for optimizing image compression using Fast Fourier Transform (FFT) and Intelligent Water Drop (IWD) 
algorithm. IWD-based FFT Compression is a emerging methodology, and we expect compression findings 
to be much better than the methods currently being applied in the domain. This work aims to enhance the 
degree of compression of the image while maintaining the features that contribute most. It optimizes the 
FFT threshold values using swarm-based optimization technique (IWD) and compares the results in terms of 
Structural Similarity Index Measure (SSIM). The criterion of structural similarity of image quality is based on 
the premise that the human visual system is highly adapted to obtain structural information from the scene, so 
a measure of structural similarity provides a reasonable estimate of the perceived image quality.
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I. Introduction

The application of images is expanding very rapidly. It is 
indispensable in the fields of remote sensing [1], video processing 

[2], medical science [3], machine/robot vision [4], and many other 
applications. Considering the rapid growth in the application scope 
of images, there is an increased demand for mass information storage 
and fast communication links [5].

Image compression applications use multiple methods and 
algorithms for compressing images, such as JPEG2000 [6], EBCOT 
[10], 2-D wavelet transformation [11]. The methods thus used can be 
categorized as lossless and lossy compression for image compression 
applications.

The compression method employed depends on the quality of the 
necessary output. If the application for image compression is expected 
to produce a very high-quality output without any loss of fidelity, 
then the lossless compression method is used. The lossy compression 

[12] method is used in applications where some quality can be 
compromised. There is a slight loss of quality in lossy compression, but 
the loss is too small to be noticed in terms of structural resemblance 
(SSIM) index and visual resemblance [19]–[21].

The digital image processing [7]–[9] techniques such as image 
sharpening and restoration, transmission and encoding, pattern 
recognition are optimized by maximizing the compression rate while 
maintaining an optimum percentage of data required to reconstruct 
the image with the highest quality [13]. The proposed optimized 
approach ensures quality along with efficient memory utilization. The 
proposed system aims to produce a compact image representation 
by reducing the requirements for image storage transmission, and 
processing. Malathkar et.al proposed an image compression algorithm 
consisting of a new simplified YUV colour space, corner clipping, 
uniform quantization, subsampling, differential pulse code modulation 
and Golomb Rice code for wireless capsule endoscopy [22]. In [23], the 
authors evaluate various compression models on their complexity and 
efficiency using various E-Learning images (Colour and Grey Scale) 
with different compression quality measurements.

Traditional image compression methods compress an image 
to such an extent that the decompressed image has much less 
structural similarity (SSIM) index [14] to the original one. The 
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procedure as visualised in Fig. 1, typically starts with applying Fast 
Fourier Transform(FFT) to the image and truncating the frequency 
domain output with specified threshold (independant of image 
content) followed by applying an inverse FFT to generate the 
compressed image. The proposed system uses fast fourier transform 
(FFT) [15] with optimized threshold values for each colour channel 
to compress the image that the decompressed image obtains high 
structural similarity (SSIM) index, thus extracting the contributing 
characteristics of the image.

A. Motivation
This section addresses the two factors that motivate the 

research undertaken in this study. First, there is plenty of research 
on optimizing compression techniques, but none have discussed 
concurrently compressing an image to its maximum level while 
sustaining its best possible quality. Second, there is a need to enhance 
the storage and transmission of compressed images. At times the 
storage and transmission costs are very high, to reduce the cost and 
fulfil the requirements of targeted process combination of optimum 
compression rate and quality must be achieved.

This paper is organized as follows. Section II explains the 
intelligent water drop (IWD) algorithm. Section III describes the image 
compression using fast Fourier transform (FFT). Section IV explains 
about structural similarity index (SSIM). Section V shows the proposed 
system. Section VI explains experimental results obtained using 
several sample images. Section VII concludes the complete research.

II. Intelligent Water Drop Algorithm

The algorithm Intelligent Water Drop (IWD) is motivated by 
studying the actual behaviour of natural drops in a flowing water 
source from elevated altitude to low altitude areas. A massive 
collection of drops governs water flow, each moving based on a shorter 
and simpler path naturally influenced, although subject to several 
environmental constraints. Shah-Hosseini expanded this basic idea to 
introduce the Intelligent Water Drop (IWD) algorithm for Traveling 
Salesman Problem (TSP) [16].

An IWD consists of two significant properties, similar to a natural 
water drop. These are a) the IWD−soil(IWD) soil content and b) 
the IWD−vel(IWD) velocity. The IWD’s soil and velocity content 
dynamically change depending on the same route as it flows through 
the problem’s discrete landscape. Therefore, depending on the 
movement of the IWD, some soil is removed from the traversed path 
and the corresponding soil path is dynamically updated in the process. 
Such flow leads to soil content decrease in ideal paths depending on the 
problem’s setting. Thus it can be said that the routes with reduced soil 
content may be the most relevant to finding an almost ideal solution. 
Thus, the building of an ideal solution to the issue is governed by a set 
of evolving swarm behaviour linked to IWDs.

Concerning the original formulation of TSP problems, we can 
consider a graph G = (V, E) where V is the set of nodes and E is the set 
of edges. Thus an IWD can be randomly positioned at any node. Say i, 
it follows the transition of probability as given in equation (1) to select 
the next node j.

 (1)

 (2)

 (3)

 (4)

P(i, j) shows the transition probability of node j. K denotes exactly 
all nodes to be visited and π is the parameter of the algorithm. Thus, 
a node selection depends on the quantity of soil present on the edges 
among adjacent nodes given by soil(i,j) in a probabilistic way. Here min 
soil shows the least amount of soil on a path between any node i and j. 
The state transition probability of an IWD, as illustrated in equations 
(1) to (3), is therefore proportional to the soil content available in 
the edge between nodes i and j. As a result, as a path’s soil content 
decreases, the probability of selecting the appropriate component of 
the solution increases. While each IWD moves incrementally from 
one node I to j while building a solution, the soil content of the IWD 
(soil(iwd)) and the velocity of the same (level(iwd)) is also updated 
based on equations (5-7).

 (5)

 (6)

 (7)

HUD is a heuristic that can be used to measure an IWD’s desirability/
unwantedness to select an edge between i and j, in this case. Therefore, 
a higher IWD velocity helps minimize the time an IWD takes to move 
from i to j. In turn, the time factor influences the amount of soil from 
a path to be removed (as shown in equation 5). The soil content of the 
entire solution path can be updated based on Equation (8) once the 
IWD attributes are calculated.

 (8)

Where ρ0 and ρn remain within 0 and 1, according to the original 
TSP IWD algorithm, ρ0 = 1−ρn.

III. Fast Fourier Transform (FFT) for Image Compression

The Fourier transformation (FT) decomposes a time (a signal) into 
its constituent frequencies (also called analysis). This is similar to how 
a musical can be expressed in terms of its constituent notes volumes 
and frequencies (or pitches). The term Fourier transform refers to 
a function of time, both the representation and the mathematical 
operation associating the representation of the frequency domain.

A fast Fourier transformation (FFT) is an algorithm calculating 
the discrete Fourier transformation (DFT) or its inverse(IDFT) of 
a sequence. Analysis of Fourier converts a signal from its original 
domain in the frequency domain (often time or space) and vice versa. 
The DFT is obtained by breaking down a sequence of values into 
different components of the frequency.

Consider the pixel space image and apply a Fast Fourier Transform 
(FFT) to get a frequency domain image . For RGB layers, threshold 
values are calculated by truncating values below the calculated 
threshold, resulting in a compressed image in the frequency domain. 

Image
(pixel)

FFT Truncate IFFTImage
frequencies

Compressed
image (freq)

Image
compressed (pixel)

Fig. 1. Block diagram for image compression using Fast Fourier Transform.
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To obtain the compressed image in pixels, the Inverse Fourier 
Transform is carried out.

IV. Structural Similarity (SSIM) Index

The Structural Similarity (SSIM) index is a method employed to 
estimate the similarity in two images [18]. The SSIM index is studied 
as a measure of the quality of one of the images being examined, 
provided that the other image is considered to be of perfect quality. 
It is an enhanced version of the previously proposed universal image 
quality index.

For the examples shown in Fig. 2, all distorted images have about 
the same mean squared error (MSE) values for the initial image, but 
very distinct performance. SSIM offers a much better indication of 
image quality.

V. Our Proposed Solution

Using Fast Fourier Transforms, the compression of images involves 
thresholding the complex Fourier coefficients and applying reverse 
Fourier transform to the result in order to restore the image. These 
thresholds should be carefully chosen because the image can not 
be compressed by too low threshold while too high can result in 

very lossful compression. These thresholds are previously selected 
experimentally and are hard-coded for all images. Our experiments 
show that each compressed image tends to have its own set of 
thresholds, resulting in a better compression as well as a better quality 
ratio. But running the compression algorithm significantly for each 
image with different parameters is a very heavy and computationally 
expensive task to find an optimal solution. Also, the thresholds for 
RGB images are a triplet of 3 values instead of 1 value. Consequently, 
the complexity of such a task increases even more in the case of RGB 
images. There are some approximations available that can be used to 
estimate a set of threshold values, but none of them work well in terms 
of space or time complexity to our extent of knowledge.

For which, we suggest the intelligent water drops algorithm (IWD) 
to estimate these triplet’s values. The task in hand is to estimate 3 
discrete threshold values for each image compression. But producing 
these values directly may not be an optimal way to get the result. 
Instead, we try to obtain parameter (p1, p2, p3) for these 3 discrete 
values that are multiplied by the maximum absolute value of the RGB 
channel yield threshold of the complex fourier coefficients.

IWD optimizes several problem areas, such as n-queens, traveling 
salesman, multiple knapsack, but here we used IWD’s traveling 
salesman variant to fulfill our task of finding the optimal three 
parameters as shown in Fig. 3.

Original, MSE = 0; SSIM = 1 MSE = 144; SSIM = 0.988 MSE = 144; SSIM = 0.913

MSE = 144; SSIM = 0.840 MSE = 144; SSIM = 0.694 MSE = 144; SSIM = 0.662

Fig. 2. Mean Squared Error (MSE) vs Structural Similarity Index Measure (SSIM).

Image
Image

Frequencies
Estimated
Thresholds

Compressed
frequencies

Compressed
image

FFT TruncateIWD IFFT

Fig. 3. Block diagram for image compression using Fast Fourier Transform (FFT) and Intelligent Water Drop Algorithm (IWD).
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A. Modeling of the Problem
Our experiments with different threshold sets show that the value 

to be optimized for these parameters tends to lie in a limited region of 
parameter space, i.e. 0.001-0.01. We have modelled a graph of 30 nodes, 
10 nodes for each of the 3 threshold triplet values by incorporating 
this prior knowledge about the parameter space. The value of each 
of the 10 nodes is 0.001 higher than the previous node (see Fig. 4). 
From these 10 discrete values, IWD is then used to find the best triplet 
combination that increases the image’s SSIM along with the highest 
compression ratio.

The IWD algorithm computes the Local Heuristic H(j) for every 
node it moves forward to (j is the next node of the graph where the 
drop will move), for our task, we have used a constant heuristic 1.

Algorithm
• function quality:

1.  input : values of p1, p2, p3
2.  Calculate the maximum absolute value (say maxval) from fourier 

coefficients.

3.  Calculate thresholds by multiplying the maximum absolute value 
with p1, p2 and p3.

4.  Thresholds = (p1 * maxval, p2 * maxval, p3 * maxval)
5.  Filter the fourier coefficients by zeroing out those which are less 

than the calculated threshold.

6.  Apply inverse fourier transform to the filtered coefficients to 
obtain decompressed image.

7.  Calculate SSIM score using decompressed and original image.

8.  return SSIM

It is necessary to rank each solution produced by an IWD based on 
its quality. For each iteration, for each droplet and for the best global 
solution, IWD calculates this quality. We used a quality function for 
our task that takes the traveled path (in our case the p1, p2 and p3 
values) and compresses the image using these thresholds and returns 
the SSIM score of that particular compression.

VI. Experimental Results

In simulations, to compare the results obtained from the traditional 
method and the IWD-based FFT compression method four sample 
images were selected. These images were directly scraped from the 
internet with query, "high fidelity images", "high resolution colored 
images" and "HD portraits". Fig. 5 shows the four sample images 
selected for experimental results.

Fig. 6, 8, 10 and 12 represent the grayscale, surface plot and top view 
plot of sample image 1, 2, 3 and 4 respectively. In the grayscale image, 
where the threshold is a single value, as applied in the image in Fig. 
7, the visual quality of the image is preserved even after suppressing 
98.17 per cent of the data in an image. Similarly in Fig. 9, Fig. 11, Fig. 
13 the visual quality of the image is preserved even after the image 
is highly compressed. In the case of RGB images, the threshold is 
separate for each channel, thus the same procedure of hit and trial can 
be implemented for each channel separately.

It is concluded from Fig. 7, Fig. 9, Fig. 11, Fig. 13 that as more 
amount of data is suppressed, the less visually similar the images look. 
The quality of an image and the amount of compression is a tradeoff 
between each other. Hence, the threshold for compression must 
be chosen carefully, such that, the quality of the image along with 
compression maximizes. Every image has its own set of features along 
the channels that must be taken in order to achieve maximum quality. 

Fig. 4. Each layer has 10 nodes of values from 0.001 to 0.01 with step size of 0.001, where each node is connected to each other in the next layer. Layers 1, 2 and 
3 may have p1, p2 and p3 values respectively. The IWD starts at layer 1 with any node and stops at layer 3 when it reaches a node.

(a) (b) (c) (d)

Fig. 5. (a) Sample image 1, (b) Sample image 2, (c) Sample image 3, (d) Sample image 4.
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Fig. 6. (a) represents the grayscale of sample image 1, (b) represents surface plot, and (c) represents top view plot.
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Fig. 7. Representations of the results of compression using Fourier transforms with the selected thresholds.
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Fig. 8. (a) represents the grayscale of sample image 2, (b) represents surface plot, and (c) represents top view plot.
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Fig. 9. Representations of the results of compression using Fourier transforms with the selected thresholds.
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Fig. 10. (a) represents the grayscale of sample image 3, (b) represents surface plot, and (c) represents top view plot.
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Hence, it is necessary to calculate thresholds based on the content of 
the image. 

Table I shows the results of compressing images using the defined 
values and calculated values of thresholds for 4 different images of 
different color densities and structural formations. For sample image 
1, using predefined values of (0.001, 0.001, 0.001) as p1, p2 and p3, 
the SSIM score after compression was found out to be 0.72 while the 
amount of data loss was over 95%. While using the values (0.001, 0.001, 
0.01) which were obtained by IWD, the SSIM score was found out to 
be 0.69 while achieving a compression loss of more than 99.8%. To 
get a clear understanding of the result, we switched the values of the 
triplets to (0.01, 0.01, 0.001) and performed a compression. The image 
obtained had a SSIM score of 0.60 along with a 95% data loss. These 
results explain that, to achieve a maximum compression along with 

good quality for this particular image, the green channel must be kept 
along with blue being the least required. Which when violated, the 
result became unstable (see Table I: sample image 1).

VII.   Conclusion

Image Compression which is the science of reducing the amount 
of data required to represent an image, is one of the most useful and 
commercially successful technologies in the field of digital image 
processing. Our assessment demonstrates that each compressed 
image must integrate the image content, thus improving the need 
to evaluate compression parameters for each image and whereby 
thresholds must be calculated for each image using IWD to compress 
images using fourier transform. Here we have constrained the values 

TABLE I. Data Loss and SSIM Score Comparison

Image

Compressed RGB image using
threshold obtained using IWD

Compressed RGB image using
standard method

Compressed RGB image using
swapped values of threshold

SSIM Score Data loss(%) SSIM Score Data loss(%) SSIM Score Data loss(%)

Sample image 1 0.69 99.8766642304 0.72 95.63583972020 0.60 95.63583972020

Sample image 2 0.73 99.7957887012 0.65 96.66549437568 0.65 95.95311462500

Sample image 3 0.88 99.7381844611 0.78 99.57618713378 0.69 96.58470153808

Sample image 4 0.62 98.9637915129 0.62 98.9637915129 0.65 79.35055350553
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Original 87.69556681315103 % loss 99.5886484781901 % loss99.05192057291666 % loss
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Fig. 11. Representations of the results of compression using Fourier transforms with the selected thresholds.
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Fig. 12. (a) represents the grayscale image of sample image 4, (b) represents surface plot, and (c) represents top view plot.
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Fig. 13. Representations of the results of compression using Fourier transforms with the selected thresholds.
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of these thresholds to be in a bounded parameter space. In future 
implementations, we wish to overcome the restricted parameter space 
implementation, i.e, the values that we used to begin the IWD search. 
We believe that, if an elaborated search space aka parameter space for 
the threshold values is provided to the IWD during its initialization, 
a better minimum can be found for our loss function thus improving 
the optimization strategy. Hence, we would like to introduce a bigger 
parameter space for finding the threshold values algorithm so as to 
increase the efficiency of the methodology and achieve better results.
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