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Abstract

The speech signal within a sub-band varies at a fine level depending on the type, and level of dysarthria. The 
Mel-frequency filterbank used in the computation process of cepstral coefficients smoothed out this fine level 
information in the higher frequency regions due to the larger bandwidth of filters. To capture the sub-band 
information, in this paper, four-level discrete wavelet transform (DWT) decomposition is firstly performed to 
decompose the input speech signal into approximation and detail coefficients, respectively, at each level. For 
a particular input speech signal, five speech signals representing different sub-bands are then reconstructed 
using inverse DWT (IDWT). The log filterbank energies are computed by analyzing the short-term discrete 
Fourier transform magnitude spectra of each reconstructed speech using a 30-channel Mel-filterbank. For each 
analysis frame, the log filterbank energies obtained across all reconstructed speech signals are pooled together, 
and discrete cosine transform is performed to represent the cepstral feature, here termed as discrete wavelet 
transform reconstructed (DWTR)- Mel frequency cepstral coefficient (MFCC). The i-vector based dysarthric 
level assessment system developed on the universal access speech corpus shows that the proposed DTWR-
MFCC feature outperforms the conventional MFCC and several other cepstral features reported for a similar 
task. The usages of DWTR-MFCC improve the detection accuracy rate (DAR) of the dysarthric level assessment 
system in the text and the speaker-independent test case to 60.094 % from 56.646 % MFCC baseline. Further 
analysis of the confusion matrices shows that confusion among different dysarthric classes is quite different 
for MFCC and DWTR-MFCC features. Motivated by this observation, a two-stage classification approach 
employing discriminating power of both kinds of features is proposed to improve the overall performance of 
the developed dysarthric level assessment system. The two-stage classification scheme further improves the 
DAR to 65.813 % in the text and speaker-independent test case.
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I. Introduction

Dysarthria reduces the speech intelligibility of a person by 
affecting the speech production system [1]. Parkinson’s disease, 

amyotrophic lateral sclerosis, cerebral palsy, brain tumor, and brain 
injury are some of the causes for developing dysarthria in a person 
[2]–[4]. The speech intelligibility of a dysarthric person varies from 
near-normal to unintelligible depending on the level of severity. 
From the mid-level of severity, it is difficult to understand the spoken 
utterances of a dysarthric person by unfamiliar listeners [5]. In the 
conventional approach, the intelligibility level of a spoken utterance 
is measured by subjective assessment in clinical applications. The 
subjective assessment approach is costlier in time and money with 

a possibility of biasness towards the previous knowledge of experts 
about the type of disease [6]. Due to easy accessibility and consistent 
performance, recently, automated objective assessment methods are 
explored for the diagnosis of dysarthria in the primary stages [7].

The speech quality of a person suffering from dysarthria differs 
from a normal speaker due to change in loudness level, fundamental 
frequency, voice instability, voice breaks, and speaking rate [8], [9]. 
Consequently, the performance of the automatic speech recognition 
(ASR) system for a dysarthric speaker degrades compared to the 
normal speaker [10]. Using this aspect, some of the reported works 
used the ASR system for evaluating the level of dysarthria [10]–[14]. 
The word recognition rate (WRR), state-level log-likelihood ratios 
(SLLRs), and log-likelihoods (LLs) are used as the measuring parameter 
for the evaluation of the intelligibility level of the dysarthric speech. 
Such approaches are more suitable when a fixed set of words are used 
for testing different speakers. The performance of the ASR system also 
varies depending on the linguistic context of the speaker. The scarcity 
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of dysarthric speech data and limited availability of reference language 
models make the blind intelligibility assessment methods more useful 
[15]. The blind intelligibility assessment approaches use a classifier for 
differentiating the healthy speaker and dysarthric speaker and further 
separate according to their severity level. Some of the blind modeling 
approaches include the classical modeling methods like support 
vector machine (SVM) [16], Gaussian mixture model(GMM) [17], 
and recently reported neural network (NN) based modeling methods 
[18]–[22]. The NN based methods such as artificial neural network 
(ANN) [18], deep neural network (DNN) [19], convolutional neural 
network (CNN) [23], [24], long short-term memory network (LSTM) 
[25], bidirectional LSTM (BLSTM) and recurrent neural network 
(RNN) [26] have been explored for the intelligibility assessment of 
dysarthric speech. The i-vector representation of input speech data is 
also explored for assessment of dysarthria [27], [28]. The i-vector based 
representation maps the varying length of input speech utterance into 
a fixed dimension. Various feature projection and scoring schemes 
in combination with i-vector improve the performance of dysarthric 
level assessment system [27], [28]. Some of the reported works also 
used the combination of various statistical modeling and NN-based 
approaches [16], [17], [29]–[31]. Despite the use of sophisticated 
acoustic modeling methods the performances reported for dysarthric 
level assessment are less.

The aforementioned modeling approaches mostly use the spectral 
domain features for acoustic representation of the input speech data 
[18], [32]. The spectral representation of the input speech data such as 
spectrogram [33], log filterbank energy [26], Mel-frequency cepstral 
coefficients (MFCCs) [32], multitaper MFCC [18], perceptual linear 
prediction cepstral coefficients (PLPCCs) [34], [35], linear prediction 
cepstral coefficients (LPCC) [36], constant Q cepstral coefficients 
(CQCCs) [37] and line spectral frequencies have been explored for 
the assessment of dysarthric level. Several voice quality features [38]–
[40], prosodic features [17], and excitation source features [41]–[43] 
are also explored for the assessment of dysarthria. The extraction of 
voice quality and prosodic feature from a speech signal is difficult and 
performance is highly dependent on the employed feature extraction 
approach. On the other hand, the cepstral feature can be easily 
extracted from the input speech data and very frequently used in the 
development of speech based applications.

The speech signal within a sub-band varies at a fine level 
depending on the type and level of dysarthria. Following the human 
perception of the speech signal [32], most of the cepstral features 
are extracted by analyzing the short-term magnitude spectra using 
a Mel-filterbank. Consequently, the fine level information present 
in the higher frequency regions is smoothed out due to the larger 
bandwidth of Mel-filters. The discriminating information present at 
the fine level in the short-term magnitude spectra can be captured 
up to a certain level by increasing the size of the filterbank. The 
increase in filterbank size may also capture the redundancy present in 
the lower frequency regions. Alternatively, the fine level information 
can be captured by decomposing the speech signal into different sub-
band signals and analyzing the magnitude spectra of each sub-band 
signal [14]. Motivated by these observations, in this paper, we have 
firstly decomposed the speech signal using discrete wavelet transform 
(DWT) [44] into approximation and detail coefficients, respectively, 
at each level. The speech signals representing different sub-bands 
are then reconstructed using inverse DWT (IDWT) [44], [45]. In 
the process of IDWT, the speech signals are reconstructed by using 
the detail coefficient obtained at each level of decomposition and 
making all other coefficients to zero vector. Finally, at the last level 
of decomposition, the speech signal representing the lower frequency 
region is reconstructed by using only the approximation coefficients 
and making all detail coefficients to zero vectors. The log filterbank 

energies are computed by analyzing the short-term discrete Fourier 
transform (DFT) magnitude spectra of each reconstructed speech 
using the Mel-filterbank. For each analysis frame, the log filterbank 
energies obtained across all reconstructed speech are pooled together, 
and discrete cosine transform (DCT) is applied to represent the 
13-dimensional base cepstral feature, here termed as discrete wavelet 
transform reconstructed - Mel frequency cepstral coefficient (DWTR-
MFCC). The experimental results presented in this study show that 
DWTR-MFCC enhances discrimination among the overlapping 
classes compared to the conventional MFCC feature [46]. It also 
carries additional information to MFCC features. Motivated by this 
observation finally, a two-stage classification scheme is proposed to 
improve the overall performance of the dysarthric assessment system.

The remainder of the paper is organized as follows: Section II 
describes the proposed feature extraction method using DWT for 
the assessment of dysarthric level. Section III presents experimental 
setup for the development of i-vector based dysarthric level assessment 
system. The experimental results are presented in Section IV. Finally, 
Section V concludes this study.

II. Proposed Feature for Assessment of Dysarthric 
Level

The wavelet transform-based approaches are most preferred 
for time-frequency analysis of different types of signals [44], [47]–
[50]. In the following section, decomposition and reconstruction of 
input speech using DWT followed by the proposed approach for the 
computation of DWTR-MFCC feature are presented.

A. Decomposition and Reconstruction of Speech Signal Using DWT
Using DWT, the speech signal 𝑠(𝑛) can be decomposed into 

high-frequency detail coefficients and low-frequency approximation 
coefficients by passing through a series of high-pass and low-pass 
filters, respectively. At a particular level of decomposition, the detail 
coefficient (𝐷𝑖,𝑗), and approximation coefficient (𝐴𝑖,𝑗) can be obtained 
as given in [44]. Equation (1) and Equation (2) represents the detail 
coefficients and approximation coefficients of the input signal 𝑠(𝑛), 
respectively.

 (1)

 (2)

where integer 𝑖 and 𝑗 provide the information about the amount of 
scaling and shifting of the wavelet function, respectively. The mother 
wavelet function (ψ𝑖,𝑗 (𝑛)) and the father wavelet function (ϕ𝑖,𝑗 (𝑛))
are extracted from the continuous wavelet transform (CWT) using 
most commonly used dyadic grid arrangement [44], [47]. Equation (3) 
represents the mother wavelet function (ψ𝑖,𝑗 (𝑛)).

 (3)

Equation (4) represents the father wavelet function (ϕ𝑖,𝑗 (𝑛)).

 (4)

Equation (5) refers to the representation of the signal 𝑠(𝑛) as the 
combination of detail and approximation coefficients.

 (5)

where,  represents the approximation coefficient at level 𝑖0. The 
approximation coefficient at 𝑖th level of decomposition can be obtained 
by combining the detail and approximation coefficients obtained at 
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(𝑖+1)th decomposition level [44]. The block diagram representing 
four-level of wavelet decomposition and reconstruction of five sub-
band speech signals is illustrated in Fig. 1. Let, the original speech 
signal 𝑠(𝑛) be the approximation coefficient at level zero. As shown 
in the block diagram, in each level, the approximation coefficient is 
decomposed into detail and approximation coefficients of the next 
higher level. The decomposition is performed by processing the 
approximation coefficient through a pair of high-pass and low-pass 
filters having impulse response h(𝑛) and g(𝑛), respectively. At each 
level, decomposed signals are downsampled to half of the original 
sampled signal (↓2) to remove the redundant samples while satisfying 
Nyquist's criteria [44], [47]. As shown in the block diagram, a four-level 
DWT-based decomposition finally results in four detail coefficients 
(CD1, CD2, CD3 and CD4) and one approximation coefficient (CA4). The 
five sub-band signals are then reconstructed through inverse DWT 
(IDWT) [44],[50]. During the reconstruction process, one coefficient is 
preserved while the other coefficients are made to be a zero vector. On 
the use of one coefficient vector in the IDWT reconstruction process, 
the resulting signal contains frequency components only in that 
region. Therefore, the reconstructed sub-band speech sl (𝑛), l = 1, 2, … 5 
represents 4−8 kHz, 2−4 kHz, 1−2 kHz, 0.5−1 kHz, and 0−0.5 Hz 
frequency band, respectively for a 16kHz sampled speech data.

B. Computation of Proposed DWTR-MFCC Feature
The proposed method for the computation of the DWTR- MFCC 

feature is depicted in Fig. 2. As shown in the block diagram, the input 
speech signal 𝑠(𝑛) is processed through the following sequence of 
steps to extract the DWTR-MFCC feature.

1. The speech signal is subject to a pre-emphasis filter with a 
filter coefficient of 0.97 to boost the high-frequency component. 
As explained in the previous section, the decomposition and 
reconstruction of five sub-band speech signals are then performed 

using the Daubechies (db) wavelet function [45]. Let, the 
reconstructed sub-band signals are represented by 𝑠l(𝑛), l = 1, 2, ... 5.

2. The short-term analysis of each reconstructed signal 𝑠l(p) is 
performed by processing with a fixed-length Hamming window 
of size 20 ms with a frame-shift of 5 ms. The short-term magnitude 
spectra are then computed by performing DFT on the short-
term analysis frames 𝑠l(p), where p = 1, 2, ... P. The total number 
of analysis frames is represented by P. The short-term DFT 
magnitude spectra for pth analysis frame of lth sub-band signal is 
denoted by Sp,l (ω). The nature of short-term magnitude spectra for 
original and reconstructed sub-band signals are depicted in Fig. 3. 
This analysis is performed for a center frame of vowel /a/ taken 
from the dysarthric speaker. The logarithmically compressed 
magnitude spectrum of the original frame is given in Fig. 3 (a). 
The logarithmically compressed magnitude spectra obtained 
for sub-band signals reconstructed using CA4, CD4, CD3, CD2 and 
CD1 are given in Fig. 3(b)-Fig. 3(f), respectively. The magnitude 
spectra for each sub-band signal are different. Therefore, fine level 
information can be extracted by analyzing the spectra separately.

3. The Mel-frequency warping of each short-term magnitude spectra 
Sp,l (ω) is performed using a 30 channel Mel-filters. The size of the 
Mel-filterbank has remained the same for each sub-band signal 
𝑠l(𝑛). The filterbank energies are then computed by following the 
standard procedure of the MFCC feature extraction. Here, the Mel-
filterbank energy for the pth analysis frame of lth sub-band signal is 
represented by Xp,l(k).

4. The Mel-filterbank energies are logarithmically compressed to 
reduce the dynamic range. For each analysis frame, log compressed 
filterbank energies obtained across all the sub-band signals are 
pooled together and discrete cosine transform (DCT) is performed 
to compute the 13-dimensional base DWTR-MFCC feature.
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Fig. 1. The block diagram illustrating the DWT based four level multiresolution decomposition of the speech signal. The h(n) and g(n) represents the high pass 
and lowpass filter, respectively. CD1, CD2, CD3, CD4 and CA4 represents the detail coefficient at level1, level2, level3, level4 and approximation coefficient at level4 
decomposition, respectively. sl(n), l = 1; 2; ...5 represents the reconstructed signals.
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Fig. 2. The block diagram representation of proposed DWTR-MFCC feature extraction process.
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Fig. 3. Plot illustrating the nature of DFT magnitude spectra for sub-band 
signals. This analysis is performed for a center frame of vowel {a{ taken from 
the dysarthric speaker M11 of UA-speech corpus. (a) Logarthically compressed 
magnitude spectrum of the original frame. (b)-(f) Logarithmically compressed 
magnitude spectra obtained for sub-band signals reconstructed using CA4, 
CD4, CD3, CD2 and CD1, respectively.

III. Experimental Setup

The automatic assessment of dysarthric level is performed using 
universal access speech (UA-Speech) corpus [51]. This database 
contains the speech data from 15 dysarthric speakers, which includes 4 
female and 11 male speakers. The speech data of each speaker contains 
isolated words in three different blocks (B1, B2, and B3). Each block 
contains a total of 255 words out of which 155 words are repeated 
and the rest 100 words are uncommon for all blocks. The phoneme 
level diversity is present in the database due to the availability of 
monosyllables, bisyllables, and polysyllables with the combination 
of various words. The subjective intelligibility of the speakers varies 
from 2% to 95%, which is classified into four intelligibility levels, 
namely very-low (0%-25%), low (26%-50%), mid (51%-75%) and high 
(76%-100%).

In this study, four datasets namely, the training dataset (Train_
Data), development dataset (Dev_Data), speaker-dependent test 
dataset (SD_Test), and speaker-independent test dataset (SI_Test) are 
derived from the UA-Speech corpus. These datasets are prepared by 
balancing the recording microphone to remove the sensor effect. The 
selection of speaker and utterances for each dataset is done as follows:

1. Train_Data: This dataset contains the common words from all the 
blocks and uncommon words from two blocks (B1 and B3) of 8 
speakers.

2. Dev_Data: This dataset contains a part of Train_Data equally 
distributed among dysarthric levels, speakers, and microphones, 
which is used for the development of universal background model 
(UBM), total variability matrix (T-matrix) and learning matrices 
for projection of i-vectors to lower dimensional subspace.

3. SD_Test: This dataset contains the speech utterances of the 100 
uncommon words from block B2 of 8 speakers present in the Train_
Data. This dataset is speaker-dependent and text-independent.

4. SI_Test: This dataset contains speech data of 100 uncommon words 
from block B2 of the remaining 7 speakers. Therefore, this dataset 
is speaker and text-independent compared to Train_Data.

The speakers selected for each dataset is summarized in Table I. 
All the experimental studies are performed using 16 kHz sampled 
speech data.

A. Front-End Speech Parameterization
In all the experimental studies, the speech data is firstly pre-

emphasized using a high-pass filter with a filter coefficient of 0.97. The 
short-term analysis of the pre-emphasized speech signal is performed 

by using an overlapping Hamming window of 20 ms duration at a 
frame-shift of 5 ms. The performance of dysarthric level assessment 
system employing proposed DWTR-MFCC feature is compared with 
MFCC [46], [52], linear prediction cepstral coefficient (LPCC) [53], 
constant Q cepstral coefficients (CQCCs) [37] and spectral moment 
time-frequency distribution augmented by low-order cepstra (SMAC) 
[54] acoustic features. The dimension of base DWTR-MFCC, MFCC, 
LPCC and CQCC is fixed at 13. As presented in [54], [55], the 
dimension for the base SMAC feature is fixed at 18, which contains 16 
first-order spectral moments extracted using 16-channel Mel-spaced 
Gabor filterbank and two first-order coefficients of Garbor filtered 
spectra. To further analyze the impact of shape and size of filterbank 
on MFCC, the features are extracted using the varied size of Mel and 
linear filterbank. However, for each case, the 12 dimensional cepstral 
coefficients along with the energy coefficients are used as the feature 
vector [28], [46]. For each acoustic feature, the delta (∆) and delta-
delta (∆ − ∆) coefficients are computed using two preceding and two 
succeeding feature vectors from the current feature vector. The base 
feature is then appended to delta (∆) and delta-delta (∆ − ∆) features. 
The feature vectors corresponding to the non-speech regions are 
removed by processing the speech signal through an energy-based 
voice activity detection (VAD) [56]. The cepstral mean-variance 
normalization (CMVN) [57] are then applied to the selected feature 
vectors to follow a zero mean unit variance distribution.

B. Development of I-Vector Based Dysarthric Assessment System
In the i-vector based approach, for the given set of acoustic 

feature vectors, a lower-dimensional vector of fixed size is created to 
represent the input speech data [58]–[60]. In this approach, firstly, the 
class-dependent Gaussian mixture model (GMM) mean supervector is 
created by adapting a class independent universal background model 
(UBM). The GMM mean supervector is then projected into a lower-
dimensional subspace for mapping the given utterances to a fixed 
dimension, as proposed in [58]. Equation (6) refers to the i-vector 
representation of a given speech utterance.

𝑀 = 𝑚 + 𝑇𝑤 (6)

where 𝑀  is the adapted GMM mean supervector, m is the UBM 
mean supervector, 𝑇 is the total variability matrix and w is the i-vector.

The i-vectors extracted from a given speech utterance contains 
speaker and sensor information along with the information of 
dysarthria. Therefore, for improving the performance of the dysarthric 
assessment system, the speaker and channel information need to be 
normalized. In this study, we have explored the linear discriminant 
analysis (LDA) [61] and within-class covariance normalization 
(WCCN) [62] for reducing the session and channel variabilities. The 
performance of the developed dysarthric assessment system is also 
evaluated by applying WCCN to the dimensionality reduced i-vectors 
obtained through LDA. The four levels dysarthric assessment is 
performed by comparing the i-vectors of the test speech with the 
trained i-vectors of each dysarthric level. We have performed both 

TABLE I. Speakers Selected for Training Dataset (Train_Data), 
Development Dataset (Dev_Data), Speaker-Dependent Test Dataset 

(SD_Test) and Speaker-Independent Test Dataset (SI_Test). The 
Abbreviations F and M Refer to the Female and Male Speakers, 

Respectively

Intelligibility Level
Train_Data, Dev_Data and 

SD_Test
SI_Test

Very low(0%-25%) F03, M04 M12, M01
Low(26%-50%) F02, M07 M16
Mid(51%-75%) F04, M05 M11

High(76%-100%) F05, M08 M09, M10, M14
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cosine kernel [63] and probabilistic linear discriminant analysis 
(PLDA) [64] based scoring mechanisms. The class representative 
i-vectors for a particular dysarthric level is created by pooling all the 
speech data corresponding to that class. During testing, the i-vectors 
are extracted from each test data and compared with the trained 
i-vector of each class. The assignment of the test data to a particular 
class is done based on the maximum score. In this study, UBM model 
contains 512 Gaussian components, the rank of i-vector is fixed at 100 
and the LDA dimension is fixed at 10.

IV. Experimental Results and Discussion

The performance of dysarthric level assessment systems is 
measured using detection accuracy rate (DAR) and also analyzed 
using confusion matrices.

A. Performance of the Baseline System
In the MFCC feature extraction process [46], the triangular 

filters are placed in a nonlinear scale to map the frequency bins in 
Hz to Mel-scale following the human speech perception. The Mel-
scale warping emphasizes the lower frequency bins than the higher 
frequency bins [46]. Consequently, the fine level features those lie 
in the higher frequency range may not be captured by the MFCC 
feature. Alternatively, the linearly spaced filterbank provides equal 
emphasis to all the frequency bins [52], [65]. To study the impact of 
Mel and linearly spaced filterbank on the cepstral coefficients for the 
task of dysarthric level assessment, we have extracted the cepstral 
coefficients by replacing the Mel-frequency triangular filterbank with 
linearly spaced triangular filterbank in the feature extraction process. 
The cepstral coefficients extracted using linear filterbank are termed 
as linear frequency cepstral coefficient (LFCC) [46], [66].

The performances of the dysarthric level assessment system for 
MFCC and LFCC features on the SD_Test and SI_Test datasets are 
summarized in Table II. In this study, MFCC and LFCC features are 
extracted using 40 channel filterbank [28]. For both kinds of features, 
the DAR observed for SI_Test is less compared to the SD_Test. As 
mentioned earlier, the i-vectors captures the speaker factors along with 
the information of dysarthria. Since the speakers present in Train_Data 
and SD_Test are the same, the speaker factor present in the i-vectors is 
normalized up to a great extent. From these preliminary experimental 
results, it is evident that the cosine kernel-based scoring provides 
better DAR than the PLDA-based scoring for the SI_Test dataset. The 
WCCN followed by LDA provides improved DAR than WCCN and 
LDA-based projection. For both the test datasets, the performance 
observed for the MFCC feature is better than the LFCC. Therefore, 
further studies are performed using the Mel-frequency filterbank.

TABLE II. The Performance of the Dysarthric Assessment System Using 
MFCC and LFCC Features Extracted Using 40 Channel Filterbank. The 

Performance Is Given in Terms of DAR (in %) for Cosine Kernel and 
PLDA Based Scoring Schemes

Test
Dataset

Feature
Type

Cosine Kernel PLDA
LDA WCCN LDA-WCCN LDA

SD_Test
MFCC
LFCC

87.529
86.933

88.280
87.123

91.436
88.883

91.747
89.209

SI_Test
MFCC
LFCC

46.562
43.948

47.719
45.089

48.886
46.969

47.104
45.854

1. Impact of Mel-Filterbank Size on Dysarthria Discrimination of 
MFCC Feature

As discussed earlier, the information about dysarthria is present at 
a fine level in the short-term magnitude spectra. Consequently, the 
dysarthria discrimination of the MFCC feature may be enhanced up 

to an extent by increasing the size of the Mel-filterbank during the 
feature computation process. The performance of the dysarthric level 
assessment system employing the MFCC feature for the varied size 
of Mel-filterbank is given in Table III. It is evident that the DAR for 
the SI_Test dataset employing the MFCC feature improves with an 
increase in the size of the Mel-filterbank and the best DAR is observed 
when the Mel-filterbank size is 160. On further improving the size of 
the filterbank, it captures the redundancy present in the magnitude 
spectra. On the other hand, by increasing the filterbank size, DAR 
reduces for the SD_Test dataset. Most of the practical applications 
demand assessment of dysarthric levels in speaker and text-independent 
mode. Therefore, this study emphasizes the SI_Test mode of operation. 
Further studies on the MFCC feature is presented using 160 channel 
Mel-filterbank.

TABLE III. The Performance of the Dysarthric Assessment System 
Employing MFCC Feature for Different Sizes of Mel- Filterbank. The 
Performance Is Given in Terms of DAR (in %) for Cosine Kernel and 

PLDA Based Scoring Schemes

Filterbank
Size

SD_Test SI_Test
Cosine Kernel PLDA Cosine Kernel PLDA
LDA-WCCN LDA LDA-WCCN LDA

40 91.436 91.747 48.886 47.104
80 90.247 90.934 52.448 50.489
120 89.622 90.121 54.500 51.875
160 88.090 88.933 56.646 54.563
200 88.895 89.214 55.812 52.677
240 89.064 89.838 53.636 51.864

2. Impact of Cepstral Liftering on Dysarthria Discrimination of 
MFCC Feature

In the MFCC feature extraction process, cepstral liftering is used 
to estimate the spectral envelope that represents the resonance 
structure of the vocal tract system [46], [53]. On the other hand, the 
cepstral liftering operation smooths out the pitch harmonics [67], [68]. 
The pitch harmonics may contain information about dysarthria. To 
capture the effect of pitch harmonics in the MFCC feature, instead of 
using fixed 13 dimensional base cepstral coefficients, we have studied 
the performance of the dysarthric level assessment system employing 
different sizes of base MFCC. In this study, the MFCC feature is 
extracted using 160 channel Mel-filterbank. The performance of the 
dysarthric level assessment system for varied dimensions of base MFCC 
feature is given in Table IV. For both cosine kernel and PLDA based 
scoring schemes, on increasing the dimension of cepstral coefficients 
the performance of the dysarthric level assessment system is improved 
for the SD_Test dataset. On the other hand, for the SI_Test dataset, the 
best performance is observed for 13 dimensional base MFCC feature. 
It may be due to modeling speaker information instead of dysarthria. 
These experimental results show that the optimal performance for the 
SI_Test dataset is observed for the 13 dimensional base MFCC feature 
extracted using 160 channel Mel-filterbank.

TABLE IV. The Performance of the Dysarthric Assessment System 
Employing Varied Dimensions of MFCC Feature Extracted Using 160 
Mel-Filterbank. The Performance is Given in Terms of DAR (in %) for 

Cosine Kernel and PLDA Based Scoring Schemes

Feature
Dim.

SD_Test SI_Test
Cosine Kernel PLDA Cosine Kernel PLDA
LDA-WCCN LDA LDA-WCCN LDA

8 84.995 85.106 51.625 50.048
13 88.090 88.933 56.646 54.563
18 89.967 90.529 48.614 44.761
23 90.935 91.841 44.083 41.281
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B. Performance of Dysarthric Level Assessment System Using 
DWTR-MFCC Feature

The performance of the developed dysarthric level assessment 
system employing the DTWR-MFCC feature is given in Table V. 
For performance comparison, the DAR obtained for the MFCC with 
optimal feature parameter selection, LPCC [53], CQCC [37], SMAC [54] 
features is also given in the Table. 5. Similar to the MFCC, the explored 
features also provide improved performance for the cosine kernel-
based scoring than the PLDA-based scoring scheme. Furthermore, for 
all the explored features, a reduced DAR is observed for the SI_Test 
dataset compared to the SD_Test dataset. In the case of the SI_Test 
dataset, CQCC provides improve performance than LPCC and SMAC 
features. On the other hand, for the SD_Test dataset, SMAC provides 
better performance than LPCC and CQCC features. However, the 
MFCC feature extracted using optimal parameter selection provides 
better performance than all the explored features for the SI_Test 
dataset. In the case of the SI_Test dataset, the usage of the proposed 
DTWR-MFCC feature improves performance compared to the MFCC 
feature. As discussed earlier, in most of the practical applications, the 
dysarthric level assessment needs to be done in speaker and text-
independent mode. Therefore, the proposed way of computing the 
cepstral coefficient is more effective than the conventional MFCC 
feature.

TABLE V. The Performance of the Dysarthric Assessment System 
is Given for Proposed DWTR-MFCC and Explored Features. The 

Performance is Given in Terms of DAR (in %) for Cosine Kernel and 
PLDA Based Scoring Schemes

Filterbank
Size

SD_Test SI_Test

Cosine Kernel PLDA Cosine Kernel PLDA

LDA-WCCN LDA LDA-WCCN LDA

DWTR-MFCC 85.620 86.589 60.094 57.271

MFCC 88.090 88.933 56.646 54.563

LPCC 92.904 93.436 50.323 48.531

CQCC 88.367 88.972 53.989 49.875

SMAC 93.823 94.017 47.458 44.271

For further analysis, we have computed the confusion matrices 
obtained using the DWTR-MFCC and MFCC features. The confusion 
matrices obtained for the MFCC and DWTR-MFCC features on the 
SI_Test dataset are given in Table VI. Table VI (a) and Table VI (b) 
represents the confusion matrices obtained for cosine kernel scoring 
on LDA-WCCN projected i-vectors for the MFCC and DWTR-MFCC, 
respectively. Table VI (c) and Table VI (d) represents the PLDA scoring 
on LDA projected i-vectors for MFCC and DWTR-MFCC, respectively. 

By comparing the confusion matrices obtained by the DWTR-MFCC 
feature with the MFCC features given in Table VI, it can be observed 
that the DWTR-MFCC feature is more discriminating for mid and 
low dysarthric classes. On the other hand, the MFCC feature is more 
discriminating for the very-low dysarthric level. Motivated by this 
observation, next we have studied the possibilities of improving the 
overall performance of the developed dysarthric level assessment 
system by employing discriminating power of both kinds of features.

TABLE VI. Confusion Matrices are Given for the I-vector Based 
Dysarthric Level Assessment Systems Using the Proposed DWTR-
MFCC Feature. This Analysis is Given on the SI_Test Dataset. (A) 

and (B) Cosine Kernel Scoring on LDA-WCCN Projected I-Vectors for 
MFCC and DWTR-MFCC, Respectively. (C) and (D) PLDA Scoring on 

LDA Projected I-Vectors for MFCC and DWTR-MFCC, Respectively. The 
Abbreviation H, M, L, and VL Refer to the High, Mid, Low, and Very-

Low Speech Intelligibility Groups, Respectively

(a) (c)

Tr
ue

 c
la

ss

Predicted class
Tr

ue
 c

la
ss

Predicted class
H M L VL H M L VL

H 83.083 10.084 4.500 2.333 H 75.500 18.500 4.333 1.667

M 23.750 50.500 19.500 6.250 M 11.250 68.750 16.500 3.500

L 7.750 43.500 39.500 9.250 L 2.750 59.750 34.500 3.000

VL 20.750 8.875 16.875 53.500 VL 14.250 26.250 20.000 39.500

DAR: 56.646 % DAR: 54.563 %

(b) (d)

Tr
ue

 c
la

ss

Predicted class

Tr
ue

 c
la

ss

Predicted class
H M L VL H M L VL

H 83.750 9.833 3.250 3.167 H 70.833 18.083 7.167 3.917

M 18.500 58.250 12.250 11.000 M 7.750 68.250 16.250 7.750

L 5.500 26.250 61.750 6.500 L 2.000 34.250 60.000 3.750

VL 23.750 4.750 34.875 36.625 VL 13.000 10.500 46.500 30.000

DAR: 60.094 % DAR: 57.271 %

C. Performance of Dysarthric Level Assessment Systems Using 
Proposed Two-Stage Classification Scheme

To utilize the classification efficacy of the MFCC and DWTR-
MFCC features, in this study at the first level, the classification scores 
obtained for both kinds of features are combined prior to decision. 
Next, a two-stage classification scheme is proposed to fully utilize the 
classification efficacy of both kinds of features. The block diagram 
representation of the proposed two-stage classification scheme is 
shown in Fig. 4. As shown in the figure, at the first stage a given test 
utterance is classified employing the MFCC feature. Depending on the 

Test
Speech

MFCC
Test

i-vector

i-vector models of each
class using MFCC

i-vector models of each
class using DWTR-MFCC

Classified
Levels

Very-low

Low

Mid

High

No YesTest
i-vector

Comparision Decision

Comparision Decision

Is class very-low?DWTR-MFCC

Fig. 4. Block diagram illustrating the proposed scheme for combining the efficacy of the MFCC and DWTR-MFCC feature to improve the performance of the 
dysarthric level assessment system.
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maximum score, if the assigned class is a very-low intelligible group 
then the test data is assigned to that class and the classification process 
is terminated. On the other hand, if the assigned class is any other 
intelligible group (high, mid, and low), further classification among 
these groups is performed employing the dysarthric level assessment 
system developed using the DWTR-MFCC feature, and the final class 
assignment is done depending on the maximum score obtained for 
test data.

TABLE VII. The Performance Dysarthric Level Assessment System is 
Given for Score Level Combination and the Proposed Combination 
Scheme. The Performance is Given in Terms of DAR (in %) for Cosine 

Kernel and PLDA Based Scoring Schemes

Feature Type
SD_Test SI_Test

Cosine Kernel PLDA Cosine Kernel PLDA
LDA-WCCN LDA LDA-WCCN LDA

MFCC 88.090 88.933 56.646 54.563
DWTR-MFCC 85.620 86.589 60.094 57.271

Score-comb 89.560 90.465 61.261 58.823
Proposed 87.122 88.026 65.813 60.750

TABLE VIII. Confusion Matrices are Given for the I-Vector Based 
Dysarthric Level Assessment Systems Using Score Combination and 

Proposed Approach, Respectively. This Analysis is Given on the SI_Test 
Dataset. (A) and (B) Cosine Kernel Scoring on LDA-WCCN Projected 
I-Vectors for Score Combination and Proposed Method, Respectively. 

(C) and (D) PLDA Scoring on LDA Projected I-Vectors for Score 
Combination and Proposed Method, Respectively. The Abbreviation 
H, M, L, and VL Refer to the High, Mid, Low, and Very-Low Speech 

Intelligibility Groups, Respectively

(a) (c)

Tr
ue

 c
la

ss

Predicted class

Tr
ue

 c
la

ss

Predicted class
H M L VL H M L VL

H 88.417 6.833 2.750 2.000 H 76.917 16.167 5.083 1.833

M 19.750 57.000 15.750 7.500 M 7.500 75.000 12.750 4.750

L 5.000 34.500 52.250 8.250 L 2.250 47.250 46.000 4.500

VL 22.375 6.250 24.000 47.375 VL 14.125 18.750 29.750 37.375

DAR: 61.261 % DAR: 58.823 %

(b) (d)

Tr
ue

 c
la

ss

Predicted class

Tr
ue

 c
la

ss

Predicted class
H M L VL H M L VL

H 86.000 8.167 3.500 2.333 H 73.250 17.250 7.833 1.667

M 16.500 63.000 14.250 6.250 M 7.750 70.250 18.500 3.500

L 4.250 25.750 60.750 9.250 L 2.000 35.000 60.000 3.000

VL 18.625 3.250 24.625 53.500 VL 11.000 9.250 40.250 39.500

DAR: 65.813% DAR: 60.750%

The DAR obtained using the score level combination and proposed 
two-stage classification scheme is summarized in Table VII. The score 
level combination improves the DAR compared to individual features 
for both cosine kernel and PLDA based scoring methods. The DAR is 
further improved on the use of the proposed two-stage classification 
scheme. For cosine kernel-based scoring on LDA-WCCN projected 
i-vectors, the DAR improved to 65.813% in case of the SI_Test dataset. 
To further analyze the merits of the proposed two-stage classification 
scheme, the confusion matrices obtained for the proposed classification 
scheme are compared with the score level combination. Table VIII 
(a) and Table VIII (b) represents the confusion matrices obtained for 
cosine kernel scoring on LDA-WCCN projected i-vectors for score level 
combination and proposed approach, respectively. Table VIII (c) and 
Table VIII (d) represents the PLDA scoring on LDA projected i-vectors 
for score level combination and proposed method, respectively. By 
comparing the confusion matrices obtained for both approaches, it 

can be observed that in case of the proposed two-stage classification 
method the classification accuracy of each class is improved. This is 
mainly due to the complete utilization of the discrimination power of 
both kinds of the feature. This experimental result also shows that the 
proposed DWTR-MFCC carries additional information than MFCC.

V. Conclusion

The work presented in this paper aims at improving the 
performance of an automatic dysarthric level assessment system by 
capturing the fine level information present in different sub-bands of 
the speech signal. To capture the fine level information, firstly, the 
performance of the dysarthric level assessment system employing 
the MFCC feature is studied by varying the shape and size of the 
triangular filterbank. Next, for a better representation of sub-band 
information, the input speech signal is decomposed into four levels 
using DWT decomposition. For each input speech signal, five speech 
signals representing different sub-bands are then reconstructed using 
IDWT. The log filterbank energies are computed by analyzing the DFT 
magnitude spectra of each reconstructed speech using a 30-channel 
Mel-filterbank. For each analysis frame, the log filterbank energies 
obtained across all reconstructed speech are combined, and DCT is 
performed to represent the cepstral feature, termed as DWTR-MFCC 
in this study. The performance of i-vector based four-level dysarthric 
assessment system on the UA-Speech corpus shows that the overall 
performance of the system employing the MFCC feature improves by 
increasing the size of Mel-filterbank. However, a large overlapping 
between mid and low dysarthric levels is observed. On the use of the 
DWTR-MFCC feature, performance of the developed dysarthric level 
assessment is further improved by reducing the overlapping between 
mid and low dysarthric levels. But, reduced classification accuracy 
is observed for very-low dysarthric levels due to miss classification 
of very-low dysarthric level to low dysarthric level. Motivated by 
these observations, finally, a two-stage classification approach is 
proposed by employing the efficacy of MFCC and DWTR-MFCC 
features. The proposed approach improves the classification accuracy 
of the developed dysarthric level assessment system by reducing the 
overlapping between any two classes without loss of performance for 
individual features (MFCC or DWTR-MFCC).
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