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Abstract

In recent times, Artificial Intelligence (AI) has become ubiquitous in technological fields, mainly due to its 
ability to perform computations in distributed systems or the cloud. Nevertheless, for some applications -as the 
case of EMG signal processing- it may be highly advisable or even mandatory an on-the-edge processing, i.e., an 
embedded processing methodology. On the other hand, sEMG signals have been traditionally processed using 
LTI techniques for simplicity in computing. However, making this strong assumption leads to information loss 
and spurious results. Considering the current advances in silicon technology and increasing computer power, 
it is possible to process these biosignals with AI-based techniques correctly. This paper presents an embedded-
processing-based adaptive filtering system (here termed edge AI) being an outstanding alternative in contrast 
to a sensor-computer- actuator system and a classical digital signal processor (DSP) device. Specifically, a 
PYNQ-Z1 embedded system is used. For experimental purposes, three methodologies on similar processing 
scenarios are compared. The results show that the edge AI methodology is superior to benchmark approaches 
by reducing the processing time compared to classical DSPs and general standards while maintaining the 
signal integrity and processing it, considering that the EMG system is not LTI. Likewise, due to the nature of 
the proposed architecture, handling information exhibits no leakages. Findings suggest that edge computing is 
suitable for EMG signal processing when an on-device analysis is required.
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I. Introduction

Biomedical signal processing and proper filtering are critical 
for designing intelligent prosthesis, neurorehabilitation, and 

clinical diagnosis [1], [2]. In this regard, assisting people with 
physical disabilities is one of the main concerns, as it directly impacts 
activities of daily living (ADLs) and thus the quality of life [3]–[8]. 
The electromyogram (EMG) is one of the most studied biosignals in 
the medical and engineering fields [9]. EMG signals are generated by 
physiological variations in the state of the muscle fiber membranes, 
i.e., muscle contractions [10]–[12]. Electromyography is a technique 
for evaluating the generation, recording, and analyzing of muscle 
signals [11], [13]. Therefore, it is necessary to understand how EMG 
evaluates muscle activation to process and interpret it correctly [14]. 
EMG signals are compound biomedical signals because they are 
generated by a spatiotemporal interferential summation of action 

potentials [1], [15]. Thus, EMG is considered a pseudo-stochastic, non-
stationary, linear signal [1], [14], [15], with a time-varying or dynamic 
model being the most suitable approach to analyze it [16].

There are two main types of EMG analysis [11]: neurological and 
kinesiological. On the one hand, the neurological analysis evaluates 
the response of a muscle to external electrical stimulation under static 
conditions. On the other hand, the kinesiological analysis evaluates 
neuromuscular activation during voluntary movements. For example, 
kinesiological protocols may assess muscle activity during postural tasks 
and functional exercises under a rehabilitation or training program.

According to the type of electrodes used for signal recording, 
there are two kinds of EMG: intramuscular EMG and surface EMG. 
Intramuscular EMG is an invasive technique that uses a monopolar 
needle electrode to detect a subject’s motor unit potential (MUP). 
Meanwhile, surface EMG records muscle activity using at least a 
pair of electrodes on the skin surface. The latter method is the most 
commonly used to monitor voluntary contractions for kinesiological 
studies [12], [13]. Finally, EMG is also classified according to the 
topographic anatomical location of the muscle group being analyzed 
[13], [17].
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Kinesiological surface electromyography (KSEMG) is widely used 
as a study and evaluation tool [11] for biomechanics [18], diagnosis 
[19], [20], rehabilitation research [21], user-prosthesis interfaces [9], 
[12], [22] and human-machine interfaces for several devices [23]. 
Thus, this study focuses on the KSEMG analysis.

As a result of several groups standardizing EMG signal acquisition 
processes [24], the SENIAM project (Surface Electromyography for 
Non-Invasive Assessment of Muscles) began in 1996 to formulate 
recommendations for studying EMG signals. These recommendations 
include information on sensor types and location, signal processing, 
and characteristic curve modeling [24], [25]. Regarding biopotential 
sensing systems, the main stages are the power supply, pre-
amplification with an instrumentation amplifier, analog filtering, 
rectification, analog-digital conversion, and control [11], [25]–[27].

Raw EMG signals typically vary between a few microvolts and 2-3 
millivolts. Therefore, this signal is usually amplified by a minimum 
gain of 500 with preamplifiers, extending to 1000 when using units 
with passive leads. Differential amplifiers are used at this stage, 
allowing differential signals and rejecting common-mode voltages 
between input terminals and common ground [11], [13]. The 
frequency range of the EMG signal is between 10Hz to 500Hz [12], 
[20]. It is recommended to avoid any notch filter as it destroys too 
much information [11]. The rectification stage reflects all the signals 
below the baseline average. Rectification facilitates the reading and 
computational analysis of the data. In the control stage, digital signal 
processing (DSP) is widely applied in techniques such as signal 
smoothing, amplitude normalization of the acquired signal, and 
removal of artifacts. [25], [27]–[30].

For more complex applications, as with prosthetic devices, the 
control stage is subdivided into different stages: signal filtering and 
smoothing are the pre-processing components, and feature extraction 
is the processing step. Later, a classification stage [12], [22], which will 
be called the decision-making stage in this article, finally passes to an 
actuating stage [9], [19],[21]–[23].

Fig. 1 shows the biopotential sensing and processing stages and sub-
stages. This paper focuses on the pre-processing block, highlighted in 
red, specifically in the digital filtering of KSEM signals.

Digital signal processing (DSP) is a branch of computer science 
specializing in a single type of data, signals [31]. DSP consists of 
mathematics, algorithms, and techniques related to representing, 
transforming, and manipulating signals and their information after 

digitization [31], [32]. Unlike the signal processing techniques of 
analog electronics, DSP techniques guarantee reproducibility and 
accuracy of results, recognizing them as superior and more reliable in 
certain circumstances than their analog counterparts [33].

Intelligent signal processing (ISP) uses machine learning and other 
'smart' techniques to extract as much information as possible from 
the received signal data -in the case of EMG signals, information 
can be extracted through proper characterization stages as studied 
in [34], [35]. Classical signal processing methods are robust and 
straightforward tools that work incomparably with mathematical 
models that are linear, stationary, and Gaussian. However, real systems 
are non-linear, with erratic or impulsive statistical structures that can 
vary over time. Minimal signal or noise-structure changes can lead to 
qualitative changes in how classical processing systems filter noise 
or maintain stability [36]. Adaptive filtering is an Online Learning 
technique. It trains its parameters while acquiring information, unlike 
machine learning which usually trains on the entire dataset or at least 
a mini-batch of data. Adaptive filtering can be considered an Artificial 
Intelligence technique since it seeks to minimize an error signal using 
stochastic gradient descent (SGD) and falls into the field of ’Computer 
Perception.’ It has become one of the most efficient methods for 
acquiring physiological signals [37]. One approach for denoising is the 
adaptive noise cancellation of EMG signals, which uses an external 
noise source loosely related to the noise implicit in the EMG signal. 
For this task, filtering algorithms such as Kalman Filter, LMS (Least 
Mean Squares), RLS (Recursive-Least-Squares), Wiener, UFIR (Finite 
Impulse Response), Gaussian, bee colony algorithms, and Bayesian, 
among others, have been implemented [38]–[44].

The RLS filtering algorithm seeks to minimize the sum of squares 
of the differences between the desired signal and the filter output, 
updating iteratively as new information is acquired. This algorithm 
solves least squares estimation recursively [43], [45]–[48]. Few works 
have been found on edge intelligent EMG signal processing (on the 
embedded system). Diniz and Limem [45], [46] perform traditional 
digital acquisition and filtering processes using a general-purpose 
GPU ’NVidia Jetson’ as a shared device. They implement machine 
learning and decision-making algorithms, but there is no evidence of 
intelligent signal processing per se.

The scientific community is focused on pattern recognition and 
classification in prosthetic devices and recognizes that the variability 
in acquired SEMG signals between test subjects is significant [3], [6], 
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Fig. 1. Biopotential sensing and processing stages.
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[49], [50]. Furthermore, the literature review has shown that the digital 
signal processing techniques used on EMG in embedded systems are 
for LTI systems [1], [14], [27]–[30],[51], [52]. Since EMG signals are 
pseudo-stochastic (therefore time-varying), these techniques are not 
the most suitable.

Therefore, using adaptive filtering algorithms in an embedded 
system to eliminate noise in sEMG signals is proposed as a scalable 
system for multiple users, reducing the time and complexity of system 
calibration. This approach respects the non-linear characteristics of 
the biologically-originated system preserving the information without 
substantial distortion and adaptability to a varying noise source; 
besides, it allows the filtering system to be used in multiple applications 
without significant modifications. This paper introduces an adaptive 
filtering system implemented on an embedded system (Edge AI) that 
uses a simulated white noise source as the target signal to be removed. 
To contrast and validate the model, an FIR filter is also implemented 
using classical DSP techniques (LTI) and the same adaptive filtering 
system but implemented in a sensor-computer-actuator system.

The results show that the embedded processing system achieves 
a similar filtering quality and performance as the sensor-computer-
actuator system. Some of the essential advantages of the embedded 
system are eliminating any networking interfaces, guaranteeing the 
security of the acquired data, no latency, and no loss of communication 
between the computing device and the sensors and actuators.

The rest of this manuscript is organized as follows: Section II 
shows the hardware and the comparison approach used to validate 
the presented approach. Afterward, section III details the dataset used, 
the performance metrics, the benchmark methods and a comparison 
with previously published literature, and the experiment description 
that outlines the approaches used in this paper. Subsequently, section 
IV analyzes the results obtained in each of the benchmarks and the 
presented approach and discusses the authors’ findings. Finally, 
section V concludes the article and draws ideas for further research.

II. Materials and Methods

A. Materials - Hardware & Testbench Architecture
The embedded system for processing is a PYNQ-Z1; it uses a 

ZYNQ-7000 SoC from XILINX composed of an ARM Cortex-A9 and 
programmable logic cells of the Artix-7 family. It works with a Linux-
based operating system running Python notebooks as an interface 
medium.

Fig. 2. Block diagram defining the behavior of the acquisition system.

On the one hand, the system incorporates a Digilent’s PMOD AD1 
module as a signal reading system, incorporating an AD7476 analog-
to-digital converter (ADC). This converter has a maximum output rate 
of 1 MSPS at a resolution of 12 bits. On the other hand, the system 

uses a Digilent’s PMOD DA2 module as a signal reconstruction 
system since it incorporates a DAC121S101 digital to analog converter 
(DAC). This converter has a maximum output rate of 1 MSPS at a 
resolution of 12 bits. Timing diagrams describe the communication 
of these systems. Thus, it is necessary to decode these protocols and 
implement them in HDL, using finite state machines (FSM) to model 
the required behaviors. All hardware blocks are linked together and 
interfaced with the ARM processor, completing the description of the 
real-time processing architecture. Fig. 2 shows the final result. 

Digilent Analog Discovery 2’s function generator recreates the 
EMG signals and is used to analyze the frequency and measure the 
parameters needed. The waveform’s information comes from the 
public database [53], further described in A. Finally, Fig. 3 presents the 
architecture used in the experiment.

EMG ADC

DAC FILTER

EMG Database

Oscilloscope  
Mixed Signal Generator

Acquisition + Signal reconstruction
Processing System

Fig. 3. Processing system architecture.

B. Comparison Approach
The test scenario of the three processing systems is designed based 

on the methodology presented in Fig. 4. The first scenario consists 
of a system architecture using classical DSP. In contrast, the second 
scenario consists of an embedded processing system, an adaptive 
RLS filter in a horizontal structure. Finally, scenario three involves 
processing using a sensor-computer-actuator system and wireless 
communication protocols. A common comparison framework for the 
three scenarios is set, where spectrograms, signal means, processing 
times, and SNR are analyzed.

The evaluation metrics for the test scenarios compare input and 
output signal averages, the time lag associated with the processing 
time, an analysis of the spectrogram, and the SNR of the signals. Finally, 
the evaluation metrics are contrasted between the three groups to 
determine the most suitable architecture for the EMG signal filtering 
tasks. The evaluation and testbench is further explained in B and C.

III. Experimental Setup

A. Dataset Description
The dataset "ISRMYO-I: A DATABASE FOR SEMG-BASED HAND 

GESTURE RECOGNITION" [53] consists of sEMG signals recorded 
for different hand gestures. The database follows an organization 
as raw EMG, the unprocessed recorded signals, and train and test, 
which are the relevant data to train a classifier model. This database 
recorded 16 channels of the forearm’s sEMG with a multichannel 
sleeve sensor, firstly used for hand motion classification. The raw 
database was acquired with a sampling frequency of 1 kHz, and 12 
Bits of resolution [54].



Special Issue on Multimedia Streaming and Processing in Internet of Things with Edge Intelligence

- 43 -

Start

Design traditional
filtering architecture 

 

Implement filter in
embedded system

Design intelligent
filtering architecture  

 RLS Filter horizontal structure 

Implement filter in
distributed system

Compare:
Spectrogram
Mean Time
delay SNR

End

Implement filter in
embedded system

High pass filter with Cf at 20 Hz
Low pass filter with Cf at 500 Hz
Rectification by absolute value
Moving Average filter

Fig. 4. Design and testing methodology for classical, intelligent embedded, 
and intelligent sensor-actuator-computer DSP processing paradigms.

The information used for reconstructing the sEMG signal comes 
from one subject. The maximum buffer memory (4096 points) for the 
arbitrary signal generator was selected to reconstruct the signal. The 
signal is then rescaled to 3 Vpp and a mean offset of 1.5 V.

B. Performance Metrics
One of the performance metrics used is the Signal-to-noise ratio 

SNR. According to [55] it is described as (1):

 (1)

where, f(n) is a signal containing noise, (n) is the denoised signal, 
and N is the length of the signal.

The SNR compares the desired signal level to the noise level or the 
noisy signal. SNR is defined as the ratio of signal power to the noise 
power, and a ratio greater than 0 dB indicates more signal than noise.

Another metric used is the processing delay. It compares an 
inputted sinusoidal signal with the system’s output and measures the 
time difference between the zero-crossing point of both signals.

C. Benchmark Methods
The benchmark methods considered for this work only analyze the 

filtering features.

The database authors [53] apply a DRMS (differential root mean 
square) processing to multiple channels. There is no single-channel 

processing and thus no possible benchmark comparations with this 
approach.

[56] states a resampling of the database to 1000 Hz and a band-pass 
filtering between 3 Hz to 300 Hz. No filtering architecture or metrics 
are presented.

[3] applies a 20-order 50 Hz comb filter to remove the power 
interference from the data. A db5 wavelet basis function of three 
layers threshold noise reduction is used, achieving an 8.8151 SNR.

Three different testbench scenarios are set to validate the proposed 
approach properly while taking the processing time, mean shifting, 
and SNR as a metric.

1. A classical DSP, where the embedded system performs all the 
computations, is set for the first comparison point with the 
characteristics taken from [27]:

• A high-pass filter with a cutoff frequency of 20 Hz

• Low-pass filter with a cutoff frequency of 500 Hz

• Rectification with the sample absolute value

• Smoothing through a moving average filter

2. The second approach is a real-time RLS filtering architecture 
with a sensor-computer-actuator paradigm. In this approach, the 
embedded system is used to acquire the sample, send it through 
Wi-Fi to a computer where it is filtered, and then wirelessly 
received and reconstructed.

3. The proposed approach, the one to be compared, eliminates the 
networking structure and external processing device to embed the 
computation.

D. Experiment Description
As described in the benchmark methods, the experimentation is 

composed of three tests, one implementing a classical DSP system and 
another as a sensor-computer-actuator system, where the sensor and 
the actuator communicate wirelessly with the computer through TCP-
IP sockets, and finally, the embedded processing system.

The classical DSP processing system consists of a band-pass filter 
between 20 and 500 Hz in a horizontal FIR structure of 61 taps to 
facilitate the process and operation in real-time. The results of the 
FIR filter are then passed through an averaging filter with a window 
of 20 taps, from which its absolute value is previously obtained by 
way of rectification. This structure is implemented in the PYNQ 
embedded system.

Adaptive
Algorithm

+
-

e(n)

y(n)r'(n)
Adaptive Filter

d(n)+r(n)

Fig. 5. Noise cancellation structure using adaptive filters.

The same filtering architecture is used for the sensor-computer-
actuator system and the embedded AI processing system. A linear 
FIR and RLS filter structure is used, which will allow real-time 
learning of variations of the noise. Fig. 5 presents the adaptive noise 
cancellation structure. In this architecture, the input to the filter is 
the modeled signal or noise measurement r'(n), and the desired signal 



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº5

- 44 -

is the acquired signal (desired signal added with noise) d(n) + r(n).  
Therefore, the filter’s output would be the noise model, and the output 
e(n) corresponds to the filtered signal. The model of the signal to 
be removed by the filtering structure is considered white noise. The 
simulation of a SEMG baseline, which would be the desired signal 
to be removed, is highly complicated because of the number of 
hyperparameters and is computationally expensive. Therefore, this 
model is avoided for online applications.

Fig. 6 shows the architecture of a horizontal RLS adaptive filter, 
which can process in real-time the acquired data, allowing online 
learning of the acquired data, thus adjusting to the circumstances 
in which the structure is being used. This architecture is similar 
to a neural unit of a perceptron since, in the forward step, it 
summates the multiplications of the inputs by their weights Σk X (k) 
* W (k). Subsequently, it compares it with the desired signal d(k) 
and generates an error signal ϵ(k). Finally, the error signal is 
backpropagated through the structure with an algorithm based on 
stochastic gradient descent (SGD).

Z-1

+ +

Wn-1

W1

y(k)

d(k)

ε(k)

X(k)

-

SGD

1
2

3

4

Z-1

Z-1

W0

Fig. 6. Intelligent sEMG filtering algorithm for embedded processing. 
1- Shows the delay taps of the filter, 2- presents the forward pass of the 
information, 3- corresponds to the error computation, and 4- is the SGD-based 
backpropagation algorithm.

IV. Results and Discussion

For the description of the results, the related tests and measurements 
will be presented, taking into account the signals in the same contextual 
frame, their spectrograms, and a propagation delay analysis analyzed 
with pure sinusoidal signals.

A. Results of Classical DSP
Fig. 7 and Fig. 8 show that the algorithm works as soon as it is 

started, without needing waiting times.

Fig. 9 shows the original signal, filtered by DSP, and the 
superposition of both signals in an acquisition period of 4 minutes, at 
a sampling frequency of 4 kHz.

Fig. 7. Start of acquisition with traditional DSP, original signal [blue] and 
filtered signal [yellow], the horizontal axis represents time, while the vertical 
axis represents the amplitude in volts of the measured signal.

Fig. 8. Regular operation of traditional DSP, original signal (in blue) and filtered 
signal (in yellow), the horizontal axis represents time, while the vertical axis 
represents the amplitude in volts of the measured signal.

The visual analysis of the signals shows a radical change in the 
waveform, rectifying the impulses and leading it to oscillate from the 
0 baseline without the additive component that moves the oscillation 
line, as in the original signal. The average of the original signal is 
2.1908V, and the filtered signal is 0.9419V, which verifies what was 
described above. As for the spectra analysis, they can be observed in 
Fig. 10 and Fig. 11.

The high-frequency component of the signal is removed from the 
spectrograms, while the low-frequency component is distorted.

B. Results of Sensor-Computer-Actuator System
Fig. 12 and Fig. 13 show that the algorithm needs a minimum time 

to start working. Initially, the signal shows considerable noise, and 
it is impossible to identify the original signal, and after some time, it 
can be seen that the filtering effects are more noticeable, showing the 
adaptability of the filter.

Fig. 14 shows the original signal, filtered by the sensor-computer-
actuator system, and the superposition of both signals in an acquisition 
period of 4 minutes, at a sampling frequency of 4kHz.

In addition, if a visual analysis is made, the signals appear similarly. 
The change is not radical given the noise source; the original 
signal’s average is 2.193V, and the filtered signal is 2.175V, which 
shows that they maintain their characteristics to a large extent. It 
should be emphasized that in Fig. 20. errors are observed in the data 
communication reflected both in the wave’s shape and information 
gaps in the spectrogram. The loss of information jeopardizes the 
integrity of the filtering process, as these are critical data that should 
not be lost.
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The spectrogram analysis can be observed in Fig. 15 and Fig. 16.

No significant change can be seen comparing the spectrograms, 
except for the blurring effect in the impulsive peaks, regularizing 
the signal, and the concentration of the frequency components in 
the low bands.

C. Results of Embedded Processing
Fig. 17 and Fig. 18 show that the algorithm needs a minimum time to 

start working. Initially, the signal shows more noise than the original 
signal, and after some time, the filtering effects are more noticeable.

Fig. 19 shows the original signal, filtered by the on-the-edge 
system, and the superposition of both signals in an acquisition period 
of 4 minutes, at a sampling frequency of 4kHz.

The visual analysis of the signals shows that they maintain a 
remarkable similarity. The change is not radical, given the noise 
source. The average of the original signal is 2.192V, and the filtered 
signal is 2.173V, which shows that they maintain their characteristics.

As for the spectra analysis, they can be observed in Fig. 20 and Fig. 21.

The spectrogram comparison does not show much change, except 
for the blurring effect on the impulsive peaks, regularizing the signal.

Fig. 9. Original signal vs filtered signal using traditional DSP.

Fig. 11. Spectrogram of the filtered signal in a traditional DSP context. The 
horizontal axis represents time, while the vertical axis represents the frequency 
in Hz of the measured signal.

Fig. 10. Spectrogram of the original signal in a traditional DSP context. The 
horizontal axis represents time, while the vertical axis represents the frequency 
in Hz of the measured signal.

Fig. 13. Normal operation of the sensor-computer-actuator system: original 
signal [blue] and filtered signal [yellow]. The horizontal axis represents time, 
while the vertical axis represents the amplitude in volts of the measured signal.

Fig. 12. Start of acquisition with the sensor-computer-actuator system: original 
signal [blue] and filtered signal [yellow]. The horizontal axis represents time, 
while the vertical axis represents the amplitude in volts of the measured signal.
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D. Results Analysis
Fig. 22 shows the signal-to-noise ratio of the DSP, sensor-computer-

actuator, and embedded systems. This measure analyzes the filtering 
quality of the signals by removing a noise signal, which is a white 
noise type generated artificially. Both the convergence points of the 
embedded processing system and the sensor-computer-actuator system 
are highlighted -the convergence delay is also depicted for the latter-.

Table I shows the comparative results of the filtering paradigms. 
The fastest processing system is the sensor-computer-actuator 
system. In contrast, the embedded system exhibits processing times 

close to those of the distributed system, and the classic DSP system 
is considerably slower than the others. The mean shift in the sensor-
computer-actuator and embedded processing systems is minimal. 
Meanwhile, the classical DSP system strongly changes the signal’s 
nature, which is evident from the mean shift. The only filtering system 
that does not come into action when the system is turned on is the 
sensor-computer-actuator system, which needs a calibration and 
algorithm adaptation time.

Regarding the use of resources, the best is the DSP system, as it 
needs only one signal source, the SEMG acquisition source. However, 
in addition to the SEMG signal source, sensor-computer-actuator 

Fig. 14. Original signal vs filtered signal using the sensor-computer-actuator system.

Fig. 16. Spectrogram of the filtered signal in the context of a distributed 
computing system. The horizontal axis represents time, while the vertical axis 
represents the frequency in Hz of the measured signal.

Fig. 15. Spectrogram of the original signal in the context of a distributed 
computing system. The horizontal axis represents time, while the vertical axis 
represents the frequency in Hz of the measured signal.

Fig. 18. Regular operation with embedded processing: original signal [blue] 
and filtered signal [yellow]. The horizontal axis represents time, while the 
vertical axis represents the amplitude in volts of the measured signal.

Fig. 17. Start of acquisition with embedded processing: original signal [blue] 
and filtered signal [yellow]. The horizontal axis represents time, while the 
vertical axis represents the amplitude in volts of the measured signal.
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Fig. 19. Original signal vs filtered signal using an embedded system.

Fig. 21. Embedded processing-driven spectrogram of filtered signal. The 
horizontal axis represents time, while the vertical axis represents the frequency 
in Hz of the measured signal Source.

Fig. 20. Embedded processing-driven spectrogram of the original signal. 
The horizontal axis represents time, while the vertical axis represents the 
frequency in Hz of the measured signal. Source.

Fig. 22. SNR comparison of analyzed signals. In red is the SNR of the DSP system, in orange is the SNR of the embedded system, and in purple is the SNR of the 
sensor-computer-actuator system.
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and embedded processing systems need a second signal source to 
acquire noise. Therefore, the system that consumes the most physical 
resources is the distributed one, which requires a network interface 
and a high-capacity computer capable of executing the calculations 
involved in this processing.

The signal-to-noise ratio (SNR) determines the filtering quality, 
comparing the power of the filtered signal with the power of the 
noisy signal, which, in this case, is a simulated white noise signal. The 
results show that both the embedded processing and sensor-computer-
actuator systems improve the signal, even if it is minimal. Meanwhile, 
the traditional DSP system does not fulfill the task of eliminating this 
type of noise, resulting in an average SNR of -6,321 dB. Again, Fig. 
22 shows that the convergence speed of the distributed computing 
system is lower than that of the on-the-edge system.

E. Discussion
The results and measurements presented in the previous sections 

show that, although the sensor-computer-actuator processing is the 
fastest, it is more unstable, generating losses of information when 
the buffers of the communication socket are saturated. In addition, it 
requires more hardware equipment due to implementing a wireless 
communication system based on Wi-Fi. An intermediary is needed 
in the network structure connected to the Internet, which affects 
the security of the transmitted data. Nevertheless, a computer with 
good characteristics can adequately perform all the calculation and 
communication processes.

Regarding the traditional DSP system, it is the most widely used to 
date because of the relative simplicity of its implementation and the 
fact that it does not require modeling or acquisition of the signal noise 
to be removed. These features allow the processing system to act on 
its own. Furthermore, the algorithms presented in this paper can be 
optimized using C language or even by building hardware modules 
in HDL that can be implemented in the FPGA part of the embedded 
system—radically accelerating the computational speed of the system.

Although the processing delay is about 70 % in the embedded 
processing system, it is still much faster than the traditional DSP 
processing system. It implies a good use of hardware and software 
resources with the great advantage of adaptability to the noise sources 
that a surface EMG signal may suffer, which may change over time in 
amplitude and nature.

The embedded processing methodology is the cheapest and most 
efficient online learning technique in terms of resources since it 
eliminates the entire network interface of the distributed system. It 
has an adequate processing time, much shorter than DSP (showing 
a significant improvement in this area) and slightly longer than the 
sensor-computer-actuator system. It allows immediate action in terms 
of processing while reducing the external computational load that can 
be a problem when dealing with EMG signals.

V. Final Remarks

The processing and filtering of EMG signals are crucial for using 
these signals in prosthetic-device control processes or medical 
diagnostics. Traditionally, rigid filtering structures based on DSP have 
been used, although it does not acknowledge the non-LTI characteristics 
of the EMG. Subsequently, for more complex processes respecting 
the intrinsic characteristics of the system, all the information to be 
processed is sent to a discrete computing unit with which they usually 
communicate wirelessly. Therefore, addressing an integral processing 
methodology embedded in the device is appropriate because of the 
technological advances in the miniaturization of silicon processing 
systems and their increased computational capacity. Furthermore, 
embedded processing implies that the intelligent processing algorithms 
and decision-making are implemented on-device, eliminating discrete 
computing systems and substantially improving the processing that 
traditional LTI DSP techniques offer.

Objective comparison is made between the traditional DSP system, 
the discrete processing system, and the embedded processing system 
using the same device and the same database reconstructed by a 
function generator. The spectrograms of the signals, the delays due 
to the processing, and the signal-to-noise ratio are evaluated. The 
intelligent filtering algorithm is an adaptive RLS filter to which a 
simulated white noise signal is introduced as a noise source.

It was not found in the literature review any contribution to the 
implementation of adaptive filters for sEMG in an embedded system. 
Most of them use distributed computation systems in MATLAB. The 
most significant contribution of this paper is introducing a real-time 
implementation of adaptive filtering algorithms respecting the non-
LTI characteristics of the EMG signals.

Given the current technological availability, it is appropriate and 
even advisable to perform intelligent data processing on-device. 
Even if a distributed processing system is still necessary for further 
processing, embedding processing blocks is advisable. It will reduce 
the computational load by receiving helpful information and not only 
raw data. Embedding intelligent processing blocks in the acquisition 
device will allow building more complex processing architectures and 
signal usage techniques, offering better results to end-users.

Therefore, intelligent embedded (edge AI) processing of 
electromyographic signals is more effective than traditional hardware 
processing. Embedding the processing is more effective because the 
time delay between signals is shorter than in a sensor-computer-
actuator system. Suppose the noise interfering with the desired signal 
is properly characterized or acquired with secondary sensors. In that 
case, it can provide highly relevant information without considerable 
changes in the frequency and temporal nature of the electromyographic 
signals. On the other hand, considering the current state of technology, 
applying embedded artificial intelligence techniques is justified since 
they reduce the computational load suffered by other devices and allow 
the development of architectures with greater scalability. Furthermore, 
the autonomy of processing between the intelligent nodes that make 
up an acquisition system can be considered relevant. Even the total 
autonomy of each sensor is possible and does not require an auxiliary 
computing system or auxiliary conditioning of the signals to carry out 
the decision-making process.
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TABLE I. Comparative Results of Filtering Paradigms

DSP Sensor - Computer - 
Actuator

Embedded 
System

Processing Time 36.43 ms 2.573 ms 3.822 ms

Mean Shift 1.248 V 18 mV 19 mV

Immediate Action Yes No Yes

Resources One signal 
source

Two signal sorurces, 
network interface, PC

Two signal 
sources

SNR Mean -6.321 db 0.11124 dB 0.15125 dB
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