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Abstract

The finite invert Beta-Liouville mixture model (IBLMM) has recently gained some attention due to its 
positive data modeling capability. Under the conventional variational inference (VI) framework, the 
analytically tractable solution to the optimization of the variational posterior distribution cannot be 
obtained, since the variational object function involves evaluation of intractable moments. With the 
recently proposed extended variational inference (EVI) framework, a new function is proposed to replace 
the original variational object function in order to avoid intractable moment computation, so that the 
analytically tractable solution of the IBLMM can be derived in an effective way. The good performance 
of the proposed approach is demonstrated by experiments with both synthesized data and a real-world 
application namely text categorization.
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I. Introduction

Positive data arise naturally in many real-world applications, 
such as object clustering [1], scene categorization [2], image 

segmentation [3], and object detection [4]. During the last decade, 
many non-Gaussian mixture models, e.g., the finite inverted Dirichlet 
mixture model (IDMM) [5], [6], the finite generalized inverted 
Dirichlet mixture model (GIDMM) [7], the finite generalized Gamma 
mixture model (GGaMM) [3] and the finite inverted Beta-Liouville 
mixture model (IBLMM) [8], were proposed to model and analyze 
positive data due to their powerful modeling capabilities. Among these 
mixture models, the IBLMM is one of the most popular approaches for 
modeling univariate and multivariate positive data. For example, the 
IBLMM is shown to be very flexible and powerful in analyzing and 
clustering text documents [8], therefore, modeling positive data with 
the IBLMM is well-motivated.

The major task in modeling the data with the finite mixture models 
is the learning of the model parameters, which refers to both estimating 
the model parameters and determining the number of components 
(i.e., the model complexity). A variety of approaches can be applied 
to address this problem, such as the expectation maximization (EM) 
algorithm [9], the Markov chain Monte Carlo (MCMC) [10], the 
expectation propagation (EP) [11] and the variational inference (VI) 
[12]. Among these approaches, the VI has been the most popular 
method. Much of its popularity is due to the fact that it may scale 

well to large applications. The main idea behind the VI is to find a 
approximate distribution for the intractable real posterior distribution 
by minimizing the Kullback-Leibler (KL) divergence of these two 
distributions. This is equivalent to maximizing the evidence lower 
bound (ELBO), which is also known as the variational objective 
function. Unfortunately, it is infeasible to obtain an analytical solution 
to the VI for many non-Gaussian mixtures, such as the IDMM, the 
GIDMM, the GGaMM and the IBLMM, since some computationally 
intractable moments exist in the ELBO. This problem can be solved by 
the recently proposed extended variational inference (EVI)[13]. The 
main idea behind the EVI framework is that the optimal solutions can 
be obtained by means of maximizing a lower bound of the ELBO. This 
bound can be obtained by introducing some tractable approximations 
to the original objective function.

Motivated by the powerful modeling capability of the IBLMM and 
the excellent performance achieved by the EVI framework, the EVI 
framework is applied to learn the IBLMM. The major contributions of 
this work can be summarized as follows. First, the analytical solution 
within the EVI framework for the IBLMM is derived. In this   framework, 
the estimated values of all the involved parameters and the number 
of components can be simultaneously obtained. Second, the proposed 
approach is used in an important real-world application namely text 
categorization. Synthesized and real data evaluations demonstrate the 
good performance of the model trained by the proposed approach. 

The reminder of this paper is organized as follows. In Section II, 
a brief review of the IBLMM is given. In Section III, the Bayesian 
learning algorithm with the EVI is derived. The experimental results 
on synthesized and real datasets are reported in Section IV. Finally, 
some conclusions are drawn in Section V.
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II. Preliminaries

A brief overview of the IBLMM is given first in this section. Then, a 
complete Bayesian framework for this model is presented.

A. Finite Inverted Beta-Liouville Mixture Model
If a D-dimensional random vector x = [𝑥1,  ... 𝑥D]T contains positive 

values, the underlying distribution of x can be modeled by the inverted 
Beta-Liouville (IBL) distribution. The probability density function 
(PDF) of the IBL distribution is given by [14]

 (1)

where α = [α1, ...,αD]T,  Γ(⋅) is the Gamma function defined as 
.

To model the multimodality of the observed data X = [x1, ..., xN], the 
mixture modeling technique [15] is used to construct the IBLMM with 
the PDF as follows

 (2)

where M is the number of components, π = [πm, ..., πM]T is the mixing 
weights, Λ = [α1, ..., αM], u = [u1, ..., uM]T and v = [v1, ..., vM]T denote the 
parameter matrices.

B. Bayesian Framework for IBLMM
It is convenient to turn the mixture model in (2) into a latent variable 

model. For each vector xn, a latent vector variable zn = [zn1, ..., znM]T 

is assigned, such that znM ∈  {0, 1},   znM = 1 and znM = 1 if xn is drawn 
from the mth component and 0 otherwise. Then, the latent variable 
model of IBLMM can be written as

 (3)

 (4)

where Z = [z1, ..., zM]T.

To formulate a full Bayesian mixture model, the conjugate priors on 
parameters Λ, u, v, and π have to be designated as follows:

 (5)

 (6)

 (7)

 (8)

where g = {gmd}, h = {hmd}, s = {sm}, t = {tm}, p = {pm}, q = {qm}, c = {cm}, 
𝒢(⋅) and Dir(⋅) denote the Gamma distribution and the Dirichlet 
distribution, respectively.

Following the Bayes’ theorem and combining (3), (4), (5), (6), (7) 
and (8), the joint distribution of the observation X and all the random 
variables Θ = {Z, Λ, u, v, π} is given by:

 (9)

this equation has illustrated the relations of all the random variables 
entailed in the Baysian estimation of IBLMM. Z is the latent variable 
that indicates from which component the data is generated. π is the 
weight of each component. The other letters are the parameters of 
each IBLM.

III. Learning the Model

A. Extended Variational Inference
The VI framework [12] is commonly employed to estimate the 

parameters and determine the optimal number of components of the 
mixture models. The major goal is to find an approximate distribution  
q(Θ) for the true posterior distribution p(Θ ∣ X). The optimal q(Θ) can 
be obtained by maximizing the ELBO as follows:

 (10)

where ⟨⋅⟩q denotes the expectation regarding the distribution q. Note 
that the ℒ(q) is not analytically tractable for most of the non-Gaussian 
mixture models, such as the IDMM, the GIDMM, the GGaMM and the 
IBLMM, as (9) involves intractable moments. The recently proposed 
EVI framework [13] offers an effective way to proposed EVI framework 
[13] offers an effective way to framework is that if a “helping function” 

, which satisfies the constraint , 
can satisfies the constraint , can be 
found, then the optimal solutions can be reached ℒ(q). This bound is 
given by

 (11)

To formulate a computationally tractable expression for the , 
the simplest approach called the mean-field approach is adopted 
which factorizes the q(Θ) as follows

 (12)

Then, the optimal form of q(Θk), denoted by q*(Θk) in this case, is 
given by

 (13)

where ⟨⋅⟩s≠k denotes the expectation regards all factors qs(Θs) 
except for s = k and “Cst” denotes a normalizing constant. In the EVI 
framework, all factors qs(Θs) are need to be initiate first and then each 
factor is updated by updating the hyper-parameters.

B. Variational Distribution
This section details how (13) is applied to compute the variational 

factors. Note that the EVI is essentially iterative, since it represents a 
distribution factor applying knowledge about other factors. Following 
the principles of the EVI framework, the expectation of the joint 
distribution’s logarithm is first calculated as
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 (14)

where , . It is noteworthy that 
(14) is not available in a closed form because it includes the intractable 
moments . Following the principles of the aforementioned EVI 
framework, two “helping functions” , satisfying , 

, respectively have to be found. According to [16],  and  
are obtained as follows:

 (15)

 (16)

where

 (17)

Insert (15) and (16) into (14) then a lower bound to ⟨ln p(X, Θ)⟩ is 
obtained as

 (18)

Now, α, u, and v are the i. i. d. variables. Details about solving the 
optimal variational factors using (13) is given as follows.

1. q* (Z): Including all terms that do not depend upon znm into a 
constant term, the equation (19) is obtained as follows

 (19)

where

 (20)

Taking exponential of both sides of (19), q* (Z) is recognized to be 
a categorical density

 (21)

where

 (22)

where rnm are nonnegative and have a unit sum.

2. q* (Λ): Absorbing any terms independent of αmd into the additive 
constant results in

 (23)

where  and  are defined by

 (24)

 (25)

Taking the exponential of both sides of (23), the equation (26) is 
obtained as follows

 (26)

3. q* (u): Any terms which are independent of um will be absorbed 
into the additive constant as

 (27)

where  and  are given by

 (28)

 (29)

Taking the exponential of both sides of (27), the equation (30) is 
obtained as follows

 (30)
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4. q* (v): Considering the derivation of the update equation for the 
factor , the logarithm of the optimized factor is given by

 (31)

where

 (32)

 (33)

It is obvious that (31) has a similar form as to the logarithm of the 
Gamma prior density. Similarly, the equation (34) is obtained as 
follows

 (34)

5. q* (π): Keeping only terms that have a functional dependence on 
πm, the equation (35) is obtained as follows

 (35)

where

 (36)

Taking the exponential of both sides of (35), the equation (37) is 
obtained as follows

 (37)

All the expected values in the above equations are evaluated by

 (38)

 (39)

 (40)

 (41)

C. Full Variational Learning Algorithm
With the above obtained variational factors in hand, it is 

straightforward to evaluate the lower bound (11) for this model. In 
practice, it is useful to be able to monitor the bound during the re-
estimation in order to test for convergence. The lower bound (11) is 
given by

 (42)

where  is computed using (18). The other terms in the 
bound are easily evaluated to give the following results:

 (43)

 (44)

 (45)

 (46)

 (47)

The analytically tractable solution for Bayesian estimation of the 
IBLMM can be obtained in a similar way to the conventional EM 
algorithm. This inference algorithm is summarized in the Algorithm 1.

Algorithm 1. Algorithm for EVI-based Bayesian IBLMM

1. Set the initial values of M, gmd, hmd, sm, tm, pm, qm, cm.

2. Initialize rnm by K-Means algorithm

3. repeat
4.      The variational E-step: Update q*(Z) according to (21).

5.      The variational M-step: Update q*(Λ), q*(u), q*(v) and q*(π)
         according to (26), (30), (34), and (37), respectively.

6. until Stop criterion is reached.

7. Determine the best number of components M via annihilating the 
components with mixing weights πm ≤ 10⁻5.

IV. Experiments and Results

In this section, the proposed variational method refered to as 
EVI-IBLMM is validated through both synthesized datasets and real 
datasets. The goal of the synthesized dataset validation is to investigate 
the accuracy of the EVI-IBLMM algorithm in terms of parameter 
estimation and model selection. The goal of the real dataset validation 
is to compare the EVI-IBLMM to three other methods: the IDMM 
applying the EVI technique (EVI-IDMM) [6], the GIDMM applying the 
EVI technique (EVI-GIDMM) [13] and the GaMM applying the EVI 
technique (EVI-GaMM) [4]. To provide broad noninformative prior 
distributions, we set the hyperparameters of the prior distribution as 
gmd = sm = pm = 1, hmd = tm = qm = 0.1, cm = 0.001, and initialize the 
number of components with large value (15 in this paper). The initial 
values of rnm are obtained using the K-means algorithm. Note that 
this specific selection was based on our experiments and was found 
to be convenient and effective in our case. When the EVI-IBLMM 
algorithm stops, the posterior means are taken as the parameter 
estimates in the IBLMM.

A. Synthesized Data Validation
The performance of the proposed EVI-IBLMM in terms of 

estimation and determination through quantitative analysis on four 
2-D synthesized datasets is first evaluated, which are generated from 
four known IBLMMs with different parameters. It is worth noting 
that the selection of D = 2 is purely for ease of representation. Table I 
shows the actual parameters for the four IBLMMs. The initial number 
of components for each dataset are set to double amounts of the actual 
number of components with equal mixture weights. The average 
estimated parameters of the four generated datasets over 20 runs of 
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TABLE I. True Values of the Parameters in the IBLMM Applied to 
Generate the Four Synthesized Datasets

Dataset m αm1 αm2 um vm πm

A
1 12.00 24.00 8.50 12.50 0.400

2 21.00 15.00 18.00 5.00 0.600

B

1 12.00 24.00 8.50 12.50 0.200

2 21.00 15.00 18.00 5.00 0.300

3 18.50 8.00 4.00 16.50 0.500

C

1 12.00 21.00 8.50 12.50 0.100

2 21.00 35.00 18.00 5.00 0.200

3 32.00 28.00 4.00 16.50 0.300

4 2.00 18.00 24.00 8.00 0.400

D

1 21.00 6.00 18.00 24.00 0.100

2 2.00 28.00 8.00 15.00 0.200

3 18.00 68.00 24.00 16.00 0.250

4 76.00 8.00 4.00 18.00 0.300

5 2.00 4.00 4.00 12.00 0.150

TABLE II. The Mean of the Estimated Parameters for the Synthesized 
Datasets Over 20 Runs of the EVI-IBLMM Algorithm

Dataset Nm m m1 m2 m m m

A
200 1 11.99 23.95 8.56 12.51 0.400

300 2 21.27 15.20 18.10 5.00 0.600

B

120 1 11.31 22.59 8.50 12.54 0.200

180 2 20.81 14.93 18.50 5.13 0.300

300 3 18.30 8.01 4.18 17.09 0.500

C

80 1 12.46 21.64 9.20 14.12 0.098

160 2 19.84 33.52 18.30 5.08 0.202

240 3 30.68 26.81 4.07 16.76 0.300

320 4 2.00 18.12 24.32 8.21 0.400

D

100 1 22.26 6.42 17.70 23.46 0.103

200 2 1.98 27.09 7.80 15.03 0.201

250 3 16.61 64.69 23.79 15.82 0.253

300 4 73.02 7.48 4.04 18.10 0.302

150 5 2.32 4.14 3.98 12.11 0.141

(a) Dataset A

(c) Dataset C

(b) Dataset B

(d) Dataset D
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Fig. 1. Estimated mixing probabilities of components for the synthesized datasets. (a) Dataset A. (b) Dataset B. (c) Dataset C. (d) Dataset D.
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simulations are reported in Table II. According to these results, the 
proposed EVI-IBLMM algorithm is capable of accurately estimating 
both the parameters and the mixing weights of the IBLMM. Next, the 
model selection capability of the EVI-IBLMM algorithm is investigated. 
When the initial number of components is larger than the true one, 
the EVI-IBLMM algorithm is capable of forcing some of the mixing 
weights to approach zero. These components make little contribution 
to the model, thus they can be eliminated. The EVI-IBLMM algorithm 
is initiated with a mixture of many components (15 in this paper) 
and equal mixture weights. Fig. 1 shows the estimated mixture 
weights of each component for the different generated datasets after 
convergence. According to these results, it can be clearly observed that 
the EVI-IBLMM algorithm is able to effectively determine the model 
complexity. Then, the effect of initial number of components upon the 
resulting model complexity is investigated. Based on dataset A, Fig. 
2 shows the effect of initial number of components on the resulting 
model complexity over 100 runs of simulations. In Fig. 2, “True” 
donates that the model has correctly converged to the initial number of 
components and “False” means that the model does not have the same 
componets number with the initial ones after training. According to 
the results shown in this picture, the EVI-IBLMM algorithm is capable 
of identifying the accurate number of components regardless of 
whether the sample size is small or large. Moreover, as the sample size 
gets larger, the effect of the initial number of components gets more 

insignificant. Finally, the convergence of the EVI-IBLMM algorithm 
is investigated. Fig. 3 shows the value of the variational objective 
function in each iteration. According to this figure, it is clear that the 
variational objective function is always increasing during iterations, 
thus the convergence is demonstrated.

B. Text Categorization
Text categorization refers to the task of automatically assigning 

unlabeled text documents into predefined categories. During the 
past few decades, this task has attracted considerable attention from 
researchers due to many reasons, such as the hug amount of digital 
documents that are easily available and the increasing demand to 
organize, store, and retrieve these documents accurately and efficiently. 
Efficient text categorization are beneficial for many applications, such 
as document processing and visualization [17], digital information 
search [18], and information retrieval [19]. This problem is challenging 
and different statistical methods were proposed and applied in the 
past. Although different, most of the proposed techniques addressed 
this problem as following: First, a set of labeled text documents which 
belong to a certain number of classes are given to train the model. In 
our experiment, the data that has the same label is used to train one 
IBLMM, after training, the number of IBLMM is equal to the number of 
categories; Second, a new unobserved text is assigned to the category 
with the highest similarity regarding its content by the model.
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Fig. 2. The counts of the estimated number of components over 100 runs of simulations based on dataset A. M denotes the initial number of components and N 
denotes the sample size.
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The text categorization experiment with the proposed EVI-IBLMM 
in our paper is conducted by using two extensively applied text 
collections: WebKB [20] and 20Newsgroup1. The WebKB dataset is 
composed of four categories: course, faculty, project and student, with 
a total of 4,199 documents. The 20Newsgroups dataset contains 13,998 
newsgroup documents evenly distributed on 20 categories. Each of 
these categories is 30 times randomly divided into two separate halves, 
one half for training and the other half for testing. Following [21], the 
Porter’s stemming [22] is applied to reduce the words to their basic 
forms. In the pre-processing step, the words that occur less than 3 
times or are shorter than 2 in length are eliminated, which results in 
the representation of each document by a positive vector. The vectors 
in the different training sets are then modeled by the IBLMM trained 
by the algorithm in the previous section. Finally, each document 

1  http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

vector is categorized to a given category according to the well-known 
Bayes classification rule.

Three referred methods, namely EVI-based Bayesian GIDMM [13] 
(EVI-GIDMM), EVI-based Bayesian IDMM (EVI-IDMM) [6] and EVI-
based Bayesian Gamma mixture model (EVI-GaMM) [4] are also used 
to the aforementioned task. Table III shows the mean results of the 
tested methods in terms of categorization accuracy and training time 
over 20 runs. Fig. 4 illustrates the categorization accuracies obtained 
by different methods. Based on these results, it can be found that 
the proposed EVI-IBLMM has the best categorization accuracy (%) 
among all the referred mixture-based approaches for the task of text 
categorization. Moreover, to investigate more insights for the EVI-
IBLMM algorithm, the EVI-IBLMM is further compared with deep 
neural networks (DNNs) on the text categorization task. The fully 
connected (FC) neural networks with different numbers (i. e., l) of 
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Fig. 3. Convergence of the proposed EVI-IBLMM algorithm for the different synthesized datasets. (a) Dataset A. (b) Dataset B. (c) Dataset C. (d) Dataset D.

TABLE III. Comparisons of Text Categorization Accuracies (in %) and Runtime (in S) Obtained by Different Approaches

Dataset Method EVI-IBLMM EVI-GIDMM EVI-IDMM EVI-GaMM

WebKB
Accuracy 90.36 89.27 89.91 89.03

Runtime 0.66 0.61 0.59 0.39

20Newsgroup
Accuracy 81.11 79.82 80.20 78.86

Runtime 4.85 5.35 3.84 0.71
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hidden layers are used. The extracted feature vectors for the WebKB 
and 20Newsgroup datasets are used as inputs, respectively. These 
feature vectors are named as shallow feature vectors. The  is set as 1,2 
, and 4 , respectively and the number of nodes in each hidden layer is 
the same as the dimension of the shallow features. Table IV shows the 
comparison of categorization accuracies and training time of different 
FC neural networks and the proposed EVI-IBLMM algorithm on both 
WebKB and 20Newsgroup datasets. According to these results, it can 
be found that the proposed method significantly decreases training 
time compared to the FC neural networks. Although the proposed 
approach cannot outperform the DNNs, it can effectively model the 
features extracted and obtain proper classification accuracies on 
the two datasets, which can explicitly show the effectiveness of the 
proposed method.

V. Conclusions

In this paper, an efficient attractive EVI algorithm for the inverted 
Beta-Liouville mixture model is proposed. Different from the 
traditional EM algorithm and MCMC algorithm, this algorithm is 
able to automatically and simultaneously determine all the model’s 
parameters and the optimal number of components, which can 
prevent the problem of over-fitting. Besides, the proposed algorithm 
can converge in a short time, and therefore, it has a relatively 
high efficiency. The good performance of the proposed method is 
experimentally demonstrated through both synthetic datasets and real 
datasets which are generated from a real-world application namely 
text categorization. A future work can be devoted to investigate how 
to combine a feature selection criterion with the model selection in a 
unified Bayesian framework or to extend the IBLMM to the infinite 
case applying some nonparametric Bayesian methods.
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