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Abstract

The presence of haze will significantly reduce the quality of images, such as resulting in lower contrast and 
blurry details. This paper proposes a novel end-to-end dehazing method, called Encoder and Decoder Dehaze 
Network (ED-Dehaze Net), which contains a Generator and a Discriminator. In particular, the Generator 
uses an Encoder-Decoder structure to effectively extract the texture and semantic features of hazy images. 
Between the Encoder and Decoder we use Multi-Scale Convolution Block (MSCB) to enhance the process of 
feature extraction. The proposed ED-Dehaze Net is trained by combining Adversarial Loss, Perceptual Loss 
and Smooth L1 Loss. Quantitative and qualitative experimental results showed that our method can obtain the 
state-of-the-art dehazing performance.
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I. Introduction

IMAGES with clear visibility are required for a variety of computer 
vision tasks, such as object detection and autonomous driving. 

However, due to the absorption or reflection of light by floating particles 
contained in the air, images taken in hazy days often suffer from quality 
degradation. Fig. 1 shows the differences in visual quality on hazy and 
haze-free scene. The color of objects in a hazy scene is distorted and the 
visual perception observed by the human eye is reduced.

In order to overcome the degradation of image quality caused 
by haze, various priority-based [1]–[5] and learning-based [6]–
[14] methods have been proposed. The well-known priority-based 
algorithm proposed by He et al. [1] assumed that at least one channel 
in the image has very low pixel values. However, the method cannot 
effectively deal with areas similar to atmospheric light, which results 
in the sky area or high-brightness objects cannot be accurately 
dehazed. In addition, the non local color prior proposed by Berman et 
al. [3] is suitable for the case where the airlight is lower than the scene 
brightness [11]. Some recent dehazing algorithms use convolutional 
neural networks to extract image features, which are further used to 
predict transmission maps and atmospheric light values. Zhang et al. 
[9] embed the atmospheric scattering model into the dehazing process 
and design the end-to-end network with dense connections. By 
combining the convolutional neural network and the physical model, 
Zhang’s method can jointly learn the transmission map, atmospheric 
light through a one-stage training.

Inspired by the successful application of the GANs in the field 
of image generation [15]–[19], we propose ED-Dehaze Net, which 
contains two parts: a Generator and a Discriminator. The predicted 

haze-free images are generated by the Generator. The Discriminator 
is responsible for distinguishing the generated images from the real 
images. In addition, our Generator consists of three submodules: 
Encoder, Decoder and Multi-Scale Convolution Block. The Generator 
and Discriminator are trained simultaneously by combining 
Adversarial loss, Perceptual loss and Smooth L1 loss. In order to 
prove the effectiveness of the proposed dehazing method, we conduct 
sufficient experiments on indoor and outdoor dataset. By using the 
atmospheric scattering model, we synthesize pairs of hazy and haze-
free images on the NYU-Depth v2 [20] indoor dataset. In addition, the 
commonly used benchmark O-HAZE [21] is also used to verify the 
performance of ED-Dehaze Net in outdoor dehazing task.

Fig. 1. The effect of haze on the visual quality of the real world scene. From 
left to right: hazy image, dehazed image produced by ED-Dehaze Net, ground 
truth haze-free image.

Our main contributions are as follows:

(1) We propose a novel Encoder and Decoder Dehaze Network (ED-
Dehaze Net), which can effectively remove the haze in the image.

(2) By using Multi-Scale Convolution Block (MSCB), the feature 
extraction capability of the dehazing network is improved.

(3) We combine Smooth L1 loss and Perceptual loss to train the 
Generator. And the experimental results show that the proposed 
ED-Dehaze Net can obtain the state-of-the-art dehazing 
performance.
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II. Related Work

In this section, we first review the existing dehazing methods for 
single image. Then, the research of generative adversarial networks 
will be briefly summarized.

A. Atmosphere Scattering Model
The Atmospheric scattering model [22]–[24] provides a theoretical 

basis for the research of dehazing algorithms. Meanwhile, the 
researchers synthesized hazy images data [9], [10] through the 
atmospheric scattering model, avoiding the expensiveness of real-
world data collection. Its formula is as follows:

 (1)

where 𝑥 represents the position of pixels, and A means the global 
atmospheric light in the image. I(𝑥) denotes the haze scene, and J (𝑥) is 
the haze-free image that the dehazing algorithm expects to obtain. t(𝑥) 
stands for the medium transmission map, which formula is as follows:

 (2)

where β and d(𝑥) represent the atmosphere scattering parameter 
and the scene depth, respectively.

B. Single Image Dehazing
Single image dehazing is a challenging ill-posed problem. Various 

prior-based and learning-based methods have been proposed for 
recovering a clear haze-free image from a single hazy image.

Researchers have proposed a variety of hand-crafted prior-based 
dehazing methods [1]–[5]. He et al. [1] proposed Dark-Channel Prior 
(DCP) which can estimate the transmission map and remove the haze 
effectively. Zhu et al. [2] designed Color Attenuation Prior (CAP) and 
used a linear model to estimate the scene depth. Then, CAP dehazed a 
single image by combining the atmospheric scattering model. Fattal et 
al. [4] proposed a local formation model and use it for recovering the 
scene transmission. Berman et al. [3] assumed that colors of a haze-
free image can be well approximated by hundred of distinct colors. By 
using the assumption of haze-lines, Berman’s method could recover 
both the distance maps and the haze-free images.

With the development of deep learning, some dehazing algorithms 
[6]–[14] use convolutional neural networks to learn how to remove 
haze from hazy images. Li et al. [10] designed All-in-One Dehazing 
Network (AOD-Net) based on a re-formulated atmospheric scattering 
model without an intermediate parameter estimation process. On the 
basis of cycleGAN [25], a cycle-consistent dehazing network [7] is 
proposed, which does not require paired data. Zhang et al. [9] designed 
Densely Connected Pyramid Dehazing Network (DCPDN), which 
can jointly learn the transmission map and atmospheric light. By 
jointly estimating two parameters, DCPDN can reduce system errors 
significantly. Dong et al. [14] proposed Multi-Scale Boosted Dehazing 
Network (MSBDN) based on the U-Net architecture. MSBDN proved 
that boosting strategy can help image dehazing algorithms have more 
stable performance.

C. Generative Adversarial Networks (GANs)
Goodfellow et al. [26] proposed the original GAN, which contained 

a generator (G) and a discriminator (D) for data generation. The 
objective function is calculated as follows:

 (3)

where z is the noise variable subject to the distribution pz(z), and 𝑥 
is sampling from the distribution of real data pdata(𝑥).

In the recent years, GANs have been successfully applied in the 

fields of image super-resolution [15]–[17], image synthesis [18], [19], 
texture synthesis [27], [28], and image inpainting [29], [30]. Most of 
GANs contain one or more generators and discriminators, and use 
min-max optimization to simultaneously optimize the generative 
model G and the discriminative model D [31].

Inspired by the success of these GANs-based methods for generating 
high-quality images, we designed an adversarial dehazing network 
with impressive dehazing performance.

III. ED-Dehaze Net

This section introduces the design details of the proposed ED-
Dehaze Net. Section A shows the network structure of the Generator 
and the Discriminator. The formulas of adversarial loss, smooth L1 
loss and perceptual loss are given in Section B, C and D, respectively. 
Finally, Section E describes the overall loss function used for network 
optimization.

A. Network Structure
The overall structure of the proposed ED-Dehaze Net is shown 

in Fig. 2. The hazy image passes through the Generator to remove 
the haze in the scene and generate a dehazed image. Then, the 
Discriminator distinguishes the dehazed image from the real haze-free 
image through the process of adversarial training.

Hazy image

Haze-free image

Discriminator

Real/Fake?

Dehazed imageGenerator

Fig. 2. The overall structure of the ED-Dehaze Net.

The ED-Dehaze Net contains two basic blocks: Convolution 
Block and Deconvolution Block, as illustrated in Fig. 3. INS stands 
for Instance Normalization proposed in the paper [32]. RELU is the 
activation function “Rectified Linear Unit” commonly used in deep 
neural networks.
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Fig. 3. Convolution Block and Deconvolution Block.

In order to effectively fuse the information of different scales, we 
design the parallel Multi-Scale Convolution Block (MSCB) as shown in 
Fig. 4. Each scale of convolution block adopts the Conv Block (shown 
in Fig. 3) of which 3, 5 and 7 represent convolution kernels of different 
sizes.

The input feature map first convoluted by Conv-3, Conv-5, Conv-7 
to obtain three feature maps with different scale information. Then, 
the three feature maps are concatenated according to the channel 
(“Cat” in Fig. 4), and the concatenated 3 map in Fig. 4. Finally, the red 
feature map and the original input feature map are added (“Add” in 
Fig. 4). Therefore, the output feature map “OUT” and the input feature 
map “IN” have exactly the same size.
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Fig. 4. MSCB: Multi-Scale Conv Block.

The Generator of the ED-Dehaze Net is composed of Encoder, 
Decoder and multiple MSCBs, as shown in Fig. 5. The dimension of 
the input image’s feature map is reduced during the encoding process 
to obtain a powerful feature representation. Then, we put the encoded 
features into MSCBs for enhancing. Finally, the Decoder performs 
feature decoding to obtain dehazed image of the same size as the 
original input hazy image.
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Fig. 5. The Structure of Generator.

The Discriminator shown in Fig. 6 contains multiple Conv-3 blocks, 
and the stride of all blocks are set to 2. The Discriminator is responsible 
for distinguishing whether the input images come from the dehazed 
images of the Generator or the haze-free images of the dataset.
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Fig. 6. The Structure of the Discriminator.

B. Adversarial Loss
The Generator and Discriminator are trained simultaneously with 

adversarial loss. The training purpose of the Generator is to remove 
the haze in the image to obtain a dehazed image close to the real-
world haze-free image. The Discriminator try to judge the input image 
is a real image or a generated image. The formula for calculating 
adversarial loss is as follows:

 (4)

where X = {𝑥1,  𝑥2,  ...,  𝑥m} represents the input hazy images with the 
batch size of m,  means the haze-free images 
predicted by the Generator. Y = {𝑦1,  𝑦2,  ...,  𝑦m} is the real haze-free labels 
in the dataset.

C. Smooth L1 Loss
The methods used for image dehazing usually adopt L1-norm or 

L2-norm as objective function during the training process. Girshick 
et al. [33] proved that Smooth L1 loss is a robust L1 loss which is less 
sensitive to outliers than the L2 loss. To improve the robustness of the 
dehazing network, Smooth L1 loss is adopted to optimize the pixel 
distance between the dehazed image and the real haze-free image, the 
formulas are as follows:

 (5)

 (6)

where  denotes the distance between the dehazed image 
and the real haze-free image, and 𝑚 is the number of images.

D. Perceptual Loss
The commonly used pixel-wise objective functions in image 

reconstruction tasks optimize the network without considering the 
human visual perceptual quality of the images. By extracting high-
level features from the pre-trained convolutional neural network 
and calculating the semantic distance between the predicted images 
and the ground truth images, Johnson et al. [34] proposed Perceptual 
loss, which has been successfully applied in various computer vision 
tasks [11], [34]–[36]. It has proved that adding perceptual loss on the 
basis of pixel-wise loss can effectively improve the performance of 
image reconstruction tasks. We select the first four pooling layers of 
pre-trained VGG16 [37] (denoted as ψ(•)) for feature extraction. The 
formula for a single batch is as follows:

 (7)

where i represents the i-th input image and k is the k-th pooling 
layer. And p is the abbreviation of perceptual. After calculating the 
feature of every single pooling layer, the output of the four pooling 
layers is added to obtain the Perceptual loss. It can be expressed as 
following:

 (8)

where Ck, Wk and Hk represent the number of channels, width and 
height of the k-th pooling layer, respectively.

E. Overall Loss Function
The overall loss function consists of three parts: Adversarial loss, 

Perceptual loss, and Smooth L1 loss. As follows:

 (9)

where λp and λsmo are the weight of Lp and Lsmo, respectively.

IV. Experiments Results

Section A gives the parameter settings in the experiment. The 
descriptions of the synthetic dataset and the real world dataset are 
in Section B, and the corresponding experimental results are in 
Section C and D, respectively. To illustrate the effect of Smooth L1 
loss and Perceptual loss on the dehazing process, Section E compares 
the corresponding quantitative metric values by comparing different 
objective functions. Finally, Section F discusses the improvement of 
MSCBs on the performance of ED-Dehaze Net.
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A. Experiment Setting and Evaluation
All the training images are resized to 256×256 before feeding into 

the network. The proposed model has been trained on the training 
dataset and finally the optimal parameters are obtained. The initial 
learning rate of the Generator and Discriminator are 0.0001 and 
0.0004, respectively. After every 2000 iterations, the learning rate is 
updated to lr = lr × 0.9. The values of λp and λsmo are set to 2 and 10, 
respectively. Wet use a single NVIDIA GeForce GTX 1080 Ti and the 
batch size is 4. Adam Optimizer is used to update the gradients during 
the training process.

We choose Peak Signal-to-Noise Ratio (PSNR) and Structural 
Similarity Index Measure (SSIM) for evaluation, which are commonly 
used in the research of image dehazing. Higher values of PSNR and 
SSIM represent higher image quality. To demonstrate the improvement 
of the dehazing performance for the proposed ED-Dehaze Net, we 
compare our method with other state-of-the-art dehazing methods: 
the Dark-Channel Prior (DCP) proposed by He et al. [1], the Color 
Attenuation Prior (CAP) proposed by Zhu et al. [2], the cycle-
consistency dehazing (cyc-D) network designed by Engin et al. [7], 
and the All-in-One Dehazing Network (AOD-Net) designed by Li et 
al. [10].

B. Synthesis Dataset and Real World Dataset
The collection of paired hazy and haze-free images is very time-

consuming and expensive. Ancuti et al. [38] synthesized the indoor 
hazy images dataset based on NYU Depth v2 [20] by the atmospheric 
scattering model. Here, we use the pipeline proposed by Aucuti for 
high quality hazy images synthesis. The training set and testing set 
contain 1149 and 300 pairs of images, respectively. We randomly 
select the global atmosphere light value from (0.7, 1) for both of them. 
The atmosphere scattering parameter (denoted as β in Eq. (2)) of 
the training dataset is set to β ∈ (1.2, 2.1) to simulate hazy images of 
different densities. By randomly flipping horizontally and vertically, 
the training set after data augmentation contains 1149 × 3 pairs of 
images. In order to test the dehazing performance of networks with 
different density ranges and to ensure the data distribution of the 
testing set is same as training set, we set the β ∈ (1.2, 1.5), (1.5, 1.8), 
(1.8, 2.1), and (1.2, 2.1) to get a testing set with 4 density ranges for a 
total of 300 × 4 pairs of images.

O-HAZE [21] contains 45 pairs of hazy and haze-free images 
taken in the real world, which the haze is generated by professional 
machines. We randomly selected 35 pairs as the training set, and the 
remaining 10 pairs as the testing set.

C. Results on Synthesis Dataset
Table I shows the PSNR/SSIM values obtained on the synthetic 

dataset by the proposed ED-Dehaze Net and other dehazing algorithms. 
ED-Dehaze Net outperforms the state-of-the-art methods on both 
PSNR and SSIM. This indicates that the dehazing images obtained by 
our method are of higher quality.

TABLE I. PSNR and SSIM Values on Synthesis Dataset

beta (1.2, 1.5) (1.5, 1.8) (1.8, 2.1) (1.2, 2.1)

DCP 16.314/#0.761 16.212/0.776 15.935/0.783 16.346/0.771

CAP 17.422/0.768 17.062/0.723 16.654/0.702 17.175/0.753

cyc-D 17.553/0.657 18.074/0.694 18.263/0.725 17.934/0.766

AOD 18.736/0.782 18.445/0.788 17.963/0.779 18.566/0.761

ours 20.940/0.799 20.332/0.784 19.627/0.761 20.264/0.781

# The symbol “/” stands for the separation of PSNR and SSIM values.

We randomly select some images from the entire testing set (four 
ranges of β) to show the visual results. It can be clearly seen in Fig. 
7 that the images recovered by the proposed ED-Dehaze Net are 
closest to the ground truth haze-free images. This proves that the 
Encoder-Decoder of the Generator can effectively reconstructs the 
feature information of the image, and removes the haze contained 
in the scene in an end-to-end manner. The DCP results in a darker 
color after dehazing, which cannot accurately recover the brightness 
of the scene. The reason is that DCP relies on priority assumptions 
and lacks adaptability to different data. The CAP and AOD-Net cannot 
completely remove the haze in the hazy images. There is still a small 
amount of haze in the “haze-free” images generated by them, which 
causes the details and edges of objects in the scenes to be blurred. 
In addition, the output images of CAP tends to be low-brightness, 
because its priori assumption of color is not always accurate. The 
dehazing images generated by cyc-D have obvious color distortion, 
and it cannot restore the texture information of the image completely.

Fig. 7. Visual results on synthesis dataset.

D. Results on O-HAZE
Table II shows the PSNR/SSIM values of the ED-Dehaze Net and 

other algorithms on the O-HAZE dataset. The quantitative quality of 
the dehazed images obtained by our method is significantly higher 
on outdoor scenes. This proves that ED-Dehaze Net can reduce the 
proportion of noise and restore the structure information of the image.

TABLE II. PSNR and SSIM Values on O-HAZE

Methods DCP CAP AOD cyc-D ours

PSNR 16.160 17.078 17.376 19.626 19.925

SSIM 0.772 0.792 0.786 0.677 0.795

Fig. 8 shows the visual results of various dehazing methods on 
the O-HAZE dataset. Both DCP and CAP have a phenomenon of 
color shift and there is still a small amount of haze remaining in the 
dehazed images, resulting in blurred details. Although AOD-Net uses 
a convolutional neural network for feature extraction, it does not use 
multi-scale spatial information like ED-Dehaze Net. So, the AOD-Net 
can remove the haze in the images, but cannot accurately reconstruct 
the texture and details. The dehazing images of the cyc-D network 
has over-smooth, because its unsupervised strategy cannot accurately 
estimate the density of haze in the image, resulting in excessive 
dehazing. Meanwhile, Table II shows that the SSIM value of the cyc-D 
is low, which proves that its excessive dehazing leads to incomplete 
restoration of the images’ structure. Our method can obtain high-
quality haze-free images, ensuring that the edge information contained 
in the images will not be lost.
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Fig. 8. Visual results on O-HAZE.

E. Ablation Study on Loss Function
During the training of the Generator, Smooth L1 loss and Perceptual 

loss are used to optimize the network. To prove that with the help 
of Perceptual loss, the network with Smooth L1 loss can generate 
dehazed images with higher quality. We compare two strategies when 
choosing loss functions: (a) using Smooth L1 loss alone, and (b) using 
Smooth L1 loss and Perceptual loss simultaneously. We have not 
chosen Perceptual loss as the loss function of the Generator alone, 
because the purpose of Perceptual loss is to measure the distance of 
features rather than the distance of image pixels. Therefore, the role 
of Perceptual loss should be an auxiliary of the pixel-wise Smooth L1 
loss. Table III lists the ablation experiment results of Smooth L1 loss 
and Perceptual loss.

TABLE III. Ablation Experiment Results of Smooth L1 Loss and 
Perceptual Loss

beta (1.2, 1.5) (1.5, 1.8) (1.8, 2.1) (1.2, 2.1)

Smo 19.667/#0.774 19.106/0.724 19.126/0.756 19.644/0.760

L1+ Per 19.821/0.782 19.647/0.781 18.966/0.772 20.032/0.774

L2+ Per 19.731/0.748 20.892/0.768 19.614/0.758 20.201/0.769

Smo+Per 20.940/0.799 20.332/0.784 19.627/0.761 20.264/0.781

# The symbol “/” stands for the separation of PSNR and SSIM values.

The Smo+Per get a higher PSNR/SSIM values than Smo, which 
means Perceptual loss can help the network generate high-quality 
dehazed images. In addition, the PSNR/SSIM values obtained by L1 + 
Per and L2 + Per are lower than Smo + Per. This proves that Smooth 
L1 loss can optimize the Generator better.

F. Ablation Study on Multi-Scale Convolution Block
The Generator contains multiple Multi-Scale Convolution Blocks 

(MSCBs) to enhance the process of the feature extraction, so as to obtain 
better dehazing performance. In order to prove the effectiveness of the 
multi-scale strategy, we compared the PSNR/SSIM values obtained by 
a single scale (3 × 3, 5 × 5, 7 × 7) and multiple scales (3 + 5 + 7) as shown 
in Fig. 9. In order to ensure the fairness of the experiment, all other 
parameter settings are the same.

The results in Table IV prove that our multi-scale strategy can 
extract features more effectively. Therefore, ED-Dehaze Net with 
MSCBs can obtain higher quality dehazed images. For the three single-
scale cases (3 × 3, 5 × 5, 7 × 7), the PSNR/SSIM values are very close. 
This further illustrates that the feature fusion method of multi-scale 
convolution can enhance the flow of spatial information.
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Fig. 9. Comparison with different scales, from left to right: 3 × 3, 5 × 5, 7 × 7 
and our multi-scale 3 + 5 + 7.

TABLE IV. Ablation Experiment Results of MSCBs

beta (1.2, 1.5) (1.5, 1.8) (1.8, 2.1) (1.2, 2.1)

3 × 3 21.033/0.781 19.634/0.792 19.231/0.755 20.132/0.779

5 × 5 19.872/0.796 19.897/0.766 18.998/0.755 19.245/0.773

7 × 7 19.660/0.790 20.226/0.793 19.046/0.758 19.995/0.760

ours 20.940/0.799 20.332/0.784 19.627/0.761 20.264/0.781

Meanwhile, we conduct experiments on the case where the 
Generator contains only Encoder-Decoder and no MSCBs. The results 
in Table V show that PSNR and SSIM are very low. The main reason 
is that the network’s capacity and complexity are not sufficient when 
without MSCBs.

TABLE V. Results With MSCBs and Without MSCBs

beta (1.2, 1.5) (1.5, 1.8) (1.8, 2.1) (1.2, 2.1)

noMSCBs 18.556/0.749 18.673/0.715 17.143/0.729 17.011/0.712

ours 20.940/0.799 20.332/0.784 19.627/0.761 20.264/0.781

V. Conclusion

This paper proposed an end-to-end dehazing algorithm based 
on deep learning, called ED-Dehaze Net. The Generator effectively 
extracted the spatial and texture information of the hazy images by 
the Encoder-Decoder structure. In order to ensure that the edges and 
details of the dehazed image are clearly reconstructed, we used Smooth 
L1 Loss and Perceptual Loss to train the Generator simultaneously. 
Experiments on synthetic and real world dataset proved that the 
proposed algorithm can effectively remove the haze in the hazy 
images.
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