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Abstract

Security is a sensitive area that concerns all authorities around the world due to the emerging terrorism 
phenomenon. Contactless biometric technologies such as face recognition have grown in interest for their capacity 
to identify probe subjects without any human interaction. Since traditional face recognition systems use visible 
spectrum sensors, their performances decrease rapidly when some visible imaging phenomena occur, mainly 
illumination changes. Unlike the visible spectrum, Infrared spectra are invariant to light changes, which makes 
them an alternative solution for face recognition. However, in infrared, the textural information is lost. We aim, 
in this paper, to benefit from visible and thermal spectra by proposing a new heterogeneous face recognition 
approach. This approach includes four scientific contributions. The first one is the annotation of a thermal face 
database, which has been shared via Github with all the scientific community. The second is the proposition of 
a multi-sensors face detector model based on the last YOLO v3 architecture, able to detect simultaneously faces 
captured in visible and thermal images. The third contribution takes up the challenge of modality gap reduction 
between visible and thermal spectra, by applying a new structure of CycleGAN, called TV-CycleGAN, which aims 
to synthesize visible-like face images from thermal face images. This new thermal-visible synthesis method includes 
all extreme poses and facial expressions in color space. To show the efficacy and the robustness of the proposed 
TV-CycleGAN, experiments have been applied on three challenging benchmark databases, including different 
real-world scenarios: TUFTS and its aligned version, NVIE and PUJ. The qualitative evaluation shows that our 
method generates more realistic faces. The quantitative one demonstrates that the proposed TV-CycleGAN gives 
the best improvement on face recognition rates. Therefore, instead of applying a direct matching from thermal to 
visible images which allows a recognition rate of 47,06% for TUFTS Database, a proposed TV-CycleGAN ensures 
accuracy of 57,56% for the same database. It contributes to a rate enhancement of 29,16%, and 15,71% for NVIE and 
PUJ databases, respectively. It reaches an accuracy enhancement of 18,5% for the aligned TUFTS database. It also 
outperforms some recent state of the art methods in terms of F1-Score, AUC/EER and other evaluation metrics. 
Furthermore, it should be mentioned that the obtained visible synthesized face images using TV-CycleGAN method 
are very promising for thermal facial landmark detection as a fourth contribution of this paper.
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I. Introduction

Automatic identification has become a crucial routine task to 
recognize individuals efficiently without any human interaction, 

in many applications, such as e-payment [1], people tagging in social 
media, gaming,...etc. Based on invariant biological and/or behavior 
characteristics [2], like face, iris, palm, fingerprint signature or gait 
recognition, biometric technologies are mainly used for security, like 
access control and criminal identification. 

Face modality has many advantages. It is a natural recognition 
procedure, generally accepted by everyone. It is cheaper in comparison 
to iris or fingerprint recognition modalities, since the price of cameras 
has become more accessible with the massive development of CMOS/
CCD sensors. It is easily done, non-intrusive and above all, it works 
at a distance and unobtrusively, which makes it suitable for highly 
populated places, such as airports or bus stations. Therefore, this 
modality has attracted several scientific researchers. We can cite for 
example [3]–[6] which have reached a significant level of recognition 
accuracy for controlled environments. Nevertheless, the performances 
of those systems, which use the visible light, with wavelength ranging 
from 0.4 μm to 0.8 μm, are highly dependent on lighting quality and 
intensity and cannot be used at all for night applications. Furthermore, 



Regular Issue

- 133 -

they face other challenges, such as pose and expression variations, 
and face disguises. To overcome these challenges, several alternative 
approaches have been proposed, they are mainly based on 3D or 
Infrared (IR) imagery.

With invariance to brightness changes as the main asset, IR 
imaging has emerged as a particularly promising research direction in 
the facial biometrics field [7]–[10]. It is a burgeoning sensor modality 
that could further be divided into two categories:

• Active infrared: it relies on signal reflected from objects 
illuminated by an infrared beam. It includes near-infrared (NIR) 
(0.74 μm - 1 μm) and short-wave infrared (SWIR) (1 μm - 3 μm).

• Passive infrared: it is based on body emitted radiation 
measurements, commonly known as thermal infrared. It comprises 
middle wave infrared (MWIR) (3 μm - 5 μm) and long-wave infrared 
(LWIR) (8 μm – 14 μm).

A Face Recognition (FR) system that aims to work under different 
illumination scenarios, during daytime as well as nighttime, should 
take into consideration both visible and infrared images. NIR and 
SWIR use an external active illuminator, which makes the active 
IR based FR systems improper for highly covert applications, since 
such an illuminator is easily detectable. Another major drawback 
for security applications is that NIR and SWIR images do not allow 
liveness verification natively, which makes the FR systems based on 
them, like those based on the visible images, vulnerable to spoofing 
attacks by just a photo or a video record (see Fig. 1). To overcome this 
issue, [11] has proposed eye-blink liveness checking. It achieves an 
interesting performance, but it was far away to be robust against the 
recent spoofing techniques, like 3D mask replica [12], [13]. Based just 
on body-emitted radiation, MWIR/LWIR remains an efficient solution 
against these issues (Fig. 2). It should be mentioned that few works have 
addressed the LWIR-VIS cross-spectral matching problem compared 
to the NIR-VIS problem, because the challenge intricacy increases 
proportionally with the spectrum wavelength. The authors in [14] 
have studied the modality gap based on the structural similarity index 
(SSIM) as a quantitative measure, and have obtained 0.335 for LWIR-
VIS scenario and 0.581 for NIR-VIS scenario. Furthermore, public 
thermal LWIR face databases are less available than NIR databases 
[14], which impedes researches in the heterogeneous LWIR-VIS face 
recognition field.

Visible ThermalNIR SWIR

Fig. 1. Different images of a same subject in different imagery bands (Visible 
and Infrared), from UL-FMTV Database [15].

We have chosen, in this paper, to take up all the challenges cited 
above. For that, we propose an effective and robust thermal LWIR/
Visible heterogeneous face recognition approach that includes four 
main contributions:

• Full manual annotations of an existent thermal face database are 
proposed for the scientific community to develop future thermal 
face detectors.

• A Multi-sensors detector based on the recent YOLO v3 architecture 
is proposed for face detection in visible as well LWIR imagery.

• A Cycle GAN with modified loss function (called TV-CycleGAN) is 
proposed to synthesize visible faces from LWIR faces, in different 
real-world scenarios, reducing the cross-spectral modality gap.

• A promising face landmark detection in thermal images is 
proposed. It is based on those obtained from the generated face 
images using our proposed TV-CycleGAN.

II. Background

Several face recognition methods using two spectra have been 
developed over the last decade [7], [16], [17]. We can distinguish 
two main approaches: multispectral face recognition (MFR) and 
heterogeneous face recognition (HFR). 

In the MFR approach, the facial recognition system is mainly based 
on a visible-infrared fusion step, which can be performed at three 
different levels: data level, feature level or match score level. The first 
level methods aim to obtain, from two or more coregistered images, one 
richer image that is used in the feature extraction step [18]–[20]. In the 
feature level fusion scheme, extracted characteristics from both spectra 
are merged in order to gather more informative and discriminative 
feature vectors [21]. This approach has been adopted to fuse extracted 
characteristics from both visible and LWIR or NIR images to construct 
a face recognition system in [22], [23]. For the score fusion scheme, 
after a score normalization process, classification scores are combined 
in order to improve the recognition performance [24]. 

In many real-world scenarios, we have images from the infrared 
spectrum only, since surveillance cameras often capture faces in low light 
conditions or in total darkness. However, most datasets accessible to law 
enforcement have been collected in the visible spectrum. Therefore, there 
exists a need to match IR images to visible face images. We aim in this 
work to deal with this heterogeneous face recognition challenge. 

There are three main approaches in HFR field, which are common 
subspace, invariant features, and image synthesis. The first approaches 
aim to project heterogeneous domain spaces to a common subspace 
to ensure a better measure and more appropriate comparison than 
the original distributions. For example, the authors in [25] proposed 
a method, called Common Discriminant Feature Extraction (CDFE), 
where face images from near-infrared and visible sensors are 
projected into a common feature space, such that the intra-class gap is 
minimized and the inter-class gap is maximized. In [26] the canonical 
correlation analysis (CCA) is used in order to maximize the correlation 
between the near-infrared and visible imagery domains. Mapping all 
thermal LWIR and visible images onto a common subspace suffers 
from being computationally expensive and requires a big amount of 
pre-processing [27]. 

In invariant feature domain approaches, scientific researchers use 
local handcrafted features in order to compare face images gathered 
from different spectra. [28] for example, proposed light source invariant 
features (LSIF) to cancel heterogeneities for a NIR-Visible matching. 
Huang et al. [29] proposed three different modality invariant features, 
quantized distance vector (QDV), sparse coefficient (SC) and least square 
coefficient (LSC) as encoding to resolve a NIR-Visible heterogeneous 
face recognition problem. In the third approach, synthesized images 
in the reference domain are generated from a probe domain and 
vice versa to apply traditional homogeneous methodologies. In [27], 
a joint dictionary learning mapping has been proposed for image 
reconstruction from visible to NIR domain and vice versa. In [30], 
using a deep CNN network, visible faces are reconstructed from near-
infrared images, by using a cross-modal hallucination at the input and 
a low-rank embedding at the output. In [31], a cascaded refinement 
network (CRN) has been proposed for LWIR to visible-like images 
synthesis. Kantarci et al [32] proposed to first apply the difference of 
Gaussians filter (DoG) and face alignment, using manually annotated 
facial landmarks, as a preprocessing stage, then they used a deep auto-
encoder architecture based on U-Net network to learn the mapping 
from thermal face images to visible-like face images. 
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Synthesis image approaches in HFR are based on cross-domain 
translation to reduce the modality gap. Therefore, we believe that 
generative adversarial network (GAN) [33] is an emerging and 
prosperous technique that may be applied in this field. Song et al [34], 
have introduced adversarial learning in raw-pixel and compact feature 
space to perform a NIR-VIS verification. In regard to the LWIR-VIS 
matching case, which could be considered as the most complicated 
case as aforementioned (lowest SSIM), there are very few scientific 
works in the literature. We can cite for example [35], where they have 
proposed the semantic guided GAN (SG-GAN) by assigning semantic 
labels, gathered from a face parsing network to semantic losses, to 
regularize the adversarial training. In [36], Zhang et al have proposed 
a TVGAN to generate realistic visible faces from LWIR thermal faces; 
however, all extremes poses and expressions were excluded from the 
experiences. Also, they did not provide any details related to automatic 
facial detection, which it is not a trivial task in LWIR imagery. Recently, 
Chu et al [37] proposed the multi-scale image synthesis method to 
translate thermal face images to the visible sensor modality. Their 
method is based on a GAN model to which they added the feature 
embedding, the facial landmarks and the identity preservation losses 
to their baseline loss function. 

Other works are based on the polarimetric thermal infrared 
acquisition. This technique is used to achieve an improved performance 
since it retrieves the geometric and the textural face details. Xing et 
al [38] proposed the multi-scale attribute preserving GAN (Multi-
AP-GAN) to synthesize visible face images from their corresponding 
polarimetric thermal face images for cross-modality face verification, 
by guiding the generator network with extracted attributes from the 
visible face images using a pre-trained VGG-Face network. He et al 
[39] proposed a visible face synthesis GAN-based (GAN-VFS) to 
generate visible faces from polarimetric thermal faces. 

The Table I summarizes the related works of the synthesisbased 
image approaches in LWIR/Polarimetric to Visible HFR with their 
reported performances, including some comments and drawbacks. 

In this scientific research, we propose a new thermal LWIR-VIS 
image synthesis method based on Cycle GAN, with a modified loss 
function. It includes all extreme poses and facial expressions in the 
evaluation protocol. In addition, as the cross-spectral translation 
depends highly on the pre-processing stage, we propose a simultaneous 
face detection technique in both spectra (visible and thermal LWIR) to 
automate the face-cropping phase. It is based on the last YOLO v3 deep 
architecture, trained using the WIDER visible face DB and the Terravic 
thermal DB, that we have annotated.

III. Proposed Approach

The proposed heterogeneous face recognition system is shown in 
Fig. 3. It includes three main parts:

• Multisensor Face Detection

• Face synthesis using TV-CycleGAN

• Face recognition

In addition to the database annotations, our scientific contribution 
concerns the first two parts.

We notice that the proposed TV-CycleGAN method used to 
generate visible faces from thermal images has a direct impact on face 
recognition process. We have chosen to focus on the thermal to visible 
face synthesis since most existing stored databases only contain visible 
face imagery of individual of interests [14]. In addition, the LWIR-VIS 
heterogeneous face recognition scenario is the most interesting for 
many security applications.

The results of the proposed face synthesis method using TVCycle 
GAN show also an interesting contribution in the face landmark 
detection field (Fig. 3). We will show more results in a later section.

A. The Proposed YOLO v3 Based Multi-sensors Face Detector
Face detection aims to locate the face coordinates in an image. 

Several face detection techniques have been proposed in the literature 
[41]. They can be categorized into two approaches: a region proposal 
approach and a regression/classification approach. The first approach, 
including RCNN [42], Fast-RCNN [43] and Faster- RCNN [44], adopts 
a pipeline of two stages: Object selection and classification. The first 
stage consists of selecting similar regions (same color, texture, or 
features). It is followed by a classification of each selected region. The 
regression/classification based approach, to which belong YOLO [45] 
and SSD [46] methods, is one-step straightforward. In this approach, 
images are firstly divided into grid cells where an object classification 
is carried out, reducing the time processing for region selection 
required in the first approach.

Unlike the R-CNN network versions that have used the regional 
proposal approach for the region selection, the YOLO network is faster 
and illegible for real-time applications, with comparable detection 
accuracy. YOLO v3 [47] is the last version, it incorporates the darknet 
53 architecture, with skipped connections for feature extraction, and 
53 other added convolution layers, for object detection, giving a fully 
convolutional network of 106 layers. Predictions are made at three 
different scales. As a result, this new architecture is more robust for 
the smallest objects than the early YOLO versions and has a better 
accuracy at overall.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Thermal imagery advantages under night and spoofing with disguise scenarios, (Up) LWIR Thermal (Down) Visible , (a,f) normal - (b,g) dark - (c,h) 
disguise with goggle - (d,i) disguise with mask - (e,j) disguise with wig.
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Face detection from visible images has been widely investigated in 
many scientific researches [48]–[50]. However, only a few works have 
been dedicated to thermal imagery [51], [52]. According to the best 
of our knowledge, there is no annotated public thermal face database 
that allows training a deep network for face detection. To overcome 
this issue, we have manually annotated the full thermal Terravic Facial 
IR database in the PASCAL VOC format (see the first row of Fig. 4) 
which contains a total of 21676 images.

In this paper, a multi-sensor face detection technique, based on the 
YOLO v3 network architecture, is proposed. It aims to detect faces 
in both visible and thermal images. For that, we have trained the 
network in two steps. Firstly, the Terravic Facial IR Database, which 
we have annotated, is used to train it for face detection in thermal 
images. Secondly, using a transfer learning technique and the WIDER 
database [53], a second full training phase has been carried out, for 
face detection in visible images. This database is fully annotated, 

including RGB face images with a high degree of variability in scale, 
pose, occlusion, expression, appearance, and illumination (Fig. 4).

B. Face Synthesis Using Thermal-Visible-Cycle Generative 
Adversarial Network (TV-CycleGAN)

Recently, Generative Adversarial Networks (GAN) have been 
proposed as an emerging area in deep learning field, based on two 
neural networks, a discriminator and a generator respectively. 
The discriminator acts as a binary classifier that discerns between 
real and fake images while the generator network learns epoch by 
epoch to produce images with realistic visual aspect as objective to 
fool the discriminator. According to application needs, variant GAN 
architectures have been proposed in the literature such as cGAN [54], 
Pix2Pix [55] or Cycle GAN [56]. In this work, we are interested in 
Cycle GAN.
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Fig. 3. Flowchart of the proposed Heterogeneous Face Recognition System.

Fig. 4. Training labeled data Samples : (Top) Our manual face annotations regarding thermal LWIR imagery (Terravic DB), (Bottom) Visible face annotations 
(WIDER DB).
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Cycle GAN is based on a pair of vanilla GANs including in total two 
generators and two discriminators, denoted by (GT ; GV ) and (DT ; DV ) 
respectively. In order to transform thermal face images t to like visible 
face images , the generator GT learns the domain translation T (Thermal) 
to V (Visible) based on the adversarial loss described in equation (1). 
The negative log-likelihood objective is replaced by a least-squares 
adversarial loss [57] in order to avoid gradient vanishing problem for 
training stability and quality generation as mentioned in the original 
Cycle GAN paper [56], giving the objective loss function described in 
equation (2). The opposite GAN direction, from domain V (Visible) to T 
(Thermal), is learned by (GV ; DT ) according to equation (3).

 (1)

 (2)

 (3)

The main differences between Cycle GAN and Classical GAN are 
cycle consistency loss Lcyc and identity loss Lid described in equations 
(4) and (5) respectively. Similar to conventional autoencoders, Lcyc 
corresponds to the L1 norm of image reconstruction. In case of T → V 
transformation, by injecting a newly generated visible like image  
from thermal image t using GT, through the second generator network 
GV, leads to reconstruct the original image t, ie: t → GT(t) → GV (GT(t))  t. 
In order to reduce the translation domain space, the cycle consistency 
loss is added to the GAN loss function.

The identity loss Lid refers to the L1 norm between the input image 
and the generated image mapped from its domain, added to preserve 
the color composition and identity features. The final Cycle GAN loss 
function is described in equation (6). λ and α are two fixed parameters 
to control the loss impact on the objective function.

 (4)

 (5)

 (6)

Referring to [14], which the structural similarity index metric 
(SSIM), defined in formula (7), is used to study the modality gap 
between visible and infrared sub-bands, we have opted to add the 
reverse metric (equation 8) to the CycleGAN’s loss function to reduce 
this gap and improve the visual aspect of domain translation from 
thermal infrared to visible, giving the TV-CycleGAN loss, described 
in equation (9).

 (7)

 (8)

 (9)

where (μv; μt) and (σv
2; σt

2) denote the mean and the variance, of 
the respective images v and t. σvt refers to the cross-covariance. b1 and 
b2 are two constants added to avoid instability when (μv

2 + μt
2) or  

(σv
2 + σt

2) are close to zero.

The proposed TV-CycleGAN pipeline’s details are given in Fig. 5. 
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Cycled

Real / Fake
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Visible to Thermal Synthesis

DT
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Fig. 5. Flowchart of the proposed TV-CycleGAN, where Lcyc = L(cycV) + L(cycT) , 
Lid = L( idV) + L( idT)  and LSSIM = L(SSMIV)+L(SSMIT).

C. Face Recognition
The proposed TV-CycleGAN is a technique to translate LWIR face 

images to visible like face images and vice versa, based on a modified 
adversarial loss. However, the identity information must be preserved 
to recognize a subject by visible-visible or LWIR-LWIR matching.

For the face recognition task (Fig. 3), we have used two pretrained 
models on a large-scale face dataset as a feature extraction technique; 
VGG 16 and Resnet 50. First, the extracted features from the real visible 
images of the TV-CycleGAN’s testing subset, are used to construct 
the reference embedding. Afterwards, other testing embeddings with 
the same technique, are formed based on the extracted features from 
the synthesized images (these synthesis images are obtained from 
LWIR images using Pix2Pix, TV-GAN, CycleGAN and TV-CycleGAN, 
respectively). 

To evaluate the identity preservation, the nearest neighbour is 
applied for a fair comparison with the state-of-the-art methods [31], 
[35], [36], [38]. It is the most commonly used matching process. 

It uses the cosine distance, which is calculated for each feature 
vector in the testing embeddings with those from the reference 
embedding. Each feature vector from the test set is then classified with 
the label referred to the lowest distance in the reference embedding 
and the recognition accuracy is calculated. 

The details of each used model are given in the following, and 
illustrated in the Fig. 6.

Fig. 6. Details regarding each used pretrained model for the face recognition 
stage : (Top) VGG16, (Bottom) RESNET 50.
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1. VGG16
The VGG16 architecture [58] encompasses 16 deep layers, 

distributed through five blocks and followed each by a maxpooling 
layer with a size of 2 × 2 . The first block comprises two conv layers of 
64 filters, and similarly for the second with 128 filters. The following 
blocks include 3 conv layers each, with 256 filters for the third one and 
512 filters for the fourth and fifth blocks. The conv filters use a kernel 
size of 3 × 3 with the rectified linear unit (ReLu) activation function. 
The blocks end with three fully connected layers and a Softmax for 
prediction probabilities.

For our experiments, the VGG16 model was trained on the VGG 
Face dataset [59], which includes 2.6 million face images from 2622 
subjects. We kept the model up to the fifth block, yielding to extract 
feature vectors of size 512 attributes.

2. RESNET50
The RESNET 50 belongs to the residual networks [60], including 

shortcut connections. The network starts with a block of 64 conv filters 
with kernel size of 7 × 7 and a maxplooing layer of size of 3 × 3 with 
a stride of 2. The rest of the network is distributed through four other 
blocks of 3 conv layers inter-connected using a shortcut connection 
each, and kernel sizes of 1, 3 and 1, respectively. The second and fifth 
blocks are repeated three times while the third, 4 times, and the fourth 
6 times, giving in total 50 layers. It is followed by an average pooling 
layer and fully connected layers of 1000 nodes with a Softmax.

For our experiments, the RESNET 50 model was trained on the VGG 
Face 2 dataset [61] that comprises 3.31 million face images gathered 
from 9131 identities. We erased to last layers to extract feature vectors 
by the last block with 2048 attributes.

IV. Experimental Results

A. Used Material and Tools
All our networks have been implemented using the Keras Python 

framework. The proposed face detector deep network is trained 
using the following configuration: learning rate of 0.0001 with Adam 
optimizer, callbacks such as early stopping and learning rates decay by 
factors 0.1 for 5 and 2 consecutive unimproved epochs, respectively. A 
batch size of 4 has been fixed to prevent the used graphical card, which 
is Nvidia GeForce RTX 2080 GPU with 8GB GDDR6, from overloading.

All our networks have been implemented using the Keras Python 
framework. The proposed face detector deep network is trained 
using the following configuration: learning rate of 0.0001 with Adam 
optimizer, callbacks such as early stopping and learning rates decay by 
factors 0.1 for 5 and 2 consecutive unimproved epochs, respectively. A 
batch size of 4 has been fixed to prevent the used graphical card, which 
is Nvidia GeForce RTX 2080 GPU with 8GB GDDR6, from overloading.

Our TV-CycleGAN adopts the U-Net [62] architecture for its 
generator, with skipped connections. We have adapted the network 
to our input images of resolution 128 × 128 px and used blocks of 
convolution filters, leaky relu as activation function and instance 
normalization. For the discriminator network, a fully convolutional 
neural network using the same blocks as the generator has been used 
for the binary classification. The TVCycleGAN was trained from 
scratch for 200 epochs, with the default parameters of the original 
CycleGAN paper:  λ = 10 and α = 1, learning rate of 0.0002 with Adam 
optimizer and a batch size of 1. Nvidia Tesla K80 was used in this 
experiment.

B. Used Datasets
Five databases have been used in the experiments that we have 

carried out; they are presented in the following.

1. Terravic Thermal Database
Terravic Thermal DB1 provides a set of thermal face images, for 

20 different individuals, captured using the Raytheon -3 Thermal-Eye 
2000AS thermal sensor, under different scenarios (normal posture, 
wearing sunglasses/hats, indoor/outdoor and variations in pose). It 
consists of a total of 21676 images with resolution of 320 × 240 px. 
The face images of each subject are put in one folder and split into 
two subsets: a training set (face folders from 10 to 20), including 16462 
images, and a test set of 5197 images (face folders from 01 to 04, and 07 
to 09), folders 05 and 06 are not available.

2. WIDER Database
WIDER DB [53] is a public fully annotated database in PASCAL 

VOC format, it consists of 32203 visible images from 61 different event 
classes. These images contain a total of 393703 labeled faces including 
occlusions and several variations in scale and pose. The database 
is divided into 3 subsets, 40% for training (12880 images), 10% for 
validation (3226 images) and the remaining 50% for the test set.

3. TUFTS Database
TUFTS DB [63] is one of the largest public2 databases that provide 

faces images acquired in different modalities such as visible, thermal, 
near-infrared, 3D and facial sketch. It consists of over 10000 images, 
collected from 112 individuals from more than 15 countries, with 
several age groups. These images include facial expressions and 
various acquisition angles. In our experiments, we have used the 
visible and thermal subsets, which include in total 1537 paired images. 
The thermal images in this database were acquired using the FLIR 
Vue Pro camera. A new version of this database has been shared in 
2020. It includes the same pair images (LWIR-Visible) as the original 
TUFTS database but in aligned form. In this paper, we have called this 
database “Aligned TUFTS”.

4. NVIE Database
USTC-NVIE3 is a multispectral database that comprises spontaneous 

and posed facial expressions [64], [65]. The posed sub-database consists 
of over than 7000 face images of 107 different subjects, gathered from 
the visual and LWIR spectra simultaneously at a distance of 0.75m, 
using the DZGX25M visible camera and the SAT-HY6850 infrared 
camera respectively. The images include variations in illuminations 
and facial expressions.

5. PUJ Database
Pontificia Universidad Javeriana (PUJ) [66] database is a public 

multispectral face dataset that provides 800 paired and nonaligned 
images from both visible and LWIR modalities. It was acquired from 40 
subjects using the FLIR-T360 according to two illumination protocols 
(with/out lighting), including variations in pose (front and profile 
capture) and facial expressions (neutral, surprised, and smiling).

The overview of each used database is given in Table II.

TABLE II. Overview of the Used Face Databases

Database # Subjects # Images VIS NIR LWIR

Terravic DB 20 21676   

WIDER DB - 32203   

TUFTS DB 113 +10000   

NVIE DB 107 7329   

PUJ-T360 DB 40 800   

1  http://vcipl-okstate.org/pbvs/bench/Data/04/download.html
2  http://tdface.ece.tufts.edu/
3  https://nvie.ustc.edu.cn/
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C. Protocols
As mentioned beforehand, our new proposed heterogeneous face 

recognition approach includes three parts: automatic multispectral 
face detection, visible synthesis using TV-CycleGAN and face 
recognition (Fig. 3).

Firstly, in the multi-spectral detection step, we have trained 
a custom YOLO v3 for face detection, using our Terravic face 
annotations for the thermal modality and the WIDER face annotations 
for the visible modality. The training process has been carried out 
in two stages: first, a thermal face detector has been trained using 
only our Terravic annotations; then, by applying a transfer learning 
technique, the learned weights have been trained again using the 
WIDER’s face annotations. The proposed multi-spectral face detection 
technique has been used in the prepossessing stage of our TV-Cycle 
GAN to automatically crop the region of interest (ROI) for the thermal 
to visible face translation. 

Secondly, in the LWIR to visible translation step using our TVCycle 
GAN, three multi-spectral databases have been used for evaluation: 
TUFTS, NVIE and PUJ databases. All thermal/visible face images pairs 
have been automatically cropped using our own YOLO v3 model 
and then have been split randomly into two subsets (training/test), 
according to ratios equal to 95/17 and 92/15, for the TUFTS and NVIE 
databases, respectively. 

Concerning the PUJ database. As it is the smallest one, we have 
considered the TUFTS database as the training set and we have used all 
the PUJ images for the test (as probe images). This procedure allows us 
to test the robustness and the efficiency of the proposed method when 
the system and acquisition conditions change, since the FLIR Vue Pro 
has been used for the TUFTS database acquisition where the FLIR T360 
has been used for the PUJ database acquisition. Also, we have carried 
out experiments on Aligned TUFTS database because it is one of the 
newest available datasets with aligned images, which constitutes an 
interesting way to show the recognition rate enhancement introduced 
by our method for aligned faces.

Finally, in the face recognition step, the real-visible face images are 
enrolled into a pretrained VGG face network, based on the VGG 16 
[59] and the RESNET 50 architectures [61], to construct the reference 
face embedding. Afterwards, in the testing phase, the extracted 
feature vectors from each probe synthesized-visible image, are 
compared against those stored in the reference embedding for a face 
identification related the lowest cosine distance.

Furthermore, we have applied facial landmarks detection on the 
obtained synthesized images using the proposed TVCycleGAN method. 
From that, we have easily detected the landmarks on the original 
thermal ones. Thanks to this result, we have dealt with thermal face 
landmark detection which is one of the most challenging task.

(a)

(b)

(c)

Fig. 7. Results of the proposed multi-sensor face detection technique, applied in different environment scenarios, such as normal posture, presence of facial 
expressions, slight and extreme angle orientations, and illumination changes, to visible and their corresponding thermal face images, (a) TUFTS database, (b) 
NVIE database, (c) PUJ database.
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D. Performance Evaluation

1. Face Detection Results
The face detection results obtained by our YOLO v3 based network 

are illustrated in Fig. 7, using different visible face images and their 
corresponding LWIR face images. Several acquisition scenarios have 
been considered to evaluate our multisensors face detector: front pose, 
slight and extreme orientation, high and low illumination conditions. 
These results clearly demonstrate the efficacy of the proposed face 
detector, under the variations cited above.

2. Visible Synthesis Results
To show the performance of our TV-CycleGAN proposed method, 

for visible face image synthesis, several experiments have been carried 
out using three multi-spectral face databases, called TUFTS and its 
aligned version, NVIE and PUJ, respectively. Also, quantitative, 
qualitative evaluations and comparison to other state-of-the-art 
methods have been done.

The quantitative evaluation has consisted in computing the 
Structural Similarity Index (SSIM), the Peak Signal to Noise Ratio 

(PSNR), the Mean Squared Error (MSE), the Root Mean Squared Error 
(RMSE) and the Mean Absolute Error (MAE) metrics, for each pair of 
thermal-visible images and each pair of synthesizedreal visible images, 
for the TUFTS and NVIE databases. The average value of each metric 
is reported in Table III.

We notice from the thermal-visible SSIM related to the used 
databases, that we deal in this paper with the most complicated case, 
because the LWIR-VIS modality gap corresponds to an SSIM of 0.305 
for TUFTS DB and 0.221 for NVIE DB. These gaps are higher than the 
one reported in the comparative study of [14] where the SSIM is equal 
to 0.335.

The comparison of different GAN-based methods: Pix2Pix [55], 
TV-GAN [36], Cycle-GAN [56], and TV-CycleGAN; using the metrics 
SSIM, PSNR, MSE, RMSE and MAE, shows that the proposed method 
(TV-CycleGAN) allows the best modality gap reduction for both 
databases (Table III). 

Even if the difference seems small between the results of CycleGAN 
and TV-CycleGAN (all metrics at Table III), the TVCycleGAN provides 
a significant improvement on the quality of synthesized faces as 
shown in Fig. 8 and 9 related to the qualitative evaluation.

TABLE III. Quantitative Evaluation of the LWIR to Visible Face Images Synthesis Regarding TUFTS and NVIE Databases

Method
TUFTS NVIE

SSIM PSNR MSE RMSE MAE SSIM PSNR MSE RMSE MAE
Raw Thermal 0.305 9.932 7016.4 82.48 66.7 0.221 10.195 6400.9 79.42 67.28

Pix2Pix 0.332 12.906 3569.6 58.74 44.25 0.274 13.635 2977.6 53.81 42.74
TV-GAN 0.321 12.761 3671.4 59.61 45.22 0.271 13.031 3434.7 57.74 46.34

CycleGAN 0.381 13.902 2978.4 53.03 40.41 0.307 14.254 2510.7 49.75 38.44
TV-CycleGAN (Our) 0.384 13.964 2902.3 52.50 39.97 0.324 14.28 2473.8 49.36 37.9

(a) (b) (c) (d) (e) (f)

Fig. 9. Qualitative comparative study regarding NVIE database for the 
visible face synthesis from LWIR face images: (a) Plain Thermal, (b) 
Pix2Pix [55], (c) TV-GAN [36], (d) CycleGAN [56], (e) TV-CycleGAN 
(Ours), (f) Target Visible.

(a) (b) (c) (d) (e) (f)

Fig. 8. Qualitative comparative study regarding TUFTS database for the 
visible face synthesis from LWIR face images: (a) Plain Thermal, (b) 
Pix2Pix [55], (c) TV-GAN [36], (d) CycleGAN [56], (e) TV-CycleGAN 
(Ours), (f) Target Visible.
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The qualitative evaluation is based on visual inspection. We have 
randomly selected some face image samples to show the results of 
our proposed visible synthesis method, as shown in Fig. 8 and 9. 
Even though all synthesizing methods fail sometimes to generate 
the detailed facial attributes, due to the absence of regularization 
guiding the GAN training, the proposed one, whose results are shown 
in the fifth column, outperforms the other state-of-the-art methods 
and provides a satisfying generation quality. Indeed, the synthesized 
images shown in this column preserve the persons’ identities, they are 
close to their corresponding ground truth images, shown in column 6.

We can notice from the results related to TUFTS database (Fig. 
8), that the TV-CycleGAN, provides a satisfying generation quality, 
thanks to the loss function similarity incorporated, as it has been 
mentioned beforehand. Even if the difference seems small between the 
results of CycleGAN and TV-CycleGAN (Table III), the TV-CycleGAN 
provides a significant improvement on the quality of synthesized 
faces. As shown in Fig. 8, 9 and 10 related to the qualitative evaluation, 
the proposed TV-CycleGAN gives more realistic faces and conserves 
better than other methods person’s identity. For example, in row 2, 
the TV-CycleGAN is able to better generate nose attributes. In row 
4, our method generates the face with better mouth and nose than 
Cycle-GAN. Also, in row 5, the obtained face from TV-CycleGAN has 
a better generated mouth.

Similarly, for the NVIE database (Fig. 9), our TV-CycleGAN outperforms 
the CycleGAN for facial attributes generation in all cases, particularly the 
eyes, eyebrows, nose, and skin texture, as shown in Fig. 10.

(a) (b) (c) (d)

Fig. 10. Enlarged regions of facial attributes, eyes and eyebrows, nose and mouth 
from Fig. 7 to compare TV-CycleGAN against its main competitor CycleGAN: 
(a) Plain Thermal. (b) CycleGAN (c) TV-CycleGAN, (d) Target Visible.

(a) (b) (c) (d)

Fig. 11. LWIR to Visible translation using TV-CycleGAN for scenarios including: 
extreme poses ((a) and (b)), facial expression (c) and glasses (d). first row: Raw 
Thermal, second row: TV- CycleGAN transformation, third row: Target Visible.

To reinforce the efficacy of the proposed method, we have included 
extreme poses and facial expressions in our TVCycleGAN training 
phase (Fig. 11).

In the light of all these results, we can assume that the proposed 
TV-CycleGAN will have a great impact on the face recognition results 
as shown in the next section.

3. Face Recognition Results
The proposed TV-CycleGAN’s main goal, is reducing the LWIR-

Visible modality gap, by synthesizing visible-like face images from 
thermal ones while preserving as much as possible relevant identity 
information, to improve the accuracy of heterogeneous face recognition.

In the face recognition step, we have used the pretrained models; 
VGG16 [59] and the RESNET50 [61] for feature extraction. First, a 
reference face embedding has been built with the extracted features 
from the testing real-visible subset images. Afterwards, each 
synthesized image from LWIR using GANs, is enrolled into one of 
the pretrained models and then classified with the label of the closest 
feature vector in the reference embedding, based on the cosine 
distance. Four metrics have been used to evaluate the face recognition 
performances as shown in Tables IV and V.

From Table IV, one can figure out that the modality gap has a huge 
impact on the identification accuracy, since matching directly raw 
thermal face images with the visible ones, gives a low accuracy, which 
is 28.99 % in the case of the TUFTS DB and only 17.06 % in the case 
of the NVIE DB, corresponding to 23.48 % and 8.80 % respectively in 
terms of F1-Scores, when the model VGG 16 is used.

Synthesizing visible-like images to match the real-visible ones 
often improves the heterogeneous face recognition performance. The 
TV-CycleGAN achieved the best recognition rates, which are 57.56 % 
for the TUFTS DB using the VGG 16 model, and 58.32% for the NVIE 
DB using the RESNET 50 model. Compared to its main competitor, 
Cycle GAN, our proposed TV-CycleGAN allows an improvement rate 
of 0.42% and 1.52% for the TUFTS and NVIE databases respectively. 
Comparing to a direct LWIR-Visible face matching results, the 
proposed TV-CycleGAN allows an accuracy enhancement of 10.5 % 
for TUFTS database, and 29.16% for NVIE database.

This improvement results from the new loss function implemented 
in the TV-CycleGAN. These results are in good agreement with 
the quantitative evaluation reported in Table 3; they prove that the 
modality gap reduction brought by the TVCycleGAN contributes 
to improve the accuracy of heterogeneous face recognition systems 
(Tables IV and V). Indeed, compared to the Pix2Pix [55] and TV-GAN 
[36] methods, the proposed TVCycleGAN has the largest AUC and 
the lowest EER, for both databases, as shown in Tables 4. In addition, 
to visualize the contribution of TV-CycleGAN synthesis on the face 
recognition performances, we have applied the Grad-CAM [67] on the 
TUFTS database as shown in Fig. 12. This shows that the TV-CycleGAN 
allows the recognition model to focus more on the facial attributes 
with larger activated regions (referred to the red regions) compared 
to the original LWIR face images. The activated regions are closer to 
the ones activated on the ground truth faces, which demonstrates the 
accuracy improvements compared to the lowest results obtained with 
the LWIR to visible face matching.

Furthermore, the obtained results from Table V for the aligned 
TUFTS database show that an additional face alignment stage 
contributes to improve the recognition performances. Therefore, 
the TV-CyleGAN reaches the top accuracy of 63.45 %. This result 
corresponds to an accuracy enhancement of 18.49% in comparison to 
a direct Aligned LWIR-Visible face matching. On the other hand, our 
method outperforms the recent Multiple-APGAN one [38] with an 
enhancement of 3.92% in terms of EER, even if this last one uses more 
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losses (5 losses) in its objective function than our method that uses 
only one additional loss (Eq. 9).

Concerning PUJ database, the proposed TV-CycleGAN method 
shows its robustness and efficacy when the system and acquisition 
conditions change. Indeed, it reaches the accuracy rate of 42,98% and 
contributes to an accuracy enhancement of 15.71% compared to the 
LWIR to Visible face matching.

4. Thermal Facial Landmark Detection Results
We have also dealt with one of the hot topics in LWIR imagery, 

which is thermal face landmarks detection [68]–[70]. It is quite hard 
to directly perform the detection in thermal imagery due to its low 
contrast. To overcome this issue, our proposed TV-CycleGAN method 
proves its ability to allow interesting facial landmarks detection on 
the generated face images. These landmarks could be applied directly 
on the thermal ones. For that, we have applied the dlib Python library 
to detect 68 landmarks on the synthesized images, and then we have 
projected them on the LWIR face images, as shown in Fig. 13. As it can 
be observed, the obtained results are very satisfactory. There are very 
promising for many applications such as face tracking and automatic 
multispectral face alignment.

Fig. 13. Thermal facial landmark detection results based on TV- CycleGAN 
transformation. Top: detection on real visible images, Middle: detection on 
synthesized visible images from LWIR, Bottom: transferred facial landmarks 
coordinates on Thermal face images from those detected on synthesized face 
images (Middle).

5. Complexity and Time Computation Results
To show the computation performance of our proposed 

heterogeneous face recognition, two hardware configurations have 
been used. The first configuration consists of Intel i3 5010 as CPU 
without any dedicated GPU where the second one uses the Intel 
Xeon CPU with Tesla K80 GPU. We have computed the complexity of 
each model used in each stage based on the number of floated point 
operations (FLOPs) and the corresponding average time elapsed for 
computation. The obtained results are reported in Table VI.

From Table VI, we can figure out that our heterogeneous face 
recognition system can be adapted easily to video surveillance systems 
including its three stages, and can run at a frame rate of 5 FPS when 
a dedicated GPU is used; however, when the hardware configuration 
has only a CPU for the computation, it takes 2.78 seconds to detect, 
synthesize and recognize the subject with the VGG16 model that 
corresponds to 83.65 × 109 FLOPs, and 2.49 seconds with the RESNET 
50 model, corresponding to 72.15 × 109 FLOPs, respectively. This is 
unsuitable for real-time applications.

TABLE IV. Obtained Face Recognition Results Regarding the TUFTS and NVIE Databases

Method
TUFTS NVIE

Accuracy F1-Score AUC EER Accuracy F1-Score AUC EER
Raw Thermal – VGG 16 28.99% 23.48% 62.28% 42.63% 17.06% 8.80% 55.57% 46.85%

Raw Thermal – RESNET 50 47.06% 42.99% 71.88% 35.38% 29.16% 27.23% 62.05% 42.73%
Pix2Pix – VGG 16 49.57% 49.69% 73.21% 34.25% 23.97% 16.88% 59.27% 44.56%

Pix2Pix – RESNET 50 39.50% 39.03% 67.86% 38.61% 17.28% 13.05% 55.68% 46.78%
TV-GAN – VGG 16 47.90% 46.15% 72.32% 35.00% 14.25% 9.26% 54.07% 47.74%

TV-GAN – RESNET 50 43.70% 43.46% 70.09% 36.85% 17.28% 14.08% 55.68% 46.78%
CycleGAN – VGG 16 57.14% 55.53% 77.23% 30.57% 46.00% 42.09% 71.07% 35.96%

CycleGAN – RESNET 50 52.94% 54.07% 75.00% 32.65% 56.80% 55.40% 76.86% 30.83%
TV-CycleGAN – VGG 16 (Our) 57.56% 55.17% 77.46% 30.36% 46.65% 45.00% 71.42% 35.68%

TV-CycleGAN – RESNET 50 (Our) 55.88% 55.79% 76.56% 31.21% 58.32% 55.60% 77.67% 30.05%

TABLE V. Obtained Face Recognition Results Regarding the Aligned TUFTS Version and PUJ Databases

Method
Aligned TUFTS PUJ

Accuracy F1-Score AUC EER Accuracy F1-Score AUC EER
Raw Thermal – VGG 16 29.41% 22.93% 62.50% 42.48% 14.05% 7.97% 55.92% 46.78%

Raw Thermal – RESNET 50 44.96% 39.43% 70.76% 36.31% 27.27% 24.08% 62.70% 42.56%
CycleGAN – VGG 16 58.40% 55.55% 77.90% 29.93% 25.62% 20.16% 61.86% 43.12%

CycleGAN – RESNET 50 62.60% 61.17% 80.13% 27.69% 42.15% 37.68% 70.33% 36.99%
TV-CycleGAN – VGG 16 (Our) 63.45% 61.51% 80.58% 27.22% 34.71% 27.81% 66.52% 39.90%

TV-CycleGAN – RESNET 50 (Our) 63.03% 59.42% 80.35% 27.46% 42.98% 37.78% 70.75% 36.65%

Fig. 12. Grad-CAM heatmaps from the TUFTS database using the pretrained 
VGG16 model. First row: Raw Thermal, second row: TV-CycleGAN 
transformation, third row: Ground truth.
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V. Conclusion

Cross spectral face recognition is a challenging task due to the large 
gap between modalities, especially between LWIR and visible spectra. 
Our contribution in this paper is fourfold. First, we have proposed a 
thermal-visible face detection method. This method is based on the 
YOLO v3 architecture and provides an advanced solution for face 
detection in both thermal and visible imagery, which makes it suitable 
for several applications, such as facial emotion recognition (FER) or 
liveness detection. Second, We have annotated a full thermal face 
database and have shared it with the scientific community in Github 
repository4. Third, we have proposed a modified CycleGAN, called, 
TVCycleGAN that allows to translate LWIR images to visible-like 
images. Finally, the synthesized-visible face images obtained by this 
network are very promising for thermal facial landmark detection. 
Summing up the results, it can be concluded that the proposed TV-
CycleGAN deep learning network shows its robustness and efficacy 
in LWIR to visible faces synthesis for heterogeneous face recognition. 
Compared to some recent stateof- the-art methods, the proposed 
method gives more realistic faces and conserves better persons’ 
identities. Thus, our results could be considered as a major asset for the 
use of our proposed system in daily real-life scenarios. For the future, 
we plan to improve the proposed method by guiding the GAN training. 
We also aim to extend our findings to Thermal-Visible face registration, 
using the detected face landmarks in synthesized visible images.
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