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Abstract

One of the most dangerous situations a warship may face is a missile attack launched from other ships, aircrafts, 
submarines or land. In addition, given the current scenario, it is not ruled out that a terrorist group may 
acquire missiles and use them against ships operating close to the coast, which increases their vulnerability 
due to the limited reaction time. One of the means the ship has for its defense are decoys, designed to deceive 
the enemy missile. However, for their use to be effective it is necessary to obtain, in a quick way, a valid 
launching solution. The purpose of this article is to design a methodology to solve the problem of decoy 
launching and to provide the ship immediately with the necessary data to make the firing decision. To solve 
the problem machine learning models (neural networks and support vector machines) and a set of training 
data obtained in simulations will be used. The performance measures obtained with the implementation of 
multilayer perceptron models allow the replacement of the current procedures based on tables and launching 
rules with machine learning algorithms that are more flexible and adaptable to a larger number of scenarios.
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I. Introduction

The missile is one of the most dangerous threats a warship can 
face (see Fig. 1). Currently, about eighty countries have anti-ship 

missiles in their arsenals, which can be launched from aircraft, ships, 
submarines or from a coastal battery.

Fig. 1. USS Stark after the impact of two missiles launched from an Iranian 
aircraft in the Persian Gulf (Source: https://www.history.navy.mil).

Furthermore, given the current international scenario with an 
increase in global terrorism, it cannot be ruled out that anti-ship 
missiles may fall into the hands of some terrorist group and given that 
naval operations are more often conducted in coastal waters near the 
coast, this threat takes on special significance, as ships are exposed to 
attacks from land and with reduced reaction times.

In parallel with the change in the global threat, governments 
have increased their control over military forces deployed in areas of 
operation by dictating increasingly restrictive rules of engagement 
(ROE’s) [1] and although every ship commander has an inherent right 
of self-defense, if an escalation of tension in the conflict zone is not 
desired, the use of force must always be proportional. Moreover, the 
need to avoid friendly confrontations makes it even more difficult to 
use the ship’s weapons in combating a possible missile attack. 

In addition to the foregoing, the Anti Surface Missile Defense 
(ASMD) is, from the tactical point of view, a complex action in which 
decisions must be taken in seconds, with no margin for error, and in 
which all means of defense may be employed: hardkill (long, medium 
and short-range missiles, naval guns and small arms) and softkill 
(passive and active electronic countermeasures and decoys).

The decoys are passive elements, which can be considered the last 
layer of defence of the ship. As shown in Fig. 2, the intention is to 
deceive the missile and focus its guidance system on a false target, this 
process, in naval tactical terminology, is known as seduction. 

Another advantage of decoys is that their use does not involve 
the lethal use of force, which is always permitted by the rules of 
engagement.
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Fig. 2. Seducing a missile with decoys.

However, its use is not simple, to be effective and as shown in Fig. 
3, the ship must react immediately, choose one of the 4 fixed launchers 
that are located in different positions and also must consider altering  
course to port or starboard to improve efficiency. 

Maintain
course Alter

course
starboard

Alter
course

port

Port
launchers

Fig. 3. Typical ship launchers configuration and possible maneuvers.

The launcher/alter course combination is what is known as the 
launch solution and therefore, for a scenario there are 12 possible 
solutions (4 launchers x 3 possible ship manoeuvres).

Currently, ships have implemented a series of pre-planned reactions, 
which they will use in the event of a missile attack. However, these 
reactions can only cover a limited number of scenarios.

Applying current technology of artificial intelligence, in particular 
machine learning techniques, it is possible to improve the accuracy of 
the reactions obtaining solutions for any scenario.

Moreover, for the same scenario there can be more than one launch 
solution, so within this last set it will be necessary to determine which 
is the best reaction to use. As an example, for two valid reactions, one 
may present a much greater miss distance of the missile from the ship 
than the other. In short, the feasible solutions for the same scenario 
can be ordered according to a series of criteria, allowing the ship to 
make a better decision.

Finally, as regards current anti-ship missiles, we can classify them, 
according to their guidance system, as: electro-optical (EO), infrared 
(IR), radio frequency (RF) or dual (combination of the above) and 
therefore, to defend against them, different types of decoys are used: 
flares for EO and IR guidance missiles, chaff for RF guidance missiles 
or a combination of the above for dual guidance missiles. 

In this paper we will focus on the chaff launch solution for seducing 
radio frequency guidance missiles, although the methodology outlined 
here is applicable to any type of missile.

II. Objectives 

The aim of this work is to develop a machine learning (ML) model 
which, trained from data from a number of simulations, obtains for 
any scenario what reactions of the ship allow to seduce the missile.

In addition, the ML model must have other data outputs: the 
expected missile miss distance, the time the ship is being tracked by 
the missile before it is focused on the decoy, and the probability of 
success of each possible launch solution. All these data can feed into a 
multi-criteria decision layer to obtain the best solution to the problem.

The basic architecture of the process would be as shown in Fig. 
4, where a large number of scenarios would be simulated in the 
laboratory, to obtain a dataset with which to train a machine learning 
model, to be subsequently implemented on the ship and to obtain the 
best launch solution.

DataSet

Simulation Training
ML model

Trained
ML model

Multicriteria
decision

Launch
solution

Ashore laboratory On board the ship

Prediction

Fig. 4. Laboratory-on board process.

III. Simulation 

In a real action against an attacking missile, the ship available time 
may not reach one minute, so the decoy launching solution must be 
pre-planned and there must also be a solution for all or most of the 
possible scenarios in which the ship may find itself.

The possible launch solutions are obtained by numerical simulation 
techniques before going to sea and are implemented on the ship by 
solution tables. This simulation is based on the interaction of three 
models: ship, decoy and missile, which interact in a scenario given by a 
wind, a ship speed and a distance and bearing of the attacking missile.

Each of the models involved in the simulation are characterized 
by a series of parameters or characteristics that will affect the launch 
solution. 

The ship model is mainly characterized by its dimensions, turning 
circle maneuver, position of the decoy launchers and the radar cross 
section (RCS). The RCS is a random measurement that fluctuates 
rapidly over time and whose value determines the size of the echo that 
the ship presents on the radar of the attacking missile. Therefore a low 
RCS will make the vessel less visible to the missile seeker radar and 
will make it easier for the decoys to attract it.

The missile model is characterized by its speed and height of flight 
and certain parameters of its seeker radar.

On the other hand, the decoy model will be characterized by its 
deployment data: distance, height, deployment time, drop speed, 
cloud diameter and by its radar cross section. The decoy RCS is also a 
random variable and is an extremely important data, since it will have 
to have a sufficiently high value, in relation to the RCS of the ship to 
deceive the missile.

In addition to the three models mentioned, each of the possible 
simulation scenarios is given by the ship speed, the bearing (direction) 
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and distance of the attacking missile and the wind (direction and 
intensity). The wind parameter is especially relevant since it will be 
responsible for dragging the cloud formed by the decoy away from the 
ship, which should foil the missile from its intended target.

The three models interact in the simulation in order to calculate, 
in each scenario, the launch solution that allows the seduction of the 
enemy missile. The seduction mechanism consists of deploying a 
cloud or clouds of decoys with sufficient RCS so that, due to the effect 
of the wind and the speed of the ship, the seeker radar resolution cell 
of the attacking missile will be centered on the cloud of decoys and 
away from the ship. This effect is called the centroid effect[2], which 
can be summarized in the phases shown in Fig. 5 [3]. Initially, in Phase 
A, the missile has the ship inside its seeker radar resolution cell and 
the ship reacts with a decoys launch. In Phase B, due to the effect of 
the wind, the decoys separate from the ship and the missile centers its 
resolution cell in the center of all the RCS (ship and decoys) contained 
in the cell. Finally, in Phase C the decoy continues to move away from 
the ship and if it has enough RCS, the transfer of the tracking from 
ship to decoy takes place.

Wind RCS centroid

Missile radar
seeker cell

Decoy

Phase A

Phase B

Phase C

Fig. 5. Centroid effect.

The missile, ship and decoy models interact in the simulator as 
described for the centroid effect and it allows us to determine for each 
scenario which of the twelve ship possible reactions (combination of 
launcher and change of course) are effective in seducing the missile, 
i.e. success/failure. In addition, other data are obtained from the 
simulation, such as the minimum miss distance of the missile from the 
ship and the percentage of time that the missile has centered the ship 
in the seeker radar resolution cell before transferring the tracking to 
the decoy.

It should be noted that, as it is a stochastic simulator, a certain 
number of runs must be made in order to draw conclusions and 
therefore, for each possible solution, a probability of success can also 
be obtained.

In this work, a series of scenarios have been configured in the 
simulator with the data shown in Table I, giving a total of 186,624 
scenarios. As there are 12 possible solutions per scenario, a total of 
2,239,488 instances are obtained, of which 30 runs have been made. 
This provides a sufficient volume of data for training, validation and 
testing of any machine learning model.

TABLE I. Simulation Scenario Data

Scenario parameter Values

Ship speed (Sship) 10, 15, 20 knots

Wind speed (Swind) 0, 10, 20 ,30 knots

Wind bearing (Bwind) [0º-355º] step 5º

Missile distance (Dmisil) 5000, 10000,15000 yards

Missile bearing (Bmisil) [0º-355º] step 5º

Fig. 6 shows how the wind and missile bearing is measured.

Wind

Ship

Missile bearing
(Bmisil)

Wind bearing
(Bwind)

Missil

Fig. 6. Wind and missile bearing.

Before focusing on the types of ML models that can solve the 
problem, it is necessary to clarify the available dataset obtained from 
the simulations. The ML model should have as inputs the parameters 
of the scenario in which the vessel is, the available launchers (4 
launchers in our case) and the possible alter course. Thus, the input 
data will be as shown in Table II.

TABLE II. Input Data

Data Units

Ship speed (Sship) knots

Wind speed (Swind) knots

Wind relative bearing (Bwind) degrees

Missile distance (Dmisil) yards

Missile relative bearing (Bmisil) degrees

Launcher (L) 1, 2, 3, 4 (binary coded)

Alter course (A) Port, 0º, starboard (binary coded)

From the input data, for each scenario and for each possible launch 
solution, we will have the following Target data (see Table III).

TABLE III. Target Data 

DATA UNITS

Solution 1 – success (no impact on ship);  
0-fail (impact on ship)

Miss distance Yards

Time in cell Total engagement percentage

Probability of success (Note) 1-Probability of success >0.8  
0- Probability of success ≤0.8

Note: 0.8 is taken as the probability of success since it corresponds to the 
turning point of the probability/frequency histogram and encompasses 87% 
of the total solutions.

IV. Machine Learning Models 

As mentioned above, the aim of this work is to build a machine 
learning model that, trained from the data obtained from the simulation, 
can be implemented in a ship’s combat system so that it will provide 
the necessary outputs to determine the best decoy launching solution.

Since we have four types of target data, it was decided to build 
four different ML models based on supervised learning: two binary 
classification models for solution and probability of success, and two 
regression models for miss distance and time in cell.

Initially, two types of machine learning techniques were chosen 
as possible candidates to solve the problem: Support Vector Machine 
(SVM) and Multi Layer Perceptron (MLP). Thus, this study tries to 
determine which is the optimal technique or which combination of 
both techniques is the optimal one to solve the problem.
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A. Multilayer Perceptron (MLP) Model.
The term neural network has its origin in attempts to find 

mathematical representations of information processing in biological 
systems. It is a powerful structure that allows the creation of non-
linear predictive models and is used in supervised and unsupervised 
learning[4]. In the case of supervised learning it allows to build binary 
and multiclass regression and classification networks [5]–[7].

The basic structure of a neural network is the neuron (see Fig. 7), 
the input variables (𝑥𝑖) are connected to the neuron through weighted 
connections (w𝑖) that emulate dendrites, while the sum (Σ), the bias 
(b) and the activation function (h) play the role of the cell body and 
the propagation of the output is analogous to the axon in a biological 
neuron. The behavior of the neural network is defined by the shape 
of the connections of its neurons or nodes and by the values of the 
weights of these connections. These weights are automatically 
adjusted during training according to a learning algorithm, until the 
network carries out the desired task correctly [8]. 
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Fig. 7. Neuron model.

Multilayer perception (MLP) or multilayer network with feed-
forward architecture, without feedback, is a kind of neural network, 
which has an architecture with a finite number of layers and neurons. 
In this structure three different types of layers are distinguished: the 
input layer, the hidden layers and the output layer, the latter having as 
many outputs as targets to be predicted. Generally, all the neurons in 
one layer are connected to all the neurons in the next layer, which is 
known as total connectivity or fully connected network.

The MLP characterizes the relationship between input and output 
layers, which is parameterized by the weights. This relationship is 
obtained by propagating the values of the input variables forward. 
To do this, each neuron in the network processes the information 
received by its inputs and produces a response or activation that 
propagates, through the corresponding connections, to the neurons 
in the next layer.

If we have an MLP with D inputs, and there are L layers with nl 
neurons each one, the first L − 1 layers will be the hidden layers and 
then there is the output layer, with so many outputs K as dimensions 
have the target to predict. The output of the neuron i of the layer l 
we will denote it by . From one layer to the next, the output of the 
neuron i is weighted by a weight  where l is the layer and j is the 
neuron of the layer l (see Fig. 8).

The weighted sum of the weights of a neuron input is called 
activation. Thus, for the neuron j of the layer l, the activation  is 
given by:

This input is transformed using an activation function  to 
generate the output  to the next layer:

The activation functions for the output layer in our problem have 
been chosen according to the type of prediction. Thus, the softmax 
function was used for binary classification and the identity or purelin 
function for regression. For the hidden layers, the tansig function was 
used in all cases.

Now, from the training dataset given by some entries  and a 
target , the training objective is to find a set of weights  that 
minimizes the error function that we will denote  which 
measures the error associated with the training sample. The sum of 
squares function, below is a common choice:

To solve this problem, heuristic methods based on the descent of 
the gradient called backpropagation are used. The steps to carry out 
this algorithm are the following:

Step#1. Apply the inputs  to the MLP, propagate forward, calculate 
the outputs  and errors in the output layer 

Step#2. Errors are propagated backwards, calculating for all hidden 
layers. So that, the error of a certain layer, is calculated on the 
basis of the error of the following layer:

Where the term  is called error and must be calculated for 
each network node.

Step#3. Evaluation of error-function. Derivatives are calculated as: 

Step#4. From the derivatives, bayesian regularization backpropagation 
algorithm is applied that progressively improves the weights of 
the network [9]–[12].

An important aspect to consider when designing a multilayer 
perceptron is the number of layers and neurons per layer. More than 
one hidden layer speeds up the training process, especially in very 
heavy problems. On the other hand, the more neurons per layer, the 
better the adaptability of the model to the problem. However, an 
increase in the number of layers and neurons can lead to overfitting 
and poor generalization [13], [14].

For this study, we have chosen to start with a single hidden 
layer network, and increase the number of layers while decreasing 
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Fig. 8. Nomenclature used in the mathematical definition of neural networks.
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the error. In the same way, the number of nodes or neurons in the 
hidden layers has been increased until the error is stabilized. In the 
case of configurations with more than one hidden layer, the pyramid 
technique has been used, which consists of decreasing the number of 
nodes from the input layer to the output layer [15].

Therefore, for the problem of this study, first of all, it is necessary 
to determine which the optimal configuration of layers and neurons 
per layer is for each of the four target data (solution, miss distance, 
time in cell and probability of success), which will be given by the one 
that presents the best measure of performance with the least number 
of layers and neurons.

In order to determine the optimal configuration, it was decided to 
analyze three network models, each with one, two and three hidden 
layers. In addition, different numbers of neurons were configured in 
each layer in each model. 

It was found that with four hidden layers the performance measures 
deteriorated significantly and the MLP models suffered early stops due 
to overfitting.

The different configurations analyzed are presented in Table IV.

TABLE IV. MLP Configurations Analyzed

Number of neurons per layer

Hidden 
layers

Layer 1 Layer 2 Layer 3

1
From 10 to 150 

(step 10)
- -

2
From  10 to 50

(step 5)
5 fewer neurons 
than in layer 1

-

3
From  10 to  50

(step 5)
5 fewer neurons 
than in layer 1

5 fewer neurons 
than in layer 2

B. Support Vector Machine (SVM) Model
Support Vector Machines (SVM) are part of the supervised learning 

techniques and are used for both classification and regression. SVMs 
belong to the family of linear classifications and they find a linear 
separator or hyperplane [16]. 

In the classification SVM, the optimal separator hyperplane is 
defined as the maximum margin separating hyperplane that maximizes 
its distance from the classes (see Fig. 9).

Support Vectors

Hyperplane

Margin

Fig. 9. Maximum margin separating hyperplane for a classification problem 
with two linearly separable classes.

The concept with which the maximum margin SVM works, is 
to find the hyperplane separator that is the same distance from the 
closest examples of each class. Equally, it is the hyperplane that 
maximizes the minimum distance between the examples of the data 
set and the hyperplane. Furthermore, it only considers the points that 

are on the borders of the decision region, these data are the so-called 
support vectors.

If we have a training dataset S = {(𝑥1, 𝑦1), ... (𝑥n, 𝑦n)} where  
and 𝑦i ∈ {−1, 1}, In the case of a linear function, the separating 
hyperplane will be a linear function:

Where  is the weight vector orthogonal to the hyperplane 
and .

However, the most common formulation of the linear SVM and 
maximum margin is its primal formulation which is as follows, and 
corresponds to the quadratic optimization problem whose objective 
function and the corresponding constrains are:

s.t.

Separating hyperplanes have two major weaknesses: the 
requirement for linear separability of the sample and its linear 
nature. Therefore, in order to extend the SVM concept to non-linear 
classifiers, a transformation of the input space is performed, using 
kernel functions , to another high dimensional feature space 
in which the data are linearly separable, this procedure is known as 
the kernel trick [17], [18]. The separation hyperplane then takes the 
following form:

Likewise, for problems whose training data set is not linearly 
separable, the Soft-Margin algorithm can be used, which introduces 
slack variables (ξi ≥ 0) to relax the condition of the margin, allowing 
poorly classified observations and making the model more robust [16]. 

We thus obtain the following optimization problem with objective 
function and constrains:

s.t.

Where the regularization parameter (C) indicates the importance or 
cost of misclassified instances.

SVM can be applied to regression problems by introducing an 
alternative loss function. In this work the loss function ε − insentitive  
proposed by Vapnik has been used [19], [20], which ignores errors at a 
certain distance from the real value. In this regression SVM algorithm, 
some slack variables are also introduced (ξ, ξ *) which measure the cost 
of errors in training points, the values of these variables being zero for 
all points within the band  ±ε (see Fig. 10).

𝑦𝑦(𝑥𝑥)

𝜉𝜉i

𝜉𝜉i
*

+ ε

- ε

Support vectors

Fig. 10. Regression hyperplane, support vectors, slack variables and 
ε − insentitive loss function.
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In the case of regression SVM, the quality of the estimate will be 
given by the loss function (L):

Thus, the optimal regression SVM hyperplane will be given by the 
following minimization problem:

s.t.

In the same way, in the case of non-linear training data, we will 
have to perform a non-linear transformation in the input space, to a 
high dimensional feature space by means of a kernel function.

In our problem, we have used classification SVM with a Soft-
Margin algorithm, for the regression SVM models we have used 
a ε − insentitive loss function and for both we have implemented a 
radial base or Gaussian kernel with gamma parameter (γ > 0).

Therefore, in each case, we must obtain the optimal values for: 
kernel scale (γ), boxconstrain (C) and ε − insentitive. For this purpose, 
the grip method or grid search has been used.

C. Finding the Optimal Model
To determine the optimal model for each of the four targets, the 

following steps were followed:

Step#1. Dataset normalization.
Step#2. Setting the MPL parameters and SVM hyper parameter  

ranges.
Step#3. Training, validation and testing of all MLP models contained  

in Table IV and SVM.
 The same training and test data were used for this step, for  

all MLP and SVM configurations. In addition, a total of 10  
runs were made, and a statistical study was subsequently  
carried out to compare the results. In this step, and to save  
computing time, from the total number of available instances  
and for each replica, 56 000 instances were sampled.

Step#4. Collection of performance measurements.
 For the classification models (solution and probability of  

success): accuracy (matrix confusion).
 For regression models (miss distance and time on cell): mean  

square error (mse) and R2.
Step#5. Graphic and statistical analysis of performance measures.
Step#6. Identification of the optimal model for each target.
Step#7. Train the optimal models with a greater number of instances  

to improve performance measures. A total of 500,000  
instances of total available dataset were used.

Step#8. Build the model set to obtain the predictions of the launch  
solutions.

By applying the Steps# 1-5, the following results have been obtained 
for each of the four target data:

a) Target: Solution (classification model). In this case and after 
analyzing the confusion matrices of the different models, the 
means of the accuracy values obtained are presented in Fig. 11. 
It can be observed that for the case of MLP with 2 and 3 hidden 
layers, precision values higher than 0.93 have been obtained.

Furthermore, with 95% confidence, no statistically significant 

difference was found between MLP with 2 and 3 hidden layers. 
Therefore, a 2-hidden-layer MLP with 40 and 35 neurons in each 
layer was taken as the optimal model for this target.

MLP vs SVM. Target data: Solution

MLP and SVM configurations

SVM 1-hidden-layer MLP 2-hidden-layer MLP 3-hidden-layer MLP
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Fig. 11. Solution. Comparative of the accuracy means for the different models.

b) Target: Miss distance (regression model). In this case the value of 
mean square error and R2 were used as measures of performance. 
In Fig. 12, it can be seen that mse minimum value has been 
reached for a 3-hidden-layer MLP. Furthermore, it was found that 
statistically and with 95% confidence, the mse values for 3-hidden-
layer MLP are statistically lower than the 2-hidden-layer models. 
Therefore, we will take the 3-hidden-layer MLP with 35-30-25 
neurons per layer, as the optimal model for the target data miss 
distance.

MLP vs SVM. Target data: miss distance

MLP and SVM configurations

SVM 1-hidden-layer MLP 2-hidden-layer MLP 3-hidden-layer MLP

minimun mse value
(3-hidden-layer MLP: 35-30-25 neurons)

m
se

0.80

8.00

80.00

800.00

8000.00

80000.00

Fig. 12. Miss distance. Comparative of mse means for the different models.

c) Target: % Time in cell (regression model). In this case the value 
of mean square error and R2 also were used as measures of 
performance.

After training the models very high values of mse (higher than 
0.001) and poor values of R2 (lower than 0.80) were obtained.

To improve the results the miss distance was introduced as 
an input and all models were retrained. With this, the results 
improved significantly, decreasing the mse by approximately 40% 
and now obtaining values of R2 higher than 0.88.

On the other hand, once the graph in Fig. 13 has been created, it can 
be seen that the best mse results were obtained for 3-hidden layer 
MLP, specifically for a configuration of 35-30-25 neurons per layer.

d) Target: Probability of success >0.8 (classification model). In this 
case the same problem was found as for the previous target, 
the calculated accuracy values in the confusion matrices for the 
different configurations were lower than 80%, so they cannot be 
considered as valid for our problem.
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To improve the results it was introduced as miss distance as a new 
model input, improving the results reaching precision values close 
to 90%.

As can be seen in the graph in Fig. 14, all models achieve similar 
accuracy values, proving that statistically and with 95% confidence, 
there are no differences between them. Therefore, a 1-hidden-layer 
MLP of 60 neurons was taken as the optimal model.

MLP vs SVM. Target data: Probability of success >0.8

MLP and SVM configurations

SVM 1-hidden-layer MLP 2-hidden-layer MLP 3-hidden-layer MLP

maximum accuracy
(1-hidden-layer MLP:
60 neurons)
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0.9500

Fig. 14. Probability of success >0.8. Comparative of the accuracy means for the 
different models.

D. Training, Building the Models Set and Test 
Once the optimal models had been found, the following steps were 

taken as shown in Fig. 15: the optimal models were trained, the final 
set of models was built and the performance measures of this set were 
calculated.

DataSet

Train models
Step#6

Build final
set of models 

and testing
Step#7

Launch
solutions
prediction

Divide the dataset
in two parts for

training and testing

Fig. 15. Training, building the models set and test.

As mentioned in the description of step 3, to save computer time 
to find the optimal models, small samples of the dataset were used. 
Therefore, the next step was to train the optimal models found in 
the previous step with a greater number of instances to improve the 
performance measurements. For this purpose, we reserved a total of 
500,000 instances for models training and the remaining part of the 
dataset for test the final set of models.

As mentioned above, the time in cell model and the probability 
of success model were trained by adding the miss target as an input. 
However, this data is not available in a real scenario, so it was necessary 
to build a set of MLPs linked between them, so that the output of the 
model corresponding to miss distance will be part of the input of the 
time in cell and probability of success models (see Fig. 16).
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Fig. 16. Final solution. MLP models set.

As there is feedback from the output of the miss distance model to 
the inputs of others, there is inevitably a propagation of errors, so it is 
necessary to determine what the values of the performance measures 
are once the complete set of models have been built. For this purpose, 
the dataset sample reserved for the MLP set test was used, the test 
values are contained in Table V.

TABLE V. MLP Models Set Final Performance Measures

Target data Performance measure
Solution Accuracy: 96.70% 

Miss distance mse = 1.42 yards2; R2 > 0.99
% Time in cell mse = 0.0043; R2 = 0.91
Probability of success >0.8 Accuracy: 93.82% 

V. Conclusions and Future Work

The set of machine learning models based on neural networks 
developed in this study can be implemented on any ship and improve 
the decoy launching solution for any scenario and offer the operator 
a more evaluated launch response. This only requires the training of 
the models with the specific data of each ship. In other words, the 
decoy launch simulator can be substituted by a set of trained MLP and 
provide real time response to the launch problem.

By having in real time the values of miss distance, % time in cell, 
probability of success and the need or not for a change of course , 
they can be used as criteria in a multi-criteria decision algorithm (e.g. 
Analytic Hierarchy Process -AHP-) to obtain the best possible solution. 
In other words, following the set of MLP models, a solution manager 
could be implemented that would automatically evaluate all possible 
solutions for a scenario without operator intervention. 

On the other hand, the model developed is scalable, it is possible 
to implement on board as many sets of models as there are threat 
missiles in the operations area and thus have a solution for each of 
them immediately. 

It should also be noted that the work has focused on defense against 
radio frequency guided missiles, although the methodology proposed 
here may be applicable to infrared or dual guided threat missiles.
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VI. Discussion

The implementation of machine learning models, to solve the 
problem of decoy launching, opens the way for the introduction of 
different artificial intelligence techniques in other ship systems, even 
in those situations where it is necessary to make tactical decisions.

Combined use of naval simulation and AI/machine learning 
techniques allows us to build models that improve and automatize 
the decision process on board, which can result in an improvement 
in the ship survivability and be one of the levers that help to achieve 
superiority in combat. On the other hand, it is also feasible to automate 
on-board operational processes, which would make it possible to 
reduce the required number of crew members and save cost.
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