
Regular Issue

- 163 -

* Corresponding author.

E-mail address: rtougil@fn.mde.es

DOI: 10.9781/ijimai.2021.11.001

Keywords

Decoys, Machine
Learning, Missile,
Multilayer Perceptron,
Support Vector Machine.

Abstract

One of the most dangerous situations a warship may face is a missile attack launched from other ships, aircrafts,
submarines or land. In addition, given the current scenario, it is not ruled out that a terrorist group may
acquire missiles and use them against ships operating close to the coast, which increases their vulnerability
due to the limited reaction time. One of the means the ship has for its defense are decoys, designed to deceive
the enemy missile. However, for their use to be effective it is necessary to obtain, in a quick way, a valid
launching solution. The purpose of this article is to design a methodology to solve the problem of decoy
launching and to provide the ship immediately with the necessary data to make the firing decision. To solve
the problem machine learning models (neural networks and support vector machines) and a set of training
data obtained in simulations will be used. The performance measures obtained with the implementation of
multilayer perceptron models allow the replacement of the current procedures based on tables and launching
rules with machine learning algorithms that are more flexible and adaptable to a larger number of scenarios.

Obtaining Anti-Missile Decoy Launch Solution From
a Ship Using Machine Learning Techniques
Ramón Touza¹*, Javier Martínez², María Álvarez³, Javier Roca²

¹ Spanish Naval Academy, Pontevedra (Spain)
² Vigo University, Pontevedra (Spain)
³ Defense University Center, Pontevedra (Spain)

Received 11 November 2020 | Accepted 2 March 2021 | Published 3 November 2021

I. Introduction

The missile is one of the most dangerous threats a warship can
face (see Fig. 1). Currently, about eighty countries have anti-ship

missiles in their arsenals, which can be launched from aircraft, ships,
submarines or from a coastal battery.

Fig. 1. USS Stark after the impact of two missiles launched from an Iranian
aircraft in the Persian Gulf (Source: https://www.history.navy.mil).

Furthermore, given the current international scenario with an
increase in global terrorism, it cannot be ruled out that anti-ship
missiles may fall into the hands of some terrorist group and given that
naval operations are more often conducted in coastal waters near the
coast, this threat takes on special significance, as ships are exposed to
attacks from land and with reduced reaction times.

In parallel with the change in the global threat, governments
have increased their control over military forces deployed in areas of
operation by dictating increasingly restrictive rules of engagement
(ROE’s) [1] and although every ship commander has an inherent right
of self-defense, if an escalation of tension in the conflict zone is not
desired, the use of force must always be proportional. Moreover, the
need to avoid friendly confrontations makes it even more difficult to
use the ship’s weapons in combating a possible missile attack.

In addition to the foregoing, the Anti Surface Missile Defense
(ASMD) is, from the tactical point of view, a complex action in which
decisions must be taken in seconds, with no margin for error, and in
which all means of defense may be employed: hardkill (long, medium
and short-range missiles, naval guns and small arms) and softkill
(passive and active electronic countermeasures and decoys).

The decoys are passive elements, which can be considered the last
layer of defence of the ship. As shown in Fig. 2, the intention is to
deceive the missile and focus its guidance system on a false target, this
process, in naval tactical terminology, is known as seduction.

Another advantage of decoys is that their use does not involve
the lethal use of force, which is always permitted by the rules of
engagement.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 164 -

Intended missile track

M
issile track seduced by decoys

SINCLAS

Decoys

Missile

Target ship

Wind From: 45.00º

Fig. 2. Seducing a missile with decoys.

However, its use is not simple, to be effective and as shown in Fig.
3, the ship must react immediately, choose one of the 4 fixed launchers
that are located in different positions and also must consider altering
course to port or starboard to improve efficiency.

Maintain
course Alter

course
starboard

Alter
course

port

Port
launchers

Fig. 3. Typical ship launchers configuration and possible maneuvers.

The launcher/alter course combination is what is known as the
launch solution and therefore, for a scenario there are 12 possible
solutions (4 launchers x 3 possible ship manoeuvres).

Currently, ships have implemented a series of pre-planned reactions,
which they will use in the event of a missile attack. However, these
reactions can only cover a limited number of scenarios.

Applying current technology of artificial intelligence, in particular
machine learning techniques, it is possible to improve the accuracy of
the reactions obtaining solutions for any scenario.

Moreover, for the same scenario there can be more than one launch
solution, so within this last set it will be necessary to determine which
is the best reaction to use. As an example, for two valid reactions, one
may present a much greater miss distance of the missile from the ship
than the other. In short, the feasible solutions for the same scenario
can be ordered according to a series of criteria, allowing the ship to
make a better decision.

Finally, as regards current anti-ship missiles, we can classify them,
according to their guidance system, as: electro-optical (EO), infrared
(IR), radio frequency (RF) or dual (combination of the above) and
therefore, to defend against them, different types of decoys are used:
flares for EO and IR guidance missiles, chaff for RF guidance missiles
or a combination of the above for dual guidance missiles.

In this paper we will focus on the chaff launch solution for seducing
radio frequency guidance missiles, although the methodology outlined
here is applicable to any type of missile.

II. Objectives

The aim of this work is to develop a machine learning (ML) model
which, trained from data from a number of simulations, obtains for
any scenario what reactions of the ship allow to seduce the missile.

In addition, the ML model must have other data outputs: the
expected missile miss distance, the time the ship is being tracked by
the missile before it is focused on the decoy, and the probability of
success of each possible launch solution. All these data can feed into a
multi-criteria decision layer to obtain the best solution to the problem.

The basic architecture of the process would be as shown in Fig.
4, where a large number of scenarios would be simulated in the
laboratory, to obtain a dataset with which to train a machine learning
model, to be subsequently implemented on the ship and to obtain the
best launch solution.

DataSet

Simulation Training
ML model

Trained
ML model

Multicriteria
decision

Launch
solution

Ashore laboratory On board the ship

Prediction

Fig. 4. Laboratory-on board process.

III. Simulation

In a real action against an attacking missile, the ship available time
may not reach one minute, so the decoy launching solution must be
pre-planned and there must also be a solution for all or most of the
possible scenarios in which the ship may find itself.

The possible launch solutions are obtained by numerical simulation
techniques before going to sea and are implemented on the ship by
solution tables. This simulation is based on the interaction of three
models: ship, decoy and missile, which interact in a scenario given by a
wind, a ship speed and a distance and bearing of the attacking missile.

Each of the models involved in the simulation are characterized
by a series of parameters or characteristics that will affect the launch
solution.

The ship model is mainly characterized by its dimensions, turning
circle maneuver, position of the decoy launchers and the radar cross
section (RCS). The RCS is a random measurement that fluctuates
rapidly over time and whose value determines the size of the echo that
the ship presents on the radar of the attacking missile. Therefore a low
RCS will make the vessel less visible to the missile seeker radar and
will make it easier for the decoys to attract it.

The missile model is characterized by its speed and height of flight
and certain parameters of its seeker radar.

On the other hand, the decoy model will be characterized by its
deployment data: distance, height, deployment time, drop speed,
cloud diameter and by its radar cross section. The decoy RCS is also a
random variable and is an extremely important data, since it will have
to have a sufficiently high value, in relation to the RCS of the ship to
deceive the missile.

In addition to the three models mentioned, each of the possible
simulation scenarios is given by the ship speed, the bearing (direction)

Regular Issue

- 165 -

and distance of the attacking missile and the wind (direction and
intensity). The wind parameter is especially relevant since it will be
responsible for dragging the cloud formed by the decoy away from the
ship, which should foil the missile from its intended target.

The three models interact in the simulation in order to calculate,
in each scenario, the launch solution that allows the seduction of the
enemy missile. The seduction mechanism consists of deploying a
cloud or clouds of decoys with sufficient RCS so that, due to the effect
of the wind and the speed of the ship, the seeker radar resolution cell
of the attacking missile will be centered on the cloud of decoys and
away from the ship. This effect is called the centroid effect[2], which
can be summarized in the phases shown in Fig. 5 [3]. Initially, in Phase
A, the missile has the ship inside its seeker radar resolution cell and
the ship reacts with a decoys launch. In Phase B, due to the effect of
the wind, the decoys separate from the ship and the missile centers its
resolution cell in the center of all the RCS (ship and decoys) contained
in the cell. Finally, in Phase C the decoy continues to move away from
the ship and if it has enough RCS, the transfer of the tracking from
ship to decoy takes place.

Wind RCS centroid

Missile radar
seeker cell

Decoy

Phase A

Phase B

Phase C

Fig. 5. Centroid effect.

The missile, ship and decoy models interact in the simulator as
described for the centroid effect and it allows us to determine for each
scenario which of the twelve ship possible reactions (combination of
launcher and change of course) are effective in seducing the missile,
i.e. success/failure. In addition, other data are obtained from the
simulation, such as the minimum miss distance of the missile from the
ship and the percentage of time that the missile has centered the ship
in the seeker radar resolution cell before transferring the tracking to
the decoy.

It should be noted that, as it is a stochastic simulator, a certain
number of runs must be made in order to draw conclusions and
therefore, for each possible solution, a probability of success can also
be obtained.

In this work, a series of scenarios have been configured in the
simulator with the data shown in Table I, giving a total of 186,624
scenarios. As there are 12 possible solutions per scenario, a total of
2,239,488 instances are obtained, of which 30 runs have been made.
This provides a sufficient volume of data for training, validation and
testing of any machine learning model.

TABLE I. Simulation Scenario Data

Scenario parameter Values

Ship speed (Sship) 10, 15, 20 knots

Wind speed (Swind) 0, 10, 20 ,30 knots

Wind bearing (Bwind) [0º-355º] step 5º

Missile distance (Dmisil) 5000, 10000,15000 yards

Missile bearing (Bmisil) [0º-355º] step 5º

Fig. 6 shows how the wind and missile bearing is measured.

Wind

Ship

Missile bearing
(Bmisil)

Wind bearing
(Bwind)

Missil

Fig. 6. Wind and missile bearing.

Before focusing on the types of ML models that can solve the
problem, it is necessary to clarify the available dataset obtained from
the simulations. The ML model should have as inputs the parameters
of the scenario in which the vessel is, the available launchers (4
launchers in our case) and the possible alter course. Thus, the input
data will be as shown in Table II.

TABLE II. Input Data

Data Units

Ship speed (Sship) knots

Wind speed (Swind) knots

Wind relative bearing (Bwind) degrees

Missile distance (Dmisil) yards

Missile relative bearing (Bmisil) degrees

Launcher (L) 1, 2, 3, 4 (binary coded)

Alter course (A) Port, 0º, starboard (binary coded)

From the input data, for each scenario and for each possible launch
solution, we will have the following Target data (see Table III).

TABLE III. Target Data

DATA UNITS

Solution 1 – success (no impact on ship);
0-fail (impact on ship)

Miss distance Yards

Time in cell Total engagement percentage

Probability of success (Note) 1-Probability of success >0.8
0- Probability of success ≤0.8

Note: 0.8 is taken as the probability of success since it corresponds to the
turning point of the probability/frequency histogram and encompasses 87%
of the total solutions.

IV. Machine Learning Models

As mentioned above, the aim of this work is to build a machine
learning model that, trained from the data obtained from the simulation,
can be implemented in a ship’s combat system so that it will provide
the necessary outputs to determine the best decoy launching solution.

Since we have four types of target data, it was decided to build
four different ML models based on supervised learning: two binary
classification models for solution and probability of success, and two
regression models for miss distance and time in cell.

Initially, two types of machine learning techniques were chosen
as possible candidates to solve the problem: Support Vector Machine
(SVM) and Multi Layer Perceptron (MLP). Thus, this study tries to
determine which is the optimal technique or which combination of
both techniques is the optimal one to solve the problem.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 166 -

A. Multilayer Perceptron (MLP) Model.
The term neural network has its origin in attempts to find

mathematical representations of information processing in biological
systems. It is a powerful structure that allows the creation of non-
linear predictive models and is used in supervised and unsupervised
learning[4]. In the case of supervised learning it allows to build binary
and multiclass regression and classification networks [5]–[7].

The basic structure of a neural network is the neuron (see Fig. 7),
the input variables (𝑥𝑖) are connected to the neuron through weighted
connections (w𝑖) that emulate dendrites, while the sum (Σ), the bias
(b) and the activation function (h) play the role of the cell body and
the propagation of the output is analogous to the axon in a biological
neuron. The behavior of the neural network is defined by the shape
of the connections of its neurons or nodes and by the values of the
weights of these connections. These weights are automatically
adjusted during training according to a learning algorithm, until the
network carries out the desired task correctly [8].

Output

In
pu

ts

b

h

Wn

W3

W2

W1

�n

�

�2

�3

�1

Fig. 7. Neuron model.

Multilayer perception (MLP) or multilayer network with feed-
forward architecture, without feedback, is a kind of neural network,
which has an architecture with a finite number of layers and neurons.
In this structure three different types of layers are distinguished: the
input layer, the hidden layers and the output layer, the latter having as
many outputs as targets to be predicted. Generally, all the neurons in
one layer are connected to all the neurons in the next layer, which is
known as total connectivity or fully connected network.

The MLP characterizes the relationship between input and output
layers, which is parameterized by the weights. This relationship is
obtained by propagating the values of the input variables forward.
To do this, each neuron in the network processes the information
received by its inputs and produces a response or activation that
propagates, through the corresponding connections, to the neurons
in the next layer.

If we have an MLP with D inputs, and there are L layers with nl
neurons each one, the first L − 1 layers will be the hidden layers and
then there is the output layer, with so many outputs K as dimensions
have the target to predict. The output of the neuron i of the layer l
we will denote it by . From one layer to the next, the output of the
neuron i is weighted by a weight where l is the layer and j is the
neuron of the layer l (see Fig. 8).

The weighted sum of the weights of a neuron input is called
activation. Thus, for the neuron j of the layer l, the activation is
given by:

This input is transformed using an activation function to
generate the output to the next layer:

The activation functions for the output layer in our problem have
been chosen according to the type of prediction. Thus, the softmax
function was used for binary classification and the identity or purelin
function for regression. For the hidden layers, the tansig function was
used in all cases.

Now, from the training dataset given by some entries and a
target , the training objective is to find a set of weights that
minimizes the error function that we will denote which
measures the error associated with the training sample. The sum of
squares function, below is a common choice:

To solve this problem, heuristic methods based on the descent of
the gradient called backpropagation are used. The steps to carry out
this algorithm are the following:

Step#1. Apply the inputs to the MLP, propagate forward, calculate
the outputs and errors in the output layer

Step#2. Errors are propagated backwards, calculating for all hidden
layers. So that, the error of a certain layer, is calculated on the
basis of the error of the following layer:

Where the term is called error and must be calculated for
each network node.

Step#3. Evaluation of error-function. Derivatives are calculated as:

Step#4. From the derivatives, bayesian regularization backpropagation
algorithm is applied that progressively improves the weights of
the network [9]–[12].

An important aspect to consider when designing a multilayer
perceptron is the number of layers and neurons per layer. More than
one hidden layer speeds up the training process, especially in very
heavy problems. On the other hand, the more neurons per layer, the
better the adaptability of the model to the problem. However, an
increase in the number of layers and neurons can lead to overfitting
and poor generalization [13], [14].

For this study, we have chosen to start with a single hidden
layer network, and increase the number of layers while decreasing

O
ut

pu
ts

In
pu

ts

Hidden layers

n1

Wji

Zi

n2

i j

1 1

�D �K

�1

�1

𝑙𝑙 - 1 𝑙𝑙

(𝑙𝑙)

W1i

(𝑙𝑙)

Zj

(𝑙𝑙)Wn2i

(𝑙𝑙)

Fig. 8. Nomenclature used in the mathematical definition of neural networks.

Regular Issue

- 167 -

the error. In the same way, the number of nodes or neurons in the
hidden layers has been increased until the error is stabilized. In the
case of configurations with more than one hidden layer, the pyramid
technique has been used, which consists of decreasing the number of
nodes from the input layer to the output layer [15].

Therefore, for the problem of this study, first of all, it is necessary
to determine which the optimal configuration of layers and neurons
per layer is for each of the four target data (solution, miss distance,
time in cell and probability of success), which will be given by the one
that presents the best measure of performance with the least number
of layers and neurons.

In order to determine the optimal configuration, it was decided to
analyze three network models, each with one, two and three hidden
layers. In addition, different numbers of neurons were configured in
each layer in each model.

It was found that with four hidden layers the performance measures
deteriorated significantly and the MLP models suffered early stops due
to overfitting.

The different configurations analyzed are presented in Table IV.

TABLE IV. MLP Configurations Analyzed

Number of neurons per layer

Hidden
layers

Layer 1 Layer 2 Layer 3

1
From 10 to 150

(step 10)
- -

2
From 10 to 50

(step 5)
5 fewer neurons
than in layer 1

-

3
From 10 to 50

(step 5)
5 fewer neurons
than in layer 1

5 fewer neurons
than in layer 2

B. Support Vector Machine (SVM) Model
Support Vector Machines (SVM) are part of the supervised learning

techniques and are used for both classification and regression. SVMs
belong to the family of linear classifications and they find a linear
separator or hyperplane [16].

In the classification SVM, the optimal separator hyperplane is
defined as the maximum margin separating hyperplane that maximizes
its distance from the classes (see Fig. 9).

Support Vectors

Hyperplane

Margin

Fig. 9. Maximum margin separating hyperplane for a classification problem
with two linearly separable classes.

The concept with which the maximum margin SVM works, is
to find the hyperplane separator that is the same distance from the
closest examples of each class. Equally, it is the hyperplane that
maximizes the minimum distance between the examples of the data
set and the hyperplane. Furthermore, it only considers the points that

are on the borders of the decision region, these data are the so-called
support vectors.

If we have a training dataset S = {(𝑥1, 𝑦1), ... (𝑥n, 𝑦n)} where
and 𝑦i ∈ {−1, 1}, In the case of a linear function, the separating
hyperplane will be a linear function:

Where is the weight vector orthogonal to the hyperplane
and .

However, the most common formulation of the linear SVM and
maximum margin is its primal formulation which is as follows, and
corresponds to the quadratic optimization problem whose objective
function and the corresponding constrains are:

s.t.

Separating hyperplanes have two major weaknesses: the
requirement for linear separability of the sample and its linear
nature. Therefore, in order to extend the SVM concept to non-linear
classifiers, a transformation of the input space is performed, using
kernel functions , to another high dimensional feature space
in which the data are linearly separable, this procedure is known as
the kernel trick [17], [18]. The separation hyperplane then takes the
following form:

Likewise, for problems whose training data set is not linearly
separable, the Soft-Margin algorithm can be used, which introduces
slack variables (ξi ≥ 0) to relax the condition of the margin, allowing
poorly classified observations and making the model more robust [16].

We thus obtain the following optimization problem with objective
function and constrains:

s.t.

Where the regularization parameter (C) indicates the importance or
cost of misclassified instances.

SVM can be applied to regression problems by introducing an
alternative loss function. In this work the loss function ε − insentitive
proposed by Vapnik has been used [19], [20], which ignores errors at a
certain distance from the real value. In this regression SVM algorithm,
some slack variables are also introduced (ξ, ξ *) which measure the cost
of errors in training points, the values of these variables being zero for
all points within the band ±ε (see Fig. 10).

𝑦𝑦(𝑥𝑥)

𝜉𝜉i

𝜉𝜉i
*

+ ε

- ε

Support vectors

Fig. 10. Regression hyperplane, support vectors, slack variables and
ε − insentitive loss function.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 168 -

In the case of regression SVM, the quality of the estimate will be
given by the loss function (L):

Thus, the optimal regression SVM hyperplane will be given by the
following minimization problem:

s.t.

In the same way, in the case of non-linear training data, we will
have to perform a non-linear transformation in the input space, to a
high dimensional feature space by means of a kernel function.

In our problem, we have used classification SVM with a Soft-
Margin algorithm, for the regression SVM models we have used
a ε − insentitive loss function and for both we have implemented a
radial base or Gaussian kernel with gamma parameter (γ > 0).

Therefore, in each case, we must obtain the optimal values for:
kernel scale (γ), boxconstrain (C) and ε − insentitive. For this purpose,
the grip method or grid search has been used.

C. Finding the Optimal Model
To determine the optimal model for each of the four targets, the

following steps were followed:

Step#1. Dataset normalization.
Step#2. Setting the MPL parameters and SVM hyper parameter

ranges.
Step#3. Training, validation and testing of all MLP models contained

in Table IV and SVM.
 The same training and test data were used for this step, for

all MLP and SVM configurations. In addition, a total of 10
runs were made, and a statistical study was subsequently
carried out to compare the results. In this step, and to save
computing time, from the total number of available instances
and for each replica, 56 000 instances were sampled.

Step#4. Collection of performance measurements.
 For the classification models (solution and probability of

success): accuracy (matrix confusion).
 For regression models (miss distance and time on cell): mean

square error (mse) and R2.
Step#5. Graphic and statistical analysis of performance measures.
Step#6. Identification of the optimal model for each target.
Step#7. Train the optimal models with a greater number of instances

to improve performance measures. A total of 500,000
instances of total available dataset were used.

Step#8. Build the model set to obtain the predictions of the launch
solutions.

By applying the Steps# 1-5, the following results have been obtained
for each of the four target data:

a) Target: Solution (classification model). In this case and after
analyzing the confusion matrices of the different models, the
means of the accuracy values obtained are presented in Fig. 11.
It can be observed that for the case of MLP with 2 and 3 hidden
layers, precision values higher than 0.93 have been obtained.

Furthermore, with 95% confidence, no statistically significant

difference was found between MLP with 2 and 3 hidden layers.
Therefore, a 2-hidden-layer MLP with 40 and 35 neurons in each
layer was taken as the optimal model for this target.

MLP vs SVM. Target data: Solution

MLP and SVM configurations

SVM 1-hidden-layer MLP 2-hidden-layer MLP 3-hidden-layer MLP

A
cc

ur
ac

y

0.8000

0.8200

0.8400

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

Fig. 11. Solution. Comparative of the accuracy means for the different models.

b) Target: Miss distance (regression model). In this case the value of
mean square error and R2 were used as measures of performance.
In Fig. 12, it can be seen that mse minimum value has been
reached for a 3-hidden-layer MLP. Furthermore, it was found that
statistically and with 95% confidence, the mse values for 3-hidden-
layer MLP are statistically lower than the 2-hidden-layer models.
Therefore, we will take the 3-hidden-layer MLP with 35-30-25
neurons per layer, as the optimal model for the target data miss
distance.

MLP vs SVM. Target data: miss distance

MLP and SVM configurations

SVM 1-hidden-layer MLP 2-hidden-layer MLP 3-hidden-layer MLP

minimun mse value
(3-hidden-layer MLP: 35-30-25 neurons)

m
se

0.80

8.00

80.00

800.00

8000.00

80000.00

Fig. 12. Miss distance. Comparative of mse means for the different models.

c) Target: % Time in cell (regression model). In this case the value
of mean square error and R2 also were used as measures of
performance.

After training the models very high values of mse (higher than
0.001) and poor values of R2 (lower than 0.80) were obtained.

To improve the results the miss distance was introduced as
an input and all models were retrained. With this, the results
improved significantly, decreasing the mse by approximately 40%
and now obtaining values of R2 higher than 0.88.

On the other hand, once the graph in Fig. 13 has been created, it can
be seen that the best mse results were obtained for 3-hidden layer
MLP, specifically for a configuration of 35-30-25 neurons per layer.

d) Target: Probability of success >0.8 (classification model). In this
case the same problem was found as for the previous target,
the calculated accuracy values in the confusion matrices for the
different configurations were lower than 80%, so they cannot be
considered as valid for our problem.

Regular Issue

- 169 -

To improve the results it was introduced as miss distance as a new
model input, improving the results reaching precision values close
to 90%.

As can be seen in the graph in Fig. 14, all models achieve similar
accuracy values, proving that statistically and with 95% confidence,
there are no differences between them. Therefore, a 1-hidden-layer
MLP of 60 neurons was taken as the optimal model.

MLP vs SVM. Target data: Probability of success >0.8

MLP and SVM configurations

SVM 1-hidden-layer MLP 2-hidden-layer MLP 3-hidden-layer MLP

maximum accuracy
(1-hidden-layer MLP:
60 neurons)

A
cc

ur
ac

y

0.7000

0.8000

0.9000

0.7500

0.8500

0.9500

Fig. 14. Probability of success >0.8. Comparative of the accuracy means for the
different models.

D. Training, Building the Models Set and Test
Once the optimal models had been found, the following steps were

taken as shown in Fig. 15: the optimal models were trained, the final
set of models was built and the performance measures of this set were
calculated.

DataSet

Train models
Step#6

Build final
set of models

and testing
Step#7

Launch
solutions
prediction

Divide the dataset
in two parts for

training and testing

Fig. 15. Training, building the models set and test.

As mentioned in the description of step 3, to save computer time
to find the optimal models, small samples of the dataset were used.
Therefore, the next step was to train the optimal models found in
the previous step with a greater number of instances to improve the
performance measurements. For this purpose, we reserved a total of
500,000 instances for models training and the remaining part of the
dataset for test the final set of models.

As mentioned above, the time in cell model and the probability
of success model were trained by adding the miss target as an input.
However, this data is not available in a real scenario, so it was necessary
to build a set of MLPs linked between them, so that the output of the
model corresponding to miss distance will be part of the input of the
time in cell and probability of success models (see Fig. 16).

Sship

Swind

Bwind

Dmisil

Bmisil Fe
ed

ba
ck

models set

Launchers
(L1, L2, L3, L4)

Alter course
(Port, 0º, Stbd)

M
ul

ti
cr

it
er

ia
de

ci
si

on
 la

ye
r

Clasification model
(Solution: success/fail)

Regresion model
(Miss distance)

Regresion model
(Time in cell)

Clasification model
(Probability

of sucess >0.8)

Fig. 16. Final solution. MLP models set.

As there is feedback from the output of the miss distance model to
the inputs of others, there is inevitably a propagation of errors, so it is
necessary to determine what the values of the performance measures
are once the complete set of models have been built. For this purpose,
the dataset sample reserved for the MLP set test was used, the test
values are contained in Table V.

TABLE V. MLP Models Set Final Performance Measures

Target data Performance measure
Solution Accuracy: 96.70%

Miss distance mse = 1.42 yards2; R2 > 0.99
% Time in cell mse = 0.0043; R2 = 0.91
Probability of success >0.8 Accuracy: 93.82%

V. Conclusions and Future Work

The set of machine learning models based on neural networks
developed in this study can be implemented on any ship and improve
the decoy launching solution for any scenario and offer the operator
a more evaluated launch response. This only requires the training of
the models with the specific data of each ship. In other words, the
decoy launch simulator can be substituted by a set of trained MLP and
provide real time response to the launch problem.

By having in real time the values of miss distance, % time in cell,
probability of success and the need or not for a change of course ,
they can be used as criteria in a multi-criteria decision algorithm (e.g.
Analytic Hierarchy Process -AHP-) to obtain the best possible solution.
In other words, following the set of MLP models, a solution manager
could be implemented that would automatically evaluate all possible
solutions for a scenario without operator intervention.

On the other hand, the model developed is scalable, it is possible
to implement on board as many sets of models as there are threat
missiles in the operations area and thus have a solution for each of
them immediately.

It should also be noted that the work has focused on defense against
radio frequency guided missiles, although the methodology proposed
here may be applicable to infrared or dual guided threat missiles.

MLP vs SVM. Target data: %Time in cell

MLP and SVM configurations

SVM 1-hidden-layer MLP 2-hidden-layer MLP 3-hidden-layer MLP

minimun mse value
(3-hidden-layer MLP: 35-30-25 neurons)

m
se

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

Fig. 13. % Time in cell. Comparative of mse means for the different models.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 170 -

VI. Discussion

The implementation of machine learning models, to solve the
problem of decoy launching, opens the way for the introduction of
different artificial intelligence techniques in other ship systems, even
in those situations where it is necessary to make tactical decisions.

Combined use of naval simulation and AI/machine learning
techniques allows us to build models that improve and automatize
the decision process on board, which can result in an improvement
in the ship survivability and be one of the levers that help to achieve
superiority in combat. On the other hand, it is also feasible to automate
on-board operational processes, which would make it possible to
reduce the required number of crew members and save cost.

References

[1] R. Lord, “Advances in Anti Ship Missile Protection - Naval
Countermeasures,” Chemring Naval Countermeasures. Salisbure,
England, 2006.

[2] W. Sun, “Maneuvering Calculation of Ship Centroid Jamming,” in 9th
International Conference on Information and Social Science, 2019, pp.
386–390.

[3] L. F. Galle, “Royal Netherlands Navy The Survivable Frigate,” 1o Eur.
Surviv. Work., 2002.

[4] N. Manju, B. S. Harish, and N. Nagadarshan, “Multilayer Feedforward
Neural Network for Internet Traffic Classification,” International Journal
of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 1, p. 117,
2020.

[5] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, pp.
115–133, 1943.

[6] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” In IRE WESCON
Convention Record, Volume 4, pp. 96–104. 1960.

[7] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Washington DC: Spartan Books, 1962.

[8] M. Award and R. Khanna, Efficient Learning Machines: Theories, Concepts, and
Applications for Engineers and System Designers. Apress Media, LLC, 2015.

[9] D. J. C. Mackay, “A Practical Bayesian Framework for Backprop
Networks,” Neural Comput., vol. 4, no. 3, pp. 448–472, 1992.

[10] F. D. Foresee and M. T. Hagan, “Gauss-Newton approximation to bayesian
learning,” Proc. Int. Conf. Neural Networks (ICNN’97), Houston, TX, USA,
vol. 3, pp. 1930–1935, 1997.

[11] A. Suliman and B. Omarov, “Applying Bayesian Regularization for
Acceleration of Levenberg Marquardt based Neural Network Training,”
International Journal of Interactive Multimedia and Artificial Intelligence,
vol. 5, no. 1, p. 68-72, 2018.

[12] K. K. Aggarwal, Y. Singh, P. Chandra, and M. Puri, “Bayesian
Regularization in a Neural Network Model to Estimate Lines of Code
Using Function Points,” Journal of Computer Science, vol. 1, no. 4, pp.
505–509, 2005.

[13] R.Reed and R. J. Marksll, Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks. Cambridge, Massachusetts, 1999.

[14] J. Heaton, Introduction to Neural Networks for Java, 2nd Editio. Heaton
Research, Inc., 2008.

[15] D. Stathakis, “How many hidden layers and nodes?,” International Journal
of Remote Sensing, vol. 30, no. 8, pp. 2133–2147, 2009.

[16] C. Cortes and V. Vapnik, “Support-Vector Networks,” Kluwer Academic
Publishers, 1995.

[17] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.
[18] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for

optimal margin classifiers,” in Proceedings of the fifth annual workshop on
computatinal learning theory, 1992, pp. 144–152.

[19] H. Drucker, C. J. C. Surges, L. Kaufman, A. Smola, and V. Vapnik, “Support
vector regression machines,” Advances in Neural Information Processing
Systems, no. June 2013, pp. 155–161, 1997.

[20] V. Cherkassky and Y. Ma, “Practical selection of SVM parameters and
noise estimation for SVM regression,” Neural Networks, vol. 17, no. 1, pp.
113–126, 2004.

Ramón Touza Gil

Cmdr. R. Touza is an Officer in the Spanish Navy and a
professor at the Spanish Naval Academy. He has received
his Master degree in Advanced Data Analysis and Model
Building from Complutense University of Madrid
and Master in Decision Engineering from Juan Carlos
University of Madrid. He is currently a PhD student at
Polytechnic University of Cartagena (Spain).

Javier Martínez Torres

Dr. Javier Martínez is a Mathematician and Engineering
PhD from the University of Vigo. He is currently an
Assistant Professor at the University of Vigo and has
participated in more than 20 research projects as principal
investigator. He has published more than 50 papers in
JCR indexed journals and participate in more than 25
international conferences.

María Álvarez Hernández

She is an associate professor in the Defense University
Center – ENM (attached center of the University of
Vigo), with a degree in Mathematics from University of
Salamanca and PhD. in Statistics and Operations Research
for the University of Granada. She has been part of several
national projects in Spain, related to the development and
research in the statistical field and belongs to the National

Network of Biostatistics. The results of her research have been disseminated
through a score of papers through indexed scientific journals (within the area of
statistics and applied scientific journals) and presentation and participation in
dozens national and international scientific conferences.

Javier Roca Pardiñas

Dr. Javier Roca is Associated Professor of the Department
of Statistics and Operational Research of University of
Vigo. He is specialized in nonparametric regression, and
bootstrap inferences techniques with special emphasis
on generalized additive models (GAM). Moreover, he
is an expert in computational statistics, with important
contributions to semiparametric prediction models.

His research work generated more than forty publications in international
journals of impact in different areas of knowledge such as statistics, computer
science, environment, biomedicine, and engineering amongst others. He has
also successfully performed as a member of four research projects funded by
Spanish Ministry of Science and Innovation devoted to the development of
basic and applied mathematical knowledge. He has been principal investigator
on several projects with numerous companies and institutions.

