
Regular Issue

- 171 -- 171 -

Writing Order Recovery in Complex and Long Static 
Handwriting
Moises Diaz1,2*, Gioele Crispo3, Antonio Parziale3, Angelo Marcelli3, Miguel A. Ferrer1

1 Instituto Universitario para el Desarrollo Tecnológico y la Innovación en Comunicaciones, Universidad de Las Palmas de 
Gran Canaria, Las Palmas 35017 (Spain)  
2 Universidad del Atlántico Medio, Las Palmas de Gran Canaria, Las Palmas 35017 (Spain)  
3 DIEM, University of Salerno, 84084 Fisciano (SA) (Italy)

Received 22 October 2020 | Accepted 4 March 2021 | Published 19 April 2021 

Keywords

Cluster Resolution, 
Complex and Long 
Handwriting, Good 
Continuity Criteria, 
Writing Order Recovery.

Abstract

The order in which the trajectory is executed is a powerful source of information for recognizers. However, 
there is still no general approach for recovering the trajectory of complex and long handwriting from static 
images. Complex specimens can result in multiple pen-downs and in a high number of trajectory crossings 
yielding agglomerations of pixels (also known as clusters). While the scientific literature describes a wide 
range of approaches for recovering the writing order in handwriting, these approaches nevertheless lack a 
common evaluation metric. In this paper, we introduce a new system to estimate the order recovery of thinned 
static trajectories, which allows to effectively resolve the clusters and select the order of the executed pen-
downs. We evaluate how knowing the starting points of the pen-downs affects the quality of the recovered 
writing. Once the stability and sensitivity of the system is analyzed, we describe a series of experiments with 
three publicly available databases, showing competitive results in all cases. We expect the proposed system, 
whose code is made publicly available to the research community, to reduce potential confusion when the 
order of complex trajectories are recovered, and this will in turn make the trajectories recovered to be viable 
for further applications, such as velocity estimation.
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I. Introduction

O ver the last 40 years, handwriting analysis and recognition have 
been widely studied, and many theoretical and experimental 

results have been obtained both on handwriting acquired with tablets 
(on-line samples) and on that obtained with scanners (off-line samples) 
[1], [2]. These studies have contributed to many useful applications, 
such as mail sorting, form processing and handwriting recognition. 
More recently, the widespread use of devices such as smartphones, 
tablets, and electronic pen pads has given rise to a personal digital 
bodyguard concept [3]. This feature can supplement data protection, 
which enhances human-machine interactions through handwriting 
recognition.

In addition to such technological advances, the automatic processing 
of off-line handwriting is still of great interest in many fields of 
application, such as enterprise management [4],[5], education [6]–[8], 
and healthcare [9], [10]. Both public offices and private companies 
need to archive and retrieve digital versions of documents that contain 
handwritten samples. Recent years have witnessed the rise of many 
digital libraries that require systems that allow automatic searches in 
transcripts and ancient manuscripts [11].

It has long been understood that on-line handwriting systems 
perform much better than off-line ones because the former have access 
to dynamic information. This information consists mainly of the order 
in which the trajectory was written and its velocity profile. This 
limitation has motivated the development of systems for writing order 
recovery in static images [12]–[14]. These systems include two steps: 
1) thinning of the handwriting, and 2) writing order recovering of the 
trajectory. Computer-based systems for recovering static trajectories 
have been proposed for several handwritten applications, including 
the reading of cursive handwriting [15], Latin and Arabic handwriting 
word recognition [16]–[18], Indian and Chinese character recognition 
[19], [20], digit recognition [21], historical document transcription 
[22], mathematical symbol recognition [23], signature verification [14], 
[24], [25], writer verification and identification [26], [27], handwriting 
style modeling [28], [29] and handwriting analysis and synthesis [30].

Recovering the trajectory in static handwriting may lead to multiple 
possible solutions, with only one representing the real trajectory 
sought. Solving this inverse problem becomes even more complicated 
when the handwritten pattern contained in the image comprises 
multiple components;1 in this case, recovering a new component may 
depend on the order of the previous one and the in-air trajectory 
between two consecutive components.

1  By “component”, we refer to a piece of writing with two end-points, meaning 
that it is performed between two pen-ups. It can be denoted as a pen-down 
as well.
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A. Our Contribution
This paper proposes a novel system for estimating the writing order 

recovering in complex and long static handwriting consisting of many 
components, separated by pen-ups, also named in-air trajectories. 
Inspired by human movements during the production of handwriting 
and by motor control perspectives [31], our system chooses the 
smoothest ballistic trajectories based on good continuity criteria 
when writing or drawing. To this end, we apply some multiscale 
strategies to recover the trajectory order in the agglomeration of 
pixels, which we call clusters. Additionally, we study the proposed 
system’s performance, both when the end-points of the components 
are known and when they are unknown. We provide a quantitative 
measure of how heuristics on the choice of starting and ending points 
affect the writing order recovery. The effectiveness of the system is 
demonstrated in three databases, achieving competitive performance.

We focus our work on static specimens for two reasons: the first 
one is that developing a system that recovers complex, long, and 
discontinuous trajectories represent the most challenging case, and 
the second is that estimating the writing order from static images 
is of great interest for the early prescreening of neurodegenerative 
disorders [10], [32].

The code is developed in Matlab, and it is freely provided for 
research2 .

The outline of the paper is as follows: Section II presents a brief 
overview of related works on writing order recovery of trajectories 
in static handwritten specimens. Section III describes the proposed 
solution for estimating handwriting recovering. A sensitivity 
and stability study of parameters is given in Section IV, whereas 
experimental results are presented in Section V. Finally, conclusions 
are drawn in Section VI.

II. Literature Review

Over the last thirty years, many systems have been proposed for 
recovering static trajectories, with two surveys assessing the related 
state of the art [12], [13]. Moreover, a competition has been considered 
in order to establish a common benchmark for writing order recovery 
of Arabic signatures [14], [33].

Systems used to recover trajectories from static handwriting 
employ three main approaches: contour-based, skeleton-based, and 
learning-based. The first two differ in terms of the “object” used to 
represent the handwriting, respectively its contour and its skeleton. 
The skeleton is the result of a thinning process that produces a 1-pixel-
wide line, which follows the centerline of the original image, and that 
ideally corresponds to the original pen-tip trajectory.

Regarding contour-based approaches, [34] describes a method 
that segments cursive handwriting by detecting the points where the 
trace contour has the maximum curvature. The segments are ordered 
based on the contour curvature smoothness. Another handwriting 
segmentation is given in [16], and proceeds through an analysis of the 
handwritten contour. Here, the writing order trajectory is estimated 
by adopting graph-based representations at both the segment and 
stroke levels. The list of candidate paths is obtained by choosing 
curvature and width stroke preservation, which are local continuity 
criteria, as cost functions. Following up on [16], the system was 
employed in [17] to develop an off-line recognition system. In that 
work, a Hidden Markov Model (HMM) was trained for selecting the 
most likely written trajectory from the list of candidate paths. To avoid 
introducing artifacts in the handwriting, preprocessing steps, such 
as binarization, were omitted in [35]. Instead, the authors extracted 

2  github.com/gioelecrispo/wor

control points from the grayscale images, which were used to recover 
the trajectory according to certain heuristics rules.

The skeleton-based methods can be categorized as local line 
order recovering and global graph searching methods. The former 
reconstructs the trajectory by choosing the most plausible direction at 
each branch point of the skeleton. These methods are simple and have 
a low computational cost, but their performances are typically limited 
by the difficulty of designing heuristic rules for different handwriting 
styles. Instead, graph searching methods recover the trajectory by 
representing the topological structure of the skeleton with a graph 
and traversing it. They have a greater computational cost and their 
performances depend on the definition of criteria for selecting the best 
trajectory among many alternatives.

An example of local line recovering is given in [36], where the 
trajectories are recovered according to good continuity criteria, which 
take into account the direction, length, and width of the strokes making 
up characters. Off-line signatures are recovered in [37] by following 
heuristic rules inspired by the way human beings write a given shape. 
The rules are applied to deal with low-level pixel processing and high-
level stroke processing. A similar approach is applied to handwritten 
digits in [38]. In [39], a taxonomy of local, regional, and global features 
that can be used for recovering temporal properties from the image 
is proposed. On the other hand, a likelihood measure is developed in 
[40]. It selects the most likely writing order recovery from the analysis 
of skeletons. In an on-line automatic signature verification system, 
the method proposed in [40] shows a greater false acceptance rate in 
skilled forgeries than in random forgeries. A genetic algorithm is also 
used for recovering segments extracted from the skeleton [41]. The 
fitness function adopted by the genetic algorithm for selecting the best 
individual of the population takes the writing direction, the repetition 
of segments, and the angular deviation on the crossing of the occlusion 
stroke into account. Additionally, a complete framework to recover the 
dynamic properties (i.e., velocity and pressure) from an image-based 
signature is presented in [24] by using classical approaches to recover 
the static trajectories in the signatures.

As for global graph methods, they represent the topological 
structure of the skeleton with a graph whose vertices represent the 
end-points, the junctions and the contact points of the skeleton, and 
whose arcs represent lines and curves. These methods determine the 
writing order recovery by finding the most appropriate path along 
the graph. In [42], one of these methods is proposed for recovering 
the trajectory of words through the traveling salesman problem. 
Based on the skeleton of words, the authors search for trajectories 
with minimum curvatures. Also, in [43], each component of a word is 
represented by a graph. The trajectory of the whole word is obtained 
by concatenating, from left to right, the most likely trajectory of each 
component. The authors define both global and local criteria that 
allow to select the best trajectory. The path search was based on the 
best-first search algorithm The authors in [44] propose to construct a 
graph to use to determine the types of each edge from the skeletons. 
Then, they develop a writing order recovery algorithm to traverse 
such a graph without applying any graph search algorithm. The goal 
of the method proposed in [45] is to use as little heuristic knowledge 
as possible. To this end, the proposal applies the maximum weighted 
matching of general graphs to find double-written lines. It exploits the 
minimum energy cost criterion as a guiding principle for recovering 
the trajectories. Successful results in single-stroke images are obtained.

A graph transformation is proposed in [46] to ensure that all 
graphs’ nodes had an even number of incident arcs. This property 
allows to traverse the graph by using Fleury’s algorithm, combined 
with handwriting generation models. The approach exhibited a 
reduced computational cost because it divided the whole graph into 
sub-graphs by detecting the graphs’ bridges. This method is improved 
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in [47] by introducing a feedback connection between the unfolding 
module and a module that extracts elementary movements from the 
recovered trajectory. The method exploits the analogies between 
unfolding and segmentation processes and those occurring in the 
brain when a trajectory plan is learned and executed.

Furthermore, the search for the optimal trajectory along the graph 
representing the skeleton of a word is executed in [48]. The authors 
use both the Greedy and the Dijkstra algorithms with a well-defined 
smoothness function. Further, they focus on reconstructing the optimal 
trajectory of words by splitting them into many strokes according to 
their respective curvature values and a set of rules of handwriting. 
Good continuity criteria derived from both visual perception and 
movement execution are applied to signatures in [50]. In particular, 
the implementation focuses on a multiscale analysis of the thinned 
trajectories and the Dijkstra algorithm.

For learning-based approaches, they require some exemplars of 
static images with the corresponding drawing orders. Thus, models are 
trained to recover the trajectories of new static images. In [51], an HMM 
is adopted for recovering the trajectory of single-stroke handwritten 
signatures. Each state of the HMM has a probability density function 
that embeds geometric shape information of the static image, while 
transition probabilities define the possible pen movements between 
static image coordinates. A training phase is proposed in [52], in 
which the original trajectory order and other attributes, such as the 
length and direction, are extracted from a set of on-line scripts to 
build a universal writing model. Then, it is used to reconstruct the 
drawing order during the test phase. The skeleton of the static image 
is matched to the model by using a dynamic programming algorithm, 
and the trajectory with maximum likelihood is selected.

Since 2018, deep learning techniques have been exploited in 
recovering trajectories in Chinese, Japanese, Indic, Arabic, and Latin 
characters (e.g. [41], [58]). While these techniques may be promising, 
they have the disadvantage of requiring a huge amount of data for 
training. Presently, deep learning methods are used to estimate the 
trajectory of characters and numbers, which are less complex than 
words and signatures. In [53], an algorithm is proposed based on a 
regression Convolutional Neural Network (CNN) model to predict 
the probability of the next stroke point position. The same authors 
present improvements of such an architecture in [54], based on two 
CNNs. Another model based on an encoder-decoder LSTM module 
was introduced in [20]. Here, the encoder module consists of a 
Convolutional LSTM network, which takes an off-line character image 
as input and encodes the feature sequence to a hidden representation. 
The output of the encoder is fed to a decoder LSTM that sequentially 
predicts the coordinate points. The architecture is tested on characters 
from three Indic scripts. Experimentation shows that the main 
limitation of the approach is the need to train a separate model for 
each individual script.

A handwriting recognition system based on a writing order 
recovery algorithm is proposed in [55]. The order recovery algorithm 
exploits an end-to-end system based on a VGG-LSTM, which extracts 
and encodes features, followed by a BLSTM used as a decoder to 
generate temporal coordinates. The method could eventually produce 

human-like velocities [18]. Moreover, a network of two variational 
auto-encoders is proposed in [56] to convert on-line and off-line 
handwritten Latin characters to each other. An improved VGG-16 CNN 
model is proposed in [57] to recover the handwriting stroke order. The 
CNN model recovers the writing order effectively, even if the accuracy 
of the network decreases as the number of strokes increases.

As summarized in Table I, an analysis of the state of the art shows 
that the static handwriting trajectory recovering problem is far 
from solved despite the very high number of papers that have been 
published on the subject. Many methods have been designed, and they 
mostly start from the assumption that the static image consists of a 
single component, i.e., a pen-down. This assumption does not hold in 
real applications, where handwriting patterns consist of many pen-
downs and pen-ups, such as in signatures. Furthermore, many systems 
on the subject have not been validated on public datasets, but rather, 
have only been tested on a few samples. Even more, performance of 
some systems are only qualitatively measured. Eventually, we notice 
that studies reported in Table I adopt different metrics and strategies 
for measuring the goodness of the writing order recovery systems: 
some authors use the accuracy obtained by recognition systems on the 
recovered trajectory as an indirect metric, whereas others compare the 
recovered trajectory with the data acquired by a tablet.

III. Estimating the Writing Order in Handwriting

The objective of the proposed system is to estimate the writing 
order of the 8-connected thin line representation of the handwriting 
image. The analysis of two elements (components and clusters) plays 
a vital role in the trajectory recovering process. A cluster is formed 
following the intertwining of different strokes, resulting in an 
agglomeration of pixels. Each pixel in the cluster therefore has more 
than two pixels connected in its 8-neighborhood, and consequently, 
the clusters complicate the accurate component drawing process.

A flowchart of the proposed system is depicted in Fig. 1. It is 
composed of three stages. 1) Point classification, where the clusters 
of a thinned specimen are identified, 2) Local examination, where 
individual clusters are resolved by joining their output branches, and 
3) Global reconstruction, where we estimate the handwriting order 
with multiple pen-downs. The mathematical notation used in this 
work is provided in Table II.

A. Point Classification
We classify each point (or pixel) of the thinned trajectory into 

one of three categories: (1) end-points, which are pixels with only 
one 8-neighbor, (2) trace points which have two 8-neighbors, and 
(3) branch points which have three or more 8-neighbors. Fig. 2 gives 
a visual example of this categorization. To this end, we identify the 
clusters as the sets of adjacent pixels labeled as branch points.

To classify the black pixels in the image, we search for their 
connectivity in their 8-neighbors. The complexity order of this 
procedure is 𝒪(8 · h · w), where (h, w) are the height and width of 
the image, respectively. Next, the clusters are defined as the sets of 
adjacent pixels previously labeled as branch points. The clusters are 
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Fig. 1. Flowchart of the proposed system for writing order recovering.
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TABLE I. Literature Review on Systems for Recovering Static Trajectories

Ref. Approach Pattern Dataset Evaluation

[34] Contour-based Words Private. 200 images of words written by six 
different writers.

Quality of ordering ranked by human 
subjects.

[16], [17] Contour-based Words Public. 10,448 words taken from the 
IRONOFF dataset. For each word, the on-line 
and off-line versions are available.

Accuracy of HRS.

[35] Contour-based Signatures Public. SVC 2004 dataset. Images are 
synthesized from on-line samples.

Preliminary study. The number of detected 
stroke points.

[36] Skeleton - Local line Characters Private. 10,000 characters written 20 subjects. 
2/3 of samples used as a test set.

Quality of ordering ranked by human 
subjects.

[37], [38] Skeleton - Local line Signatures and 
Numerals

Private. 20 signatures [37] and 150 numerals 
[38].

Visual inspection for signatures and HRS for 
numerals.

[39] Skeleton - Local line Words and Numerals Private. 1000 images from US mail service. Visual inspection.

[40] Skeleton - Local line Signatures Public. The last fifty users of the MCYT-100 
dataset wrote the signatures. Images are 
synthe-sized from on-line samples.

FAR and FRR of ASV.

[41] Skeleton - Local line Words Public. Hundreds of samples from LMCA, 
IRONOFF, and IFN/ENIT datasets.

Visual inspection.

[24] Skeleton - Local line Signatures Public. Fifty users of the BiosecurID dataset. 
Images are synthesized from on-line samples. 

EER of ASV.

[42] Skeleton - Graph-based Characters Private. Visual inspection.

[43] Skeleton - Graph-based Words Private. 150 words written by five subjects. Accuracy of HRS.

[44] Skeleton - Graph-based Words Private. 100 images. Visual inspection.

[45] Skeleton - Graph-based Characters Public. 708, 811 images obtained by 
converting on-line data of the Unipen 
dataset.

Rate of correct complete trajectory recovery, 
Ac-curacy of HRS.

[46],[47] Skeleton - Graph-based Words Private. 6500 images containing cursive 
handwrit-ing.

Similarity measure between automatic and 
man-ual drawing order.

[48] Skeleton - Graph-based Words and 
Characters

Private. 6868 images taken from 3 different 
datasets. Pubic. Images were taken from 
IRONOFF [49].

RMSE, DTW, Accuracy of HRS.

[50] Skeleton - Graph-based Signatures Public. 1953 and 2820 on-line signatures 
from the SigComp2009 and SUSIG - Visual 
datasets, respectively. The thinned version of 
the on-line signatures is used.

RMSE, DTW, Number of clusters correctly 
solved.

[51] Learning-based Signatures Public. 710 single-stroke on-line signatures 
from fifty users taken from US_SIGBASE 
and Dolfing datasets. Images are synthesized 
from on-line samples.

Accuracy score that measures the alignment 
of the recovered order and the ground truth.

[52] Learning-based Signatures Private. 300 images of signatures. The rank of the proposed recovering 
trajectories.

[53], [54] Learning-based Characters and digits Public. OLHWDB 1.1 dataset containing 3755 
Chinese characters; 2000 English letters and 
Arabic digit symbols in UNIPEN.

Rate of correct: end point selection [54], 
branch points resolution [54], complete 
trajectory recov-ery [53], [54].

[20] Learning-based Characters Public. LIPI Toolkit dataset (Tamil, Telugu 
and De-vanagari characters). Around 21, 000 
characters per script.

Rate of correct: starting point selection, 
junction points resolution, and complete 
trajectory recovery.

[55] Learning-based Characters and digits Public. LMCA and IRONOFF datasets. Accuracy of HRS.

[56] Learning-based Characters Public. Unipen. DTW.

[57] Learning-based Characters Public. OLHWDB 1.1 dataset. Rate of correct complete trajectory recovery.

HRS: Handwriting Recognition System, ASV: Automatic Signature Verifier.
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thus identified by performing the connected component labeling 
algorithm over the branch points. As this algorithm requires at most 
two scans of the image, its computational complexity is 𝒪(2 · h · w).

B. Local Examination on the Clusters
Recovering a skeleton from an end-point to another through the 

trace points is an effortless operation. However, the task becomes 
more demanding when clusters are encountered, since we must then 
decide on the adequate output branch to recover. The output branches 
can be also defined as all the trace points that converge in a single 
cluster.

For this writing order recovery, given a cluster, firstly, its pixels 
are classified. Secondly, the output branches are characterized, and, 
finally, they are paired off in input-to-output paths.

C. Pixel Classification in a Cluster
The pixels inside a cluster are classified according to their 

connectivity as follows:

• Cluster points. These are branch points.

• Anchor points. These are branch points of the clusters having at 
least one trace point (i.e., a point outside the cluster) as a neighbor. 
Since the cluster output branches are anchored on them, they are 
denoted as anchor points. Moreover, the number of anchor points 
establishes the rank of the cluster, denoted by r.

• False trace points. These are labeled as cluster points whether at 
least one of the following conditions hold: (1) they are connected 
to two different cluster points of the same cluster; (2) they are 
connected to a cluster point and to a false trace point of the same 

cluster; (3) they are connected to two false trace points of the same 
cluster.

Such a classification in a single cluster requires a computational 
complexity of 𝒪(p2), with p being the total number of cluster points. 
Fig. 3 shows an example of a cluster and its classified pixels.

Cluster Points
Anchor Branch Points
False Trace Points
External Angles
Internal Angles

Fig. 3. Example of a cluster: cluster points (in gray), anchor points (in red), 
false trace points (in orange), external angle directions (in green), and internal 
angle directions (in blue).

D. Output Branches Characterization
Cluster points and false trace points are identified through 

their horizontal and vertical coordinates in the images. Beyond the 
Cartesian coordinates, the anchor points are characterized through the 
angle direction of the output branches. We developed three strategies 
for computing the direction of the output branches.

• External angle. A multiscale approach [59] is devised to ompute 
this angle by using only information external to the cluster. This 
algorithm considers the  coordinates of an anchor 
point (APx, APy) and δ9 numbers of trace points of the output 
branch (see Table II). The output of this algorithm is the external 
angle αi, ∀i ∈ 1, ..., r. The algorithm is formalized in Algorithm 
1, which runs in time 𝒪( ). Additionally, Fig. 3 illustrates the 
external angles on the anchor points.

• Internal angle. The internal angles can compensate for some 
shortcomings of the external angles when the output branches 
contain a few trace points. For this compensation, the cluster 
center of gravity of the anchor points is calculated. The (x, y) 
coordinates of the first δ9 trace points from an output branch are 
considered and the internal angles βi, ∀i ∈ 1, ..., r are computed by 
the procedure reported in Algorithm 2, its complexity being 𝒪( ).

• Curvature. We combine all pairs of output branches, , 
chosen among the r available anchor points in a cluster. The 
continuity connection of two output branches (i, j) and its shortest 
path is obtained through Dijkstra’s algorithm [60]. Each of the 
8-connected traces thus created is divided into 𝑛 equidistant 
points and a curvature representative value is calculated (ρ = 
[ρ1, ρ2, . . . , ρn]). Finally, the maximum of the difference between 
adjacent elements of ρ is used to quantify the curvature of the 
trace generated with the output branches (i, j). The curvature ci,j 
goes from 0, if the curve is perfectly straight, to 180 degrees, if the 
curve is bent over itself. The procedure is detailed in Algorithm 3, 
which has a complexity of .

End Point
Trace Point
Branch Point

End Point

Trace
Point

Branch
Point

Fig. 2. Point classification in a thinned trajectory (center of the image): details 
inside the blue rectangles with clusters inside the green ones.

TABLE II. Notation Used

Notation Description

r Rank of the cluster

ci,j Curvature between output branches i and j

αi , βi External and internal angle for branch i 

πi,j Weighted angle direction between branches i and j 

ωext, ωint, ωcur
External, internal and curvature weights for 
computing the anchor point direction

δ1 , δ2 , δ3 Parameters for identifying retracing

δ4 , δ5 , δ6 Parameters for identifying T-patterns

δ7 , δ8 Parameters for identifying coupled clusters

δ9 Number of trace points

δ10 Parameter for the brotherhood

δ11 Number of points for computing the curvature
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E. Handling Special Cases: the Brotherhood
The brotherhood refers to a set of joined clusters. Two clusters can 

be merged when there are less than δ10 trace points from each other, 
and are connected by at least two branches. The brotherhood is a full-
fledged cluster, and we apply the same rules of a single cluster to it. 
Fig. 4 shows two examples of brotherhood process. It is worth pointing 
out that cluster C3 (Fig. 4a) and cluster C1 (Fig. 4b) are not included 
in the brotherhood because they are connected with the other clusters 
only through one branch.

C1 C2

C3

brotherhood C4

too close to each other

(a) Combining clusters C1 and C2 into cluster C4.

The complexity of the brotherhood is , where 𝑛C is the 
number of clusters in the brotherhood, r the rank of the cluster and δ10 
the number of trace points.

F. Output Branches Association
The Gestalt theory [61] states that all elements of sensory input are 

perceived as belonging to a coherent and continuous whole. Moreover, 
such criteria are supported by the studies of motor control theories 
[62], in particular those related to the execution of rapid and smooth 
movements that involve the principle of energy minimization. Under 
these perspectives, good continuity criteria are taken into account.

As such, we pair the two exit directions whose external difference 
is closer to 180 degrees than are the others, remove them from the 
cluster, and repeat the pairing until the rank of the cluster is either 
zero (meaning there are no more exit directions to pair) or three. Let 

Algorithm 1. Compute External Angle
1:   procedure computeExtAng(APx , APy , x, y)
               ▷ δ9 being the scale of the multiscale approach and the length of (x, y)
2:      for s = 1 to δ9 do
3:         k ← 1
4:         nextPixel ← (APx , APy )
5:         for i = 1 step s to δ9 do
6:            distX ← nextPixel1 – xi

7:            distX ← nextPixel2 – yi

8:            angIntk ← atan2(distY, distX)
9:            k ← k +1
10:          nextPixel ← (xi , yi)
11:       end for
12:       minAngle ← min of angInt
13:       maxAngle ← max of angInt
14:       angMS(s,:) ← linear interpolation
15:    end for
16:    for s = 1 to δ9 d
17:       resMultiscale ← circular mean of angMS(s,:)

18:    end for
19:    α ← circular mean of resMultiscale
20:    return α

Algorithm 3. Compute Curvature
1:   procedure computeCurv(x, y, δ11)
2:      m ← length of (x, y)
3:      n ← min(δ11, m)
4:      if m ≤ 2 then
5:         return 0                ▷ The curve is straight
6:      else
7:         s ← floor(linspace(1, m, n))

▷ Indexes of (x, y) to be considered
8:         for 1 = 1 to n do
9:            for a = 1 to δ11 do

▷ Foward points
10:               if 1 ≥ 1 and 1 ≤ n – 1 then
11:                  k ← min(n – l, a)
12:                  for f = 1 to k do
13:                     vf ← atand2 (ysl – ysl+f , xsl – xsl+f )
14:                  end for

▷ Backward points
15:               if 1 ≥ 2 and 1 ≤ n then
16:                  k ← min(l – 1, a)
17:                  for b = 1 to k do
18:                     vb ← atand2 (ysl – ysl+b , xsl – xsl+b )
19:                  end for
20:               v ← concat(vb , vf)
21:               anga ← circular mean (v)
22:            end for
23:            ρl ← circular mean (v)
24:       end for
25:       c = max(Δρl)
26:       end c

Algorithm 2. Compute Internal Angle

1:   procedure computeIntAng(ccgx , ccg , x, y)
▷ δ9 being the length of (x, y)

2:      for i = 1 to δ9 do
3:         vxi ← ccgx – xi
4:         vyi ← ccgy – yi
5:         angi ← atan2d(vxi, vyi )
6:      end for
7:      β ← circular mean of ang
8:      return β

C1

C2 C3 C4 C5 C6

brotherhood C7

(b) Combining clusters C2, C3, C4, C5 and C6 into cluster C7.

Fig. 4. Examples of two brotherhood application.
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i and j be two branches of a cluster. To implement this criterion, the 
following weighted angle direction, πi,j ∀(i, j) ∈ r, is calculated:

 (1)

where (αi, αj) refer to the external angles, (βi, βj) to the internal 
angles and ci,j denotes the curvature between the considered branches. 
The weights in the angles and curvature, (ωext, ωint, ωcur) (see Table II), 
have to satisfy that the sum of their values be equal to one, with each 
weight ranging in the (0, 1) interval. According to eq. (1), the smaller 
πi,j the smoother the line connecting the i-th and j-th output branches. 
Once all the πi,j are calculated, we process the clusters depending on 
their ranks:

• for even-rank clusters, we select the pair corresponding to the 
smallest values of πi,j and removing the paired branches. These 
steps are repeated  times, until all the branches are paired;

• for odd-rank clusters, the same procedure as above is applied  
times. The remaining branches constitute a 3-rank 2 cluster.

The 3-rank clusters are by far the toughest to manage [45],[63]. They 
can be classified according to their geometrical and morphological 
properties (see Fig. 5) as follows:

• T-pattern clusters: These are clusters whose shape is similar to 
a “T”. With these, one out of the three angles πi,j had to satisfy 
180 (1 − δ4) ≤ πi, j ≤ 180 (1 + δ4 ), and the other two, the 
following condition: . To avoid 360 misclassification, 
any branch of a T-pattern cluster should not be too close to an 
end-point and to another 3-rank cluster. Let dep be the distance in 
pixels between an anchor branch point and the nearest end-point 
and let d3rc be the distance between an anchor branch point and 
the nearest 3-rank cluster. Then, the last condition to satisfy to 
consider a T-pattern would imply: min(dep, d3rc) ≥ δ6.

• Retraced clusters: These appear in closed handwritten loops, and 
consequently, at least one of the branches has to end in an end-
point. Let  be the minimum distance in pixels from the branch 
k to its end-point. Then a retracing should satisfy  ≤ δ2. Also, as 
the candidate retraced branch is expected to be straight, the value 
of its curvature ck should be less than or equal to δ3. Finally, the 
opposite angle πi,j should also satisfy:  ≤ δ1.

• Coupled clusters: These are two-neighbor 3-rank clusters, none 
of which is a T-pattern or a retraced cluster, which share one 
output branch whose length ddb ≤ δ7. As such, the other branches 
of both clusters compose a 4-rank cluster, which has to respect the 
following relation:

 (2)

This condition means that the good continuity criterion must be 
strongly observed for these clusters to be classified as coupled.

• Normal cluster: This is a 3-rank cluster that does not belong to 
the previous classes. In this case, the branches corresponding to 
the smallest values of πi,j are associated, and the remaining one is 
disjoined from the cluster.

End Point

RETRACED T-PATTERN COUPLED NORMAL

Cluster Point Anchor Branch Point Trace Point

Fig. 5. Classification of the 3-rank clusters.

In our implementation, firstly, we pair the branches in even rank 
clusters, because these clusters are the less ambiguous ones. Secondly, 

we work out the odd cluster whose rank is higher than three. Finally, we 
deal with the three rank clusters since they are the most confusing type.

G. Global Reconstruction
The goal of this section is to recover the writing order of the pen-

downs. To this end, we need to define a path that traverses the cluster 
to link two previously paired branches. Moreover, the starting points 
of each component and their order need to be estimated as well.

H. Computing Internal Cluster Paths
Once the anchor branch points are paired, we define the path that 

connects them. Let a cluster be composed of p pixels. The adjacency 
matrix A is then a p × p matrix defined as follows: Given a pair of 
neighbor pixels (pi, pj ) within the cluster, A(i, j) would have a value 
of two or three. If (pi, pj ) are not neighbors or pi = pj  , the value in 
the adjacency matrix is zero. Based on observations in trajectory 
generation [31], the weights assigned operate in compliance with 
the principle of minimizing energy. Accordingly, to connect two 
neighboring pixels, we exercise a preference in choosing a straight 
connection rather than an oblique one. At the same time, an oblique 
connection is preferred against two straight connections.

The adjacency matrix A is therefore processed by the Dijkstra 
algorithm [60], which approaches the Gestalt theory perspective of 
good continuity [61] and rapid movement trajectories.

I. Starting Point Selection
To choose the starting point, we model the spatial distribution of 

the starting points with a two-dimensional Gaussian function.

To this end, we store the starting end-point of a random number of 
handwriting. The median of this Gaussian function is experimentally 
located at 0.15 · h and 0.35 · w, with h and w being the height and the 
width of the writing area on the top-left part of the images. When 
there are no end-points within the ellipse defined by the mean and 
the two standard deviations of the Gaussian, the leftmost end-point is 
selected as the starting point, as usual in Western handwriting.

J. Next Component Selection
Once the first component is recovered, the next component is 

chosen according to a proximity criterion; this is the component with 
the nearest end-point, which has not yet been recovered. Formally, 
this criterion can be described as:

 (3)

where (xepi
 , yepi 

) are the coordinates of the last recovered end-point 
and (xepj

 , yepj 
) the coordinates of the end-points of components that 

have not yet been recovered.

Finally, Fig. 6 illustrates three examples obtained with the proposed 
method.

IV. Experimental Sensitivity and Stability Analysis

In this section, we analyze the sensitivity and the stability of our 
system in terms of the values of the parameters listed in Table II, δ1 
to δ11, ωext, ωint, and ωcur , which have been determined heuristically. 
The performance of the system depends on the pa-rameter values of 
the system. We define the accuracy rate θ as a performance measure: 

.

A cluster is counted as correctly solved if all its branches are paired 
similarly to the real trajectories, which are used as ground truth data.

The parameters and weights were heuristically optimized in a 
trial and error procedure in three steps. Initially, all the weights were 
set to 0.33 and a coarse tuning of the parameters δk was conducted. 
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Then, the performance of θ was analyzed independently for each 
decision criterion, cluster rank and type to fine-tune the parameters. 
Eventually, the weights were fine-tuned for a final maximization of θ.

To investigate whether the heuristic optimization of parameters 
was biased, we carried out both a sensitivity and a stability study. In 
both cases, our optimization procedure was performed with 30 % of 
the specimens randomly selected from the SigComp2009 database 
[64]. Each experiment was repeated ten times with different values of 
each parameter under investigation, and the corresponding average 
accuracy rates were reported.

A. Sensitivity Study: Results
In the study, the heuristic values of the parameters δk were 

individually varied, and the results given in terms of the sensitivity 
grade, defined as ∆θ/∆δ.

TABLE III. Values of δk Parameters and their Variability Range for the 
Sensitivity Study

δk Value Type Range

δ1 28 ND* (22, 34)

δ2 20 ND (10, 30)

δ3 20 degrees (10, 30)

δ4 3 ND (1, 5)

δ5 19 ND (16, 22)

δ6 8 Pixels (4, 12)

δ7 50 Pixels (46, 56)

δ8 40 ND (20, 60)

δ9 5 Pixels (3, 7)

δ10 10 Pixels (6, 14)

δ11 10 Pixels (6, 14)

*ND stand for non-dimensional.

Table III shows the heuristic values and the variation range we used 
for each of them. For example, the parameter δ9 had to include at least 
two pixels, and as a result, its lowest limit had to be 3.

The sensitivity grade for each parameter variation is shown in 
Fig. 7. It refers to the accuracy rate variation achieved when only one 
parameter varies, while the remaining ones assume their heuristic 
values. We see that, depending on the parameter, the variation of the 
accuracy rate is in the order of magnitude 10−3 and can therefore be 
considered negligible. The results confirm that the heuristic criteria 
we designed, based on the Gestalt theory of perception and motor 
control theory, capture some properties of the writer’s movements 
when their trajectories exhibit intersections or crossings. We can also 
see that δ3 exhibits the highest sensitivity grade, meaning that it is one 
of the most influential parameters, and conversely, δ6 seems to be the 
least influential one.

3

2

1

0

-1

-2
-20 20-15 15-5 5-10 100

x 10-3

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11

Δ
θ

Δδ

Fig. 7. Sensitivity analysis: Each line shows the variation of the accuracy rate 
∆θ for a different variation ∆δ of the parameter δk.

Fig. 6. Examples of writing order recovering in signatures with the proposed method. The recovered writing order of each component is represented by 
directional arrows, whereas different colors in the estimated trajectories represent different detected components.
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B. Stability Study: Results
In this study, different weight values are obtained by adding 

Gaussian noise to the heuristic values, as:  where  
η ∈ (0.05, ..., 0.5) is a distortion factor of the standard deviation of the 
Gaussian. In each experiment, the value of η was incremented by 0.05 
and normalization was carried out in order to satisfy |ωext| + |ωint| + 
|ωcur | = 1.

Table IV gives the heuristic values of the weights, whereas Fig. 8 
shows the accuracy rate obtained for different distortion levels. For 
each value of η the figure reports the corresponding box plots. As 
it can be seen, the central mark, in red, is above θ = 0.95 and the 
majority of data, in blue, are concentrated around the median. Black 
dots represent the outliers in each case. Consequently, highly stable 
performances are obtained, along with different η values. It suggested 
that external and internal angles, as well as the curvature conditions, 
are representative of the good continuity criteria.

TABLE IV. Weights for Computing the Branch Point Directions

Clusters ωext ωint ωcur

Normal 0.20 0.05 0.75

T-Pattern/Retracting 0.95 0.00 0.05

Coupled 0.40 0.05 0.55

Odd-Rank 0.70 0.05 0.25

1

0.98

0.96

0.94

0.92

0.9
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

θ

η

Fig. 8. Stability analysis: Vertical axis shows the accuracy rate (θ) as a function 
of the amount of distortion (η) applied to the heuristic values of the weights, 
in the horizontal axis.

V. Performance Assessment

The overall performances of the proposed system were evaluated by 
comparing the recovered trajectories with the real on-line counterpart 
trajectories. The experiments aim to answer the following questions:

• Q1: Are the clusters correctly solved?

• Q2: Are the components correctly detected in the images?

• Q3: Does the proposed system recover the trajectories in a correct 
order?

We used the complete SigComp2009, SUSIG-Visual and SVC-Task2 
as third-party databases for the experiments (see appendix).

A. Used Metrics
The evaluation is carried out at the pixel level between real and 

recovered 8-connected trajectories. To this aim, the on-line data of 
a specimen were interpolated to generate an 8-connected trajectory 
through Bresenham’s line drawing algorithm [65] without any further 
processing [45]. As metrics, we used the Root Mean Square Error 

(RMSE) [48], Signal-to-Noise-Ratio (SNR) [66] and Dynamic Time 
Warping (DTW) [67] to quantify the matching between them. These 
metrics are defined as follows:

 (4)

 (5)

 (6)

where (𝑥, y) and ( , ) are the points belonging to the real and 
recovered trajectories, respectively. For the sake of comparison [14], 
the real and estimated recovered trajectories are normalized by using 
a cubic spline, where its length, n, was the total sampling points in the 
real on-line trajectory. Next, min-max scaling is worked out.

It follows from the definition that the smaller the RMSE and DTW, 
the more similar the real and recovered trajectories. Conversely, higher 
values of the SNR represent a higher similarity between trajectories.

Furthermore, we investigate the relation between the perfor mance 
and the complexity (ℂ) of the specimens, since the more complex the 
handwriting, the more difficult the reconstruction of its writing order. 
Accordingly, we define the complexity as:

 (7)

where nc denotes the number of components in the real hand-
writing, nr =3 the number of 3-rank clusters and nr > 3 the number of 
clusters with a rank greater than three. These three factors represent 
the difficulty in order recovering trajectories, with the number 
of components being the most critical factor. Accordingly, their 
coefficients are empirically adjusted as:[α1, α2, α3] = [0.6, 0.3, 0.1]. 
Through the complexity formula, a histogram is obtained and divided 
into three parts with equal frequency binning, in a balanced fashion. 
To contextualize formula (7), we calculated the complexity using all 
specimens of the datasets used in the experiments (5972 in total). 
We found that 1969 samples were categorized as low complexity ℂ ∈ 
(α1, 4.0); 2002 as medium complexity ℂ ∈ (4.0, 6.6) and 2001 as high 
complexity ℂ ∈ (6.6, 26.3).

B. Accuracy of Cluster Resolution (Q1)
Fig. 9b shows that our system detected 183, 877 out of 186, 165 

clusters of 3 and 4-rank in all databases. These two cluster types thus 
represent 98.77 % of the cases handled. The accuracy rate obtained 
was over 97.97 % on average for the three datasets. As seen in Fig. 
9a, for 3-rank clusters, the lowest and highest rates were 96.15 % for 
SVCTask2 and 99.26 % for SUSIG-Visual, respectively. As mentioned 
in Section III, 3-rank clusters are the most challenging to solve, as 
they may exhibit configurations that are very similar to those of the 
branches attached to them. Achieving an accuracy rate greater than 
96.00 % on them thus is a remarkable feat. These results show that the 
criteria we designed for pairing the cluster branches capture essential 
pieces of knowledge about human trajectory execution. They also 
show that the higher the cluster rank, the lower the accuracy rate. 
This is expected since recovering correcting higher-rank clusters is 
more difficult than correcting those that are lower-ranked. We also 
observe that there is room for improvements for branch pairings of 
clusters with ranks greater than 6. However, this drawback has only a 
limited impact on the performance because such clusters are present 
in less than 2.5 % of the total number of samples.
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Overall, we have a global accuracy of θ = 98.72 % on SigComp2009, 
θ = 98.91 % on SUSIG-Visual, and θ = 98.59 % on SVCTask2, which 
are little better than the results obtained on the SigComp2009 and 
SUSIG-Visual datasets [50].

C. Estimation of the Number of Components (Q2)
We assess the estimation of the number of components. Each 

component has two end-points, corresponding to the points where 
the pen-tip touches/leaves the tablet. They are used to quantify the 
number of components in a sample. Therefore, we compare the 
number of components found by our method with the actual number 
of components of the on-line samples.

Fig. 10 shows the density functions of the real and estimated 
numbers of components in the samples. We also quantify the density 
function similarities in terms of the Area Between Curves (ABC). 
The more similar the density functions, the smaller the ABC value, 
and therefore, the better the estimation. For all datasets, we obtain 
excellent performance, but in the case of the SVCTask2, it is clearly 
outstanding. It is explained since the other two databases contain 
more complicated and lengthy specimens than the SVCTask2.
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Fig. 10. Density functions of the number of components calculated with real 
trajectories from different databases and the estimated number of components 
with our system. ABC denotes the Area Between Curves.

D. Matching Between Real and Recovered Trajectories (Q3)
This experiment assesses the performance of our system when 

the order of a static trajectory is wholly recovered. One of the main 
factors influencing the complete order recovering is the selection of 
the starting point of each component. To evaluate the extent to which 
the selection of the starting points determines the recovery trajectories, 
we gradually relax the condition of the static samples by adding some 
information regarding the ending points: 1) the Estimated STarting 
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Fig. 9. Performance of the system solving the clusters found in each database.

TABLE V. Overall Performance Results When Complete Trajectories 
Are Recovered in Static Trajectories in Terms of RMSE, SNR, and DTW

Dataset: 
SigComp2009

Low 
complexity

Medium 
complexity 

High 
complexity Total

SNR

ESTNC 28.93 ± 1.26 8.15 ± 0.63 5.93 ± 0.50 14.39 ± 0.56

RSENC 33.05 ± 1.25 10.70 ± 0.73 6.06 ± 0.55 16.65 ± 0.60

RSEOC 41.16 ± 1.07 26.63 ± 0.72 14.63 ± 0.64 27.50 ± 0.55

RMSE

ESTNC 0.14 ± 0.01 0.27 ± 0.01 0.27 ± 0.01 0.22 ± 0.00

RSENC 0.11 ± 0.01 0.25 ± 0.01 0.29 ± 0.01 0.22 ± 0.01

RSEOC 0.04 ± 0.00 0.07 ± 0.01 0.16 ± 0.01 0.09 ± 0.00

DTW

ESTNC 2.73 ± 0.18 6.51 ± 0.22 8.82 ± 0.30 6.01 ± 0.15

RSENC 2.05 ± 0.15 6.16 ± 0.23 9.39 ± 0.31 5.86 ± 0.16

RSEOC 0.71 ± 0.09 1.82 ± 0.14 5.42 ± 0.29 2.65 ± 0.12

Dataset:  
SUSIG - Visual

Low 
complexity

Medium 
complexity 

High 
complexity Total

SNR

ESTNC 23.74 ± 0.83 14.35 ± 0.64 7.75 ± 0.51 15.40 ± 0.41

RSENC 32.32 ± 0.79 19.94 ± 0.69 9.45 ± 0.57 20.73 ± 0.44

RSEOC 43.34 ± 0.63 32.70 ± 0.59 19.50 ± 0.62 31.98 ± 0.40

RMSE

ESTNC 0.19 ± 0.01 0.23 ± 0.01 0.28 ± 0.01 0.23 ± 0.00

RSENC 0.11 ± 0.01 0.18 ± 0.01 0.27 ± 0.01 0.19 ± 0.00

RSEOC 0.03 ± 0.00 0.07 ± 0.00 0.16 ± 0.01 0.08 ± 0.00

DTW

ESTNC 2.71 ± 0.10 3.70 ± 0.12 5.33 ± 0.13 3.90 ± 0.07

RSENC 1.58 ± 0.09 3.00 ± 0.12 5.33 ± 0.14 3.28 ± 0.07

RSEOC 0.36 ± 0.04 1.13 ± 0.08 3.05 ± 0.12 1.51 ± 0.05

Dataset: 
SVCTask2

Low 
complexity

Medium 
complexity 

High 
complexity Total

SNR

ESTNC 23.72 ± 0.84 7.14 ± 0.54 2.62 ± 0.25 11.19 ± 0.41

RSENC 31.61 ± 0.83 8.70 ± 0.65 2.11 ± 0.34 14.18 ± 0.49

RSEOC 37.39 ± 0.63 29.30 ± 0.69 20.43 ± 0.60 29.08 ± 0.41

RMSE

ESTNC 0.13 ± 0.01 0.27 ± 0.01 0.31 ± 0.01 0.24 ± 0.00

RSENC 0.09 ± 0.01 0.28 ± 0.01 0.35 ± 0.01 0.24 ± 0.01

RSEOC 0.03 ± 0.00 0.06 ± 0.00 0.09 ± 0.00 0.06 ± 0.00

DTW

ESTNC 1.72 ± 0.11 3.62 ± 0.11 4.97 ± 0.10 3.43 ± 0.07

RSENC 1.16 ± 0.10 3.74 ± 0.12 5.69 ± 0.11 3.52 ± 0.08

RSEOC 0.34 ± 0.04 0.79 ± 0.07 1.46 ± 0.08 0.86 ± 0.04
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point Nearest Criterion (ESTNC), which selects as the starting point 
of the next component the nearest untraced estimated starting point; 
2) the Real Starting/Ending point Nearest Criterion (RSENC), which 
provides the system with the coordinates of the real starting and 
ending points of the components, and 3) the Real Starting/Ending 
point Ordered Criterion (RSEOC), which provides the system with the 
coordinates of the real starting and ending points, as well as the correct 
order of these coordinates. By comparing the results of the third and 
second scenarios, it is possible to estimate the efficacy of the criterion 
for finding the starting point of the next component. As the first 
scenario represents the operating condition of our method, comparing 
its performance with the second one allows evaluating the efficacy of 
the criterion for selecting the starting point of each component.

In Table V, for each database, scenario and level of complexity, we 
list the performance in terms of the mean and standard error of the 
performance measures mentioned above.

As expected, we can observe that the simpler the handwriting, the 
better the reconstruction, for all metrics. They also show that in case of 
a low complexity handwriting, the performance is very similar across 
the three datasets, but diverges more and more as the handwriting 
complexity increases.

With regards to the metrics, the performances in Table V show 
that the SNR is more sensitive than RMSE and DTW to the errors 
in recovered trajectories. Nevertheless, all metrics maintain a similar 
range of values in all cases.

Last but not least, the results in the table show that a significant 
improvement in the performance is obtained when both the starting/
ending points of each component and their orders are made available 
to our method. This observation is independent of the database and 
the level of complexity.3

TABLE VI. Performance Comparison of Recovered Trajectories of the 
Estimated STarting Point Nearest Criterion (ESTNC) With Other Works

Paper Dataset RMSE* DTW*

– Related works about recovering words –

[48]
Private - Single Strokes (on-line 
transformed in off-line)

400.98 118.12

[48]
Private - Multi Strokes (on-line 
transformed in offline)

503.81 171.91

[48] Private - Scanned Words 2538.05 553.57

[48] IRONOFF [49] 669.03 278.27

[56] (LSTM) Unipen - 0.04

[56] (Conv) Unipen - 0.04

[56] (Class Avg) Unipen - 0.21

– Related works about recovering signatures –
[14] (Best system 
on DTW)

Public - Arabic signature [33] 0.34 28.81

[14] (Best system 
RMSE)

Public - Arabic signature [33] 0.25 52.40

[50] SigComp2009 0.06 382.01

[50] SUSIG-Visual 0.05 300.50

This work
SigComp2009 0.22 6.01
SUSIG-Visual 0.23 3.90
SVCTask2 0.24 3.43

* Note that different formulas for RMSE and DTW are used in the papers, 
making a fair comparison more difficult. We used the formulas proposed in the 
competition presented in [14].

3  A video showing the estimated recovered trajectories with different levels of 
complexity is available at https://youtu.be/TYoZZ8CThhw. 

To put our results in context, Table VI shows the performances 
obtained in related works. We can see different performance ranges 
among the works, suggesting that no standard procedure has thus far 
been established for measuring the effectiveness of the writing order 
recovery. For this reason, beyond the implementation of RMSE and 
DTW metrics, it is necessary to take into account data normalization, 
data aggregation, and, above all, the handwriting database used, whose 
complexity is not easily measurable. Nonetheless, the results of such 
comparisons are useful, as they generally convey a rough estimate of 
advancements in the field, even though it does not provide a fair basis 
of comparison.

VI. Conclusions and Outlook

We have developed a system for recovering the ballistic trajec-tory 
order of long and complex thinned static handwritten sig-natures. 
Our system operates in three stages: (i) point classifi-cation, (ii) local 
examination, and (iii) global reconstruction. In the point classification, 
the clusters are identified and correspond to the agglomeration of 
pixels in the images. The agglomerations of lines correspond to 
crossings of lines in the thinned trajecto-ries. Thus, a cluster can be 
characterized by the number of input-output lines or branches. In the 
local examination, input-output branches are paired by exploiting 
heuristic rules inspired by both good continuity and motor control 
principles when signing, with preference given to smooth and straight 
ballistic trajectories. At the global reconstruction stage, the end-points 
of the components (pen-downs) are identified and sorted. Once a 
component is re-covered, the system decides on the new component 
to recovering.

This procedure requires that a number of parameters and weights be 
adjusted. Their values are determined heuristically by trial and error, 
as the best matching between the real and reconstructed trajectory is 
sought. Furthermore, both the sensitivity and stability of the results 
with respect to these parameters are studied, and we see that the 
performance of our procedure is barely affected by a variation of up 
to 10 % of these parameters. To avoid overfitting in these values and 
make the results more meaningful, the parameters are adjusted with 
a subset of the SigComp2009 signature database. Then, the results 
are obtained with different publicly available databases, namely, the 
complete SigComp2009, SUSIG-Visual and SVCTask2.

The performance of the system is analyzed considering several 
aspects. As the ground truth of our experiments, we use the on-line 
trajectories, which contain details of how real signers wrote the 
trajectory. We first observe a competitive performance when the 
branches are paired on the clusters. It is worth pointing out that the 
branch association in the clusters is the first step towards the final 
writing order recovery. Moreover, a few mistakes may lead to an 
overall error in the estimation of trajectory order. Secondly, we also 
study the number of components estimated in the signature and the 
complete trajectory order recovery. For research purposes, our system 
can be freely downloaded from GitHub.

Although promising results are observed in this work, more efforts 
are required to ensure a more reliable estimation of the trajectories. 
Our experiments suggest that it is of paramount importance to 
continue investigating the rules for choosing the ending points of the 
components and their order, taking into account unknown pen-ups 
trajectories. Indeed, having the availability of on-line trajectories to 
recover a static one could improve both the cluster resolution and the 
complete order recovering. In this case, mapping two skeleton-based 
images is a further strategy that could be explored by using optical 
flow analysis, diffeomorphism functions, or inkball models, among 
others.
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In a challenging framework, which uses an off-line handwriting 
as input and approximates its corresponding on-line counter-
part as output, i.e. (x(t), y(t)), our system plays an important 
role. Nevertheless, this framework also implies that more effort is 
required in thinning algorithms to improve the handwriting image 
quality and resolution. Furthermore, estimating temporal properties 
in the recovered trajectories is another open question. A possible 
solution is to assign a timestamp sequence to the 8-connected 
trajectories. This would open the door to working out dynamic 
properties such as the velocity or acceleration. In the meantime, the 
proposed system constitutes a reasonable starting point for future 
research in the challenging field of on-line trajectory estimation 
from off-line specimens.

Appendix

A. Databases
We evaluate the proposed system on signatures because they 

represent long and complex handwriting, contain text and flourishes, 
and their patterns result in multiple pen-downs and a high number of 
clusters, so constituting a suitable and very challenging benchmark.

We use the following data of three publicly databases:4

• SigComp2009 [64]. Contains 1552 on-line Western signatures 
written by 79 subjects. There are 932 genuine signatures available 
since each signer gave 12 specimens on average.

• SUSIG-Visual corpus [68]. Includes 2820 on-line Western 
signatures written by 94 subjects. Each participant produced 20 
genuine signatures in two sessions, i.e., 94 × 20 = 1880 specimens.

• SVCTask2 [69]. Consists of 1600 signatures written by 40 subjects, 
17 of whom used Oriental scripts and 23, Western scripts. Each 
subject produced 20 genuine signatures.

SigComp2009 and SUSIG-Visual, which are made up of only 
Western signatures, were used in a bid to evaluate the independence of 
the proposed method from the database, whereas the use of SVCTask2, 
also composed of Oriental specimens, was intended to show the 
independence of the algorithm from the script type.

Eventually, the skeleton of the off-line handwriting was obtained 
by converting the on-line trajectories into 8-connected, one-pixel-
wide digital lines through the Bresenham's line drawing algorithm 
[65] without any further processing [45]. The out-put resolution of 
the images was 600 dpi. This choice, moreover, provides a perfect 
spatial matching between the on-line and the off-line representations 
of the trajectories, establishing a solid ground truth for performance 
evaluation.
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