
Regular Issue

- 225 -

CompareML: A Novel Approach to Supporting
Preliminary Data Analysis Decision Making
Antonio Jesús Fernández-García1*, Juan Carlos Preciado2, Alvaro E. Prieto2, Fernando Sánchez-Figueroa2,
Juan D. Gutiérrez2

1 Universidad Internacional de La Rioja (Spain)
2 University of Extremadura (Spain)

Received 8 February 2021 | Accepted 23 July 2021 | Published 2 August 2021

Keywords

Classification, Decision
Support System,
Knowledge Elicitation,
Machine Learning,
Regression, Software.

Abstract

There are a large number of machine learning algorithms as well as a wide range of libraries and services
that allow one to create predictive models. With machine learning and artificial intelligence playing a major
role in dealing with engineering problems, practising engineers often come to the machine learning field
so overwhelmed with the multitude of possibilities that they find themselves needing to address difficulties
before actually starting on carrying out any work. Datasets have intrinsic properties that make it hard to
select the algorithm that is best suited to some specific objective, and the ever-increasing number of providers
together make this selection even harder. These were the reasons underlying the design of CompareML, an
approach to supporting the evaluation and comparison of machine learning libraries and services without deep
machine learning knowledge. CompareML makes it easy to compare the performance of different models by
using well-known classification and regression algorithms already made available by some of the most widely
used providers. It facilitates the practical application of methods and techniques of artificial intelligence that
let a practising engineer decide whether they might be used to resolve hitherto intractable problems. Thus,
researchers and engineering practitioners can uncover the potential of their datasets for the inference of new
knowledge by selecting the most appropriate machine learning algorithm and determining the provider best
suited to their data.

* Corresponding author.

E-mail address: antoniojesus.fernandez@unir.net

DOI: 10.9781/ijimai.2021.08.001

I. Introduction

The evolution of computing capacities and the democratization
of access to cloud computing at reasonable and affordable prices

have fostered the appearance of a great number of machine learning
applications for different fields. The engineering field in particular is
not unaware of this trend. Engineering researchers and practitioners
in a variety of areas have been drawn into the use of machine learning
with the aim of inferring knowledge from their data. In particular,
there are many engineering problems that can be solved using
machine learning and artificial intelligence, and this, together with the
Internet of Things and Big Data, inter alia, is one of the foundations of
the fourth industrial revolution.

In most cases, the lack of knowledge about machine learning hinders
engineers’ and researchers’ ability to analyse the potential that their
data may have. Even with such knowledge, they will have to choose
to use any from among an ever increasing number of alternatives with
respect to algorithms, frameworks, tools, and providers. Given this
context, it is hard to properly assess which will be the best way to
address a specific engineering problem involving some particular data.

Moreover, the problem is compounded because, although well-
known machine learning algorithms (such as Linear Regression,
Decision Tree, Logistic Regression, Support Vector Machine, or
Naive Bayes) are supposed to perform exactly the same, their
implementations in third-party libraries and services can yield
different results depending on the particular dataset.

Thus, any thorough evaluation of the different algorithms and
their different implementations will be a time-consuming task. This
ultimately results in most practitioner engineers and researchers in
the field usually relying on their own experience to select a particular
platform and algorithm, so that they will probably miss others that
might well better reveal the whole potential of their datasets.

In this context, given this variety of options, and before taking into
account such other factors as affordability, availability, complexity,
or expertise, a preliminary study to find the optimal choice for a
particular dataset might be helpful even for engineers, researchers, or
scientists with no great depth of machine learning knowledge. While
there are general-purpose machine learning tools that allow different
algorithms to be applied to the same dataset, to the best of our
knowledge, there is no solution available that is able to quickly and
easily compare algorithm implementations from different providers.

All of this led us to posit the following research questions:
• RQ1: Has a dataset the potential, i.e., is it possible to infer knowledge

from it, to be used in a real-world engineering application or to solve
a real-world engineering problem?

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 226 -

• RQ2: Is it possible to determine, a priori, which are the best algorithms
to reveal the potential of a dataset and construct the most appropriate
predictive model from it?

• RQ3: Is it possible to select from among the wide range of libraries
and services that allow the creation of predictive models those which
are, a priori, the best to work with a specific dataset and problem?

With the aim of answering these questions, we present CompareML,
an approach that allows practitioner or research engineers to make
a preliminary analysis of their data by testing different machine
learning algorithms from different providers. The main goal of this
approach is to allow such users to select the most suitable environment
for their datasets without requiring any in-depth knowledge about
machine learning. Thus, using CompareML, engineers can quickly
and effortlessly compare the performance of different algorithms and
providers applied to their specific datasets before deciding which to
employ in their machine learning models.

The resulting software supporting the CompareML approach is
licensed under an MIT permissive free software licence for it to be
useful, reusable, and customizable in machine learning research areas.
It is readily accessible at the following URL: https://compareml.io/.
The software is already very intuitive, but nevertheless there is a User
Manual1 available for other researchers to answer any doubts they
may have when using CompareML. Finally, scripts are available to
enable full automated portability of the software.

The rest of this paper is organized as follows. Section II summarizes
other approaches, and lists the algorithms and providers supported by
CompareML. Section III describes the approach. Section IV details the
implementation of the approach and the software architecture. Section
V provides an illustrative example using CompareML. Finally, Section
VI draws some conclusions and describes future work.

II. Related Work and Background

This section reviews some related work, describes the fundamentals
of the machine learning algorithms compared by CompareML, and
presents the state-of-the-art of the libraries and services available on
the market, describing those supported by CompareML.

A. Related Work
There are general-purpose machine learning tools that have dealt

with similar problems:

• Weka [1], a machine learning software package ideally suited for
teaching and research which allows, inter alia, the comparison
of algorithms for a dataset. It has recently been enriched
with WekaLearning4j [2], a deep-learning package based on
Deeplearning4j. The software is free under GNU GPL 3 for non-
commercial purposes.

• Orange [3], a machine learning software package that allows
data analysis and data visualization to be performed on datasets.

1 User Manual available at http://shorturl.at/yCLX4

It can be applied by means of Python scripts or through a visual
programming interface in which users can make use of its
functionalities. The software is developed by the University of
Ljubljana, and is open-source released under a GPL licence.

• RapidMiner [4], [5], a data science software platform that
implements data mining algorithms as operators that users
can visually drag and drop to create customized dataflows. It is
proprietary software developed by the RapidMiner firm, although
previous versions were open source.

• Knime [4], a data mining tool integrated in Eclipse (the Java
Integrated Development Environment) with a visual interface
in which users make use of blocks, connecting them to create
dataflows that visualize, deploy, and manage machine learning
models. It is open source software developed by the University of
Konstanz.

Table I presents a comparison of the work mentioned in this section
in such aspects as:

a) Support for Regression algorithms;

b) Support for Classification algorithms;

c) Support for Clustering algorithms;

d) Support for Deep Learning algorithms;

e) Model Comparison;

f) Data Visualization;

g) Implementation of Multiple Providers’ algorithms;

h) Machine Learning Knowledge required.

A more detailed and specific comparison of these software packages
and the Scikit-Learn library and R Programming Language can be
found in [6], where the authors compare software and services that
are beyond the scope of this present work.

Our approach follows AutoML or Automated Machine Learning
principles. AutoML [7] is an idea that consists of automating the entire
pipeline or a part of a machine learning project. This is a hot topic
of interest in both industry and academia, and the evaluation of its
results [8] has led to several AutoML approaches and tools emerging.
Some of those most widely used are:

• Automated Machine Learning in PowerBI [9] was launched by
Microsoft in 2019 to allow business analysts, economists, and
PowerBI users in general to build machine learning models to
solve business problems without their needing to have a strong
background in machine learning.

• PyCaret [10] is an open-source machine learning library in Python
developed by Moez Ali and launched in 2019. Its main characteristic
is its low-code orientation, making it simple and easy to use.

• Cloud AutoML [11] is the AutoML platform launched by Google in
2018 that trains custom machine learning models for image, video,
and tabular data, as well as making use of pretrained models to
create natural language processing, image classification, video
recognition, or structured data discovery applications.

TABLE I. Software Comparison

Software Regression Classification Clustering Deep Learning Comparison Visualization Multiple Providers Knowledge
Weka      

Orange    

RapidMiner      

Knime     

CompareML    

(Regression: Support for Regression algorithms, Classification: Support for Classification algorithms, Clustering: Support for Classification algorithms, Deep
Learning: Support for Deep Learning algorithms, Comparison: Model Comparison, Visualization: Data Visualization, Multiple Providers: Implementation of
algorithms from Multiple Providers, Knowledge: Machine Learning Knowledge required.)

Regular Issue

- 227 -

In addition to the software analysed, one can find in the literature
related work worthy of mention with several tools and libraries, such as:

• LEAC [12], an efficient library for clustering with evolutionary
algorithms in the neural networks field.

• Ruta [13], which implements autoencoders, neural networks that
perform feature learning on data.

• AutoML-Zero [14], a specific-purpose tool that simultaneously
searches for all aspects of a machine learning algorithm, using
basic maths operations, with the objective of reducing human bias
in the search space.

However, as noted above, to the best of our knowledge, there is
no solution that is able to compare algorithm implementations from
different providers while requiring no depth of machine learning
knowledge on the part of the user.

B. Background
CompareML provides researchers with the possibility of creating

models of their data using the following well-known algorithms:

• Linear Regression. This assumes a linear relationship between the
input variables and a single output variable. The model learns by
estimating the values of the coefficients used in the representation
from the data available. The linear regression can be expressed
as y = ax + b, where a and b are the aforementioned coefficients.

• Decision Tree. Decision tree algorithms build a tree-like structure
in which each node represents a question concerning an attribute.
The responses to that question create new branches, expanding
the structure until the end of the tree is reached, with the leaf node
being the one that indicates the predicted class.

• Boosted Decision Tree. This is a general method, not limited to
decision trees, which consists of applying a boosting method to
combine many classifiers into a new and stabler one with a smaller
error. In the boosting, the predictors are made sequentially rather
than independently, applying the rationale that the subsequent
predictors learn from the mistakes of the previous ones.

• Random Forest. This algorithm is an improvement that creates
several decision trees, using bagging or some other technique, and
votes for the most popular output that the trees yield. Usually, most
implementations do not count the outputs directly, but sum their
normalized frequencies to get the label with greatest likelihood.

• Logistic Regression. This algorithm uses a more complex cost
function – the ‘sigmoid’ or ‘logistic’ function – than the Linear
Regression model. Input values are combined linearly using
weights or coefficients to predict an output value. A key difference
with Linear Regression is that the output being modeled is
dichotomous (a 0 or 1) rather than numerical.

• Support-Vector Machine. The data are mapped onto a high-
dimensional feature space so that the data points can be categorized
even when the data are not otherwise linearly separable. Then, a
separator is estimated for the data. The data should be transformed
in such a way that a separator can be drawn as a hyperplane. As
there are many possible hyperplanes, the Support Vector Machine
algorithm finds a hyperplane that represents the largest separation,
or margin, between classes.

Of particular importance are the libraries and services from
different machine learning providers that CompareML supports:

• Turi Create [15], a Python™ [16] package that allows programmers
to perform end-to-end large-scale data analysis and data product
development. It is a distributed computation framework written
in C++, developed at Carnegie Mellon University, and acquired in
2016 by Apple Inc.

• Scikit-Learn [17], one of the most popular machine learning
libraries. It is largely written in Python with some core algorithms
written in Cython to improve performance. It is supported by
several institutional and private grants.

• R [18], a programming language that is an environment for
statistical computing software written in C, Fortran, and R itself. It
is widely used in machine learning tasks. It is developed by the R
Core Team. CompareML runs R code embedded in Python through
the access provided by the rpy2 library.

III. Approach

A. The Approach in a Nutshell
The approach consists of a software architecture that supports

machine learning experiments being carried out very easily, even
for practitioners with no in-depth knowledge or skills in machine
learning and artificial intelligence. Specifically, the approach allows
classification and regression models to be implemented, and evaluates
them so that their performance can be very easily compared using
metrics that are in line with the models’ types. Additionally, none of
the machine learning algorithms are constrained to a single library
or provider. Instead, several implementations of the algorithms from
different libraries, tools, or providers can be built and evaluated,
so that, for every scenario (i.e., dataset and problem to solve), it is
possible to select the most suitable algorithm and the most appropriate
implementation library or provider.

B. Data Analysis Decision Making
After the foregoing description of the main concepts of the

approach’s architecture, this section will present a discussion of
the proposed pipeline on which CompareML is built. Engineers and
practitioners will follow this pipeline (Fig. 1) to decide whether there
is hidden knowledge within their data, and, if so, which are the best
algorithms and providers for them to use to build accurate models.

The circumstances begin when engineers are faced with trying to
solve some problem, and they think that machine learning presumably
can help in looking for a solution. After collecting the data, reasonable
doubt arises about the data’s suitability and the possible hidden
knowledge they contain so that the problem can be solved properly.

In the interest of clarifying the data’s potential, researchers or
engineers upload their data to an implementation of the CompareML
approach, indicating the attribute to predict (the label). They then
choose the machine learning libraries and services they can work
with, and select those machine learning algorithms they want to use to
create predictive models. In response, after evaluating and comparing
the models generated, CompareML provides performance metrics about
the models. It is quite common to do that as can be seen in work such as
[19]–[22] where authors create several models to find out the one that
gets better results. By analysing these performance metrics, engineers
can decide whether their data has the potential to build accurate
models with which to solve their problem, and, if so, the algorithm and
provider combination most likely to produce a reliable solution.

C. Inputs and Outputs
There are certain classes of data that need to be sent to CompareML.

These input data are listed in Table II.

In version 1.0, the validation software does not automatically
recognize the selected label’s data type, so that the experiments will
be run regardless of the appropriateness of the label data type and the
type of algorithms selected. In such cases, the experiments’ results will
be given according to how each one of the libraries, services, and tools
selected handles these situations.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 228 -

The outputs of CompareML are a set of metrices that allow the
appropriateness of the models created to be studied using different
algorithms from different machine learning tools and services. Those
outputs vary depending on the user’s algorithm selection.

The outputs for Regression algorithms are:

• RMSE. This is a measure of the differences between the values
predicted by a model and the observed values.

RMSE can be defined as:

 (1)

where

 - N is the number of instances;

 - ŷ1, ŷ2, ..., ŷn are the values predicted by the model; and

 - y1, y2, ..., yn are the observed values

• R2. Also known as the Coefficient of Determination, this is a metric
that helps to explain the relationship between two variables. It
ranges from 0 to 1, with the closer to 1, the better the model being
analysed. Although a useful metric, it should be noted that, as
more independent variables are added, R 2 will always rise.

R 2 can be defined as:

 (2)
where

 - N is the number of instances,

 - ŷ1, ŷ2, ..., ŷn are the values predicted by the model,

 - y1, y2, ..., yn are the observed values, and

 - ӯ is the mean of the n observed values.

• Max-Error. The Max-Error metric is the worst case error between
a predicted value and a true value.

Max-Error can be defined as:

 (3)
where

 - ŷ1, ŷ2, ..., ŷn are the values predicted by the model, and

 - y1, y2, ..., yn are the observed values.

• Raw Data. Information yielded directly by the provider.

The outputs for Classification algorithms are:

• Accuracy. An accuracy value, indicating the correctly predicted
instances, is given for each algorithm selected. It can be defined as:

 (4)

• Confusion Matrix. A table layout where each row represents the
number of instances of each class and each column represents the
class that has been predicted by the model. A confusion matrix is
created for each algorithm selected [23].

• Precision. This indicates the proportion of predicted positives.
A precision value is given for each algorithm selected. Using the
confusion matrix, it can be calculated as:

 (5)
where

 - TP = true positives,

 - FP = false positives.

Understanding
the Problem Load Dataset Select Algorithms

to Train Models

What sources of data do we have?
How can they be accessed?

Is the data good enough?
Is there hidden knowledge within the data?

Which service/provider should we use?

Data Analyzing Dataset Select Providers to
Train Models

A
na

ly
si

s
of

 M
od

el
s

Pe
rf

or
m

an
ce

 M
et

ri
cs

B
es

t A
lg

or
it

hm
/P

ro
vi

de
r

C
om

bi
na

ti
onEvaluation and

Comparison

What problem do we want to solve?
What do we want to achieve?

Provide the dataset
Indicates the label feature

What algorithm should we use? Models’ Performance Metrics
Best Algorithn/Provider Selection

Fig. 1. Pipeline of the approach.

TABLE II. CompareML Input Data

Input Name Description Observations

Dataset
The dataset must be in CSV (comma-
separated values) format, and it must
contain a header row.

Notice that, since the comma is used as a separator, CompareML cannot handle field data
containing commas or embedded line breaks. Also, it may not handle other unconventional
characters.

Label Feature that models will predict. After uploading a dataset, users must select the label from among the dataset’s existing features.

Providers Machine learning libraries and services
available to build models.

Users must select at least one of them. The validation software of the approach supports Turi
Create, Scikit- Learn, and R.

Algorithms Regression and classification algorithms
available to build models.

Users must select at least one of them. The validation software of the approach allows users to
choose between the Linear, Decision Tree, and Boosted Decision Tree regression algorithms, and
the Random Forest, Logistic Regression, and Support Vector Machine classification algorithms.

Regular Issue

- 229 -

• Recall (Sensitivity). This indicates the proportion of positives
predicted as positives. A recall value is given for each algorithm
selected. Using the confusion matrix, it can be calculated as:
(number of true positives / (number of true positives + number of
false negatives).

 (6)

where

 - TP = true positives,

 - FP = false positives.

• Raw Data. Information yielded directly by the provider.

IV. Implementation

A. Software Architecture
CompareML has been implemented following a classical client-

server software architecture with an MVC (Model View Controller)
approach [24] – a suitable option for this solution.

The server hosts the resources that manage the creation of
models and deliver the results to the client. The client interacts with
researchers through its user interface, and initiates requests to the
server. This architecture is illustrated graphically in Fig. 2, and consists
of the following modules:

• Client. This module handles the presentation layer, and is
responsible for interacting with users. In it, users upload the dataset
and set the configuration of the experiments that are sent to the
server side. When the experiments are carried out, the results are
sent back to this module to be shown to users in a friendly manner.
The user interface has been designed to maximize usability, being

simple, consistent, and offering cross-browser compatibility. This
module was developed using widely used technologies such as
HTML5, CSS3, and JavaScript.

• Back-End Main Application. This is the core of CompareML.
It is responsible for coordinating and controlling the software’s
operational processes. It receives from the user interface the
conditions under which the experiments must be carried out, and
calls the Turi Create, Scikit-Learn, and R modules required, sending
them the conditions of the experiments that affect them (algorithm
selection, training dataset, test dataset, ...). When the execution of
those modules ends, it receives the results and sends them back to
the user interface. This module was developed in Python.

• Back-End Split Function. The split function is a special module
in the back end that deals with the problem of splitting the dataset
uploaded by researchers into two subsets: the training dataset
containing 80% of the instances of the total dataset, and the test
dataset containing the remaining 20% of the instances. This task
is carried out in this module because it is necessary to ensure
that the experiment’s results are as objective as possible. If each
provider module were to divide the dataset itself randomly, the
random seeds would be different, and this would have potentially
negative implications for any objective comparison of the models
created through each of those modules. The split function module
was developed using Python and Pandas [25], a powerful open
source data analysis and manipulation tool built on top of the
Python programming language.

• Provider Modules. These contain the implementations of the
Random Forest, Logistic Regression, and Support Vector Machine
classification algorithms and the Linear, Decision Tree, and
Boosted Decision Tree regression algorithms using Scikit-Learn. It
makes use of the sklearn library to build and evaluate the models

Client

Server

Back-End Application

Scikit Learn Module Turi Graphlab Create Module R Module

Split Function

Fig. 2. CompareML Software Architecture.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 230 -

and the pandas library to manipulate data using its DataFrame
data structure and functions. These modules receive as inputs the
training and evaluation datasets, the algorithms that need to be
used to build models, and the providers. When the experiments are
carried out, the results are sent to the Back-End Main Application
module. The functionalities of the machine learning providers, i.e.,
the experiments carried out using each provider’s libraries, data
structures, and functions, are isolated within the server side so as
to facilitate their development.

B. File Structure and Software Business Process
The file structure is illustrated graphically in Fig. 3. The following

is a description of the server files:

• main.py. This file contains the Web server configuration,
defines the resources shown, and links with WebServer.py. It is
implemented within the CherryPy framework [26].

• WebServer.py. This file receives the input from the client side, and
processes it for subsequent handling.

• engine.py. This file is the core of CompareML. It contains the
“split function” module which divides the dataset into training
and evaluation, and communicates with the provider modules that
need to be called to fulfill the requirements of the experiments
defined by the researchers.

• turiCreate.py, scikitLearn.py and R.py. These files create the
Turi Create, Scikit-Learn, and R models, respectively.

Fig. 4 is a BPMN (Business Process Model and Notation) diagram of
the business processes of the modules in CompareML aimed at better
illustrating the module relationships and the software framework.

C. Reproducibility and Collaboration
The guidelines on which the approach is based have been described

in depth in the preceding subsections. However, in order to facilitate
replication of the work and to encourage its implementation, in this
subsection additional material is provided so that engineers can easily
make use of this approach to perform preliminary data analysis.

The source code of an implementation of the approach is freely
available in a GitHub repository under an MIT permissive free software
licence2. A Developer Manual and a User Manual are provided. The
Developer Manual, integrated into the Readme.md3 file of the GitHub

2 Link to the Source Code: https://github.com/i3uex/CompareML/
3 Link to the Developer Manual: https://github.com/i3uex/CompareML/ blob/
master/README.md

repository, describes clearly how the software is structured and how to
make use of the code. It is possible to find Vagrant and Ansible scripts
that simplify the software’s portability, configuration, and deployment
by any party interested in employing their own infrastructure. The
User Manual4 helps engineers without any in-depth knowledge of
machine learning or data science to make use of the approach and
to get answers to any doubts they may have about how it operates.
Moreover, as was noted above, an implementation of the approach has
been deployed on the Web5 so that engineers and researchers can use
it without the need to configure it themselves.

Table III provides information relevant for the deployment of
software based on the proposed approach.

TABLE III. Information for the Deployment of Software Based on the
Proposed Approach

Executable https://compareml.io/

Licence MIT licence (MIT)

Platforms Windows, Linux, MacOS

Installation
requirements

The approach can be deployed as a Web application. It is
not necessary to install additional software, just a Web
browser.

User manual https://raw.githubusercontent.com/i3uex/CompareML/
master/CompareML%20User%20Manual.pdf

Developer
manual

https://github.com/i3uex/CompareML/blob/master/
README.md

Software used CherryPy, Python

Compilation
requirements

Python dependencies: CherryPy, pandas, 14 sklearn,
tensorflow, turicreate. R dependencies: 15 optparse,
testthat, ggplot2, randomForest, caret, 16 e1071.

However, it might be useful to illustrate how potential research
users could, in their CompareML solution, add new algorithms to
those already implemented. The CompareML software architecture
has a simple and elegant design to encourage potential research users
to aid in the growth or development of the solution by adding new
algorithms or providers to those already implemented. In order to do
so, researchers or developers just have to access the files scikit_learn.
py, turi_create.py, or the R folders under the providers directory to add
the implementation of an algorithm. It is possible to create a new file in
that directory to include a new provider. Once the implementations of
the new algorithms are done, the engine.py file must be updated with

4 Link to the User Manual: http://shorturl.at/yCLX4
5 CompareML deployed on the Web: https://compareml.io/

Client Server

style.css

index.html client.js WebServer.py engine.py

turiCreate.py

scikitLearn.py

r.py

main.py

Fig. 3. CompareML file structure.

Regular Issue

- 231 -

COMPARE ML - FRONTEND COMPARE ML - BACKEND

Se
le

ct
 a

D
at

as
et

Ex
pe

ri
m

en
t

R
eq

ue
st

Sp
lit

Fu
nc

ti
on

R
ea

dy
 fo

r
ex

pe
ri

m
en

ts

R
eq

ue
st

Tu
ri

G
ra

ph
la

b
M

od
el

s

Tu
ri

G
ra

ph
la

b
Ex

pe
ri

m
en

ts

R
eq

ue
st

Sc
ik

it
 L

ea
rn

M
od

el
s

Sc
ik

it
 L

ea
rn

Ex
pe

ri
m

en
ts

R
ec

ei
ve

Tu
ri

G
ra

ph
la

b
R

es
ul

ts

R
ec

ei
ve

Sc
ik

it
 L

ea
rn

R
es

ul
ts

R
eq

ue
st

R
 M

od
el

s

R
 E

xp
er

im
en

ts

R
ec

ei
ve

R
 R

es
ul

ts
C

om
pi

le
R

es
ul

ts

Se
le

ct
 a

D

ef
au

lt
D

at
as

et

Se
le

ct
Ta

rg
et

Fe
at

ur
e

Se
le

ct
Pr

ov
id

er
s

Se
le

ct
C

la
ss

if
ic

at
io

n
or

 R
eg

re
ss

io
n

Se
le

ct
C

la
ss

if
ic

at
io

n
A

lg
or

it
hm

s

R
un

 t
he

Ex
pe

ri
m

en
ts

Sh
ow

Ex
pe

ri
m

en
ts

’
R

es
ul

ts

Se
le

ct
R

eg
re

ss
io

n
A

lg
or

it
hm

s

U
pl

oa
d

a
D

at
as

et

C
la

ss
if

ic
at

io
n

Is
 t

he
 e

xp
er

im
en

t
w

el
l s

et
 u

p?

W
ha

t
ki

nd
 o

f
al

go
ri

th
m

s
ha

s
th

e
us

er
 c

ho
se

n?

R
eg

re
ss

io
n

D
oe

s
th

e
us

er
ha

ve
 a

 D
at

as
et

?

D
oe

s
th

e
ex

pe
ri

m
en

t
re

qu
ir

e
Tu

ri
G

ra
ph

la
b

m
od

el
s?

D
oe

s
th

e
ex

pe
ri

m
en

t
re

qu
ir

e
Sc

ik
it

Le
ar

n
m

od
el

s?

D
oe

s
th

e
ex

pe
ri

m
en

t
re

qu
ir

e
R

 m
od

el
s?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

Split Function Module

TuriGraphlab Microservice

Scikit Learn Microservice

R Microservice

Fi
g.

 4
. C

om
pa

re
M

L
BP

M
N

 d
ia

gr
am

.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 232 -

the list of algorithms and providers as shown in Listing 1. Lastly, the
call of the newly implemented methods must be done in the same file.

Listing 1. Code from engine.py showing the providers and algorithms
currently supported in CompareML.

1 PROVIDERS = {
2 c.TURI_CREATE: turi_create,
3 c.SCIKIT_LEARN: scikitLearn ,
4 c.R: r,
5 }
6
7 ALGORITHMS = {
8 'classification':
9 [c.RANDOM_FOREST,
10 c.LOGISTIC_REGRESSION,
11 c.SUPPORT_VECTOR_MACHINES
12],
13 'regression':
14 [c.LINEAR_REGRESSION,
15 c.BOOSTED_ DECISION_TREES,
16 c.DECISION_TREE
17]
18 }

V. Illustrative Example & Results

In this section, as illustrative examples, we make use of CompareML
to solve two problems – a classification problem and a regression
problem. These case studies are good representations of the types of
problem for which the approach is useful. The first case study focuses
on training classification models, and provides the output metrics of
each trained algorithm to allow their evaluation by users. The second
case study focuses on training regression models to the same end.

The datasets in the two case studies are in a tabular CSV format, as
is supported byCompareML. It is important to stress that the current
implementation does not allow data preparation operations or the
application of feature engineering techniques, so data transformation
must be done before loading the dataset into the CompareML
implementation. Nevertheless, it is easy to rerun the experiments after
performing such data transformation operations, and then compare
the differences.

A. Classification Example
In this example, the aim is to find the provider which, a priori, is

best suited to dealing with the CarEvaluation dataset [27] obtained
from the UCI Machine Learning Repository [28]. This dataset
comprises labeled data obtained from 1728 cars where the goal is to
evaluate car conditions based on certain characteristics related to price
and comfort.

The dataset consists of 1726 instances (observations) together with
7 features (variables) which are detailed in Table IV. In contrast with
the original dataset, where there are 4 classes of the label feature
Acceptability {unacceptable, acceptable, good, verygood}, just 2
categories have been adopted {yes, no} so that we can make use of
two-class classification algorithms.

TABLE IV. Set of Features of the CarEvaluation Dataset

Feature Name Description Type
Price Buying price Categorical

Maintenance Price of maintenance Categorical

Doors Number of doors Numerical

Seats Capacity in terms of persons to carry Numerical

Boot Size of luggage boot Categorical

Safety Estimated safety of the car Categorical

Acceptability Car acceptability Categorical (Label)

The steps that need to be followed to carry out the experiment in
this implementation of the CompareML approach are:

1. Provide the dataset to CompareML. To this end, the option of
selecting a default dataset is ignored, and the CarEvaluation
dataset is directly uploaded from our computer.

2. Select the label feature that we are interested in predicting. After
uploading the dataset, the drop-down menu of this section is
filled with the names of all the variables. In our case, we select the
Acceptability variable, which indicates the level of acceptability of a
car according to its characteristics, i.e., the field we wish to predict.

3. Choose the machine learning libraries and services in which we
want to run the experiment (Scikit-Learn, Turi Create, and R).
At least one of them must be selected. In our example, we are
interested in comparing all three providers.

4. Select whether we are going to carry out a Regression or a
Classification experiment. Depending on the type of algorithm
selected, we can choose from a variety of algorithms. We are
interested in predicting a categorical value, and, for that reason,
we mark the Classification algorithms checkbox. After selecting
this option, we must select at least one algorithm. In our example,
we want to perform an experiment including all the algorithms
available (Random Forest, Logistic Regression, and Support Vector
Machine).

If the experiment is set up properly, we can run it by pressing the
“Start” button. If not, an error message will be shown describing how
to resolve the problem.

When the experiment has been performed, CompareML shows the
results below the “Start” button. Fig. 5 is a screenshot of the CompareML
user interface and the output produced after the classification
experiment has been carried out. The results of the experiment are

TABLE V. Results of the Classification Case Study Experiment

Turi Create Scikit Learn R
Ramdom Forest Accuracy 0.9480 0.9220 0.9855

Precision 0.9091 0.4610 0.9876

Recall 0.3704 0.5000 0.9969

Logistic Regression Accuracy 0.9855 0.9769 0.9884

Precision 0.8667 0.9322 0.9968

Recall 0.9630 0.9027 0.9906

Support Vector Machine Accuracy 0.9855 0.9769 0.9827

Precision 0.8667 0.9197 0.9906

Recall 0.9630 0.9197 0.9906

Regular Issue

- 233 -

presented in Table V. They include the Accuracy, Precision, and Recall
evaluation metrics. CompareML also provides the Confusion Matrix
and raw data with information yielded directly by the provider.

As expected, building a model using the same algorithm and the
same data produces similar but slightly different results. This implies
that, even when the algorithms are the same, their implementations by
different providers impacts the performance of the models built using
them. Although in most cases those differences are small, in some
cases they are significant. Let us focus for example on the Accuracy
metric. In this case study, the accuracy of the Logistic Regression model
with R is 6.64 percentage points greater than that of the Random
Forest model with ScikitLearn, which is a considerable difference. In
general however, the differences are smaller. With the exception of
Random Forest, the differences between the models built with the same
algorithms from different providers do not reach 1 percentage point.
Nevertheless, that percentage point can make a difference.

Looking at the outcomes of the experiment, one can see that,
especially with TuriCreate and ScikitLearn, the accuracy of the Random
Forest models, regardless of the provider, is poorer than that of the Logistic
Regression and Support Vector Machine models. This may be an indication
that the models created with these algorithms are better suited to the
CarEvaluation dataset. The greatest accuracy (98.84 percentage points)
corresponds to the Logistic Regression model built with R.

The experimental results of this illustrative example can be
reproduced using the CarEvaluation dataset which is preloaded in
CompareML, by selecting acceptability as target feature (label).

B. Regression Example
In the regression example, we use the Heating dataset [29] obtained

from the UCI machine learning Repository [28]. This contains data
obtained from energy analyses applied to 12 different building shapes.
The dataset consists of 768 instances (observations) together with 9
features (variables), which are detailed in Table VI. The label feature
HeatingLoad is a continuous numerical feature that is a measure of
the amount of heat energy that would need to be added to a space to
maintain the temperature within an acceptable range. The remaining
features of the dataset are {Relative Compactness, Surface Area, Wall
Area, Roof Area, Overall Height, Orientation, Glazing Area, Glazing
Area Distribution, Heating Load}, with this last being the label in our
case study.

The steps needed to carry out the experiment are the same as
in the previous experiment. The algorithms available for this kind
of experiment are Linear Regression, Boosted Decision Tree, and
Decision Tree.

Fig. 6 is a screenshot of the CompareML user interface and the
output of the regression experiment. For readability, the results are
listed in Table VII for the RMSE and Max-error evaluation metrics.

As was the case for the classification example, the experimental
results differed slightly depending on the algorithms and providers
used to create the model. Overall, the Decision Tree models gave
uniformly good results, but the best result was with Scikit-Learn
creating the model using the Boosted Decision Tree algorithm.

TABLE VI. Set of Features of the Heating Dataset

Feature Name Type
Relative Compactness Categorical
Surface Area Numerical
Wall Area Numerical
Roof Area Numerical
Overall Height Numerical
Orientation Numerical
Glazing Area Numerical
Glazing Area Distribution Numerical
Heating Load Numerical (Label)

Analysing these results, one observes that on occasions the same
algorithm can yield the best and the worst results depending on the
provider that implements and deploys the algorithms. Although it is
not often the case, it is still of interest that, given a specific problem
and a particular dataset, the choice of provider can still have a major
impact. For this experiment in particular, the difference in RMSE
between the best and the worst models is 5.7872, and these are with
the same algorithm – Boosted Decision Tree.

For the Linear Regression algorithm, the evaluation metrics (for both
RMSE and Max-Error) differ little from each other. This suggests that
the simpler the algorithm, the greater the similarity of the outcomes.

The experimental results of this illustrative example can be
reproduced using the Heating dataset which is pre-loaded in
CompareML, by selecting HeatingLoad as target feature (label).

C. Application in Education
As can be seen with the illustrative case studies, CompareML is very

easy to use and the results are provided straightforwardly. This makes
it a potentially interesting tool for teaching in that it can facilitate
students’ interpretation of the results of applying these algorithms to a
given problem with specific data. As examples of aspects in which the
use of CompareML in teaching can generate meaningful knowledge for
students, we would emphasize the following:

• One can see how certain algorithms perform better than others
with certain data due to the nature of that data and the hidden
knowledge it may contain. For instance, there are problems
that can be solved with algorithms whose focus is on similarity,
others that can be solved with tree-based algorithms which apply
decisions based on the values of features, and others that can be
modeled through refining.

• The effect that feature engineering techniques may have in
transforming certain features according to different criteria
can be analysed by monitoring the metrics resulting from each
CompareML execution corresponding to each data transformation.

• One can study the impact of feature selection methods that apply
CompareML to subsets of the original dataset, or, similarly, study
the impact on the models’ accuracy of adding new features to the
dataset.

TABLE VII. Results of the Regression Case Study Experiment

Turi Create Scikit Learn R

Linear Regression RMSE 3.1837 3.1847 3.1778

Max-Error 8.7520 8.8801 8.8788

Boosted Decision Tree RMSE 6.2619 0.4747 2.1887

Max-Error 13.2556 3.0332 6.3126

Decision Tree RMSE 2.2976 1.6007 2.7292

Max-Error 6.4962 4.3373 9.0515

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 234 -

Fig. 5. CompareML User interface providing the output of the Classification Case Study.

Regular Issue

- 235 -

Fig. 6. CompareML User interface providing the output of the Regression Case Study.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 236 -

D. Comparison With Other Approaches
In this subsection, a comparative evaluation is made of CompareML with

the other approaches discussed in the Related Works section, especially
those that, considering their specific features, admit a direct comparison
with CompareML. These are Weka, PyCaret, and PowerBI AutoML.

Weka needs to be downloaded and installed to run locally. It offers a
large number of functionalities. The user interface is built in Java, but,
even though it is not hard to understand and use, it is not up-to-date,
which is an obstacle to its use. There are a large number of algorithms
to choose from, all of them with a single implementation. Experiments
provide the key metrics with which to evaluate the models, and it has
a CLI interface.

PyCaret is a machine learning library in Python commonly used
in the Jupyter Notebooks Environment. It is simple and easy to use
due to its low-code orientation. A large number of algorithms are
automatically selected to perform experiments, and it is easy to
tune the hyperparameters if necessary. The main classification and
regression metrics are generated directly after training the models
with just one line of code.

PowerBI incorporates the creation of machine learning models
with a focus on their explicability. A little background working
with PowerBI dataflows is required, but the AutoML process is
straightforward and is finely integrated with the PowerBI online app.
Data processing is straightforward in the environment, and Feature
Selection techniques are applied before the models are trained. The
main classification and regression metrics are attractively presented
in the PowerBI reports.

CompareML differs from the other approaches in that no
configuration is required, and it can be used directly. Also, the fact
that more than one implementation is available for each algorithm
constitutes its principal differentiating element. In particular, since
there are three implementations for each algorithm, this allows users
to analyse the differences between those implementations.

Table VIII summarizes this comparison in terms of the type of
execution environment, of the difficulty in setting up and using the
tool, of the metrics that are provided for an evaluation of regression

and classification models, and of the number and type of algorithms
supported.

VI. Conclusions

In this paper, we have presented a novel approach to supporting
preliminary data analysis in the engineering field that enables
engineers and researchers to quickly and easily analyse the potential
for inferring knowledge that may lie hidden in their data. Similarly, it
assists them in comparing machine learning models using different
implementations from different providers of well-known algorithms,
without their needing prior knowledge about how to create those
models with each provider.

To that end, the most widely used machine learning libraries and
services and some of the best-known classification and regression
machine learning algorithms can be compared by performing a series
of experiments. After the experiments have been completed and the
models created, the commonest evaluation metrics are presented so
that researchers and engineers can properly evaluate and compare the
possibilities they have available, giving them all the information they
need to make a decision on how to proceed with their work.

As far as we know, there has been no previous intelligent programming
environment with the characteristics and objectives of CompareML, i.e.,
using machine learning techniques to construct software with a modular
and scalable architecture, and aimed at providing practising engineers
with a decision support system that can help them solve hitherto
intractable problems by eliciting knowledge from their data, even though
they have no in-depth machine learning skills.

From the experiments carried out with CompareML, affirmative
answers can be given to the three research questions posited. With
regard to RQ1, it is possible to analyse the potential for inferring
knowledge hidden in a dataset obtained from a real-world engineering
application. With regard to RQ2 and RQ3, it is possible to obtain, a
priori, the best combination of algorithm and provider with which to
construct a predictive model for that specific engineering application.
These affirmative answers have their origin in the following
contributions of the CompareML approach:

TABLE VIII. Comparison With Other Approaches

Weka Execution environment Run locally

Difficulty Medium - low

Algorithms Wide range of algorithms available. A single implementation per algorithm

Classification metrics Accuracy, confusion matrix, precision, recall, F1-score, ROC

Regression metrics MAE, RMSE, correlation coefficient

PyCaret Execution environment Commonly works in a Jupyter environment that can run locally or in the cloud

Difficulty Low

Algorithms Wide range of algorithms available. A single implementation per algorithm

Classification metrics Accuracy, AUC, precision, recall, F1-score, kappa, MCC

Regression metrics MAE, MSE, RMSE, R2, RMSLE, MAPE

PowerBI Execution environment Runs in the cloud

Difficulty Medium. ML concepts are easy to follow, but Power Platform knowledge is required

Algorithms Wide range of algorithms available. A single implementation per algorithm

Classification metrics AUC, confusion matrix, precision, recall, cost-benefit analysis

Regression metrics Model performance explanation, Average Residual Error

CompareML Execution environment Runs in the cloud

Difficulty Low

Algorithms Three each for classification and regression. Three implementations per algorithm

Classification metrics Accuracy, confusion matrix, precision, recall

Regression metrics RMSE, R2, Max-Error

Regular Issue

- 237 -

• It allows engineers and researchers who have no extensive prior
skills in machine learning to generate their own models with
which to evaluate the potential knowledge that can be inferred
from their data.

• It finds the machine learning algorithm that would build the most
appropriate model for a specific problem involving some specific
data.

• It determines the best framework, tools, and providers for
addressing a specific problem involving some specific data.

In future work, it will be interesting to improve the approach with
the following practices:

• Increase the number of libraries and services supported, as well as
the number of regression and classification algorithms.

• Support algorithms to create clustering or recommender system
models.

• Implement a microservices-based architecture that allows the
functionalities of the machine learning providers to be isolated
in those microservices [30], thus making it easier to update the
algorithms, maintain the code, and add or delete providers.

• Implement new classification and regression model evaluation
metrics.

Acknowledgments

This work was developed with the support of (i) Ministerio de
Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de
Investigación (AEI), and European Regional Development Fund
(ERDF): project RTI2018-098652-B-I00, and (ii) European Regional
Development Fund (ERDF) and Junta de Extremadura: projects
IB16055, IB18034, and GR18112.

References

[1] I. H. Witten, E. Frank, M. A. Hall, “Introduction to weka,” in Data
Mining: Practical Machine Learning Tools and Techniques (Third Edition),
The Morgan Kaufmann Series in Data Management Systems, Boston:
Morgan Kaufmann, 2011, pp. 403 – 406, third edition ed., doi: https://doi.
org/10.1016/B978-0-12-374856-0.00010-9.

[2] S. Lang, F. Bravo-Marquez, C. Beckham, M. Hall, E. Frank,
“Wekadeeplearning4j: A deep learning package for weka based on
deeplearning4j,” Knowledge-Based Systems, vol. 178, pp. 48 – 50, 2019, doi:
https://doi.org/10.1016/j.knosys.2019.04.013.

[3] J. Demšar, T. Curk, A. Erjavec, Č. Gorup, T. Hočevar, M. Milutinovič,
M. Možina, M. Polajnar, M. Toplak, A. Starič, M. Štajdohar, L. Umek, L.
Žagar, J. Žbontar, M. Žitnik, B. Zupan, “Orange: Data mining toolbox
in python,” Journal of Machine Learning Research, vol. 14, pp. 2349–2353,
2013.

[4] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl,
K. Thiel, B. Wiswedel, “Knime - the konstanz information miner: Version
2.0 and beyond,” SIGKDD Explor. Newsl., vol. 11, p. 26–31, Nov. 2009, doi:
10.1145/1656274.1656280.

[5] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, T. Euler, “Yale: Rapid
prototyping for complex data mining tasks,” in Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’06, New York, NY, USA, 2006, p. 935–940, Association for
Computing Machinery.

[6] A. Jovic, K. Brkic, N. Bogunovic, “An overview of free software tools for
general data mining,” in 2014 37th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO),
2014, pp. 1112–1117.

[7] X. He, K. Zhao, X. Chu, “Automl: A survey of the state-of- the-art,”
Knowledge-Based Systems, vol. 212, p. 106622, 2021, doi: https://doi.
org/10.1016/j.knosys.2020.106622.

[8] H. Song, P. Flach, “Efficient and robust model benchmarks with item
response theory and adaptive testing,” International Journal of Interactive

Multimedia and Artificial Intelligence, vol. 6, pp. 110–118, 2021, doi:
https://doi.org/10.9781/ijimai.2021.02.009.

[9] Microsoft, “Powerbi automated machine learning.” https://docs.microsoft.
com/en-us/power-bi/transform-model/dataflows/dataflows-machine-
learning-integration. Online; last accessed 2 April 2021.

[10] M. Ali, PyCaret: An open source, low-code machine learning library in
Python, July 2020. PyCaret version 2.3.

[11] Google, “Cloud automl.” https://cloud.google.com/automl. Online; last
accessed 2 April 2021.

[12] H. Robles-Berumen, A. Zafra, H. M. Fardoun, S. Ventura, “Leac: An
efficient library for clustering with evolutionary algorithms,” Knowledge-
Based Systems, vol. 179, pp. 117 – 119, 2019, doi: https://doi.org/10.1016/j.
knosys.2019.05.008.

[13] D. Charte, F. Herrera, F. Charte, “Ruta: Implementations of neural
autoencoders in r,” Knowledge-Based Systems, vol. 174, pp. 4 – 8, 2019,
doi: https://doi.org/10.1016/j.knosys.2019.01.014.

[14] E. Real, C. Liang, D. R. So, Q. V. Le, “Automl-zero: Evolving machine
learning algorithms from scratch,” 2020.

[15] C. M. University, “Turi graphlab create.” https://turi.com/. Online; last
accessed 2 April 2021.

[16] G. van Rossum, the Python Software Foundation, “Python programming
language.” https://www.python.org/. Online; last accessed 2 April 2021.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, “Scikit-
learn: Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[18] R Core Team, R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2013.

[19] A. Gupta, K. Ghanshala, R. C. Joshi, “Machine learning classifier
approach with gaussian process, ensemble boosted trees, svm, and linear
regression for 5g signal coverage mapping,” International Journal of
Interactive Multimedia and Artificial Intelligence, vol. 6, pp. 156–163, 2021,
doi: https://doi.org/10.9781/ijimai.2021.03.004.

[20] A. J. Fernández-García, L. Iribarne, A. Corral, J. Criado, J. Z. Wang, “A
recommender system for component- based applications using machine
learning techniques,” Knowledge-Based Systems, vol. 164, pp. 68–84, 2019,
doi: https://doi.org/10.1016/j.knosys.2018.10.019.

[21] A. J. Fernández-García, R. Rodríguez-Echeverría, J. C. Preciado, J. M.
C. Manzano, F. Sánchez-Figueroa, “Creating a recommender system
to support higher education students in the subject enrollment
decision,” IEEE Access, vol. 8, pp. 189069–189088, 2020, doi: 10.1109/
ACCESS.2020.3031572.

[22] T. H.-Y. Chiu, C. Wu, R. C. C.-H. Chen, “A generalized wine quality
prediction framework by evolutionary algorithms,” International Journal
of Interactive Multimedia and Artificial Intelligence, doi: https://doi.
org/10.9781/ijimai.2021.04.006.

[23] K. M. Ting, Confusion Matrix, pp. 260–260. Boston, MA: Springer US,
2017.

[24] A. Leff, J. T. Rayfield, “Web-application development using the model/
view/controller design pattern,” in Proceedings Fifth IEEE International
Enterprise Distributed Object Computing Conference, Sep. 2001, pp. 118–
127.

[25] W. McKinney, “pandas: a foundational python library for data analysis
and statistics,” Python for High Performance and Scientific Computing, vol.
14, 2011.

[26] S. Hellegouarch, CherryPy Essentials: Rapid Python Web Application
Development Design, Develop, Test, and Deploy Your Python Web
Applications Easily. Packt Publishing, 2007.

[27] M. Bohanec, V. Rajkovič, “Knowledge acquisition and explanation for
multi-attribute decision,” in 8th International Workshop Expert Systems
and Their Applications, 1988.

[28] D. Dua, C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml.

[29] A. Tsanas, A. Xifara, “Accurate quantitative estimation of energy
performance of residential buildings using statistical machine learning
tools,” Energy and Buildings, vol. 49, pp. 560 – 567, 2012, doi: https://doi.
org/10.1016/j.enbuild.2012.03.003.

[30] J. Lewis, M. Fowler, “Microservices: a definition of this new architectural
term.” http://martinfowler.com/articles/microservices.html, 2014.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 238 -

Antonio Jesús Fernández-García

He received his PhD in Computer Science from the
Universidad de Almería in 2019. He is a Researcher and
Member of the Applied Computing Group at the University
of Almería (UAL) and the Quercus Software Engineering
Group at the University of Extremadura (UEX). He has
published more than 15 scientific publications in journals
and international conferences, and has participated in more

than 6 research projects. His research areas include Recommender Systems,
Machine Learning, Artificial Intelligence, Data Mining, Data Engineering, and
Software Engineering. At present, he is an Associate Professor in the Escuela
Superior de Ingeniería y Tecnología at the Universidad Internacional de la Rioja
(UNIR).

Juan Carlos Preciado

He is a Professor and member of the Quercus Software
Engineering Group in the Department of Computer
Science at the University of Extremadura (UEX). He was
vice-rector of that university for several years. His research
areas include Model-Driven Development, Web and Data
Engineering, in which he has published around 100 papers
in the software engineering field. He received a PhD in

computer science from UEX in 2008.

Alvaro E. Prieto

He is an Assistant Professor of Computer Languages and
Systems at the University of Extremadura (Spain). He is a
member of the Quercus Software Engineering Group. He
received his BSc in Computer Science from the University
of Extremadura in 2000 and a PhD in Computer Science
in 2013. His research interests include Linked Open Data,
Predictive Analytics, and Business Intelligence. He is

currently involved in various R&D&I projects.

Fernando Sánchez-Figueroa

He is a Professor in the Department of Computer Science
at UEX. His research focuses on Web engineering, big data
visualization, and MDD. He holds a PhD in Computer
Science from UEX and is co-author of more than 100
publications related to software engineering.

Juan D. Gutiérrez

He is a Computer Engineer for the University of
Extremadura. He combines a research staff job at this
university with working towards a PhD in visible LED-
based light indoor positioning systems (IPS). His skills
include different programming languages, system
administration, application design, databases, and the
Internet. He has also written more than twenty computer

science books and translated another ten books from English to Spanish.

