
Regular Issue

- 225 -

CompareML: A Novel Approach to Supporting 
Preliminary Data Analysis Decision Making
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Abstract

There are a large number of machine learning algorithms as well as a wide range of libraries and services 
that allow one to create predictive models. With machine learning and artificial intelligence playing a major 
role in dealing with engineering problems, practising engineers often come to the machine learning field 
so overwhelmed with the multitude of possibilities that they find themselves needing to address difficulties 
before actually starting on carrying out any work. Datasets have intrinsic properties that make it hard to 
select the algorithm that is best suited to some specific objective, and the ever-increasing number of providers 
together make this selection even harder. These were the reasons underlying the design of CompareML, an 
approach to supporting the evaluation and comparison of machine learning libraries and services without deep 
machine learning knowledge. CompareML makes it easy to compare the performance of different models by 
using well-known classification and regression algorithms already made available by some of the most widely 
used providers. It facilitates the practical application of methods and techniques of artificial intelligence that 
let a practising engineer decide whether they might be used to resolve hitherto intractable problems. Thus, 
researchers and engineering practitioners can uncover the potential of their datasets for the inference of new 
knowledge by selecting the most appropriate machine learning algorithm and determining the provider best 
suited to their data.
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I. Introduction

The evolution of computing capacities and the democratization 
of access to cloud computing at reasonable and affordable prices 

have fostered the appearance of a great number of machine learning 
applications for different fields. The engineering field in particular is 
not unaware of this trend. Engineering researchers and practitioners 
in a variety of areas have been drawn into the use of machine learning 
with the aim of inferring knowledge from their data. In particular, 
there are many engineering problems that can be solved using 
machine learning and artificial intelligence, and this, together with the 
Internet of Things and Big Data, inter alia, is one of the foundations of 
the fourth industrial revolution.

In most cases, the lack of knowledge about machine learning hinders 
engineers’ and researchers’ ability to analyse the potential that their 
data may have. Even with such knowledge, they will have to choose 
to use any from among an ever increasing number of alternatives with 
respect to algorithms, frameworks, tools, and providers. Given this 
context, it is hard to properly assess which will be the best way to 
address a specific engineering problem involving some particular data.

Moreover, the problem is compounded because, although well- 
known machine learning algorithms (such as Linear Regression, 
Decision Tree, Logistic Regression, Support Vector Machine, or 
Naive Bayes) are supposed to perform exactly the same, their 
implementations in third-party libraries and services can yield 
different results depending on the particular dataset.

Thus, any thorough evaluation of the different algorithms and 
their different implementations will be a time-consuming task. This 
ultimately results in most practitioner engineers and researchers in 
the field usually relying on their own experience to select a particular 
platform and algorithm, so that they will probably miss others that 
might well better reveal the whole potential of their datasets.

In this context, given this variety of options, and before taking into 
account such other factors as affordability, availability, complexity, 
or expertise, a preliminary study to find the optimal choice for a 
particular dataset might be helpful even for engineers, researchers, or 
scientists with no great depth of machine learning knowledge. While 
there are general-purpose machine learning tools that allow different 
algorithms to be applied to the same dataset, to the best of our 
knowledge, there is no solution available that is able to quickly and 
easily compare algorithm implementations from different providers.

All of this led us to posit the following research questions:
• RQ1: Has a dataset the potential, i.e., is it possible to infer knowledge 

from it, to be used in a real-world engineering application or to solve 
a real-world engineering problem?
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• RQ2: Is it possible to determine, a priori, which are the best algorithms 
to reveal the potential of a dataset and construct the most appropriate 
predictive model from it?

• RQ3: Is it possible to select from among the wide range of libraries 
and services that allow the creation of predictive models those which 
are, a priori, the best to work with a specific dataset and problem?

With the aim of answering these questions, we present CompareML, 
an approach that allows practitioner or research engineers to make 
a preliminary analysis of their data by testing different machine 
learning algorithms from different providers. The main goal of this 
approach is to allow such users to select the most suitable environment 
for their datasets without requiring any in-depth knowledge about 
machine learning. Thus, using CompareML, engineers can quickly 
and effortlessly compare the performance of different algorithms and 
providers applied to their specific datasets before deciding which to 
employ in their machine learning models.

The resulting software supporting the CompareML approach is 
licensed under an MIT permissive free software licence for it to be 
useful, reusable, and customizable in machine learning research areas.   
It is readily accessible at the following URL: https://compareml.io/.     
The software is already very intuitive, but nevertheless there is a User 
Manual1 available for other researchers to answer any doubts they 
may have when using CompareML. Finally, scripts are available to 
enable full automated portability of the software.

The rest of this paper is organized as follows. Section II summarizes 
other approaches, and lists the algorithms and providers supported by 
CompareML. Section III describes the approach. Section IV details the 
implementation of the approach and the software architecture. Section 
V provides an illustrative example using CompareML. Finally, Section 
VI draws some conclusions and describes future work.

II. Related Work and Background

This section reviews some related work, describes the fundamentals 
of the machine learning algorithms compared by CompareML, and 
presents the state-of-the-art of the libraries and services available on 
the market, describing those supported by CompareML.

A. Related Work
There are general-purpose machine learning tools that have dealt 

with similar problems:

• Weka [1], a machine learning software package ideally suited for 
teaching and research which allows, inter alia, the comparison 
of algorithms for a dataset. It has recently been enriched 
with WekaLearning4j [2], a deep-learning package based on 
Deeplearning4j. The software is free under GNU GPL 3 for non-
commercial purposes.

• Orange [3], a machine learning software package that allows 
data analysis and data visualization to be performed on datasets. 

1 User Manual available at http://shorturl.at/yCLX4

It can be applied by means of Python scripts or through a visual 
programming interface in which users can make use of its 
functionalities. The software is developed by the University of 
Ljubljana, and is open-source released under a GPL licence.

• RapidMiner [4], [5], a data science software platform that 
implements data mining algorithms as operators that users 
can visually drag and drop to create customized dataflows. It is 
proprietary software developed by the RapidMiner firm, although 
previous versions were open source.

• Knime [4], a data mining tool integrated in Eclipse (the Java 
Integrated Development Environment) with a visual interface 
in which users make use of blocks, connecting them to create 
dataflows that visualize, deploy, and manage machine learning 
models. It is open source software developed by the University of 
Konstanz.

Table I presents a comparison of the work mentioned in this section 
in such aspects as:

a) Support for Regression algorithms;

b) Support for Classification algorithms;

c) Support for Clustering algorithms;

d) Support for Deep Learning algorithms;

e) Model Comparison;

f) Data Visualization;

g) Implementation of Multiple Providers’ algorithms;

h) Machine Learning Knowledge required.

A more detailed and specific comparison of these software packages 
and the Scikit-Learn library and R Programming Language can be 
found in [6], where the authors compare software and services that 
are beyond the scope of this present work.

Our approach follows AutoML or Automated Machine Learning 
principles. AutoML [7] is an idea that consists of automating the entire 
pipeline or a part of a machine learning project. This is a hot topic 
of interest in both industry and academia, and the evaluation of its 
results [8] has led to several AutoML approaches and tools emerging. 
Some of those most widely used are:

• Automated Machine Learning in PowerBI [9] was launched by 
Microsoft in 2019 to allow business analysts, economists, and 
PowerBI users in general to build machine learning models to 
solve business problems without their needing to have a strong 
background in machine learning.

• PyCaret [10] is an open-source machine learning library in Python 
developed by Moez Ali and launched in 2019. Its main characteristic 
is its low-code orientation, making it simple and easy to use.

• Cloud AutoML [11] is the AutoML platform launched by Google in 
2018 that trains custom machine learning models for image, video, 
and tabular data, as well as making use of pretrained models to 
create natural language processing, image classification, video 
recognition, or structured data discovery applications.

TABLE I. Software Comparison 

Software Regression Classification Clustering Deep Learning Comparison Visualization Multiple Providers Knowledge 
Weka      

Orange    

RapidMiner      

Knime     

CompareML    

(Regression: Support for Regression algorithms, Classification: Support for Classification algorithms, Clustering: Support for Classification algorithms, Deep 
Learning: Support for Deep Learning algorithms, Comparison: Model Comparison, Visualization: Data Visualization, Multiple Providers: Implementation of 
algorithms from Multiple Providers, Knowledge: Machine Learning Knowledge required.)
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In addition to the software analysed, one can find in the literature 
related work worthy of mention with several tools and libraries, such as:

• LEAC [12], an efficient library for clustering with evolutionary 
algorithms in the neural networks field.

• Ruta [13], which implements autoencoders, neural networks that 
perform feature learning on data.

• AutoML-Zero [14], a specific-purpose tool that simultaneously 
searches for all aspects of a machine learning algorithm, using 
basic maths operations, with the objective of reducing human bias 
in the search space.

However, as noted above, to the best of our knowledge, there is 
no solution that is able to compare algorithm implementations from 
different providers while requiring no depth of machine learning 
knowledge on the part of the user.

B. Background
CompareML provides researchers with the possibility of creating 

models of their data using the following well-known algorithms:

• Linear Regression. This assumes a linear relationship between the 
input variables and a single output variable. The model learns by 
estimating the values of the coefficients used in the representation 
from the data available. The linear regression can be expressed 
as y = ax + b, where a and b are the aforementioned coefficients.

• Decision Tree. Decision tree algorithms build a tree-like structure 
in which each node represents a question concerning an attribute. 
The responses to that question create new branches, expanding 
the structure until the end of the tree is reached, with the leaf node 
being the one that indicates the predicted class.

• Boosted Decision Tree. This is a general method, not limited to 
decision trees, which consists of applying a boosting method to 
combine many classifiers into a new and stabler one with a smaller 
error. In the boosting, the predictors are made sequentially rather 
than independently, applying the rationale that the subsequent 
predictors learn from the mistakes of the previous ones.

• Random Forest. This algorithm is an improvement that creates 
several decision trees, using bagging or some other technique, and 
votes for the most popular output that the trees yield. Usually, most 
implementations do not count the outputs directly, but sum their 
normalized frequencies to get the label with greatest likelihood.

• Logistic Regression. This algorithm uses a more complex cost 
function – the ‘sigmoid’ or ‘logistic’ function – than the Linear 
Regression model. Input values are combined linearly using 
weights or coefficients to predict an output value. A key difference 
with Linear Regression is that the output being modeled is 
dichotomous (a 0 or 1) rather than numerical.

• Support-Vector Machine. The data are mapped onto a high- 
dimensional feature space so that the data points can be categorized 
even when the data are not otherwise linearly separable. Then, a 
separator is estimated for the data. The data should be transformed 
in such a way that a separator can be drawn as a hyperplane. As 
there are many possible hyperplanes, the Support Vector Machine 
algorithm finds a hyperplane that represents the largest separation, 
or margin, between classes.

Of particular importance are the libraries and services from 
different machine learning providers that CompareML supports:

• Turi Create [15], a Python™ [16] package that allows programmers 
to perform end-to-end large-scale data analysis and data product 
development. It is a distributed computation framework written 
in C++, developed at Carnegie Mellon University, and acquired in 
2016 by Apple Inc.

• Scikit-Learn [17], one of the most popular machine learning 
libraries. It is largely written in Python with some core algorithms 
written in Cython to improve performance. It is supported by 
several institutional and private grants.

• R [18], a programming language that is an environment for 
statistical computing software written in C, Fortran, and R itself. It 
is widely used in machine learning tasks. It is developed by the R 
Core Team. CompareML runs R code embedded in Python through 
the access provided by the rpy2 library.

III. Approach

A. The Approach in a Nutshell
The approach consists of a software architecture that supports 

machine learning experiments being carried out very easily, even 
for practitioners with no in-depth knowledge or skills in machine 
learning and artificial intelligence. Specifically, the approach allows 
classification and regression models to be implemented, and evaluates 
them so that their performance can be very easily compared using 
metrics that are in line with the models’ types. Additionally, none of 
the machine learning algorithms are constrained to a single library 
or provider. Instead, several implementations of the algorithms from 
different libraries, tools, or providers can be built and evaluated, 
so that, for every scenario (i.e., dataset and problem to solve), it is 
possible to select the most suitable algorithm and the most appropriate 
implementation library or provider.

B. Data Analysis Decision Making
After the foregoing description of the main concepts of the 

approach’s architecture, this section will present a discussion of 
the proposed pipeline on which CompareML is built. Engineers and 
practitioners will follow this pipeline (Fig. 1) to decide whether there 
is hidden knowledge within their data, and, if so, which are the best 
algorithms and providers for them to use to build accurate models.

The circumstances begin when engineers are faced with trying to 
solve some problem, and they think that machine learning presumably 
can help in looking for a solution. After collecting the data, reasonable 
doubt arises about the data’s suitability and the possible hidden 
knowledge they contain so that the problem can be solved properly.

In the interest of clarifying the data’s potential, researchers or 
engineers upload their data to an implementation of the CompareML 
approach, indicating the attribute to predict (the label). They then 
choose the machine learning libraries and services they can work 
with, and select those machine learning algorithms they want to use to 
create predictive models. In response, after evaluating and comparing 
the models generated, CompareML provides performance metrics about 
the models. It is quite common to do that as can be seen in work such as 
[19]–[22] where authors create several models to find out the one that 
gets better results. By analysing these performance metrics, engineers 
can decide whether their data has the potential to build accurate 
models with which to solve their problem, and, if so, the algorithm and 
provider combination most likely to produce a reliable solution.

C. Inputs and Outputs
There are certain classes of data that need  to be  sent to CompareML. 

These input data are listed in Table II.

In version 1.0, the validation software does not automatically 
recognize the selected label’s data type, so that the experiments will 
be run regardless of the appropriateness of the label data type and the 
type of algorithms selected. In such cases, the experiments’ results will 
be given according to how each one of the libraries, services, and tools 
selected handles these situations. 
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The outputs of CompareML are a set of metrices that allow the 
appropriateness of the models created to be studied using different 
algorithms from different machine learning tools and services. Those 
outputs vary depending on the user’s algorithm selection.

The outputs for Regression algorithms are:

• RMSE. This is a measure of the differences between the values 
predicted by a model and the observed values.

RMSE can be defined as:

 (1)

where

 - N is the number of instances;

 - ŷ1, ŷ2, ..., ŷn are the values predicted by the model; and

 - y1, y2, ..., yn are the observed values

• R2. Also known as the Coefficient of Determination, this is a metric 
that helps to explain the relationship between two variables. It 
ranges from 0 to 1, with the closer to 1, the better the model being 
analysed. Although a useful metric, it should be noted that, as 
more independent variables are added, R 2 will always rise.

R 2 can be defined as:

 (2)
where

 - N is the number of instances,

 - ŷ1, ŷ2, ..., ŷn are the values predicted by the model,

 - y1, y2, ..., yn are the observed values, and

 - ӯ is the mean of the n observed values.

• Max-Error. The Max-Error metric is the worst case error between 
a predicted value and a true value.

Max-Error can be defined as:

 (3)
where

 - ŷ1, ŷ2, ..., ŷn  are the values predicted by the model, and

 - y1, y2, ..., yn are the observed values.

• Raw Data. Information yielded directly by the provider. 

The outputs for Classification algorithms are:

• Accuracy. An accuracy value, indicating the correctly predicted 
instances, is given for each algorithm selected. It can be defined as:

 (4)

• Confusion Matrix. A table layout where each row represents the 
number of instances of each class and each column represents the 
class that has been predicted by the model. A confusion matrix is 
created for each algorithm selected [23].

• Precision. This indicates the proportion of predicted positives. 
A precision value is given for each algorithm selected. Using the 
confusion matrix, it can be calculated as:

 (5)
where

 - TP = true positives,

 - FP = false positives.

Understanding 
the Problem Load Dataset Select Algorithms

to Train Models

What sources of data do we have?
How can they be accessed?

Is the data good enough?
Is there hidden knowledge within the data?
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Fig. 1. Pipeline of the approach.

TABLE II. CompareML Input Data

Input Name Description Observations

Dataset
The dataset must be in CSV (comma-
separated values) format, and it must 
contain a header row.

Notice that, since the comma is used as a separator, CompareML cannot handle field data 
containing commas or embedded line breaks. Also, it may not handle other unconventional 
characters.

Label Feature that models will predict. After uploading a dataset, users must select the label from among the dataset’s existing features.

Providers Machine learning libraries and services
available to build models.

Users must select at least one of them. The validation software of the approach supports Turi 
Create, Scikit- Learn, and R.

Algorithms Regression and classification algorithms 
available to build models.

Users must select at least one of them. The validation software of the approach allows users to 
choose between the Linear, Decision Tree, and Boosted Decision Tree regression algorithms, and 
the Random Forest, Logistic Regression, and Support Vector Machine classification algorithms.
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• Recall (Sensitivity). This indicates the proportion of positives 
predicted as positives. A recall value is given for each algorithm 
selected. Using the confusion matrix, it can be calculated as: 
(number of true positives / (number of true positives + number of 
false negatives).

 (6)

where

 - TP = true positives,

 - FP = false positives.

• Raw Data. Information yielded directly by the provider.

IV. Implementation

A. Software Architecture
CompareML has been implemented following a classical client- 

server software architecture with an MVC (Model View Controller) 
approach [24] – a suitable option for this solution.

The server hosts the resources that manage the creation of 
models and deliver the results to the client. The client interacts with 
researchers through its user interface, and initiates requests to the 
server. This architecture is illustrated graphically in Fig. 2, and consists 
of the following modules:

• Client. This module handles the presentation layer, and is 
responsible for interacting with users. In it, users upload the dataset 
and set the configuration of the experiments that are sent to the 
server side. When the experiments are carried out, the results are 
sent back to this module to be shown to users in a friendly manner. 
The user interface has been designed to maximize usability, being 

simple, consistent, and offering cross-browser compatibility. This 
module was developed using widely used technologies such as 
HTML5, CSS3, and JavaScript.

• Back-End Main Application. This is the core of CompareML. 
It is responsible for coordinating and controlling the software’s 
operational processes. It receives from the user interface the 
conditions under which the experiments must be carried out, and 
calls the Turi Create, Scikit-Learn, and R modules required, sending 
them the conditions of the experiments that affect them (algorithm 
selection, training dataset, test dataset, ...). When the execution of 
those modules ends, it receives the results and sends them back to 
the user interface. This module was developed in Python.

• Back-End Split Function. The split function is a special module 
in the back end that deals with the problem of splitting the dataset 
uploaded by researchers into two subsets: the training dataset 
containing 80% of the instances of the total dataset, and the test 
dataset containing the remaining 20% of the instances. This task 
is carried out in this module because it is necessary to ensure 
that the experiment’s results are as objective as possible. If each 
provider module were to divide the dataset itself randomly, the 
random seeds would be different, and this would have potentially 
negative implications for any objective comparison of the models 
created through each of those modules. The split function module 
was developed using Python and Pandas [25], a powerful open 
source data analysis and manipulation tool built on top of the 
Python programming language.

• Provider Modules. These contain the implementations of the 
Random Forest, Logistic Regression, and Support Vector Machine 
classification algorithms and the Linear, Decision Tree, and 
Boosted Decision Tree regression algorithms using Scikit-Learn. It 
makes use of the sklearn library to build and evaluate the models 

Client

Server

Back-End Application

Scikit Learn Module Turi Graphlab Create Module R Module

Split Function

Fig. 2. CompareML Software Architecture.
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and the pandas library to manipulate data using its DataFrame 
data structure and functions. These modules receive as inputs the 
training and evaluation datasets, the algorithms that need to be 
used to build models, and the providers. When the experiments are 
carried out, the results are sent to the Back-End Main Application 
module. The functionalities of the machine learning providers, i.e., 
the experiments carried out using each provider’s libraries, data 
structures, and functions, are isolated within the server side so as 
to facilitate their development.

B. File Structure and Software Business Process
The file structure is illustrated graphically in Fig. 3. The following 

is a description of the server files:

• main.py. This file contains the Web server configuration, 
defines the resources shown, and links with WebServer.py. It is 
implemented within the CherryPy framework [26].

• WebServer.py. This file receives the input from the client side, and 
processes it for subsequent handling.

• engine.py. This file is the core of CompareML. It contains the 
“split function” module which divides the dataset into training 
and evaluation, and communicates with the provider modules that 
need to be called to fulfill the requirements of the experiments 
defined by the researchers.

• turiCreate.py, scikitLearn.py and R.py. These files create the 
Turi Create, Scikit-Learn, and R models, respectively.

Fig. 4 is a BPMN (Business Process Model and Notation) diagram of 
the business processes of the modules in CompareML aimed at better 
illustrating the module relationships and the software framework.

C. Reproducibility and Collaboration
The guidelines on which the approach is based have been described 

in depth in the preceding subsections. However, in order to facilitate 
replication of the work and to encourage its implementation, in this 
subsection additional material is provided so that engineers can easily 
make use of this approach to perform preliminary data analysis.

The source code of an implementation of the approach is freely 
available in a GitHub repository under an MIT permissive free software 
licence2. A Developer Manual and a User Manual are provided. The 
Developer Manual, integrated into the Readme.md3 file of the GitHub 

2 Link to the Source Code: https://github.com/i3uex/CompareML/
3 Link to the Developer Manual: https://github.com/i3uex/CompareML/ blob/
master/README.md

repository, describes clearly how the software is structured and how to 
make use of the code. It is possible to find Vagrant and Ansible scripts 
that simplify the software’s portability, configuration, and deployment 
by any party interested in employing their own infrastructure. The 
User Manual4 helps engineers without any in-depth knowledge of 
machine learning or data science to make use of the approach and 
to get answers to any doubts they may have about how it operates. 
Moreover, as was noted above, an implementation of the approach has 
been deployed on the Web5 so that engineers and researchers can use 
it without the need to configure it themselves.

Table III provides information relevant for the deployment of 
software based on the proposed approach.

TABLE III. Information for the Deployment of Software Based on the 
Proposed Approach 

Executable https://compareml.io/

Licence MIT licence (MIT)

Platforms Windows, Linux, MacOS

Installation 
requirements

The approach can be deployed as a Web application. It is 
not necessary to install additional software, just a Web 
browser.

User manual https://raw.githubusercontent.com/i3uex/CompareML/
master/CompareML%20User%20Manual.pdf

Developer 
manual

https://github.com/i3uex/CompareML/blob/master/
README.md

Software used CherryPy, Python

Compilation 
requirements

Python dependencies: CherryPy, pandas, 14 sklearn, 
tensorflow, turicreate. R dependencies: 15 optparse, 
testthat, ggplot2, randomForest, caret, 16 e1071.

However, it might be useful to illustrate how potential research 
users could, in their CompareML solution, add new algorithms to 
those already implemented. The CompareML software architecture 
has a simple and elegant design to encourage potential research users 
to aid in the growth or development of the solution by adding new 
algorithms or providers to those already implemented. In order to do 
so, researchers or developers just have to access the files scikit_learn.
py, turi_create.py, or the R folders under the providers directory to add 
the implementation of an algorithm. It is possible to create a new file in 
that directory to include a new provider. Once the implementations of 
the new algorithms are done, the engine.py file must be updated with 

4 Link to the User Manual:  http://shorturl.at/yCLX4
5 CompareML deployed on the Web: https://compareml.io/

Client Server

style.css

index.html client.js WebServer.py engine.py

turiCreate.py

scikitLearn.py

r.py

main.py

Fig. 3. CompareML file structure.
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the list of algorithms and providers as shown in Listing 1. Lastly, the 
call of the newly implemented methods must be done in the same file.

Listing 1. Code from engine.py showing the providers and algorithms 
currently supported in CompareML.

1   PROVIDERS   =   {
2         c.TURI_CREATE:   turi_create,
3         c.SCIKIT_LEARN:   scikitLearn ,
4         c.R:   r,
5   }
6   
7   ALGORITHMS   =   {
8         'classification':   
9                  [ c.RANDOM_FOREST, 
10                 c.LOGISTIC_REGRESSION,
11                 c.SUPPORT_VECTOR_MACHINES
12        ],
13        'regression':
14                 [ c.LINEAR_REGRESSION, 
15                 c.BOOSTED_ DECISION_TREES,
16                 c.DECISION_TREE
17        ]
18  }

V. Illustrative Example & Results

In this section, as illustrative examples, we make use of CompareML 
to solve two problems – a classification problem and a regression 
problem. These case studies are good representations of the types of 
problem for which the approach is useful. The first case study focuses 
on training classification models, and provides the output metrics of 
each trained algorithm to allow their evaluation by users. The second 
case study focuses on training regression models to the same end.

The datasets in the two case studies are in a tabular CSV format, as 
is supported byCompareML. It is important to stress that the current 
implementation does not allow data preparation operations or the 
application of feature engineering techniques, so data transformation 
must be done before loading the dataset into the CompareML 
implementation. Nevertheless, it is easy to rerun the experiments after 
performing such data transformation operations, and then compare 
the differences.

A. Classification Example
In this example, the aim is to find the provider which, a priori, is 

best suited to dealing with the CarEvaluation dataset [27] obtained 
from the UCI Machine Learning Repository [28]. This dataset 
comprises labeled data obtained from 1728 cars where the goal is to 
evaluate car conditions based on certain characteristics related to price 
and comfort.

The dataset consists of 1726 instances (observations) together with 
7 features (variables) which are detailed in Table IV. In contrast with 
the original dataset, where there are 4 classes of the label feature 
Acceptability {unacceptable, acceptable, good, verygood}, just 2 
categories have been adopted {yes, no} so that we can make use of 
two-class classification algorithms.

TABLE IV. Set of Features of the CarEvaluation Dataset

Feature Name Description Type
Price Buying price Categorical

Maintenance Price of maintenance Categorical

Doors Number of doors Numerical

Seats Capacity in terms of persons to carry Numerical

Boot Size of luggage boot Categorical

Safety Estimated safety of the car Categorical

Acceptability Car acceptability Categorical (Label)

The steps that need to be followed to carry out the experiment in 
this implementation of the CompareML approach are:

1. Provide the dataset to CompareML. To this end, the option of 
selecting a default dataset is ignored, and the CarEvaluation 
dataset is directly uploaded from our computer.

2. Select the label feature that we are interested in predicting. After 
uploading the dataset, the drop-down menu of this section is 
filled with the names of all the variables. In our case, we select the 
Acceptability variable, which indicates the level of acceptability of a 
car according to its characteristics, i.e., the field we wish to predict.

3. Choose the machine learning libraries and services in which we 
want to run the experiment (Scikit-Learn, Turi Create, and R). 
At least one of them must be selected. In our example, we are 
interested in comparing all three providers.

4. Select whether we are going to carry out a Regression or a 
Classification experiment. Depending on the type of algorithm 
selected, we can choose from a variety of algorithms.   We are 
interested in predicting a categorical value, and, for that reason, 
we mark the Classification algorithms checkbox. After selecting 
this option, we must select at least one algorithm. In our example, 
we want to perform an experiment including all the algorithms 
available (Random Forest, Logistic Regression, and Support Vector 
Machine).

If the experiment is set up properly, we can run it by pressing the 
“Start” button. If not, an error message will be shown describing how 
to resolve the problem.

When the experiment has been performed, CompareML shows the 
results below the “Start” button. Fig. 5 is a screenshot of the CompareML 
user interface and the output produced after the classification 
experiment has been carried out. The results of the experiment are 

TABLE V. Results of the Classification Case Study Experiment

Turi Create Scikit Learn R
Ramdom Forest Accuracy 0.9480 0.9220 0.9855

Precision 0.9091 0.4610 0.9876

Recall 0.3704 0.5000 0.9969

Logistic Regression Accuracy 0.9855 0.9769 0.9884

Precision 0.8667 0.9322 0.9968

Recall 0.9630 0.9027 0.9906

Support Vector Machine Accuracy 0.9855 0.9769 0.9827

Precision 0.8667 0.9197 0.9906

Recall 0.9630 0.9197 0.9906
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presented in Table V. They include the Accuracy, Precision, and Recall 
evaluation metrics. CompareML also provides the Confusion Matrix 
and raw data with information yielded directly by the provider.

As expected, building a model using the same algorithm and the 
same data produces similar but slightly different results. This implies 
that, even when the algorithms are the same, their implementations by 
different providers impacts the performance of the models built using 
them. Although in most cases those differences are small, in some 
cases they are significant. Let us focus for example on the Accuracy 
metric. In this case study, the accuracy of the Logistic Regression model 
with R is 6.64 percentage points greater than that of the Random 
Forest model with ScikitLearn, which is a considerable difference. In 
general however, the differences are smaller. With the exception of 
Random Forest, the differences between the models built with the same 
algorithms from different providers do not reach 1 percentage point. 
Nevertheless, that percentage point can make a difference.

Looking at the outcomes of the experiment, one can see that, 
especially with TuriCreate and ScikitLearn, the accuracy of the Random 
Forest models, regardless of the provider, is poorer than that of the Logistic 
Regression and Support Vector Machine models. This may be an indication 
that the models created with these algorithms are better suited to the 
CarEvaluation dataset. The greatest accuracy (98.84 percentage points) 
corresponds to the Logistic Regression model built with R.

The experimental results of this illustrative example can be 
reproduced using the CarEvaluation dataset which is preloaded in 
CompareML, by selecting acceptability as target feature (label).

B. Regression Example
In the regression example, we use the Heating dataset [29] obtained 

from the UCI machine learning Repository [28]. This contains data 
obtained from energy analyses applied to 12 different building shapes. 
The dataset consists of 768 instances (observations) together with 9 
features (variables), which are detailed in Table VI. The label feature 
HeatingLoad is a continuous numerical feature that is a measure of 
the amount of heat energy that would need to be added to a space to 
maintain the temperature within an acceptable range. The remaining 
features of the dataset are {Relative Compactness, Surface Area, Wall 
Area, Roof Area, Overall Height, Orientation, Glazing Area, Glazing 
Area Distribution, Heating Load}, with this last being the label in our 
case study.

The steps needed to carry out the experiment are the same as 
in the previous experiment. The algorithms available for this kind 
of experiment are Linear Regression, Boosted Decision Tree, and 
Decision Tree.

Fig. 6 is a screenshot of the CompareML user interface and the 
output of the regression experiment. For readability, the results are 
listed in Table VII for the RMSE and Max-error evaluation metrics.

As was the case for the classification example, the experimental 
results differed slightly depending on the algorithms and providers 
used to create the model. Overall, the Decision Tree models gave 
uniformly good results, but the best result was with Scikit-Learn 
creating the model using the Boosted Decision Tree algorithm.

TABLE VI. Set of Features of the Heating Dataset

Feature Name Type
Relative Compactness Categorical
Surface Area Numerical
Wall Area Numerical
Roof Area Numerical
Overall Height Numerical
Orientation Numerical
Glazing Area Numerical
Glazing Area Distribution Numerical
Heating Load Numerical (Label)

Analysing these results, one observes that on occasions the same 
algorithm can yield the best and the worst results depending on the 
provider that implements and deploys the algorithms. Although it is 
not often the case, it is still of interest that, given a specific problem 
and a particular dataset, the choice of provider can still have a major 
impact. For this experiment in particular, the difference in RMSE 
between the best and the worst models is 5.7872, and these are with 
the same algorithm – Boosted Decision Tree.

For the Linear Regression algorithm, the evaluation metrics (for both 
RMSE and Max-Error) differ little from each other. This suggests that 
the simpler the algorithm, the greater the similarity of the outcomes.

The experimental results of this illustrative example can be 
reproduced using the Heating dataset which is pre-loaded in 
CompareML, by selecting HeatingLoad as target feature (label).

C. Application in Education
As can be seen with the illustrative case studies, CompareML is very 

easy to use and the results are provided straightforwardly. This makes 
it a potentially interesting tool for teaching in that it can facilitate 
students’ interpretation of the results of applying these algorithms to a 
given problem with specific data. As examples of aspects in which the 
use of CompareML in teaching can generate meaningful knowledge for 
students, we would emphasize the following:

• One can see how certain algorithms perform better than others 
with certain data due to the nature of that data and the hidden 
knowledge it may contain. For instance, there are problems 
that can be solved with algorithms whose focus is on similarity, 
others that can be solved with tree-based algorithms which apply 
decisions based on the values of features, and others that can be 
modeled through refining.

• The effect that feature engineering techniques may have in 
transforming certain features according to different criteria 
can be analysed by monitoring the metrics resulting from each 
CompareML execution corresponding to each data transformation.

• One can study the impact of feature selection methods that apply 
CompareML to subsets of the original dataset, or, similarly, study 
the impact on the models’ accuracy of adding new features to the 
dataset.

TABLE VII. Results of the Regression Case Study Experiment

Turi Create Scikit Learn R

Linear Regression RMSE 3.1837 3.1847 3.1778

Max-Error 8.7520 8.8801 8.8788

Boosted Decision Tree RMSE 6.2619 0.4747 2.1887

Max-Error 13.2556 3.0332 6.3126

Decision Tree RMSE 2.2976 1.6007 2.7292

Max-Error 6.4962 4.3373 9.0515
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Fig. 5. CompareML User interface providing the output of the Classification Case Study.
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Fig. 6. CompareML User interface providing the output of the Regression Case Study.
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D. Comparison With Other Approaches
In this subsection, a comparative evaluation is made of CompareML with 

the other approaches discussed in the Related Works section, especially 
those that, considering their specific features, admit a direct comparison 
with CompareML. These are Weka, PyCaret, and PowerBI AutoML.

Weka needs to be downloaded and installed to run locally. It offers a 
large number of functionalities. The user interface is built in Java, but, 
even though it is not hard to understand and use, it is not up-to-date, 
which is an obstacle to its use. There are a large number of algorithms 
to choose from, all of them with a single implementation. Experiments 
provide the key metrics with which to evaluate the models, and it has 
a CLI interface.

PyCaret is a machine learning library in Python commonly used 
in the Jupyter Notebooks Environment. It is simple and easy to use 
due to its low-code orientation. A large number of algorithms are 
automatically selected to perform experiments, and it is easy to 
tune the hyperparameters if necessary. The main classification and 
regression metrics are generated directly after training the models 
with just one line of code.

PowerBI incorporates the creation of machine learning models 
with a focus on their explicability. A little background working 
with PowerBI dataflows is required, but the AutoML process is 
straightforward and is finely integrated with the PowerBI online app.   
Data processing is straightforward in the environment, and Feature 
Selection techniques are applied before the models are trained. The 
main classification and regression metrics are attractively presented 
in the PowerBI reports.

CompareML differs from the other approaches in that no 
configuration is required,  and it can be used directly. Also, the fact 
that more than one implementation is available for each algorithm 
constitutes its principal differentiating element. In particular, since 
there are three implementations for each algorithm, this allows users 
to analyse the differences between those implementations.

Table VIII summarizes this comparison in terms of the type of 
execution environment, of the difficulty in setting up and using the 
tool, of the metrics that are provided for an evaluation of regression 

and classification models, and of the number and type of algorithms 
supported.

VI. Conclusions

In this paper, we have presented a novel approach to supporting 
preliminary data analysis in the engineering field that enables 
engineers and researchers to quickly and easily analyse the potential 
for inferring knowledge that may lie hidden in their data. Similarly, it 
assists them in comparing machine learning models using different 
implementations from different providers of well-known algorithms, 
without their needing prior knowledge about how to create those 
models with each provider. 

To that end, the most widely used machine learning libraries and 
services and some of the best-known classification and regression 
machine learning algorithms can be compared by performing a series 
of experiments. After the experiments have been completed and the 
models created, the commonest evaluation metrics are presented so 
that researchers and engineers can properly evaluate and compare the 
possibilities they have available, giving them all the information they 
need to make a decision on how to proceed with their work.

As far as we know, there has been no previous intelligent programming 
environment with the characteristics and objectives of CompareML, i.e., 
using machine learning techniques to construct software with a modular 
and scalable architecture, and aimed at providing practising engineers 
with a decision support system that can help them solve hitherto 
intractable problems by eliciting knowledge from their data, even though 
they have no in-depth machine learning skills.

From the experiments carried out with CompareML, affirmative 
answers can be given to the three research questions posited. With 
regard to RQ1, it is possible to analyse the potential for inferring 
knowledge hidden in a dataset obtained from a real-world engineering 
application. With regard to RQ2 and RQ3, it is possible to obtain, a 
priori, the best combination of algorithm and provider with which to 
construct a predictive model for that specific engineering application. 
These affirmative answers have their origin in the following 
contributions of the CompareML approach:

TABLE VIII. Comparison With Other Approaches

Weka Execution environment Run locally

Difficulty Medium - low

Algorithms Wide range of algorithms available. A single implementation per algorithm

Classification metrics Accuracy, confusion matrix, precision, recall, F1-score, ROC

Regression metrics MAE, RMSE, correlation coefficient

PyCaret Execution environment Commonly works in a Jupyter environment that can run locally or in the cloud

Difficulty Low

Algorithms Wide range of algorithms available. A single implementation per algorithm

Classification metrics Accuracy, AUC, precision, recall, F1-score, kappa, MCC

Regression metrics MAE, MSE, RMSE, R2, RMSLE, MAPE

PowerBI Execution environment Runs in the cloud

Difficulty Medium. ML concepts are easy to follow, but Power Platform knowledge is required

Algorithms Wide range of algorithms available. A single implementation per algorithm

Classification metrics AUC, confusion matrix, precision, recall, cost-benefit analysis

Regression metrics Model performance explanation, Average Residual Error

CompareML Execution environment Runs in the cloud

Difficulty Low

Algorithms Three each for classification and regression. Three implementations per algorithm

Classification metrics Accuracy, confusion matrix, precision, recall

Regression metrics RMSE, R2, Max-Error
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• It allows engineers and researchers who have no extensive prior 
skills in machine learning to generate their own models with 
which to evaluate the potential knowledge that can be inferred 
from their data.

• It finds the machine learning algorithm that would build the most 
appropriate model for a specific problem involving some specific 
data.

• It determines the best framework, tools, and providers for 
addressing a specific problem involving some specific data.

In future work, it will be interesting to improve the approach with 
the following practices:

• Increase the number of libraries and services supported, as well as 
the number of regression and classification algorithms.

• Support algorithms to create clustering or recommender system 
models.

• Implement a microservices-based architecture that allows the 
functionalities of the machine learning providers to be isolated 
in those microservices [30], thus making it easier to update the 
algorithms, maintain the code, and add or delete providers.

• Implement new classification and regression model evaluation 
metrics.
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