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Abstract

Elastic Cloud Compute (EC2) is one of the most well-known services provided by Amazon for provisioning 
cloud computing resources, also known as instances. Besides the classical on-demand scheme, where users 
purchase compute capacity at a fixed cost, EC2 supports so-called spot instances, which are offered following 
a bidding scheme, where users can save up to 90% of the cost of the on-demand instance. EC2 spot instances 
can be a useful alternative for attaining an important reduction in infrastructure cost, but designing bidding 
policies can be a difficult task, since bidding under their cost will either prevent users from provisioning 
instances or losing those that they already own. Towards this extent, accurate forecasting of spot instance 
prices can be of an outstanding interest for designing working bidding policies. In this paper, we propose the 
use of different machine learning techniques to estimate the future price of EC2 spot instances. These include 
linear, ridge and lasso regressions, multilayer perceptrons, K-nearest neighbors, extra trees and random forests. 
The obtained performance varies significantly between instances types, and root mean squared errors ranges 
between values very close to zero up to values over 60 in some of the most expensive instances. Still, we can 
see that for most of the instances, forecasting performance is remarkably good, encouraging further research 
in this field of study.
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I. Introduction

Amazon Web Services (AWS) is an Amazon ecosystem comprising 
a large number of cloud services. This ecosystem is in a process of 

continuous growth, with new services or functionalities added every 
few months.

One of the most well-known AWS services is EC2 (Elastic Cloud 
Compute), an application that provides Infrastructure-as-a-Service 
(IaaS) for cloud computing. These services allow users to launch 
on-demand instances (virtual machines) in order to satisfy certain 
computational needs. This option is interesting when a user or 
company has a variable computing load, thus avoiding the need to 
acquire specific infrastructure whose administration and maintenance 
can become very expensive.

Besides on-demand instances, EC2 allows users to bid for computing 
capacity that is not in use. This enables users to establish a maximum 
bidding price and, in case they be the winner of the bid, then they are 
able to use the corresponding computational capacity. In EC2, these 
instances are called “spot instances”. The hourly cost of spot instances 
can be significantly lower than on-demand instances; however, the 
instance will only belong to the user as long as the bid is higher than 
the spot price. In other case, the instance will be terminated and the 
user will not be able to access it anymore.

AWS allows to query the price of spot instances in real time [1]. 
Additionally, users can study the historic evolution of EC2 instances 
of a certain type, up to three months in the past, as it can be seen 
in Fig. 1.

In this paper, we aim at designing and developing a system able 
to predict the future price of a spot instance in EC2, with the final 
objective of easing the optimization of the bidding procedure. To do 
so, we will rely on historic information in the spot instances prices.

The remainder of this document is structured as follows: in Section 
II we present some basic concepts which are key to understand the 
current proposal, in Section III we will briefly describe the state of the 
art and some related work.

Then, in Section IV,we will identify different data sources, 
explaining the acquisition process, and in Section V we will describe 
the cleansing and processing stages.

Later, in Section VI we will detail the procedure for learning 
regression models that fit the instance prices and in Section VII we 
will provide quality metrics to assess the performance of the learned 
prediction models and discuss the results obtained.

Finally, in Section VIII we will provide some conclusive remarks 
regarding the work performed in this paper as well as suggest lines 
of future research. In , we will present the prediction system delivered 
as a service, describing the infrastructure underlying the prediction 
system and an API for accessing it.
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II. Structure of the Paper

Before proceeding with the description of the proposal, it is 
important to introduce some relevant concepts that are required to 
understand which factors affect the instance price (both in the case of 
on-demand and spot instances). These factors are the following:

• Region: it refers to the Amazon datacenter where the instance will 
be launched. Some examples of regions are the following: North 
Virginia (us-east-1), Ohio (us-east-2), North California (us-west-1), 
Canada (ca-central-1), Ireland (eu-west-1), etc.

• Availability zone: it is a more precise area within the region. It is 
identified with a letter after the region codename, for instance, 
region “us-east-1” contains zones from “us-east-1a” to “us-east-1f”. 
Instances, even those of the same type, can see their cost affected 
depending on their availability zone.

• Type and size: the instance type determines the compute 
capabilities it provides. Most often, the instance types adheres to 
the following convention: <type>.<size>. For example, an instance 
p3.16xlarge is an instance of type P3 (general use GPU computing) 
and of size 16xlarge, meaning in this case that it contains 8 GPUs. 

Amazon provides an updated listing with all the different instance 
types and their specifications [2]. This factor is the one that affects 
the most the instance cost.

• Operating system: also called “product” the instance cost can vary 
depending on whether it runs a Windows environment or a UNIX/
Linux one.

III. Related Work

The problem of forecasting the prices of EC2 spot instances is of 
clear interest, since it allows companies of different sizes to work on 
optimal bidding strategies that can optimize economic resources spent 
on cloud computing infrastructure. For this reason, this problem has 
been observed mostly from two perspectives. The first perspective 
relies on the study of EC2 spot pricing as an economic problem, using 
approaches based on econometrics or other financial tools to design 
bidding models. The second perspective, which is the one followed in 
this paper, relies on techniques of computational intelligence to frame 
the approach as a supervised learning problem.

Fig. 1. Panel showing the evolution of the EC2 spot instance price in the AWS console, for a specific instance type and different availability zones, over a period 
of three months. On-demand (non spot) price is shown in the black line.
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One early work which aims at reverse engineering the EC2 spot 
pricing scheme is provided by Ben-Yehuda et al. [3], where they build 
a model concluding that the prices are not fully market-driven, but are 
most of the times generated randomly within a small range of values. 
They do not suggest a bidding strategy as such, but rather work on a 
thorough economic analysis of the pricing models.

Another statistical analysis of the pricing scheme of EC2 spot 
instances is provided much more recently by Portella et al. [4]. Again, 
they do not focus on a bidding strategy or price forecasting, but obtain 
a useful conclusion from the analysis: by bidding at 30% of the on-
demand price, availability of over a 90% can be attained, although the 
specifics vary based on the instance type. Another work by Lumpe 
et al. [5] focuses as well on a descriptive statistical analysis and 
econometric study of EC2 spot prices, with authors also devising a 
bidding strategy that minimises the bidding cost while guaranteeing a 
certain probability of availability over a defined threshold.

Another early work by Tian et al. [6] suggests a decision model 
for provisioning computing resources in EC2 by combining different 
schemes, combining spot instances with the classical on-demand 
model. In the paper, they introduce a model able to predict the demand 
and spot prices are expected to vary as a result. Interestingly, they 
do not focus only on price forecasting, but also in how to diversify 
instances to deal with potential loss of spot instances (in case their 
actual price exceeds the bidding price).

Tang et al. [7] address the problem of tackling an optimal bidding 
strategy. In this case, authors use Markov decision processes, and 
prove a theorem by which any sequence of bidding decisions can be 
obtained by a dual-option strategy, either bidding the maximum spot 
price or giving up at each time. In a more recent work [8], the authors 
apply this strategy under service-level agreement constraints. In both 
works, the authors do not focus on price forecasting as an intermediate 
task to build the bidding policy.

Chhetri et al. [9] have studied the streamlined EC2 spot markets, 
a different model where prices are softened by using long-term 
trends in demand and supply. They combine econometric indices as 
well as computational techniques (logistic regression and principal 
component analysis) to perform their study. Authors extract 
interesting conclusions from their analysis: median spot prices have 
grown in the streamlined model, and sophisticated bidding strategies 
are less useful in this pricing model. Also, they suggest how to perform 
bidding price estimation.

When focusing on spot price forecasting, Chhetri et al. [10] use 
time-series decomposition and look-backs, attaining results that 
compare or slightly outperform other more classical approaches. For 
the evaluation, they constrain to eight Microsoft Windows-based 
instance types in the Sydney region, attaining root mean squared 
errors that achieve values of 0.559 in c3.xlarge instances.

Another approach using regression random forests has been 
provided by Khandelwal et al. [11], where they learn models to 
perform one-day and one-week ahead forecasting. They state that 
this technique outperforms other methods, reporting a mean absolute 
percentage error of less than 10% for one-day and less than 15% for 
one-week forecasting.

A more recent approach has been proposed by Lancon et al. 
[12], where they use long short-term memory neural networks and 
claim a reduction of 95% in mean average percentage error as when 
compared to a baseline model. Unfortunately, absolute errors do not 
seem to be reported in the paper. We also found this problem in a 
recent contribution by Malik and Bagmar [13]. These authors discuss 
a technique to analyze and predict the spot prices for instances using 
random forests. The authors report mean average percentage errors in 
the range from 0.15% to 56.2% depending on the instance type.

Recently, Chittora and Gupta [14] explored the feasibility of relying 
on 2-layer stacked LSTM model for this task using 3 months of spot 
price data for 5 instances. The results for next day spot price forecast 
show mean absolute percentage errors under 10% and root mean 
squared errors below 20%, outperforming the standard LSTM and the 
3-layer LSTM considered as alternatives.

Finally, Liu et al. [15] benchmarked kNN regression against linear 
regression, support vector machine, random forest, multi-layer 
perceptron and gcForest using the MAPE5%, which represents the 
number of results whose absolute percentage error is less than or equal 
to 5% as a percentage of the number of total results, as performance 
metric. According to their results, kNN regression offered the best 
performace with a MAPE5% up to 94% in 1-day-ahead prediction and 
94.06% in 1-week-ahead, respectively.

In this work, we will carry out an extensive comparison of diverse 
machine learning techniques towards forecasting of EC2 spot prices. 
To the best of our knowledge, this is the most detailed work when it 
comes to tackling a larger number of EC2 instance types and reporting 
results in a separate manner for each of them, as well as comprehensive 
due to the large number of techniques tested.

IV. Data Sources

In this section we will present the different data sources used 
in order to train and validate the regression models for the price 
prediction of EC2 spot instances.

A. Approach
The instance price data is modeled as a time series. This series can be 

seen as a sequence of values for each instant of time, existing a different 
series for each region, instance type and operating system. Each value 
in the time serieswill contain a timestamp indicating the moment of 
time towhich it refers, as well as the instance price at that time.

The data in the time series can be obtained via two different 
approaches: recovering them from historic archives or querying the 
prices in real time. In the first case, we would be talking of previously 
captured data, stored for their later recovery. Meanwhile, in the second 
case we would refer to new data that is changing as time happens.

The availability of historic data is useful for feeding the models 
with a large amount of values (e.g., corresponding to several years). 
Conversely, access to real-time data is useful to provide feedback to 
the model and updating it periodically to ensure that its predictions 
are updated to the current characteristics of the time series.

B. History Data Sources
In this work we have used two different data sources providing 

information of archived historical data of EC2 spot instances prices.

1. AWS Spot Pricing Market
Dataset provided by the Data Science Awards 2017 competition, 

which is publicly available for download in Kaggle. This involves a 
CSV file for each of the regions [16]. The structure of these CSV files 
is shown in Table I. 

TABLE I. Structure of AWS Spot Pricing Market CSV Files

Timestamp Type OS Zone Price

2017-05-06 17:29:01 c4.large Linux ca-central-1a 0.0139

2017-05-06 17:29:01 m4.4xlarge Windows ca-central-1b 0.8328

This dataset is very complete as it gathers many different types of 
possible instances, for every operating system and comprising eleven 
AWS regions. However, the main drawback of this dataset has to do 
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with its limited of the time period considered, since it only includes 
instance prices between February and May 2017, not providing time 
series longer than three months.

This is of course a problem when trying to capture seasonal 
patterns. To illustrate this with an example, it could be reasonable to 
hypothesize that in summer season instances are cheaper, because of 
the low demand (there are fewer companies actively requiring cloud 
computing services). Conversely, there could be demand peaks at 
other moments, such as back-to-work period or Christmas campaigns.

Moreover, there could exist inter-annual trends, such as a decrease 
in the average instance cost, which cannot be detected since the 
dataset only comprises data from 2017.

2. Spot Price Archive
Spot Price Archive is a historic data archive of EC2 spot instances 

prices provided by Western Sydney University, Australia. The archive 
provides a graphical interface for accessing data [17] (see Fig. 2) and 
was developed for a project aiming at modeling the spot instances 
price [18].

This dataset is much more complete regarding the length of time 
series, since it provides data for all years comprised between 2009 and 
2016. As a drawback, it imposes some limitations over the previous 
dataset, since it only comprises certain regions and instance types.

In particular, Data Science Awards dataset provided prices for 
68 instance types and 11 regions, whereas Spot Price Archive only 
contains 15 instance types in 8 regions. Besides, the number of 

Fig. 2. Graphical user interface of Spot Price Archive.
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availability zones is also more limited. For example, region us-east-1 
comprises six zones (from us-east-1a to us-east-1f), from which the 
former dataset gathers five and the latter only four.

Despite of being more restricted, this historic dataset will be used 
to improve the prediction performance over those instance types and 
regions included in the dataset, providing more information about 
seasonal behaviors along the year as well as inter-annual trends.

Data from this dataset can be downloaded in CSV files. The 
acquisition process can be automated because URLs for the CSV files 
always follow the same convention, with the following base URL:

http://spot.scem.uws.edu.au/ec2si/Download.jsp

This URL accepts the following query parameters, which can be 
specified in the GET request: Zone (the availability zone), Type (the 
instance type), Product (the operating system), IntervalFrom (the start 
date, formatted as “yyyy-mm-dd 00:00:00.0” and IntervalTo (the end 
date, with the same format).

The CSV files obtained are structured as shown in Table II. It can 
be seen howthis structure is equivalent to the previous dataset, since 
the values in the columns corresponding to the availability zone, the 
instance type and the operating system are known beforehand.

TABLE II. Structure of Spot Price Archive CSV Files

Timestamp Price

2012-11-05 12:00:00 0.006

C. Real-Time Data Sources
Historic data allows us to learn regression models that can take into 

consideration inter-annual trends and seasonal factors. Nevertheless, 
it is important to periodically feedback these models in order to keep 
them upgraded and get useful and accurate predictions over time. In 
this work we consider the use of one source of real-time data.

1. EC2 API
The most convenient way to obtain real-time data is to use EC2’s 

API, which has an endpoint (describe_spot_price_history) [19] that 
returns the history of prices from the current time up to 90 days into 
the past. By calling this endpoint, we can obtain real-time data.

The endpoint returns a JSON-encoded object with the following 
structure, as described in the specification:

{
  "SpotPriceHistory" : [
    "AvailabilityZone"   : <zone>,
    "InstanceType"       : <type>,
    "ProductDescription" : <os>,
    "Timestamp"          : datetime(yyyy, m, d),
    "SpotPrice"          : <price>
  ], ...
}
These fields identify the instance type, the zone and the operating 

system, as well as the timestamp and the price. Therefore, we will be 
able to easily transform this data into CSV files with the format that 
we had seen previously in the case of historic data.

V. Data Processing

Before training the regression models for instance price prediction, 
we will perform some basic processing of the data in order to extract 
relevant features that can be useful for training the models, as well as 
to standardize the output format of the different data sources.

A. Feature Selection
After acquiring the data, the available attributes are those 

characterizing the instance (availability zone, type and operating 
system) and the timestamp.

The instance features comprise categorical data which will not 
be subject to any additional processing. However, in the case of the 
timestamp, it is stored as a text string, which is not particularly useful. 
We will use it to retrieve some features which can be of interest:

• Year: the year can be relevant to discover inter-annual trends, 
as whether the price of a certain instance type decreases as new 
instances are released.

• Month: the month is an important feature to detect intraannual 
seasonal trends, such as whether the price is lower in summer 
months, when demand may be lower due to the holidays season.

• Day of month: it is difficult to know whether this is a relevant 
feature, but it could be in the case of intra-monthly trends. 

• Day of week: it can be interesting to detect whether prices change 
on weekdays versus weekends. 

• Hour: it can be of interest because the cost could change based on 
days as opposed to nights. For this reason, this feature could also 
depend on the instance region. We have omitted the minute and 
second since they do not seem to be relevant features affecting the 
instance price.

B. Output Format Standardization
As we saw in the previous section, all data from different sources 

is equivalent when it comes to the features (columns). When it comes 
to rows, they also follow the same format, which is the one provided 
by Amazon EC2 API: a row is only shown when there is a change 
in the instance price. This means that the difference between two 
consecutive timestamps is not constant, and also that there is not 
explicit information about the price at every timestamp, although this 
information can be easily inferred.

In this standardization, we reduce the resolution of the timestamp 
from seconds to hours, as we explained previously. In some cases, 
the prices can slightly vary within the same hour, in which case we 
compute the median of the different values. We have decided to use 
the median instead of the mean to avoid adding values that did not 
appear originally in the input data.

Finally, we fill the non-existing rows between the start and end date. 
Since rows only exist when there is a change in the price, newrows 
will have as the price the last value available immediately before the 
time of the row being added.

VI. Model Learning

In this section we will explain the machine learning techniques 
used to train the regression models for instance price prediction. First, 
we will discuss some design decisions regarding the training process, 
and later we will detail the training procedure.

A. Design Decisions
When learning a regression model from a time series such as the 

one described in this paper, we can mainly choose among two different 
approaches.

In the first approach, we would use the information available in the 
time series to predict the next value, which is unknown. In this case, 
the attributes are formed by the price in the n previous times. In other 
words, given (t0, t1, ..., tn), we want to predict the value at time tn+1.

This approach, despite being very common, does not seem the 
most appropriate for solving the problem. The first reason is that the 
quality of predictions degrades when we want to predict values that 
are far in the future, since we would be using as input some features 
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whose value is unknown and are just an estimation (this means that 
for predicting tn+m, we will need values (tn+1, tn+2, ..., tn+m−1), which are 
not known). The second reason, which is domain-dependent, is that 
this time series is very static, and in some cases an instance can hold 
the same price during hours or even days. For this reason, a prediction 
model would like turn to keep the price invariant, missing all the times 
that the price is actually updated.

The second approach, which we have deemed more interesting in 
this work, is to introduce as input the parameters that were previously 
described: year, month, day of month, day of week and hour, as well 
as availability zone, instance type and operating system. In this case, 
knowing the values in the time series immediately before the desired 
prediction time instant is irrelevant, since they are not used for the 
prediction. As a consequence of this, the approach has the advantage 
that the quality of the prediction is not affected by how far in the 
future the desired value is.

Finally, we have decided to train a model for each instance type. 
This is due to the fact that there is a significant heterogeneity between 
different instance types, and one model could find difficulties when 
dealing with such an amount of diverse data. Nevertheless, given a 
fixed instance type, the price is much more stable, even though it 
still can vary significantly depending on the availability zone, the 
operating system, and the date and time.

B. Learning Procedure
In order to train the models, we will use the Scikit-learn library for 

Python [20].

The first step is to use one-hot-encoding (OHE) to convert 
categorical attributes into binary features in order to establish a 
data format which can be accepted by this library. As an example, 
if we had a sample whose operating system is “Windows”, the OHE 
encoding would generate three binary features, from which feature 
“os_windows” would be set to one and features “os_linux-unix” and 
“os_suse-linux” would be zero.

When it comes to the process of learning a regression model 
from the available data, there are numerous techniques that could be 
used, and it can be difficult to determine beforehand which of such 
techniques could work best. In fact, it could happen that a technique 
works the best on a certain instance type, but be outperformed by 
other techniques in other types. In this case, we could not claim that a 
technique is the best performer.

Because of this, we will test different machine learning techniques 
with each type of instance. In particular, these techniques are the 
following:

• Linear regression: a standard algorithm that will learn a hyperplane 
fitting input data with the least square error.

• Linear regression with ridge regularization: same as the previous 
one yet imposing a penalty in the size of the regression coefficients. 

• Linear regression with lasso regularization: same as the first one, 
but preferring solutions with fewer parameters.

• Multilayer perceptron: a neural network that can act as a universal 
function approximator. In the chosen setup, it comprises one 
hidden layer with 100 units.

• K-nearest neighbors: a geometric model where the K closest 
instances to the one being predicted are retrieved, and their 
outputs are averaged to provide a prediction. In the chosen setup, 
K is set to five.

• Extra Trees: an ensemble grouping several models and weighting 
their outputs. In particular, in this case these models will be 
regression trees, where each one will be trained using a random 
sample of the data and a random subset of the features. In the 

current setup, the ensemble will be formed of 10 models.

• Random Forests: similar to Extra Trees, yet with less randomness 
when it comes to choose the attributes to build the decision trees.

• AdaBoost: an ensemble where a regression model is first fitted 
over the original data and then additional models are trained over 
this data, but giving a higher weight to instances poorly estimated 
by previous models.

• Bagging: an ensemble where several regression models are trained 
over different samples of data.

We have chosen these techniques since they capture a large diversity 
of the machine learning techniques. For instance, linear regression is a 
simple model aiming at learning a line within the space of features and, 
along with the variations using ridge and lasso regularization, they are 
a good representative of linear models. The multilayer perceptron is 
the best representative of a feed-forward neural network. K-nearest 
neighbors is a simple model based on analogy, that is able to capture 
complex frontiers of decision in the space of features, under the 
hypothesis that similar instances will have a similar output. Finally, 
we have tried different ensembles based on decision trees, which 
are models able to learn rules for making a decision based on the 
features’ values. We have only tested ensembles of decision trees since 
individual trees will often take longer to train and will rarely obtain 
better results, as they are more prone to overfitting.

Table III summarize the hyperparameters used for these techniques. 
These hyperparameters have been chosen after a prior stage of 
sensitivity analysis.

TABLE III. Hyperparameters of the Different ML Techniques

Technique Parameter Value

Ridge / Lasso Regularization strength 1

MLP

Number of layers
Number of units
Activation function
Optimizer

1
100
ReLU
Adam

KNN
Number of neighbors (K)
Distance metric

5
Euclidean

RF / ET / Bagging Number of models 10

AdaBoost Number of models 50

Once the techniques are chosen, we will follow the next procedure: 
First, we will split the dataset for each instance type into a training 
set and a test set. Instead of performing a random division of data, we 
have decided that data from September 2017 be assigned to the test set, 
with previous information assigned to the training set.

Later, for each instance type we will train each model ten times. 
This decision is motivated by the fact that most of the previously 
described techniques are stochastic, and therefore one single run could 
introduce an important bias. Finally, for each instance type we will 
serialize the best model, so we can recover it later when aiming to 
predict the price of a spot instance in the future.

VII.  Model Evaluation

To validate the different models, we will compute three quality 
metrics for the best model obtained and compare it to a baseline. Such 
baseline will correspond to the performance of a naive regression 
model that would always predict the average price. The most 
improvement over such baseline, the best performance of the model.

The metrics reported in this work are the following:

• Root Mean Squared Error (RMSE) is the square root of the mean of 
squared errors. Therefore, being yi the real price for sample i and  
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( i) the price estimated by the regression model, RMSE is computed 
as in (1).

 (1)

The closest this value is to zero, the most accurate the model 
predictions will be.

• Explained Variance Score (EVS) computes to which extent a 
regression model captures the distribution of the original data. It 
is computed as shown in (2).

 (2)

The value will be better as it approaches one. In the case of the 
baseline, since the mean is always returned, then EVS will be zero.

• R2 Score, or coefficient of determination, measures to what extent 
the model will estimate future samples, and is computed as shown 
in (3).

 (3)

Again, the value will be better as it approaches one. For the baseline, 
since yi is the mean value, R2 score will be zero. Notwithstanding, a 
model arbitrarily worse could have a negative score in this metric.

Table IV shows the results of the evaluation in terms of the 
previously defined metrics, also showing the technique leading to 
the best obtained model. In the case of the baseline, only the RMSE 
is shown, since EVS and R2 score are always zero. The last column 
displays an estimation of the model quality depending on its R2 value.

A. Discussion
As it can be seen, results vary significantly depending on the 

instance type. For some types, such as c3, r3, m1, m3 or i3, we have 
achieved models that are able to successfully predict prices for almost 
the entire family. As we suggested earlier, the best model can vary 
from one instance type to another, although the multilayer perceptron 
or ensembles often behave well in many cases. 

Conversely, some instance types obtain poor results, even if RMSE 
always improves over the baseline. This happens because the instance 
type has a small spot offer, therefore turning the market price more 
unpredictable. This effect is clearly seen in some instance types. 

For example, f1.16xlarge instances have an on-demand cost of 13.2 
dollars per hour, but a baseline RMSE over 65 dollars. The reason is 
that in a scenario with few offer, the price can be set to the maximum 
established by AWS, which is ten times the on-demand price, i.e., 132 
dollars. This can severely affect the time series, leading to a bumpy 
landscape that can harden the process or learning a regression model. 
In such cases, an alternative would be needed to improve these models 
performance. 

Regarding machine learning techniques, there is not a clear winner 
that shows an outstanding prediction capability for all of the diversity 
of EC2 instance types. Generally speaking, linear regression is not 
dominant except for a small set of instances, regardless of whether 
regularization is used or not. This seems to indicate that most instance 
types have spot prices that do not have a linear dependency on the 
input features. Also, KNN is not displaying a good performance except 
for a couple of instance types. We can also see how MLP seems to 
be the model of choice for those instance types where prediction is 
more difficult and leads to worse result. This can be due to the fact 
that MLP is able to approximate the series of prices better than any 
other model, but it is still insufficient for considering the result as a 

good prediction. Conversely, ensembles of decision trees are found 
most often among the best models to achieve successful regression. 
Given this information, it seems that price prediction is rarely a linear 
problem, except for a few cases of instance types.

VIII.  Conclusions

In this paper we have described all the steps carried out to tackle the 
problem of predicting EC2 spot instance prices. In this problem, we are 
interested in knowing the price of a certain spot instance at some point 
in the future, in order to be able to bid consequently. In order to solve 
this problem, we have used two different historical datasets, as well as 
data extracted in real time from the EC2 API, providing data from the 
last three months. Once data is retrieved, we have transformed then in 
order to extract relevant features from the timestamp and have later 
trained a regression model for instance type. The rationale beyond 
training separate models based on the instance types is that there is a 
very high variability in the prices depending on the type.

In particular, we have used Scikit-learn to test different regression 
techniques and selected those improving the quality metrics for each 
instance type: RMSE, EVS and R2. When looking at the results, we 
notice that some instance types obtain almost perfect models, whereas 
in others the baseline (a base prediction of the average price) was 
barely outperformed. This difference can be explained at least partially 
due to the characteristics of the instance.

Finally, we have developed a Prediction-as-a-Service system which 
we have deployed in the cloud. The infrastructure underlying this 
service as well as the API documentation is described in the appendix.

In order to further improve this work, we could add the support 
for more instance types and availability zones, by retrieving enough 
data from the EC2 API. Also, we could introduce more features to 
the problem, taking into account that these features must be known 
beforehand for those instances we want to predict. An example of 
such attribute could be whether the day is a national holiday in the 
region where we want to predict the price.

Appendix: Prediction-as-a-Service

In this appendix, we will detail the backend infrastructure required 
for storing the models, keeping them updated and enabling real-time 
prediction using a public endpoint (web service), as well as describe 
the interface for using the prediction system as a service.

A. Infrastructure
The CSV data and serialized models will be stored in the cloud, in 

an S3 bucket.

In a periodic fashion, a batch process will update the models. To do 
so, it will create an EC2 instance that will download the data from S3, 
include the most recent data using the EC2 API and finally retrain the 
machine learning model with the new data. This model will be stored 
in S3 replacing the previous version.

To provide the prediction service, we have deployed the 
implementation of our API over AWS Lambda. This cloud service 
allows us to run code in a serverless infrastructure, i.e., without 
requiring us to manually deal with the server resources, and providing 
an URL that could be used by the API clients. Moreover, AWS 
guarantees the service scalability, therefore allowing large number of 
concurrent requests without increasing the latency or response times.

B. API
The endpoint, available in AWS Lambda and accessible through 

AWS API Gateway is the following:
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TABLE IV. Performance of the Machine Learning Models for Each Instance Type

Type Baseline RMSE Technique RMSE Best EVS R2 Result
t1.micro 0.049 ExtraTrees 0.025 0.741 0.741 +
m1.small 0.117 ExtraTrees 0.005 0.998 0.998 +  +

m1.medium 0.235 RandomForest 0.007 0.999 0.999 +  +
m1.large 0.473 ExtraTrees 0.063 0.982 0.982 +  +
m1.xlarge 0.936 ExtraTrees 0.024 0.999 0.999 +  +
m2.xlarge 0.389 MLP 0.374 0.079 0.079 –  –
m2.2xlarge 0.933 Lasso 0.933 0 0 –  –
m2.4xlarge 2.707 ExtraTrees 1.620 0.644 0.642 +
m3.medium 0.267 ExtraTrees 0.025 0.991 0.991 +  +

m3.large 0.465 RandomForest 0.098 0.956 0.955 +  +
m3.xlarge 0.927 RandomForest 0.180 0.962 0.962 +  +
m3.2xlarge 1.889 AdaBoost 0.471 0.941 0.938 +  +
m4.large 0.052 KNN 0.006 0.988 0.987 +  +
m4.xlarge 0.110 AdaBoost 0.068 0.634 0.602 +
m4.2xlarge 0.193 AdaBoost 0.067 0.899 0.871 ++
m4.4xlarge 2.818 MLP 2.238 0.357 0.357 –
m4.10xlarge 11.703 MLP 7.989 0.558 0.533 +
m4.16xlarge 16.422 MLP 10.793 0.562 0.561 +
c1.medium 0.093 MLP 0.087 0.129 0.129 –  –
c1.xlarge 1.723 ExtraTrees 1.212 0.503 0.498 –
c3.large 0.491 RandomForest 0.030 0.996 0.996 +  +
c3.xlarge 1.163 RandomForest 0.014 1 1 +  +
c3.2xlarge 2.117 RandomForest 0.596 0.921 0.920 +  +
c3.4xlarge 4.360 Ridge 2.106 0.762 0.762 +  +
c3.8xlarge 8.990 MLP 2.492 0.932 0.923 +  +
c4.large 0.303 Ridge 0.094 0.904 0.903 +  +
c4.xlarge 0.950 ExtraTrees 0.131 0.981 0.981 +  +
c4.2xlarge 1.122 MLP 0.439 0.847 0.844 +  +
c4.4xlarge 2.989 MLP 2.014 0.549 0.522 +
c4.8xlarge 6.106 KNN 3.412 0.674 0.674 +

x1.16xlarge 44.522 MLP 26.098 0.656 0.656 +
x1.32xlarge 104.019 MP 57.215 0.682 0.675 +

r3.large 0.478 RandomForest 0.141 0.912 0.912 +  +
r3.xlarge 1.198 ExtraTrees 0.061 0.997 0.997 +  +
r3.2xlarge 1.761 ExtraTrees 0.773 0.807 0.807 +  +
r3.4xlarge 4.375 ExtraTrees 1.578 0.869 0.869 +  +
r3.8xlarge 11.143 ExtraTrees 3.108 0.922 0.9 +  +
r4.large 0.046 Ridge 0.007 0.977 0.977 +
r4.xlarge 0.126 Ridge 0.099 0.389 0.388 –
r4.2xlarge 0.725 MLP 0.692 0.089 0.085 –  –
r4.4xlarge 3.161 AdaBoost 2.670 0.321 0.285 –
r4.8xlarge 8.448 MLP 6.560 0.398 0.391 –
r4.16xlarge 26.507 MLP 13.310 0.757 0.748 +
p2.xlarge 0.116 LinearRegression 0.105 0.195 0.181 –  –
p2.8xlarge 55.079 MLP 27.525 0.751 0.732 +
p2.16xlarge 86.914 MLP 57.599 0.531 0.492 –
g2.2xlarge 0.9 Lasso 0.9 0 0 –  –
g2.8xlarge 16.048 MLP 11.418 0.411 0.401 –
cg1.4xlarge 2.120 RandomForest 0 1 1 +  +
f1.2xlarge 0.142 MLP 0.102 0.155 0.142 –  –
f1.16xlarge 65.664 MLP 65.393 0 0 –  –
i2.xlarge 2.469 RandomForest 0.802 0.894 0.892 +  +
i2.2xlarge 4.741 AdaBoost 3.224 0.598 0.530 +
i2.4xlarge 11.903 Bagging 6.743 0.673 0.673 +
i2.8xlarge 20.549 MLP 11.261 0.707 0.697 +
i3.large 0.590 ExtraTrees 0.153 0.933 0.933 +  +
i3.xlarge 1.010 RandomForest 0.323 0.898 0.897 +  +
i3.2xlarge 1.949 Bagging 0.802 0.831 0.831 +  +
i3.4xlarge 5.789 MLP 4.281 0.454 0.453 –
i3.8xlarge 17.312 ExtraTrees 6.288 0.868 0.867 +  +
i3.16xlarge 34.811 MLP 13.566 0.851 0.847 +  +
cc2.8xlarge 9.748 MLP 8.623 0.100 0.051 –  –
d2.xlarge 0.242 Lasso 0.242 0 0 –  –
d2.2xlarge 4.871 MLP 4.232 0.207 0.206 –  –
d2.4xlarge 8.198 LinearRegression 7.021 0.263 0.262 –
d2.8xlarge 17.020 MLP 12.643 0.451 0.448 –
h1.4xlarge 12.074 MLP 6.681 0.692 0.692 +
cr1.8xlarge 15.786 MLP 2.073 0.983 0.983 +  +

The last column shows the quality of the model according to its coefficient of determination, which is directly correlated with the other quality metrics. In 
particular, the legend for this column is the following: –– means that the model is very poor (R2   <0.25), – means that the model is poor (0.25 ≤ R2 < 0.5), + 
means that the model is reasonably good (0.5 ≤ R2 < 0.75), and finally ++ means that the model is very good (R2 ≥ 0.75)).
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https://slcswaq0e2.execute-api.us-east-1.amazonaws.com 
/dsawards/predict

This endpoint must be accessed through a POST request, with a 
JSON body including the following parameters:

• type: instance type (required).

• os: instance operating system (required).

• datetime: time desired for the prediction, which must be in the 
format “yyyy-mm-dd hh” (required).

• regions: regions for which a prediction should be returned. A list 
with one or more regions can be specified, and the service will 
return the prediction for all zones in each region. This parameter 
is optional and, if not specified, then all regions will be considered.

An example of a well formed body in the API call would be the 
following:

{
"type" : "c3.xlarge",
"os" : "Linux/UNIX",
"datetime" : "2017-09-13 13",
"regions" : ["us-east-1"]
}
Such a valid request will return a JSON object whose keys are the 

availability zones and the values are the estimated prices. For instance, 
for the previous call:

{
"us-east-1a" : 2.109, "us-east-1b" : 0.155,
"us-east-1c" : 0.155, "us-east-1d" : 0.155,
"us-east-1e" : 0.155, "us-east-1f" : 0.155,
}
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