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Abstract

The analysis of the structure of musical pieces is a task that remains a challenge for Artificial Intelligence, 
especially in the field of Deep Learning. It requires prior identification of the structural boundaries of the 
music pieces, whose structural boundary analysis has recently been studied with unsupervised methods and 
supervised neural networks trained with human annotations. The supervised neural networks that have 
been used in previous studies are Convolutional Neural Networks (CNN) that use Mel-Scaled Log-magnitude 
Spectograms features (MLS), Self-Similarity Matrices (SSM) or Self-Similarity Lag Matrices (SSLM) as inputs. 
In previously published studies, pre-processing is done in different ways using different distance metrics, 
and different audio features are used for computing the inputs, so a generalised pre-processing method for 
calculating model inputs is missing. The objective of this work is to establish a general method to pre-process 
these inputs by comparing the results obtained by taking the inputs calculated from different pooling strategies, 
distance metrics and audio characteristics, also taking into account the computing time to obtain them. We also 
establish the most effective combination of inputs to be delivered to the CNN to provide the most efficient way 
to extract the boundaries of the structure of the music pieces. With an adequate combination of input matrices 
and pooling strategies, we obtain an accuracy F1 of 0.411 that outperforms a current work done under the same 
conditions (same public available dataset for training and testing).
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I. Introduction

Music Information Retrieval (MIR1) is the interdisciplinary 
science for retrieving information from music. MIR is a field of 

research that faces different tasks in automatic music analysis, such as 
pitch tracking, chord estimation, score alignment or music structure 
detection. One of the most active communities and references in MIR 
is the Music Information Retrieval Evaluation eXchange (MIREX2). 
This is the community that every year holds the International Society 
for Music Information Retrieval Conference (ISMIR). Algorithms are 
submitted to be tested in MIREX’s datasets within the different MIR 
tasks. Most of the previous results analyzed and compared in this work 
have been presented in different MIREX campaigns.

The automatic structural analysis or Music Structure Analysis 
(MSA) of music is a very complex challenge that has been studied 

1 https://musicinformationretrieval.com/index.html
2 https://www.music-ir.org/mirex/wiki/MIREX_HOME

in recent years [1], but it has not yet been solved with an adequate 
accuracy that surpasses the analysis performed by musicians or 
specialists. This kind of analysis is only a part of the musical analysis, 
which involves musical aspects like harmony, timbre and tempo, and 
segmentation principles like repetition, homogeneity and novelty 
[2]. This automatic music analysis can be faced starting from music 
representations such as the score of the piece, the MIDI file of the 
piece, or the raw audio file.

In music, form refers to the structure of a musical piece, which 
consists of dividing the musical pieces into small units, starting with 
the motifs, then the phrases, and finally the sections that express a 
musical idea. Boundary detection is the first step that has to be done 
in musical form analysis and must be done before the naming of the 
different segments depending on the similarity between them. This 
last step is named Labelling or Clustering. This task, translated to the 
most common genre in MIREX datasets, the pop genre, would be the 
detection and extraction of the chorus, verse, or introduction of the 
corresponding song. Detecting the boundaries of music pieces consists 
on identifying the transitions where these parts begin and end, a task 
that professional musicians do almost automatically by listening a 
piece of music. This detection of the boundaries in a musical piece 
is based on the Audio Onset Detection task, which is the first step for 
several higher-level music analysis tasks such as beat detection, tempo 
estimation, and transcription.
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This problem can be accomplished with different techniques that 
have in common the need of pre-processing the audio files in order 
to extract the desired audio features and then apply unsupervised 
or supervised methods. There are several studies where this pre-
processing step is made in different ways, so there is not yet a 
generalized input pre-processing method. The currently end-to-end 
best-performing methods use CNNs trained with human annotations. 
The inputs to the CNN are MelScaled Log-magnitude Spectograms 
(MLSs) [3], Self-similarity Lag-Matrices (SSLMs) in combination with 
the MLSs [4], and also combining these matrices with chromas [5].

One of the limitations of these methods is that the analysis and 
results obtained depend largely on the database annotator since there 
can be inconsistencies between different annotators when analyzing 
the same piece. Therefore, these methods are limited to the quality of 
the labels given by the annotators and they cannot outperform them.

This paper deals with the issue of structure detection in music 
pieces. In particular, we study the comparison of different methods 
of boundary detection between the musical sections by means of 
Convolutional Neural Networks. The paper is structured as follows: 
Section II presents an overview of the related work and previous 
studies in which this work is based on. The Self-Similarity Matrices 
and the used datasets are also presented. In Section III, the pre-
processing method of the matrices that will be used as inputs of the 
neural network (NN) is explained. Section IV introduces the database 
used for training, validating and testing, and the labelling process. 
Section V shows the NN structure and the thresholding and peak-
picking strategies and section VI describes the metrics used to test the 
model and exposes the results of the experiments and their comparison 
with previous studies. Finally, section VII presents the discussion and 
section VIII discusses proposals for future lines of work. All code used 
in this paper, including the pre-trained models of every case of study 
in this work, is made publicly available3 and further results are shown 
in the website4.

II. Related Work

Several studies have been done in the field of structure recognition 
in music since Foote introduced the self-similarity matrix (SSM) in 
1999 [6] and later, in 2003, he derived from it the selfsimilarity lag 
matrix (SSLM) [7]. Before the introduction of the SSMs and SSLMs, the 
studies were based on processing spectrograms [8], but in recent years 
it has been demonstrated that SSMs and SSLMs calculated from audio 
features in combination with spectrograms provide better results. We 
describe some previous works of both unsupervised and supervised 
methods which belongs to the MIREX’s task: Music Structure 
Segmentation.

A. Unsupervised Methods
The main idea of most of the unsupervised methods is to extract 

the musical structure of the music pieces but not necessarily the 

3 https://github.com/carlosholivan/MusicBoundariesCNN
4 https://carlosholivan.github.io/publications/2021-boundaries/2021-
boundaries.html

boundaries between the structure sections.

According to Paulus et al. [9], these methods can be summarized 
in three approaches based on: novelty, homogeneity and repetition. 
These approaches are computed with unsupervised Machine Learning 
algorithms such as genetic algorithms (fitness functions), Hidden 
Markov Models (HMM), K-means, Linear Discriminant Analysis 
(NDA), Decision Stump or Checkerboard-like kernels.

The Novelty-based approach consists on the detection of the 
transitions between contrasting parts [1]. This approach is well-
performed using checkerboard-like kernel methods which were 
introduced by Foote in 2000 [10]. These methods have evolved during 
the years and it has been found that multipletemporal-scale kernels, 
as those of Kaiser and Peeters in 2013 [11], outperformed the results 
of previous works by proposing a fusion of the novelty and repetition 
approaches.

The Homogeneity-based approach is based on the identification 
of sections that are consistent with respect to their musical properties 
[1]. These methods use Hidden Markov Models, like Logan and Chu 
[12], Aucouturier and Sandler [13] and Levy and Schandler [14] or 
combinations of SSMs like Traile and McFee [15], and McFee and Bello 
[16].

The Repetition-based approach refers to finding recurring 
patterns. These methods apply a clustering algorithm to the SSMs or 
SSLMs. They are more applicable for labeling the structural parts of 
music pieces rather than precise segmentation which is required by 
boundary detection. Lu et al. in 2004 [17], Paulus and Klapuri in 2006 
[18], Turnbull et al. [19], McFee and Ellis [20], and McCallum [21] are 
examples of this method.

To conclude, we can affirm that unsupervised algorithms are 
very efficient performing the labelling (clustering) part, but not the 
boundaries detection task, which is better performed by supervised 
neural networks which came up in 2014 and are described in section B.

B. Supervised Neural Networks
Supervised neural networks learn from input representations given 

the ground truth, which are the label annotations of the targets (Fig. 1).

Previous studies of boundary detection used Mel-Scaled Log-
magnitude Spectograms (MLS) as the inputs of CNNs [3]. This method 
was based on Audio Onset Detection task [22], which consists on 
finding the starting points of every musically relevant event in an 
audio signal, specifically the beginning of a music note. This task can 
be interpreted as a computer vision problem, like edge detection, but 
applied to spectrograms instead of images with different textures.

Later on, in 2015, Grill and Schlüter improved their previous work 
by adding SSLMs, which yielded to better results [4], and the addition 
of SSLMs with different lag factors to the input of the CNN [5], 
outperforming this method and reaching the best result to date.

In Tables I and II we show a recap of the results of almost all of 
the previous works that have been done in boundary detection using 
both unsupervised and supervised neural networks. Results and 
algorithms nomenclature in Table I have been extracted from MIREX’s 
campaigns of different years. It must be said that the results obtained 

Predictionsraw audio

Database

Neural NetworkPre-Processing

Fig. 1. General scheme of supervised neural networks.
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with unsupervised methods on Table I are not as high as the results 
obtained with supervised neural networks because, as it has been 
mentioned in section A, the main goal of the unsupervised methods is 
not the boundary detection (segmentation) itself but the full structure 
identification (labelling).

C. Self-Similarity Matrices (SSMs)
The Self-Similarity Matrix [2] is a tool not only used in music 

structure analysis but also in time series analysis tasks. In these 
matrices, the different parts of the structure of a music piece can 
be identified as homogeneous regions. This representation of the 
structural elements of music analysis leads this matrix and its 
combination with spectrograms to be the input of almost every model 
described in sections A and B. For this work, this matrix is important 
because music is in itself self-similar, in other words, it is formed by 
similar time series.

Self-Similarity Matrices have been used under the name of 
Recurrence Plot for the analysis of dynamic systems [23], but their 
introduction to the music domain was done by Foote [6] in 1999 and 
since then, there have appeared different techniques for computing 
these matrices. The SSM relies on the concept of self-similarity, which 
is measured by a similarity function that is applied to the audio 

features representation. The similarity between two feature vectors yn 
and ym is a function that can be expressed as Eq. 1 shows. The result is 
a N-square matrix SSM ∈ ℝN×N being N the time dimension:5

 (1)

where n, m ∈ [1, ..., N ].
The similarity function is obtained by the calculation of a distance 

between the two feature vectors y mentioned before. In the literature, 
this distance is usually calculated as the Euclidean distance δeucl or the 
cosine distance δcos:

 (2)

 (3)

where u and v are time series vectors.

Self-Similarity Matrices can be computed from different audio 
features representations, such as MFCCs or chromas, and they can also 
be obtained by combining different frame-level audio features [15]. 
Once the similarity function has been computed for each pair of audio 

5 https://www.music-ir.org/mirex/wiki/<<year>>:MIREX<<year>>_Results - 
headland ”Music Structure Segmentation Results”.

TABLE I. Results of Boundary Detection of Previous Studies for “Full Structure” and “Segmentation” Tasks. Only the Best-performing 
Algorithm in Terms of F-measure of Each Year for A 0.5s Time-window Tolerance Is Shown. The F-measure Is Shown for Different Databases 

(See Sec.D)

Unsupervised Methods

Year5 Autors [Ref.] Algorithm Input Method
F-measure (F1) for Testing Databases

MIREX09 RCW-A RCW-B SALAMI

2009 Paulus & Klapuri [24] PK MFCCs, chromas Fitness function 0.27 - - -

2010 Mauch et al. [25] MND1 MFCCs, Discrete Cepstrum HMM 0.325 0.359 - -

2011 Sargent et al. [26] SB-VRS1 Chords estimation Viterbi 0.231 0.324 - -

2012 Kaiser et al. [27] KSP2 SSM Novelty measure 0.280 0.366 0.289 0.286

2013 McFee & Ellis [20] MP2 MLS Fisher’s Linear Discriminant 0.281 0.355 0.278 0.317

2014 Nieto & Bello [28] NB1 MFCCs + chromas Checkerboard-like kernel 0.289 0.352 0.269 0.299

2015 Cannam et al. [29] CC1 Timbre-type histograms HMM 0.197 0.224 0.203 0.213

2016 Nieto [30] ON2
Constant-Q Transform

Spectrogram
Linear Discriminant Analysis 0.259 0.381 0.255 0.299

2017 Cannam et al. [29] CC1 Timbre-type histograms HMM 0.201 0.228 0.192 0.212

Supervised Neural Networks

2014 Schlüter et al. [31] SUG1 MLS CNN 0.434 0.546 0.438 0.529

2015 Grill & Schlüter [32] GS1 MLS + SSLMs CNN 0.523 0.697 0.506 0.541

TABLE II. Results of Previous Works in Boundary Detection Task for 0.5S Time-window Tolerance. It Is Only Showed the Best F-measure Result 
of Each Reference for Each Database

Unsupervised Methods

Year Autors [Ref.] Input Method Train Set
F-measure (F1) for Testing Databases

MIREX09 RCW-A RCW-B SALAMI

2007 Turnbull et al. [19] MFCCs, chromas, spectrogram Boosted Decision Stump - - - 0.378 -

2011 Sargent et al. [34] MFCCs, chromas Viterbi - - - 0.356 -

Supervised Neural Networks

2014 Ullrich et. al [22] MLS CNN Private - - - 0.465

2015 Grill & Schlüter [4] MLS + SSLMs CNN Private - - - 0.523

2015 Grill & Schlüter [5] MLS + PCPs + SSLMs CNN Private - - - 0.508

2017 Hadria & Peeters [35] MLS + SSLMs CNN SALAMI - - - 0.291
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feature vectors and the SSM has been calculated, we can filter the 
SSM by applying thresholding techniques, smoothing or invariance 
transposition. The SSM can also be obtained with other techniques 
such as clustering methods as Serra et al. proposed [33], where the 
SSM is obtained by applying the k-nn algorithm.

After Foote in 1999 defined the SSM, in 2003, Goto [7] defined a 
variant of the SSM which is known as the Self-Similarity Lag Matrix 
(SSLM). The SSLM is a matrix that represents the similarities between 
low-level features of one point in time and points in the past, up to 
a certain lag time. This representation makes possible to plot the 
relations between past events and their repetitions in the future. 
Some approaches calculate this SSLM after computing the SSM or the 
recurrence plot as we show in Eq. 4:

 (4)

with i = 1, ..., N , j = 1, ..., L and k = i + j − 2modulus (N)

The dimensions of this matrix are not N × N as the SSM, but they 
are N × L, being L the lag time factor. That means that the SSLM is a 
non-square matrix: SSLM ∈ ℝN×L.

The choice of the type of audio features representation for 
computing the SSMs or SSLMs, and the choice of using SSMs or SSLMs 
is one of the most important steps when solving a MIR task and has to 
be studied depending on the issue we we want to face.

D. Datasets
Previous works had been tested in the annual Music Information 

Retrieval Evaluation eXchange (MIREX [36]), which is a framework 
for evaluating music information retrieval algorithms. 

The first dataset of the MIREX campaign for the structure 
segmentation task was the MIREX09 dataset, consisting on a collection 
of The Beatles’ songs plus another smaller dataset6. Beatles dataset 
have 2 annotation versions, one is Paulus Beatles or Beatles-TUT7 

dataset and the second one is the Isophonic Beatles or Beatles-ISO8 

dataset. The second MIREX dataset was MIREX10, formed by the 
RWC [37] dataset. This dataset has 2 annotation versions; RWC-A9 of 
QUAERO project which is the one which corresponds to MIREX10 and 
RWC-B10 [38], which is the original annotated version following the 
annotation guidelines established by Bimbot el al. [39].

A few years later, the MIREX12 dataset provided a greater variety 
of songs than the MIREX10 [40]. MIREX12 is a dataset formed by 
the ”Structural Analysis of Large Amounts of Music Information” 
(SALAMI11) dataset which has evolved in its more recent version, the 
SALAMI 2.0 database. The analysis of MIREX structure segmentation 
task was published in 2012 [41]. Our work uses the publicly available 
SALAMI 2.0 dataset.

III. Audio Processing

This work is based on the previous works of Schuler, Grill et al. [3], 
[4] who propose a pre-proscessing method to obtain the SSLMs from 
MFCCs features. We will extend these works by calculating the SSLMs 
from chroma features and applying also the Euclidean distance that 
has not been considered in preliminary studies, to compute the SSLMs 
in order to give a comparison and find the best-performing input to 
the NN model.

6 http://ifs.tuwien.ac.at/mir/audiosegmentation.html
7 http://www.cs.tut.fi/sgn/arg/paulus/beatles_sections_TUT.zip
8 http://isophonics.net/content/reference-annotations
9 http://musicdata.gforge.inria.fr
10 http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation
11 https://ddmal.music.mcgill.ca/research/SALAMI/

A. Mel Spectrogram
The first step of the pre-processing part is to extract the 

audio features. To do that, we first compute the the Short-Time-
FourierTransform (STFT) with a Hanning window of 46ms (2048 
samples at 44.1kHz sample rate) and an overlap of 50% as Grill et al. 
proposed [4]. Then, we obtain a mel-scaled filterbank of 80 triangular 
filters from 80Hz to 16kHz and we scale logarithmically the amplitude 
magnitudes to obtain the mel-spectrogram (MLS). We used the librosa 
library [42] to compute the mel-spectrogram. After obtaining the MLS, 
we apply a max-pooling of p = 6 in the temporal dimension to give the 
Neural Network a manageable size input. The size of the MLS matrix 
is P × N with P being the number of frequency bins (that are equal to 
the number of triangular filters) and N the number of time frames. We 
define xi with i = 1 ... N as the i-th frame of the MLS.

B. Self-Similarity Lag Matrix From MFCCs
The method that we used to generate the SSLMs12 is the same 

method that Grill and Schluter used in [4] and [5], which in turn 
derives from Serra et al. [43].

The first step after computing each frame mel-spectrogram xi is to 
pad a vector Φ with noise of -70dB with a duration of L frames at the 
beginning of the mel-spectrogram.

 (5)

where Φ is a matrix of size L × P whose elements are equal to -70dB.

Then, a max-pool of a factor of p1 is done in the time dimension as 
shown in Eq. 6.

 (6)

After that, we apply a Discrete Cosine Transform of Type II to each 
frame omitting the first element.

 (7)

where P are the number of mel-bands.

Now we stack the time frames by a factor m so we obtain 
the time series in Eq. 8. The resulting  vector has dimensions  
[(P − 1) · m] × [(N + L)/p1] where N is the number of time frames 
before the max-pooling and L the lag factor in frames.

 (8)

The final SSLM matrix is obtained by calculating a distance 
between the vectors . In our work, we use two different distance 
metrics: the Euclidean distance and the cosine distance. This will allow 
us to make a comparison between them and conclude which SSLM 
performs better.

Therefore, the distance between two vectors  and  using the 
distance metric δ is

 (9)

where δ is the distance metric as defined in Eqs. 2 and 3.

Then, we compute an equalization factor εi,l with a quantile κ of the 
distances  for 

 (10)

We now remove the first L/p lag bins in the time dimension of the 
distances matrix D and in the equalization factor matrix ε, and we 
apply Eq. 6 with max-pooling factor p2. Finally we obtain the SSLM 
applying Eq. 11.

12 https://github.com/carlosholivan/SelfSimilarityMatrices
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 (11)

where .

Once the SSLM has been obtained, we need to pad some noise to 
the begin and end of the SSLM because the labels which are used to 
train our model will be given to the NN as Gaussians (see section IV), 
so the first and last labels need information in their left and right sides 
respectively. We add the noise to the begin and end of the SSLM and 
MLS by padding them with γ = 50 time frames of pink noise at the 
beginning and end of the MLS matrix. Then we then normalized each 
frequency band to zero mean and unit variance for MLS and each lag 
band for the SSLMs. Note also that if there are some time frames that 
have exactly the same values, the cosine distance would give a NAN 
(not-a-number) value. We avoid this by converting all this NAN values 
into zero as the last step of the SSLM computation.

C. Self-Similarity Lag Matrix From Chromas
The process of computing the SSLM from chroma features is similar 

to the method explained in section B. The difference here is that 
instead of starting with padding the mel-spectrogram in Eq. 5, we pad 
the STFT. After applying the max-pooling in Eq. 6, we compute the 
chroma filters instead of computing the DCT in Eq. 7. The rest of the 
process is the same as described in section B.

All the values of the parameters used to obtaining the SelfSimilarity 
Matrices are summarized in Table III. In addition to the Euclidean 
and cosine metrics, and MFCCs and chromas audio features, we 
will compare two pooling strategies. The first one is to make a max-
pooling of factor p1 = 6 to the STFT (from MLS calculation), and to the 
Chromas or MFCCs for the SSLMs computation, as it is described in 
Eq. 6. The other pooling strategy is the one showed in Fig. 2, where we 
first do a pooling of p1 = 2 and then a pooling of p2 = 3 once the SSLMs 
are obtained. We denote these pooling variants as 6pool and 2pool3 
respectively. The total time for processing all the SSLMs (MFCCs and 
cosine distance) was a factor or 4 faster for 6pool than 2pool3 because 
by applying a higher padding factor in Eq. 6 the size of the matrices 
D and ε is much lower so the calculation of these matrices take more 
time but it also implies a resolution loss that can affect the accuracy of 
the model as [4] remarks.

TABLE III. Parameter Final Values

Parameter Symbol Value Units

sampling rate sr 44100 Hz

window size w 46 ms

overlap - 50 %

hop length h 23 ms

lag L 14 s

pooling factor 6pool p 6 -

2pool3
p1 2 -

p2 3 -

stacking parameter m 2 -

quantile κ 0.1 -

final padding γ 50 frames

The general schema of the pre-processing block is depicted in Fig. 2.

IV. Dataset

The algorithm was trained, validated and tested on a subset of the 
Structural Analysis of Large Amounts of Music Information (SALAMI) 
dataset [44]. SALAMI dataset contains 1048 double annotated pieces 
from which we could obtain 1006 pieces since the datasest does not 
provide the audio files due to copyright restrictions. For the training of 
the model, we used the text files of labels from annotator 1 and for the 
songs that were not annotated by annotator 1, we use the same text 
file but from annotator 2.

It is important to highlight that, as described in [35], previous 
works such as [3], [4] and [5] use a private non-accessible dataset of 
733 songs from which 633 pieces were used for training and 100 for 
validation. Therefore, we re-implemented the work presented in [4] 
but we trained it in our dataset composed by only public SALAMI 
pieces and annotations. We split our 1006 SALAMI audio tracks into 

Chromas MFCCs

Audio signal

Chroma filters

Self-Similarity
Lag Matrix

from Chromas
(SSLM)

Ri,j

[301 x time frames]

Self-Similarity
Lag Matrix

from MFCCs
(SSLM)

Ri,j

[301 x time frames]

Mel-Spectrogram
(MLS)

Xi

[80 x time frames]

DCT-II
Xi

Max-pooling in
time axis by a
factor of p2 = 6 

STFT

Padding noise matrix ϕ
𝑥𝑥i

Mel-Spectrogram
Xi

Stack a factor of 𝑚𝑚
Xi

Compute Distance (cosine or Euclidean) δ
Di,j

Equalize with quantile κ
εi,j

Max-pooling in time axis by a factor p1 = 2
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~

^

Fig. 2. General block diagram of the pre-processing block in Fig. Each 
background color contains the steps that are necessary to compute each of 
the inputs: MLS (green), SSLM from Chromas (orange) and SSLM from MFCCs 
(blue). The red background in the max-pooling blocks refers to the 2 variants 
done in this work: 2pool3 is the one showed in the scheme, while 6pool is 
computed by applying the max-pooling of factor 6 in the first red block and 
removing the second red block of the scheme.
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65%, 15% and 20%, resulting in 650, 150 and 206 pieces for training, 
validation and testing respectively.

A. Labelling Process
As explained in [3], it is necessary to transform the labels of the 

SALAMI text files into Gaussian functions so that the Neural Network 
can be trained correctly. We first set the center values of the Gaussian 
functions by transforming the labels in seconds into time frames as 
showed in Eq. 12 constructing the vector y1 which contains the center 
of the gaussians and has its dimension equal to the number of labels 
in the text file. In Eq. 12, labeli are the labels in seconds extracted from 
SALAMI text file “functions” and p1, p2, h, sr and γ are defined in Table 
III.

 (12)

Then, we apply a gaussian function with standard deviation σ = 0.1  
and μi equal to each label value in Eq.12. In Eq.13 we show the 
expression of the gaussians of the labels.

 (13)

with

 (14)

where μi is a vector of  frame from .

To train the model, we removed the first tag from each text file 
due to the proximity of the first two tags in almost every file and the 
uselessness of the Neural Network identifying the beginning of the 
file. It’s also worth mentioning the fact that we have resampled all the 
songs in the SALAMI database at a single sampling rate of 44100Hz as 
showed in Table III.

V. Model

Our work and current methods that tackle the problem of 
boundary detection in MSA use neural network-based models that 
were originally developed for image processing tasks, in particular 
Convolutional Neural Networks (CNN) [45], [46], [47], [48]. The 
model developed in this work for boundary detection is shown in Fig. 
3. Once the matrices of the pre-processing step are obtained, they are 
padded and normalized to form the input of a Convolutional Neural 
Network (CNN). The obtained predictions are post-processed with a 
peak-picking and threshold algorithm to obtain the final predictions.

A. Convolutional Neural Network
The model proposed in this paper is nearly the same than the 

model proposed in [3] and [4], so we could compare the results and 

make a comparison with different input strategies as Cohen [35] did. 
However, we take into account more inputs combinations and with 
high and low dimensions in order to see the better inputs combination 
for the model.

The model is composed by a CNN whose relevant parameters are 
shown in Table IV. The difference between this model and the model 
proposed in [3] and [4] is that our final two layers are not dense layers 
but convolutional layers in the time dimension because we do not crop 
the inputs and get a single probability value at the output, but we give 
the Neural Network the whole matrix and we obtain a time prediction 
curve at the output. The general schema of the CNN is shown in Fig. 4.

The parameters of the CNN model have been chosen according 
to previous literature [4] for a fair comparison in the study of how 
different input features affect the performance of the MSA task. The 
changes that have been done from the state-of-the-art model rely 
on adding the dilation parameter that we use in the layers of our 
model, and we also changed the last layer of our implementation in 
comparison with previous literature models. This is because previous 
studies passed a segment of the SSLM trough the CNN while we pass 
the entire SSLM to it. The last layer of our implementation outputs one 
feature map that is passed trough a Sigmoid function which outputs 
the boundary probability of each time frame of the entire music piece, 
so the output of the model is a vector of length equal to the time 
frames of the input. This differs from the literature models where the 
output is the boundary probability of the segmented part of the input.

CNN Model

Predictions

Peak-Picking and Thresholding

Final Predictions

SSLM
[301 x time frames]

SSLM
[301 x time frames]

MLS
[0 x time frames]

Padding 50 time frames
MLS: -70dB at the beginning and end

SSLM: 0 at the beginning and end

Normalize to zero mean
and unit variance

MLS: the frequency bands

SSLM: the lag bins

Fig. 3. General block diagram of the Neural Network block in Fig. 1.

Concatenation

MLS

SSLM

Conv1
output maps: 32
kernel size: 5 x 7

Conv2
output maps: 64
kernel size: 3 x 5

Conv3
output maps: 128
kernel size: 1 x 1

Conv4
output maps: 1

kernel size: 1 x 1
MaxPooling

kernel size: 5 x 3

Fig. 4. Schema of the Convolutional Neural Network implemented. The main parameters are presented in Table IV.
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TABLE IV. CNN Architecture Parameters of the Schema Presented in 
Fig. 4

Layer Parameters

Convolution 1 + Leaky ReLU

output feature maps: 32
kernel size: 5 x 7
stride: 1 x 1
padding: (5-1)/2 x (7-1)/2

Max-Pooling
kernel size: 5 x 3
stride: 5 x 1
padding: 1 x 1

Convolution 2 + Leaky ReLU

output feature maps: 64
kernel size: 3 x 5
stride: 1 x 1
padding: (3-1)/2 x (5-1)*3/2
dilation: 1 x 3

Convolution 3 + Leaky ReLU

output feature maps: 128
kernel size: 1 x 1
stride: 1 x 1
padding: 0 x 0

Convolution 4 + Sigmoid

output feature maps: 1
kernel size: 1 x 1
stride: 1 x 1
padding: 0 x 0

B. Training Parameters
We trained our CNN with Binary Cross Entropy or BCEwithLogitsLoss 

in Pytorch [49] as the loss function which in Pytorch implementation 
includes a Sigmoid activation function in the last layer of the Neural 
Network, a learning rate of 0.001 and Adam optimizer [50]. We perform 
early-stopping during training to determine the best-performing 
model. The SSLMs and MLS have to be passed to the GPU one by one 
because they have different lengths, which means that 1 song is passed 
forward and backward through the NN at once. However, to get more 
robust gradients and a more stable optimization process, the optimizer 
is executed with the average gradients of batchs of 10 songs. We could 
say that we use a batch size of 1 in terms of GPUs calls but a batch size 
of 10 in terms of the training. The models were trained on a GTX 980 
Ti Nvidia GPU and we used TensorboardX [51] to graph the loss and 
F-score of training and validation.

C. Peak-Picking
Peak-picking consists on selecting the peaks of the output signal of 

the CNN that will be identified as boundaries of the different parts of 
the song. Each boundary on the output signal is considered true when 
no other boundary is detected within 6 seconds. The application of a 
threshold helps us to discriminate boundary values that are not higher 
than an optimum threshold. We calculate the optimum threshold for 
our experiments by computing the average F1 in our validation set for 
all possible threshold values in the range [0, 1] and then we select the 
highest value. Therefore, the optimum threshold is the value between 
[0, 1] for which the average F1 is higher in our validation set. It is 
reasonable to realise that the optimum threshold value may vary when 
training our model with the different combination of inputs that we 
show in Table VI. When we train our model with isolated inputs (see 
Table V) we compute the threshold with the MLS but we do not vary 
it when testing SSLMs trainings. We vary the threshold value when 
we train our model with different inputs combinations in order to 
optimize the each case of study and give the best-performing method 
(see Table VI). In Fig. 5, we set a thresold of 0.205 for the models using 
only the MLS as input and for the rest of the models we used the 
values indicated in Table VI. From the optimum threshold calculation, 
we can observe that almost all optimum threshold values for each 
input variant belong to [2:05; 2:6] Fig. 5 shows Recall, Precision and 

F-score values (see Section A) of the testing dataset evaluated for each 
possible threshold value.

TABLE V. Results of Boundaries Estimation According to Different 
Pooling Strategies, Distances and Audio Features for ± 0:5s and a 

Threshold of 0.205

Tolerance: ± 0:5s and Threshold: 0.205

Input Epochs P R F1

6pool

MLS 180 0.501 0.359 0.389

 180 0.472 0.318 0.361

180 0.477 0.311 0.355

180 0.560 0.228 0.297

180 0.508 0.254 0.312

2pool3
120 0.422 0.369 0.375

120 0.418 0.354 0.366

Previous works

2pool3
MLS  - 0.555 0.458 0.465

- - - 0.430

P
R
F
optimum threshold

0.2

0.1 0.2 0.3 0.4 0.5

0.3

0.4

0.5

0.6

0.7

0.8

threshold

Fig. 5. Threshold calculation through MLS test after 180 epochs of training 
with MLS.

VI. Experiments and Results

A. Evaluation Metrics
MIREX’s campaings use two evaluation measures which areMedian 

Deviation and Hit Rate. The Hit Rate (aslo called F-score or F-measure) 
is denoted by Fβ, where β = 1 is the measure most frequently used in 
previous works. Nieto et al. [52] set a value of β = 0.58, but the truth is 
that F1 continues being the most used metric in MIREX works. We will 
later give our results for both β values. The Hit Rate score F1 is normally 
evaluated for ± 0:5s and ± 3s time-window tolerances, but in recent 
works most of the results are given only for ± 0:5s tolerance which is 
the most restrictive one. We test our model with MIREX algoritm [53] 
which give us the Precision, Recall and F-measure parameters.

 (15)

 (16)
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Where:

• TP: True Positives. Estimated events of a given class that start and 
end at the same temporal positions as reference events of the same 
class, taking into account a tolerance time-window.

• FP: False Positives. Estimated events of a given class that start and 
end at temporal positions where no reference events of the same 
class does, taking into account a tolerance time-window.

• FN: False Negatives. Reference events of a given class that start 
and end at temporal positions where no estimated events of the 
same class does, taking into account a tolerance timewindow.

B. Results

1. Isolated Inputs: Distances, Audio Features and Pooling 
Strategies

We first trained the Neural Network with each input matrix (see 
Fig. 3) separately in order to know what input performs better. We 
trained the model using the MLS and SSLMs obtained from MFCCs 
and Chromas and applying Euclidean and cosine distances, and we 
also give the results for both of the pooling strategies mentioned 
before, 6pool (lower resolution) and 2pool3 (higher resolution). As 
mentioned in section IV, we removed the first label of the SALAMI text 
files corresponding to 0.0s label. Results in terms of F score, Precision 
and Recall are showed in Table V. Note that the results showed from 
previous works used a different threshold value.

The best-performing input when training our model with isolated 
inputs is the MLS which has a F1 value of 0.389 (see Table V). Taking 
only into account the 6pool pooling strategy, regarding the SSLMs 
computed from audio features (MFCCs and chromas) we found that 
the best-performing SSLMs are the ones that are computed from the 
MFCCs with more than a 5% difference with the SSLMs computed 
from chromas.

According to the distance measures with which we compute the 
SSLMs, we found that there is not a high impact on the results when 
computing the SSLMs with Euclidean or cosine distances. The F1 
difference between the SSLMs computed with Euclidean or cosine 
distances is not higher than 1%. Overall, the best-performing SSLM for 
the 6pool pooling strategy is the  with a F1 value of 0.361, 
which is a 2.8% less than the MLS F! value of 0.389.

In view of the results in Table V, we can affirm that doing a max-
pooling of 2, then computing the SSLMs and doing another max-
pooling of 3 afterwards (2pool3) slightly improves the results but it 
does not make a high impact in the performance. The best-performing 
(2pool3) SSLM, the  has a F1 value of 0.375, which is less 
than a 2% of the F1 value of 0.361 for the same SSLM but computed 
with the 6pool pooling strategy. This procedure not only takes much 
more time to compute the SSLMs but also the training takes also much 
more time and it does not perform better results in terms of F-score.

In Fig. 6 we show an example of the boundaries detection results for 
some of our input variants on the MLS and SSLMs. We obtained lower 
results than [4] but higher results than [35] who tried to re-implement 
[4]. The reasons for this difference could be that the database used by 
Grill and Schlüter [4] to train their model had 733 non-public pieces. 
Cohen and Peeters [35], as in our work, trained their model only with 
pieces from the SALAMI database, so that our results can be compared 
with theirs, since we trained, validated and tested our Neuronal 
Network with the same database (although they had 732 SALAMI 
pieces and we had 1006).

2. Inputs Combination
With the higher results in Table V we make a combination of them 

as in [4] and later in [35]. A summary of our results can be found in 
Table VI.

The inputs combination that performs the best in [35] was  
MLS + (  + ) for which F1 = 0.291. We overcome 
that result for the same combination of inputs obtaining they 
obtained a F score F1 = 0.404. In spite that, previous works [4] says 
that cosine distance performs better, we proof that in our model the 
Euclidean distance gives us better results. We also found that the best-
performing inputs combination is MLS +(  +  
+  + ) for which F1 = 0.411. There is not a 
huge improvement in the F-measure obtained with this combination 
in comparison with the results obtained with the combination of the 
MLS with two SSLMs, but it is still our best result.

VII. Discussion

We can affirm that the best-performing input, when training the 
model with isolated inputs, is the Mel Spectrogram, which has a F1 
equal to 0.389, more than a 2% higher than the next bestperforming 
input respresentation, the , whose F1 is equal to 0.361 
(Table V).

TABLE VI. Results of Boundary Estimation With Tolerance ± 0:5S and Optimum Threshold in Terms of F-score, Precision and Recall. Note That 
Results form Previous Works Did Not Use the Same Threshold Value

Tolerance: ± 0:5s with 2pool3 matrices

Input Train Database Epochs Thresh. P R F1(std) F0:58

MLS + SALAMI 140 0.24 0.441 0.415 0.402 (0.163) 0.414

MLS + SALAMI 140 0.24 0.428 0.407 0.396 (0.158) 0.404

MLS +(  + ) SALAMI 100 0.24 0.465 0.400 0.407 (0.160) 0.419

MLS +(  + ) SALAMI 100 0.24 0.444 0.416 0.404 (0.166) 0.417

MLS +(  + ) SALAMI 100 0.24 0.445 0.421 0.409 (0.173) 0.416

MLS +(  + ) SALAMI 100 0.24 0.457 0.396 0.400 (0.157) 0.420

MLS +(  +  +  + ) SALAMI 100 0.26 0.526 0.374 0.411 (0.169) 0.451

End-to-end previous works

MLS +  [4] (2015) Private - 0.646 0.484 0.523 0.596

MLS +  [35] (2017) SALAMI - 0.279 0.300 0.273 (0.132) -

MLS + (  + ) [35] (2017) SALAMI - 0.470 0.225 0.291 (0.120) -
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We have also demonstrated that by computing a max-pooling of 
factor 6 at the beginning of the process not only takes much less pre-
processing time but also the training of the Neural Network is faster 
and it does not affect the results as much as it could be expected. As 
an example, the  obtained with the 6pool method has an 
F1 value of 0.361 versus the 2pool3 method for the same input which 
F1 is equal to 0.375.

Despite the fact that we could not replicate some previous studies of 
Ullrich et al. [3] and Grill et al. [4] which used nearly the same model 
that the one which we described in our work, we outperform the 
results in Cohen et al. [35] work, who also tried to re-implement the 
model described in the previous literature. There has to be highlighted 
the fact that previous studies of Ullrich et al. [3] and Grill et al. [4] had 
at their disposition a private dataset of 733 pieces that they used for 
training the model, and in this paper the model has been trained only 
with the public available dataset of SALAMI 2.0.

Adding more inputs to the model does not improve the results in 
a significant way and it is very time consuming, specially in our last 
case of study where we take 4 SSLMs in combination with the Mel 
Spectrogram, which has a F1 value of 0.411 in contrast with the F1 

value of the MLS +  case which is 0.402, so the difference 
is less than 1%. This leads us to suggest that the use of another neural 
network architecture that only uses the Mel spectrogram with a SSLM 
could outperform the current results.

The results obtained in this work improve those presented 
previously with the same database. However, the accuracy in obtaining 
the boundaries in musical pieces is relatively low and, to some extent, 
difficult to use. This makes it necessary, on the one hand, to continue 
studying different methods that allow a correct structural analysis of 
music and, on the other hand, to obtain databases that are properly 
labeled and contain a high number of musical pieces. In any case, the 
results obtained are promising and allow us to adequately set out the 
bases for future work.

VIII.   Conclusions

In this work we have developed a comparative study to determine 
the most efficient way to compute the inputs to a convolutional 
neural network to identify boundaries in musical pieces, combining 
different methods of generating SSLM matrices. In order to make the 
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(a) CNN predictions on MLS.

(b) CNN predictions on SSLM calculated with MFCCs and Euclidean distance with 2pool3 (best-performance SSLM
input in terms of F-measure). In this case F1 = 0.486 for a ± 0.5s tolerance.

(c) CNN predictions on SSLM calculated with MFCCs and cosine distance with 2pool3. In this case F1 = 0.686 for a ± 0.5s tolerance.

(d) CNN predictions on SSLM from MFCCs with cosine distance for model MLS + ( SSLM MFCCs
euclidean+ SSLM MFCCs

cosine ) .
In this case F1 = 0.75 for a ±  0.5s tolerance.

Fig. 6. Boundaries predictions using CNN on different inputs obtained from the “Live at LaBoca on 2007-09-28” of DayDrug corresponding to the 1358 song of 
SALAMI 2.0 database. The ground truth from SALAMI annotations are the gaussians in red, the model predictions is the white curve and the threshold is the 
horizontal yellow line. Note that the prediction have been rescaled in order to plot them on the MLS and SSLMs images. All these images have been padded 
according to what is explained in the previous paragraphs and then normalized to zero mean and unit variance.
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comparison and analyse the optimal way to perform the boundary 
detection task in MSA, different audio features and different pooling 
strategies have been employed, as well as the combination of different 
inputs to the CNN.

With an adequate combination of input matrices and pooling 
strategies, we obtain an accuracy F1 of 0.411 that outperforms the current 
one obtained under the same conditions (same input data and same 
datasets for training and testing). In spite of the fact that the best result 
is given by combining four SSLMs and the MLS, the difference in the 
F-measure value between our best result and experiments which require 
less input data and whose training time is lower, is not as high as what 
it could be expected. We can also affirm that current methods that have 
been used to date to face music boundary detection do not perform well, 
so MSA task needs further research because it is not solved yet.

Future work should use new Neural Network architectures that have 
not been used to solve MSA yet. Architectures employed in language 
models from Natural Language Processing such as Transformers can 
lead to out-perform the actual results that are presented in this work 
due to the memory improvement that they provide in comparison 
with Long-Short Term Memory Networks (LSTMs). In the case of 
Transformers, the self-attention mechanism can help the model to 
better-process the SSMs and SSLMs matrices. Further research, as it 
has been mentioned before, should also take into account to perform 
some data augmentation on the current public available datasets in 
order to have more data to train deep Neural Network models. Data 
augmentation, if done, should be done with pitch-shifting or by adding 
Gaussian noise to the inputs, but they should not use rotation or scaling 
techniques which affect the time distances of the input representations 
(horizontal axes) and thus, the structure of the music pieces.
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