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Abstract

Software Maintainability is an indispensable factor to acclaim for the quality of particular software. It describes 
the ease to perform several maintenance activities to make a software adaptable to the modified environment. 
The availability & growing popularity of a wide range of Machine Learning (ML) algorithms for data 
analysis further provides the motivation for predicting this maintainability. However, an extensive analysis 
& comparison of various ML based Boosting Algorithms (BAs) for Software Maintainability Prediction (SMP) 
has not been made yet. Therefore, the current study analyzes and compares five different BAs, i.e., AdaBoost, 
GBM, XGB, LightGBM, and CatBoost, for SMP using open-source datasets. Performance of the propounded 
prediction models has been evaluated using Root Mean Square Error (RMSE), Mean Magnitude of Relative Error 
(MMRE), Pred(0.25), Pred(0.30), & Pred(0.75) as prediction accuracy measures followed by a non-parametric 
statistical test and a post hoc analysis to account for the differences in the performances of various BAs. Based 
on the residual errors obtained, it was observed that GBM is the best performer, followed by LightGBM for 
RMSE, whereas, in the case of MMRE, XGB performed the best for six out of the seven datasets, i.e., for 85.71% 
of the total datasets by providing minimum values for MMRE, ranging from 0.90 to 3.82. Further, on applying 
the statistical test and on performing the post hoc analysis, it was found that significant differences exist in 
the performance of different BAs and, XGB and CatBoost outperformed all other BAs for MMRE. Lastly, a 
comparison of BAs with four other ML algorithms has also been made to bring out BAs superiority over other 
algorithms. This study would open new doors for the software developers for carrying out comparatively more 
precise predictions well in time and hence reduce the overall maintenance costs.
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I. Introduction

SOFTWARE Maintenance, as described in the IEEE Standard for 
Software Maintenance [1], refers to any modification in a software 

product after its delivery for improving the performance or any other 
attribute, for correcting the faults or for adapting the product according 
to the modified environment. However, software maintenance 
is not an easy activity because of the complexity that exists in the 
maintenance behavior of various software systems. Also, a handsome 
amount of cost is incurred while maintaining software since software 
maintenance is a high-priced affair. A significant proportion of the 
comprehensive cost of software during the Software Development Life 
Cycle (SDLC) is spent in the maintenance phase alone since the cost 
of maintenance keeps on accumulating with each phase of SDLC. It 
has been observed that only 30-40% of the resources, including money, 
time, and effort, are utilized in the development phase, whereas the 
remaining 60-70% is used for the maintenance activities [1].

There exists a detailed standard for software quality known as 
ISO/IEC 25010:2011. It describes eight product quality characteristics, 
where each characteristic further comprises various sub-related 
characteristics [2]. Fig. 1 depicts these eight quality characteristics, 
along with the sub characteristics. Of all the quality characteristics, 
maintainability is considered for evaluation in the current study since 
it is one of the most significant characteristics. 

In recent times, any software’s quality has come out as an essential 
parameter to account for the software’s success. In turn, software 
quality depends on two main types of attributes: categorized into 
internal and external categories. Internal attributes like coupling, 
cohesion, abstraction, inheritance, etc. are directly-measured from the 
source code during the initial stages of SDLC at the developer level 
and are hidden from the users. However, external attributes such as 
durability, understandability, robustness, modifiability, analyzability, 
etc. are visible to the users and are, in turn, measured indirectly with 
the help of different internal attributes [3]. The external attributes may 
also be measured through developers’ opinions who write the source 
code for the open-source software by organizing surveys. However, 
such surveys involve high costs and are also very time consuming and 
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may produce biased opinions due to the subjectiveness involved in the 
external quality attributes. Contrarily, measurement of internal quality 
attributes using Object-Oriented (OO) metric suites has been validated 
by many researchers for predicting maintainability keeping in view 
the relationship that exists between the OO metrics & maintainability 
[4]–[9]. Hence, the current study also uses these OO metrics for 
Software Maintainability Prediction (SMP).

Software maintainability these days has become one of the 
essential external attributes of software, which further forms a basis 
of research for many researchers working in the fields related to 
software engineering. Software maintainability can be described 
as the extent to which a particular software system can be changed 
concerning the number of Lines of Code (LOC). The researchers’ 
fundamental goal is to develop such models for the prediction that are 
proficient in predicting any software’s maintainability accurately and 
well in advance. This further ensures optimum utilization of resources, 
including not only money but also the effort and time put in by the 
development team. Further, the prediction is not the only goal here, but 
the predictions made should also have high prediction accuracies with 
the least possible precision errors. Usually, predictions are made with 
historical data of particular software for which the prediction model 
is being developed, including both internal and external attributes. A 
qualitative description of correlation among the internal & external 
attributes is also found for SMP [3].
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Fig. 1. Model for quality of software product.

In order to estimate the internal quality attributes of software, 
different metrics have been used such as Afferent Couplings (Ca), 
Coupling between Object classes (CBO), Efferent Couplings (Ce), & 
Inheritance Coupling (IC) for coupling; Cohesion among the Methods 
of a class (CAM), Lack of Cohesion in Methods (LCOM), & Lack of 

Cohesion among the Methods of a particular Class (LCOM3) for 
cohesion; Depth of Inheritance Tree (DIT), Number of Children (NOC), 
& Measure of Functional Abstraction (MFA) for inheritance; Weighted 
Methods per Class (WMC), & Average Method Complexity (AMC) 
for complexity; Lines of Code (LOC), & Number of Public Methods 
(NPM) for size; Response for a Class (RFC) for cardinality; Data Access 
Metric (DAM) for encapsulation; Measure of Aggregation (MOA) for 
composition, etc. as compiled in [10], [11]. Software metrics are used 
to monitor and improve various processes & products in software 
engineering. These metrics measure various facets of software, such as 
the design documents or the source code. However, there exist different 
software metrics based on whether the paradigm is procedural or OO. 
As per the existing literature, software systems have been analyzed 
from three perspectives, i.e., the architecture of the system, its design, 
and the code for SMP [4]. However, out of these, code-level analysis 
for SMP is the most widely used perspective. 

A significant breakthrough for the software industry comes with the 
advent of Machine Learning (ML). ML [12] is a discipline of artificial 
intelligence that pertains to the automatic learning capability of 
different systems and the improvisation of the efficiency based on their 
past experiences without any explicit programming or learning. The 
primary focus of ML is developing such programs capable of accessing 
the data and utilizing it to learn for themselves. The ML process 
initiates with some data or observations to identify certain patterns 
in that data, which can further be utilized to make efficient decisions 
in the future based on the initial data provided. The most important 
goal of ML is to make the computers capable of automatically learning 
without human beings’ intervention or any kind of external assistance 
and act accordingly. A wide variety of ML algorithms are currently 
available for use, broadly classified into two major categories, i.e., 
supervised (classification & regression) and unsupervised (clustering 
and association) ML algorithms. Other categories of ML algorithms 
include semi-supervised and reinforcement learning. Nowadays, 
ML finds its applications in almost every sphere of life, including 
web search, computational biology, finance, e-commerce, software 
engineering, robotics, social networks, debugging, disease diagnosis, 
stock analysis, marketing analysis, and prediction, etc. Several ML 
algorithms have been implemented in the fields mentioned above.

As an example, considering the stock analysis field, Sharma et al. 
[13] in 2018 analyzed ten different supervised classifiers, including 
logistic regression, C4.5, random forest, etc. for mining of stock 
data using ICICI bank’s data with logistic regression outperforming 
the other classifiers; Zhong and Enke [14], in 2019, presented a 
hybrid of deep neural networks with traditional Artificial Neural 
Networks (ANN) for predicting the return direction for the stock 
market on a daily basis considering 60 economic & financial features. 
Rasekhschaffe and Jones [15] in the same year described the primary 
concepts and the use of ML algorithms in stock selection along with 
the use of few ensemble models for forecasting stock returns while 
minimizing the risk of over-fitting. Further, considering the disease 
diagnosis field, Kaur and Sharma [16], in 2019, extensively reviewed 
different supervised & nature-inspired ML techniques for mining and 
analyzing the diagnosis of various psychological disorders using a 
systematic 3-D search space methodology covering the diagnosis, the 
disorder & the classification algorithms; and Reddy et al. [17], in 2020, 
proposed an effective hybrid of adaptive Genetic Algorithm (GA) & 
fuzzy logic approach (AGAFL) to help the doctors in the early and 
timely diagnosis of the heart diseases. Again in 2020, Sharma and Kaur 
[18] conducted a detailed review of the role of several meta-heuristic 
algorithms based on nature-inspired rules in solving the problem of 
selecting relevant features for a better classification in different fields; 
disease diagnosis being the most assessed area. Afterward, in the field 
of finance, Xiaomeng and Shuliang [19] in 2019, came up with an 
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improved & efficient ML algorithm, i.e., MLIA for the prediction of 
credit risk in the market of internet finance. Ghoddusi et al. [20] in the 
same year performed a comprehensive review of various applications 
of ML in the area of finance or energy economics, including areas like 
demand forecasting, data processing, risk management, etc., where 
support vector machines, ANN, and GA stood out to be the most 
widely used techniques in the concerned field.

Coming back to the field of software maintainability, over the past 
few years, researchers have developed different ML, evolutionary, & 
statistical ensemble models for SMP based on the code level metrics 
intended to predict software maintainability in the most accurate 
possible manner. Some of the individual ML models developed in the 
past include General Regression Neural Network (GRNN), Multilayer 
Perceptron (MLP) [21], Feed Forward 3-Layer Back Propagation 
Network (FF3LBPN) & Group Method of Data Handling (GMDH) [7]. 
Models based on nature-inspired algorithms include Evolutionary 
Algorithms (EA) [22], GA, Functional Link ANN (FLANN), Clonal 
Selection Algorithm (CSA) & Particle Swarm Optimization (PSO) 
[23]. Further, the ensemble models developed to date include bagging 
[8], [24] & boosting, particularly Adaptive Boosting (AdaBoost) [24]. 
Detailed information about existing models for SMP is provided in the 
related work section.

Further, ML based boosting techniques have already been explored 
& implemented successfully in various fields of software engineering 
comprising software defect prediction [25], software reliability 
modeling [26] & software fault proneness [27]. However, it is evident 
from the past studies that none of the researchers has made extensive 
use of existing Boosting Algorithms (BAs) for SMP apart from one 
particular BA, i.e., AdaBoost, which still finds a mention in one or 
two studies [24] for predicting maintainability. Therefore, this study 
endeavors to predict software maintainability using various BAs and 
perform an extensive analysis of these BAs for SMP. Boosting is a 
homogeneous ML ensemble technique proposed by Freund in 1995 
[28]. In boosting, an ensemble of classifiers is formed incrementally on 
adding one classifier at a point in time utilizing the weighted averages 
so that the base estimators or the weak learners can be converted into 
strong learners before generating the final output. Unlike other ML 
algorithms, BAs aim to improvise the prediction capability by training a 
series of weak learners, each of which compensates for the weaknesses 
in its preceding learner. BAs are usually intended to reduce the variance 
and single estimators’ bias resulting in a much more stable model. 
Various BAs are available today that can be used for solving complex 
and data-driven real-world problems. A significant advantage of using 
BAs is that these algorithms provide immense powers to the basic ML 
algorithms, such as Decision Tree (DT), Random Forest (RF), regression, 
MLP, etc. to improve the prediction accuracy outperforming the basic 
models. This happens as BAs combine several weak hypotheses of the 
base estimator that are moderately correct with an objective to derive 
a notably accurate hypothesis. BAs take several rounds of operation, 
after which a noteworthy improvement in the accuracy of the training 
data is achieved. In every round of BAs, samples in the training set are 
re-weighed, & the base estimator is run on the re-weighted training 
samples. The BAs main motive is to drive the focus of the weak base 
estimator towards the error-prone samples. This ultimately leads 
to the final hypothesis, which is the weak hypotheses’ weighted 
vote. Subsequently, the BAs major strengths include their easy 
interpretability, availability of feature selection implicitly, resilience 
towards over-fitting, and strong predictive capability.

Not only this, another significant motivation behind choosing 
boosting algorithms to conduct this study comes from the effectiveness 
of the tree boosting that fits the additive tree models having a high 
ability of representation [29]. This is possible due to the adaptive 
neighborhood’s property, which enables tree boosting use varying 

degrees for flexibility of different regions in the input space. Hence, 
it is robust to the dimensionality problem as it performs the feature 
selection automatically by capturing interactions that are high in 
order without getting broken. Further, suppose we talk in particular 
about eXtreme Gradient Boosting (XGB) [29], [30]. In that case, it will 
learn better structures of trees since these structures determine the 
neighborhoods & are highly adaptive to the data. XGB uses smart 
penalization for an individual tree, which can then have a different 
number of terminal nodes apart from shrinkage. The benefit of using 
penalization lies in the fact that all the leaves’ weight is not shrunk by 
a common factor. Instead, the weights estimated through fewer pieces 
of evidence in the data are shrunk even more heavily. Additionally, 
XGB uses Newton boosting, unlike gradient boosting, & also includes 
a parameter for randomization to further de-correlate individual trees, 
which results in the reduction of the overall variance. Also, XGB has 
a better learning capability. It uses high order approximation at each 
iteration of the optimization problem & considers the tradeoff between 
the bias & the variance while fitting the model.

The current study utilizes open-source datasets to analyze various 
BAs for SMP. The underlying idea behind the selection of open-source 
datasets for this study was the easy availability of these datasets 
through various online platforms such as SourceForge & GitHub and 
the need for generalization and validation of the proposed models 
for other software in the industry. The study is conducted on a set of 
seven empirically collected open-source datasets, namely, Abdera, Ivy, 
jEdit, jTDS, Log4j, Poi, & Rave. A collection of seventeen OO software 
metrics has been used as the independent variables. In contrast, the 
maintenance effort (dependent variable) used here is ‘Change’, which 
is equal to the number of lines that have been changed per class in the 
maintenance history. Original datasets are pre-processed to remove 
those rows where maintenance effort is equal to zero. Feature scaling 
using MinMaxScaler and feature selection using the Recursive Feature 
Elimination (RFE) technique is also performed for improving the 
quality of data. Five different BAs, i.e., AdaBoost, Gradient Boosting 
(GBM), XGB, LightGBM, and Categorical Boosting (CatBoost), are 
selected for developing various prediction models for each dataset. 

Models are validated using the ten-fold cross-validation technique, 
and the capability of these models is assessed using Root Mean Square 
Error (RMSE), Mean Magnitude of Relative Error (MMRE), Pred(0.25), 
Pred(0.30) & Pred(0.75) taken as the prediction accuracy measures. 
Friedman test to rank the performance of different BAs used in the 
study and the Nemenyi test for conducting the post hoc analysis are 
also performed based on the MMRE. Lastly, a comparison of results 
achieved on applying the BAs with the results obtained on applying 
four other ML algorithms (apart from the BAs), viz., DT, MLP, 
bagging, and Elastic - Net (EN) is also made. Results show that BAs 
can effectively be applied for SMP, which opens new ways for the 
researchers to explore these algorithms further. This study’s worth lies 
in the fact that predicting maintainability has become a crucial point of 
consideration for the software developers throughout the SDLC while 
developing any software. Also, the software has become a necessity 
these days since many tasks are becoming automated each day, and 
this conversion requires some software to be developed. Therefore, the 
software industry’s importance and, in turn, the software is growing 
leaps and bounds with each passing day. Since the software is being 
developed, it needs to be maintained also, but as discussed earlier, a 
handsome amount of cost is required to be spent in the maintenance 
phase. Thus, some techniques or models are required for predicting 
software maintainability sufficiently in advance. The current study 
fulfills this requirement by providing several such models using ML 
based BAs for a precise prediction of maintainability in good time 
to help the software developers utilize the resources, such as the 
money, time & effort judiciously. This would further bring down the 
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maintenance costs associated with any software development process 
to a considerable extent. 

The primary objectives of the current study can be summarized as 
Research Questions (RQs).

RQ1: Whether BAs can be applied for SMP?

RQ2: Which BA performs the best amongst different BAs based 
on various prediction accuracy measures for different open-source 
datasets?

RQ3: What is the comparative performance of various BAs during 
post hoc analysis when MMRE is taken as an accuracy measure?

RQ4: What is the comparison between the results obtained on 
applying various ML algorithms (other than the BAs) and the 
results obtained on implementing BAs?

The remaining paper that follows is organized as - Section II 
describes the related work carried out in the current study field. Section 
III discusses the datasets, independent variables, & the dependent 
variables that have been used in the current study. Section IV describes 
the complete research methodology, including pre-processing of 
datasets, feature scaling & feature selection techniques, description of 
BAs used, cross-validation technique, prediction accuracy measures, 
statistical test, and post hoc analysis. Results and discussions are 
described in Section V, whereas Section VI highlights the threats to 
validity. Lastly, Section VII closes the paper with conclusions & future 
directions.

II. Related Work

SMP has become a principal aspect to ascertain any software’s 
quality in the industry over the last few years. Predicting this 
maintainability in initial stages of development is the need of the hour 
for efficient and optimum development of any software system. Over 
the years, substantial research is already being done in the field of 
SMP by various researchers. They have developed several prediction 
models using different ML, hybrid, nature-inspired, & other suitable 
techniques. A summary of these prediction models’ details, including 
the information regarding the types of datasets, metrics suites, ML 
techniques, validation methods, and the prediction accuracy measures 
used to compare the performances of the developed prediction 
models, is provided in Table I. The observed accuracy measures 
prove that a strong relationship exists between the OO metrics & the 
maintainability.

Li and Henry [31], in 1993, studied the validation of various 
OO metrics with the maintenance for the first time using Quality 
Evaluation System (QUES) & User Interface Management System 
(UIMS) to prove the existence of a powerful relation among OO metrics 
and the maintainability. Since then, many researchers have been 
working in the area of SMP for QUES and UIMS datasets using OO 
metrics [32]–[38]. Later, Malhotra and Chug [39], in 2012, proposed 
three ML algorithms, i.e., GMDH, Probabilistic NN (PNN), & GAs, 
using the Gaussian activation function to predict maintainability & 
compared their performance with other existing models such as ANN. 
Results showed that the GMDH model is comparatively more precise 
& more accurate than the existing models. Again in 2012, Dubey et 
al. [21] proposed using a robust & adaptive MLP NN model to predict 
maintainability. MLP, when compared with other models, i.e., WNN 
& GRNN, was found to be more superior. In another study conducted 
by Ahmed and Al-Jamini in 2013 [3], fuzzy logic based prediction 
models, i.e., Mamdani Fuzzy Inference Engine & T-S, were developed 
& compared for SMP. In comparison, the Mamdani-based prediction 
model gave the most accurate results of all. In 2014, Malhotra and 
Chug [7] evaluated the GMDH technique’s effectiveness for predicting 

maintainability by comparing it with the other two techniques, 
i.e., FF3LBPN & GRNN. It was observed that the GMDH technique 
performed the best with minimum error & high precision.

In another study, Malhotra and Chug [22] suggested using EAs for 
SMP using ten-fold cross-validation. The model’s performance was 
analyzed with the help of MRE, MMRE & Pred(q), and later compared 
with other statistical and ML algorithms. It was found that EAs can 
effectively predict maintainability with more accuracy and precision 
as compared to other traditional methods. In 2015, Elish et al. [24] 
presented three empiric studies for SMP using different homogeneous 
& heterogeneous ensemble methods. They evaluated and compared 
three of the heterogeneous ensemble methods to predict maintenance 
effort, i.e., Weighted-based (WT), Average-based (AVG), and Best in 
Training-based (BT) ensemble methods. Resultantly, ensemble models 
came out to be the best when compared to other individual models. 
All the ensemble and individual models were outperformed by the 
BT ensemble method. In 2015 only, Kumar et al. [6] suggested using 
class-level OO software metrics in predicting maintainability with the 
help of a Neuro-GA for developing the prediction model for QUES 
and UIMS datasets. Results indicated a successful implementation of 
Neuro-GA for SMP by generating promising results.

Kumar and Rath [23], in 2016, suggested the use of three Artificial 
Intelligence (AI) techniques, i.e., FLANN-GA, FLANN-PSO, and 
FLANN-CSA, to develop models for predicting maintainability along 
with a few feature reduction techniques. Best & improved results are 
obtained using feature reduction with FLANN-Genetic. In 2016 again, 
Chug and Malhotra [9] studied the effect of several ML techniques like 
GRNN, GMDH, Support Vector Machines (SVM), M5Rules, etc., while 
predicting the maintainability of seven different open-source software. 
Results were analyzed for Mean Absolute Error (MAE), RMSE & 
Pred(q) as the prediction accuracy measures, and it was found that the 
proposed ML techniques successfully predicted the maintainability 
for open source software & GMDH and GRNN with Genetic Adaptive 
Learning (GGAL) performed better than other techniques. In another 
study conducted by Kumar and Rath [40] in 2017, a Neuro-Fuzzy 
approach - a hybrid of NN & fuzzy logic was proposed for SMP with 
Principal Component Analysis (PCA) & Rough Set Analysis (RSA) for 
selecting suitable features. Results showed that the Neuro-Fuzzy model 
successfully predicts the software maintainability of OO systems with 
a further improvement in accuracy using feature selection techniques 
and parallel computing concepts. In 2018, Baskar and Chandrasekar 
[41] proved the superiority of the Neuro-PSO (NPSO) model over 
three other models, namely GMDH, GRNN, & PNN for SMP using 
MRE, MMRE, & Pred(q) as the accuracy measures. Again in 2018, 
Alsolai et al. [8] tried to assess the effectiveness of bagging models, i.e., 
the ensemble models for SMP & proved that there was a noteworthy 
enhancement in the performance using the bagging models. Further, 
if combined with k-Nearest Neighbour (k-NN) as the base model, the 
bagging model outperformed all the other models resulting in high 
accuracy.

In 2019, Jha et al. [42] put forth a deep learning approach (LSTM) 
for SMP using large datasets and 29 OO metrics. They compared the 
proposed approach with the results of five other ML algorithms, viz. 
ridge regression, DT, quantile regression forest, SVM, & PCA, to further 
affirm the LSTM approach’s superiority to other models. In the same 
year, Wang et al. [43] introduced a fuzzy network-based approach for 
SMP using UIMS & QUES datasets, resulting in an improvement in 
transparency equal to 71.3% and an improvement in accuracy beyond 
11.0%. Recently, in 2020, Gupta and Chug [44] described the cross-
project technique for predicting maintainability based on the RMSE 
values leading to an improvement equal to 13.09% in the overall 
performance of the predictive models. Again, Gupta and Chug [45] 
in the same year presented an enhanced RF approach to predict 
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TABLE I. Summarized Details of Different Prediction Models Developed by Researchers for SMP

Study Dataset Metric Suite Prediction 
Model

Validation 
Method

Prediction Accuracy
Measure/s (PAMs) Values for PAMs

Li & Henry 
[31] 

UIMS & QUES C&K metric suite MLR - -

Dagnipar 
& Jahnke 
[32]

Fujaba-UML (FUML) 
& Dynamic Object 

Browser (dobs)

Size-NIM & TNOS, 
Inheritance-NOC & 
AID, Cohesion-LCC

Regression 
Model

LOO
R-square adjusted (between 

61.60% & 99.70%)
Between 61.60 & 99.70 %

Thwin & 
Quah [33]

QUES

DIT, MPC,
RFC, LCOM, DAC, 
WMC, NOM, SIZE1 

& SIZE2.

WNN, GRNN
10-cross-
validation

R squared, Correlation 
coefficient r

R2=WNN-0.56067 & GRNN-
0.71139, r= WNN-0.7609805 & 

GRNN-0.8580623

Koten & 
Gray [34]

UIMS & QUES

DIT, NOC, MPC,
RFC, LCOM, DAC, 

WMC, NOM, SIZE1,
SIZE2

Linear 
Regression (LR), 

BNM

10-cross 
validation

Absolute Residual (Ab.Res.), 
MRE, MMRE, Pred(q)

Using BNM, for UIMS, MMRE 
= 0.972, pred(0.25) = 0.446, 

pred(0.30) = 0.469
For QUES, MMRE = 0.452, 

pred(0.25) = 0.391, pred(0.30) = 
0.430

Aggarwal 
et al. [35]

UIMS & QUES
LCOM, NOC, DIT, 
WMC, RFC, DAC, 

MPC, NOM
ANN - MARE, MRE MARE=0.265, MRE=0.09

Zhou & 
Leung [36]

UIMS &
QUES

WMC, DIT, RFC,
NOC, LCOM, MPC, 

DAC, NOM & 
SIZE2 & SIZE1

MLR, ANN, RT, 
SVR, MARS

LOO cross-
validation

Residual (Res.), Absolute 
Residual Error (ARE), MRE, 

MMRE, Pred(q)

Using MARS, for UIMS, 
MMRE=1.86, pred(0.25)=0.28, 

pred(0.30)=0.28,
For QUES, MMRE=0.32, 

pred(0.25)=0.48, pred(0.30)=0.59

Elish & 
Elish [37]

UIMS & QUES

C&K - WMC, DIT,
NOC, RFC, & 

LCOM; Li & Henry 
- MPC, DAC, NOM, 
& SIZE2; & SIZE1

TreeNet 
classifier

LOO cross-
validation

MMRE, MRE, Pred(q), 
underestimation, 
overestimation

For UIMS, MMRE=1.57, 
pred(0.25)=0.31, pred(0.30)=0.41,

For QUES, MMRE=0.42, 
pred(0.25)=0.58, pred(0.30)=0.65

Kaur et al. 
[38]

UIMS & QUES
LCOM, DIT, WMC, 
NOC, RFC, DAC, 

MPC, NOM

ANN, FIS, 
ANFIS -

MARE, MRE, R-value, 
p-value

MARE=36.8% (feed forward 
ANN), 25.5% (GRNN), 30.8% (FIS), 

24.2% (ANFIS)

Malhotra 
& Chug 
[39]

UIMS & QUES

WMC, DIT, NOC, 
RFC, LCOM, MPC, 
DAC, NOM, Size1, 

Size2

GMDH, GA, 
PNN

Hold-out
MRE, MMRE, Pred(q), 

R-Square, p-value

For GMDH, MMRE=0.210, 
pred(0.25)=0.69, pred(0.30)=0.722, 

pred(0.75)=0.944,
For GA, MMRE=0.220, 

pred(0.25)=0.66, pred(0.30)=0.722, 
pred(0.75)=0.972,

For PNN, MMRE=0.230, 
pred(0.25)=0.68, pred(0.30)=0.75, 

pred(0.75)=0.944,

Dubey et 
al. [21]

UIMS & QUES

DIT, NOC, RFC, 
WMC, LCOM, 

MPC, DAC, NOM, 
Size1, Size2

MLP NN -
R-square, r, MAE, min 

Absolute Error (AE), max AE

Using MLP. for UIMS, R2=0.8274, 
r=0.946, MAE=17.86, for QUES, 
R2=0.988, r=0.976, MAE=5.264

Ahmed & 
Al-Jamini 
[3]

UIMS & QUES

DIT, NOC, MPC, 
RFC, LCOM, DAC, 

WMC, NOM, SIZE1, 
SIZE2

Fuzzy logic-
based models 
- Mamdani 

Fuzzy Inference 
Engine & T-S

-

MRE, Normalized Root 
Mean square Error 

(NRMSE), MMRE, Pred(q)

For UIMS, MMRE=0.53, 
NRMSE=0.21, pred(0.25)=0.30, 

pred(0.30)=0.35, for QUES, 
MMRE=0.27, NRMSE=0.16, 

pred(0.25)=0.52, pred(0.30)=0.62

Malhotra 
& Chug 
[7]

FLMS & EASY

WMC, DIT, NOC, 
RFC, LCOM, MPC, 
DAC, NOM, SIZE1, 

SIZE2

GRNN, 
FF3LBPNN & 

GMDH
Hold-out

MRE, MMRE, Pred(q), 
Overestimate, Underestimate

For GRNN, MARE=0.5476, 
pred(0.25)=0.44, pred(0.30)=0.47, 
for FF3LBPNN, MARE=0.4578, 

pred(0.25)=0.51, pred(0.30)=0.59, 
for GMDH, MARE=0.3566, 

pred(0.25)=0.61, pred(0.30)=0.71

Malhotra 
& Chug 
[22]

Apache Poi & Rave
WMC, DIT, NOC, 
CBO, RFC, LCOM, 

LOC 

A set of 14 
statistical 

regression, 
traditional 

ML & hybrid 
algorithms

10-fold cross-
validation

MRE, MMRE, Pred(0.25), 
Pred(0.30)

EAs achieved accuracy in the 
range of 22-25%
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Study Dataset Metric Suite Prediction 
Model

Validation 
Method

Prediction Accuracy
Measure/s (PAMs) Values for PAMs

Elish et al. 
[24]

UIMS & QUES 
for Regression 

Problem

WMC, DIT, NOC, 
RFC, LCOM, MPC, 
DAC, NOM, SIZE1, 

SIZE2

Different 
homogeneous & 
heterogeneous 

ensemble 
methods (AVG, 

WT & BT 
ensemble)

Ten-fold cross-
validation

MMRE, Standard Deviation 
Magnitude of Relative Error 

(StdMRE), Pred(q)

Using BT, for UIMS, MMRE=0.97, 
StdMRE=1.61, pred(0.3)=25, for 

QUES, MMRE=0.41, StdMRE=0.32, 
pred(0.3)=60

Kumar et al. 
[6]

QUES & UIMS

WMC, NOC, DIT, 
RFC, LCOM, MPC, 
DAC, NOM, SIZE1, 

SIZE2

Neuro-GA

10-fold (QUES) 
and 5-fold 

(UIMS) cross-
validation

MAE, MARE, RMSE, 
Standard Error of the Mean 

(SEM)

MMRE=0.3155 (UIMS), 0.3775 
(QUES)

Kumar & 
Rath [23]

QUES & UIMS

WMC, DIT, NOC, 
LCOM, RFC, MPC, 
DAC, NOM, SIZE1, 

SIZE2

FLANN-GA, 
FLANN-PSO, 
FLANN-CSA

QUES-10-
fold cross-
validation, 

UIMS-5-fold 
cross-

validation

MAE, MMRE, SEM, True 
Error (e), Estimate of True 

Error (ê)

Using FGA, MMRE=0.2881 
(UIMS), 0.3889 (QUES), using 
FPSO, MMRE=0.3238 (UIMS), 
0.3650 (QUES), using FCSA, 

MMRE=0.2843 (UIMS), 0.4469 
(QUES)

Chug & 
Malhotra [9]

7 Open Source 
Software 
(Drumkit, 

OpenCV, Abdera, 
Ivy, Log4j, jEdit, 

JUnit)

WMC, DIT, NOC, 
RFC, DAM, MOA, 
MFA, CAM, AMC, 

CBO, LCOM, 
LCOM3, NPM, Ca, 

Ce, IC, LOC

Thirteen 
different ML 

classifiers like 
LR, M5Rules, 

GMDH, GRNN, 
SVM, PNN, etc.

Ten-fold cross-
validation

MAE, RMSE, Pred(q)
Pred(0.25) > 60% in all cases using 
different ML techniques, GGAL & 
GMDH superior of all techniques

Kumar & 
Rath [40]

UIMS & QUES

DIT, WMC,RFC, 
DAC,LCOM, 
NOC,MPC, 

NOM,SIZE1, SIZE2

Neuro-Fuzzy 
Approach 
& Parallel 

Computing 
concept

Five-fold cross 
validation

MAE, MARE, MMRE, SEM, 
True Error (e), Estimate of 

True Error (ê)

MMRE=0.2826 (UIMS), 0.3375 
(QUES)

Baskar & 
Chandrasekar 
[41]

QUES & UIMS

DIT, WMC, NOC, 
CBO, LCOM, MPC, 
RFC, DAC, NOM, 

Size1, Size2

NPSO -
MRE, MMRE, Prediction 

(Pred(q))

MaxMRE=2.02547, 
MMRE=0.2931, pred(0.25)=0.2998, 

pred(0.75)=0.5612

Alsolai [8] QUES

WMC, DIT, NOC, 
RFC, LCOM, MPC, 
DAC, NOM, SIZE2, 

SIZE1

Individual 
Models (RT, 
MLP, k-NN, 
M5Rules) & 
a bagging 

ensemble model

10-fold cross-
validation

MRE, MMRE, Pred(0.25), 
Pred(0.30), Standard 

Deviation of Absolute 
Residuals (SD. Ab.Res.)

Using bagging ensemble 
models, for RT, MMRE = 0.3, 

pred(0.25)=0.6, pred(0.30)=0.7, for 
MLP, MMRE=0.2, pred(0.25)=0.7, 

pred(0.30)=0.8, for k-NN, 
MMRE=0.1, pred(0.25)=0.9, 
pred(0.30)=0.9, for M5Rules, 
MMRE= 0.3, pred(0.25)=0.5, 

pred(0.30)=0.6

Wang et al. 
[43]

UIMS & QUES

DIT, NOC, MPC, 
RFC, LCOM, DAC, 

WMC, NOM, SIZE2, 
SIZE1

Fuzzy network - MMRE, Transparency (TI) Best MMRE=0.443, best TI=1

Gupta & 
Chug [44]

QUES & UIMS

DAC, DIT, LCOM, 
MPC, NOC, NOM, 
RFC, SIZE1, SIZE2, 

WMC

The Cross-
Project 

technique using 
19 different 
regression 

models

10-fold cross-
validation

RMSE
Without CPSMP, Average 
RMSE=82.31, with CPSMP, 

Average RMSE=71.53

Gupta & 
Chug [45]

QUES & UIMS

DAC, DIT, LCOM, 
MPC, NOC, NOM, 
RFC, SIZE1, SIZE2, 

WMC

RF with three 
different feature 

selection 
techniques

10-fold cross-
validation

R2 For QUES, R2=0.9207; for UIMS, 
R2=0.9907
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maintainability by combining RF algorithm with three different feature 
selection methods, i.e., chi-squared, RF, & linear correlation using R2 
as the accuracy estimator. Results show a remarkable improvement in 
the R2 values using the enhanced RF approach compared to the basic 
existent RF approach. Further, Gupta and Chug [46] also propounded 
an effective utilization of Least Squares SVM (LS-SVM) in predicting 
maintainability by deriving notable values of MAE, RMSE, & MMRE 
on using LS-SVM.

It is observable from Table I and from the discussion of various 
studies conducted in the field of SMP that many researchers have 
already proposed a vast number of prediction models for SMP to 
date. However, most of them have used only the publicly available 
traditional Li and Henry datasets [31] for conducting their research 
rather than use open-source datasets. It was found that only two of 
the studies have used open-source datasets [9], [22]. Also, none of the 
researchers has made extensive use of ensemble methods, particularly 
the boosting techniques with any kind of dataset, to predict software 
maintainability apart from a few who considered ensemble models for 
SMP in their study [8], [24]. Hence, to overcome the above-identified 
gaps of the existing studies and due to the motivation gained through 
the availability and effectiveness of various BAs as discussed in the 
Introduction, the current study attempts to conduct an extensive 
analysis of BAs for SMP using open-source datasets.

III. Research Methodology 

This section presents a detailed elucidation of the seven empirically 
collected open-source datasets used in this study and the process of 
collecting them. The independent and dependent variables chosen for 
the current study are also described in this section. A careful attempt 
is made while selecting the independent variables. All the possible and 
relevant design-related attributes of the OO paradigm, like abstraction, 
inheritance, complexity, coupling, and cohesion, are covered to 

sincerely analyze BAs capabilities for SMP. A collection of metrics 
picked up from different suites proposed by various researchers is 
selected, including the famous Chidamber & Kemerer (C&K) metrics 
suite [47]. However, due to some shortcomings encountered in the 
C&K metrics suite as identified by Malhotra and Chug [48], such 
as it does not contain any metric to measure the extent of database 
handling and also its inability to account for the structural complexity 
that exists in any software; two more metric suites are also considered, 
Henderson-Sellers [49] and Bansiya & Davis [50]. In totality, a set of 
seventeen OO metrics covering all the three metric suites has been 
used while conducting this study, as compiled in Table II.

The dependent variable used here is ‘Change,’ defined in respect 
to the number of lines in the source code that were added, deleted, or 
modified after delivering the final product to the customer. Further, 
as stated in Section I, there are two types of software attributes, i.e., 
internal and external. Internal attributes like coupling, cohesion, etc. 
can directly be measured by the developers during different SDLC 
stages. In contrast, external attributes like maintainability need to 
be measured indirectly using the metrics calculated for the internal 
attributes. In this study, an attempt has been made to measure 
an external attribute, i.e., maintainability (measured through the 
dependent variable ‘Change’) based on internal attributes by finding 
a correlation between different OO metrics & the dependent variable, 
developing various SMP models using several different BAs. 

The overall implementation for the current study has been 
performed in Python 3 using Jupyter Notebook 5.7.8 platform. An 
overview of the research methodology being adopted for this study 
is depicted in Fig. 2. This section is further subdivided into different 
sub-sections. 

A. Datasets and Data Collection
In this study, seven empirically collected datasets, i.e., Abdera, Ivy, 

jEdit, jTDS, Log4j, Apache Poi, and Apache Rave from various open-

TABLE II. Independent Variables Used in the Study

Metrics Definition

WMC (Weighted Methods per Class)
WMC measures the static complexity of all the methods, which is the summation of McCabe’s cyclomatic 
complexity of those methods. 

DIT (Depth of Inheritance Tree) DIT measures a class’s position in the inheritance hierarchy, root class having this value equal to zero.

NOC (Number of Children) The number of direct subclasses of a class is measured using the NOC metric. 

CBO (Coupling between Object classes) The number of classes coupled to a particular class is measured through CBO.

RFC (Response for a Class)
The cardinality of the response set of a class is measured through RFC, which is nothing but the sum of the 
number of local methods & number of methods called by these methods.

LCOM (Lack of Cohesion in Methods) The number of disjoint sets of local methods is measured through the LCOM metric.

Ca (Afferent Couplings) The number of classes that call a particular class is counted by the Ca metric.

Ce (Efferent Couplings) The number of other classes that are called by a particular class is counted by the Ce metric.

NPM (Number of Public Methods) The number of public methods of a class is counted by the NPM metric.
LCOM3 (Lack of Cohesion among the 
Methods of a particular Class)

LCOM3 metric is used to overcome specific disadvantages of the LCOM metric.

LOC (Lines of Code) The number of code lines, excluding comments & blank lines, is measured using the LOC metric.

DAM (Data Access Metrics)
The ratio of the sum of private & protected methods of a particular class to the total number of attributes defined 
for that class is calculated by the DAM metric.

MOA (Measure of Aggregation) The percentage of user-defined data in a particular class is calculated by the MOA metric. 

MFA (Measure of Functional 
Abstraction)

The ratio of inherited methods to total methods in a class is calculated by the MFA metric.

CAM (Cohesion among the Methods of 
a class)

The similarity between different methods of a particular class is computed by the CAM metric.

IC (Inheritance Coupling) The number of parent classes to which a particular class is coupled is counted by the IC metric.

AMC (Average Method Complexity) The average value for McCabe’s cyclomatic complexity of all the methods is calculated by the AMC metric.
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source repositories such as SourceForge and GitHub are analyzed 
using BAs for SMP. The details and description of various datasets 
follow:

• Abdera (685 classes) - Abdera is an atom parser generator that is 
used to build functionally a high in performance Internet for both 
the ends, i.e., the client and the server, by producing such designed 
documents which are high in quality. (https://github.com/apache/
abdera)

• Ivy (613 classes) - Ivy is an assembly of various programs and open 
source libraries, which allow the broadcast of information using 
text messages along with a mechanism of subscription, which 
is usually based on the regular expressions. (https://github.com/
apache/ant-ivy)

• jEdit (416 classes) - jEdit is one of the text editors written using 
Java. It can run on any of the operating systems and is customizable 
to a great extent. It is also extendable with the help of macros that 
are written in different scripting languages. (https://sourceforge.
net/projects/jedit/)

• jTDS (64 classes) - jTDS is a free and open-source JDBC driver 
for Sybase ASE & Microsoft SQL Server written purely in Java, 
which is based on FreeTDS. Also, it is the fastest production-ready 
JDBC driver that exists currently. (http://jtds.sourceforge.net/)

• Log4j (350 classes) - Log4j is a software that allows control over 
log statements by the developer to decide which statements can be 
output having arbitrary granularity. It can entirely be configured 
at runtime with the help of externally configurable files. (https://
github.com/apache/log4j)

• Poi (939 classes) - Poi stands for “Poor Obfuscation Implementation”. 
It is a free open source library written in Java which is used to read 
and write confusing and hard to interpret document formats of 
Microsoft Office such as Word, Excel, PowerPoint, etc. (http://poi.
apache.org/) 

• Rave (671 classes) - Rave is a kind of mash-up supporting different 
platforms since it is highly customizable. It is a light-weighted and 
web-based data integration software written in Java that manages 
various social gadgets by hosting different widgets. It works by 
combining the data and functionality of two or even more than two 
sources for creating some new services. (https://rave.apache.org/)

B. Independent Variables
A set of seventeen different OO design metrics taken from different 

metrics suites proposed by several researchers in their studies [47], 
[49], [50] has been selected as independent variables of the current 
study to analyze different BAs for SMP. This set is chosen, keeping 
in mind that all the essential design-related facets of an OO paradigm 
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Fig. 2. Research methodology.
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like complexity, abstraction, inheritance, coupling, and cohesion are 
covered. A glimpse of all the selected OO metrics, along with the 
description, can be viewed in Table II.

C. Dependent Variable
The dependent variable used here is the maintenance effort, which 

is the ‘Change’ measured as the number of LOCs for each of the classes 
that were added, deleted, or modified in the new version compared 
with the older version of particular software. This comparison is made 
between two successive versions of the same software where the 
new version is always the next version, by finding out the common 
classes of both the versions & subsequently finding the exact count 
of the lines that have been changed for each class. Each addition or 
deletion concerning a line is counted as a single change. In contrast, 
any modification is considered as two changes since, in modification, 
every deletion is followed by a corresponding addition. Different data 
points are generated for each class by calculating each of the OO 
metrics’ values and then combining them with the corresponding 
values of Change made in a particular class.

Further, the details of different open source systems used here, 
including the version, size (number of classes), and the date of release, 
are provided in Table III.

TABLE III. Details of Different Open Source Systems Used

Software Version Size Date of Release
Abdera 1.1.2 - 1.1.3 685 classes 15th January 2011 - 21st December 2012

Ivy 2.2.0 - 2.3.0 613 classes 13th June 2012 - 19th August 2015

jEdit 5.1.0 - 5.2.0 416 classes 28th July 2013 - 05th February 2015

jTDS 1.2.8 - 1.3.1 64 classes 08th June 2013

Log4j 1.2.16 - 1.2.17 350 classes 06th April 2010 - 06th May 2012

Poi 3.9 -3.10 939 classes 03rd December 2012 - 08th February 2014

Rave 0.21.1 - 0.22 671 classes 03rd May 2013 - 10th July 2013

D. Pre-processing of the Datasets
Pre-processing is one of the data mining techniques used for 

transforming raw real-world data into an easy to understand 
format resolving various issues such as noise (presence of outliers), 
inconsistency (discrepancy of codes or names), incompleteness 
(missing attribute values), lack of particular trend and error-proneness 
in the original datasets. While calculating the dependent variable 
during this study, a comparison between the old and new versions 
of all the datasets was made. A Java-based data mining tool for 
calculating the C&K Java metrics and several other metrics, namely, 
CKJM extended (http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/), has been 
used for empirical data collection. This tool processes the compiled 
Java files through their byte code & then calculates 19 different size & 
structure metrics for software. The results in the form of the metrics 
calculated for each class are displayed on the standard output or are 
saved in a particular file. The class-wise OO metrics (independent 
variables) for the older version, for example, for version 2.2.0 of the 
Ivy dataset, were collected on processing the jar file of that version 
through CKJM extended tool. 

Further, classes common to both the versions, i.e., old and new, 
were extracted. Those classes added in the new version or deleted from 
the old version were plainly discarded. Both the library and interface 
classes were not included in this study. Further, those classes where 
the value of Change was zero were again excluded while considering 
the study’s datasets. A graphical representation for the percentage 
reduction achieved for all the seven datasets is provided in Fig. 3.

After pre-processing, comparable classes for both versions were 
received. Afterward, a line by line comparison of these classes was 

made with the help of the Beyond Compare tool (https://www.
scootersoftware.com/index.php), which provides a quick & easy 
comparison of files & folders at high speed. It verifies and compares 
the designated files or folders thoroughly in a byte-by-byte manner 
and further highlights the specified differences in a different color 
(generally red). This is required to compute the dependent variable’s 
value, i.e., Change for each class through a line by line comparison. 
Each addition or deletion of a particular line in a class accounts for a 
single change, whereas any modification in a particular line of code 
accounts for two changes, .i.e., a single deletion followed by a single 
addition.

As shown in Fig. 3, some datasets have even more than 70% of their 
classes being discarded after pre-processing. However, such systems 
have been included in the original datasets for this study aiming to 
include diversified datasets where some datasets have a higher number 
of classes that get changed between different versions in contrast to 
the datasets where only a few of the classes get changed in going from 
one version to another.
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Fig. 3. Percentage reduction after pre-processing.

Further, the descriptive statistics for all the seven datasets have been 
provided in Table IV. Values highlighted in bold depict the minimum 
standard deviation for a particular OO metric, whereas the values 
highlighted in bold with an underline depict the maximum standard 
deviation for a particular metric.

E. Feature Scaling
Feature Scaling is a technique performed during data pre-

processing to standardize a dataset’s independent variables in a 
fixed range. It is also known as data normalization. Feature scaling 
is done since some algorithms cannot perform appropriately without 
normalization due to the original datasets’ varying range of values. 
Various feature scaling methods are available for pre-processing data 
such as MinMaxScaler, RobustScaler, StandardScaler, etc. Of these, 
MinMaxScaler works by subtracting the minimum value from each 
of the values in a feature and then dividing it by range where the 
range is the difference of minimum & maximum values of a feature. 
In this study also, MinMaxScaler [51] in Python has been applied to 
normalize all the datasets used here, which transforms all the features 
by rescaling them to a given range (here, this range is [0, 1]).

F. Feature Selection
Feature selection is a method for choosing a subset of variables 

or features in ML to develop various models, ensuring the removal 
of redundant & irrelevant features without incurring the loss of 
information. It also enhances the prediction models’ prediction 
accuracy since the quality of datasets due to the removal of 
inconsistent and noisy data and the model’s execution time improves. 
Feature selection algorithms can broadly be classified under two 
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categories: the wrapper methods & the filter methods, as suggested by 
Kohavi and John [52]. However, a third category is also known as the 
embedded methods that combine the quality of wrappers and filters 
and simultaneously perform model fitting and feature selection such 
as lasso, ridge regression, etc. Wrappers usually evaluate a feature 
subset’s performance based on the learning algorithm’s resulting 
performance, such as forward selection, backward elimination, & RFE, 
etc. On the other hand, filter methods such as Pearson’s correlation, 
Linear Discriminant Analysis (LDA), etc. generally use some proxy 
measure for evaluating the importance of the features based on some 
inherent characteristics without incorporating any learning algorithm. 
This is contrary to wrapper methods that use error rate for scoring a 
subset of features. Also, filters are computationally less intensive and 
faster than wrappers and produce a subset such that it is not tuned to 
some specific prediction model, making it a more general subset than 
the one derived from the wrappers.

In this study, one of the wrapper methods called RFE [53] has been 
used for selecting a subset of independent variables from all the initially 
selected seventeen independent variables. The improved results 
obtained in one of the studies conducted for the Intrusion Detection 
System [54] using the RFE algorithm for ranking the features provided 
the motivation for using the RFE algorithm in the current study as well 
for the selection of features. According to the study mentioned above, 
RFE improves accuracy by counting only the essential features while 
training, which reduces the learning time. An overall improvement 
of 0.4% in precision, between 16.2% and 26.8% improvement in false-
negative rate, and a one-third reduction in time is achieved. RFE, in 
general, fits a model by recursively removing the weakest features by 
taking into account smaller & smaller groups of features, based on the 
significance of each of the features till a desired count for the features 
is subsequently reached. This importance is adjudged based on an 
external estimator, here, therespective boosting algorithms, that assign 
some weights to the features. Initially, the estimator training is done 
using a complete set of features, and the importance is obtained for 
each of the features. After this, the features with the least importance 
are removed from the initial set (here, one at each iteration since the 
value for parameter ‘step,’ i.e., the count for features to be removed 
at each iteration is set equal to 1). This procedure is repeated for the 
reduced set in a recursive manner until a desired set of features that 
should be selected is eventually obtained. However, in the current 
study, the default value for the parameter ‘n_features_to_select,’ i.e., 
the count of the features to be selected has been used. This default 
value is ‘None’ and selects half of the total features leaving eight out 
of seventeen variables in this study, almost equal to half. This way, the 
RFE algorithm reduces the initial feature set by 52.94%.

Here, only the default values of different parameters for RFE have 
been used without any changes since the primary focus of the current 
study is to explore boosting algorithms. However, analyzing the role 
of tuning of different RFE algorithm parameters for feature selection 
can form a good base for future studies.

Features selected for all the seven datasets obtained by applying 
the RFE feature selection algorithm are presented in Table V. It is 
evident that out of a total of seventeen independent variables, LCOM, 
NPM, and LOC are found to be the most commonly selected variables. 
Following them, WMC, RFC, and Ce are the second most commonly 
selected independent variables. However, DIT, NOC, Ca, and IC have 
not been selected for any dataset. Also, MOA and MFA came out to be 
the least significant variables based on the RFE algorithm.

Further, the results in Table V show that each dataset has a different 
set of features obtained from the RFE algorithm. This difference can 
be explained through the descriptive statistics presented in Table IV, 
where values highlighted in bold depict the minimum values, whereas 
those highlighted in bold with an underline depict the maximum 

values for a particular metric. The values for standard deviation shows 
the extent of variation in different OO metrics’ values for each of 
the datasets. The difference in the standard deviations of each of the 
OO metrics for all the seven datasets accounts for the difference in 
selecting various features for every dataset using the RFE method since 
different metrics affect distinct datasets differently while predicting 
maintainability. Also, due to a comparatively large difference in the 
variation of values for some OO metrics that have been calculated by 
finding the range of standard deviation for each metric from Table IV, 
only a particular set of metrics are selected by the RFE algorithm. For 
example, the most commonly selected metrics, i.e., LCOM, LOC, RFC, 
NPM, WMC, and Ce, have considerable variation in their values for 
almost all the datasets, which have a significant impact in predicting 
maintainability. Hence, these metrics have been selected by RFE for 
almost all the datasets.

G. Boosting Algorithms
This sub-section provides an overview of different BAs, i.e., the 

ensemble of ML algorithms used in the current study to develop 
various SMP prediction models. A set of five most commonly used 
BAs, namely AdaBoost, GBM, XGB, LightGBM, and CatBoost, has 
been applied to identify specific patterns while training each of the 
seven datasets. These algorithms explore the complex relationship or 
the correlation among various independent variables & the dependent 
variable, using the knowledge derived during the training process for 
making predictions.

1. AdaBoost
AdaBoost is one of the first ensemble boosting techniques proposed 

by Freund and Schapire [55], [56] to be adapted in practice to solve 
both regression & classification problems. It works by creating multiple 
sequential models from poorly performing models, each correcting the 
previous model’s errors to increase the accuracy to build a reliable 
model ultimately. It is an iterative ensemble technique that generally 
uses DTs for modeling. However, any ML technique can be used as a 
base classifier, provided it accepts the weights on the training set. In 
the current study, the DT regressor has been used as the base estimator 
while implementing AdaBoost. The basic idea behind AdaBoost is 
to ensure that the unusual observations are predicted accurately by 
setting up the weights of classifiers and training data samples in every 
iteration. AdaBoost is expected to fulfill two main conditions; first, the 
classifier’s interactive training on several weighted training examples 
should be done, and second, it should try to provide an accurate fit 
for the above examples in each iteration by minimizing the error in 
training.

2. GBM
GBM is another ensemble ML algorithm used for classification & 

regression problems by combining multiple weak learners to develop a 
strong learner. Friedman described GBM in two of his popular studies 
in 1999 and 2001 [57], [58]. Generally, Regression Trees (RTs) are used 
as base learners, and each tree is built subsequently in a series based 
on the errors measured by the previous tree, and the foremost goal is 
to overcome these errors. The difference here is that the weights are 
not incremented for the misclassified values; instead, an attempt is 
made to optimize and reduce the loss function that adds several weak 
learners by adding some new model. Broadly, GBM comprises three 
main components, i.e., the loss function that should be optimized, an 
additive model for minimizing the loss function & a weak learner for 
making the predictions.

3. XGB
XGB is a highly effective, novel, and advanced implementation for 

the GBM ensemble ML algorithm, particularly RTs and K classification. 
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It was proposed by Chen and Guestrin in 2016 [30]. It prevents 
over-fitting and intends towards the optimization of computational 
resources. It is possible through the simplification of objective 
functions by allowing the combinations of regularization, provided an 
optimum computational speed is also maintained alongside. During 
the training phase, automatic parallel calculations are performed for 
various functions in XGB. XGB is approximately ten times faster than 
any other BA and is also known as a “regularized boosting technique.” 
In the current study, ‘gbtree’ booster, i.e., tree-based models, have been 
used to run at every iteration.

4. LightGBM
LightGBM was proposed by Ke et al. [59] as a newer implementation 

of Gradient Boosting DT (GBDT). It is a fast and distributed framework 
based on DT algorithms and is used for different ML tasks such as 
ranking & classification. It makes use of a leaf-wise strategy while 
splitting the trees with the best fit, unlike other algorithms that use 
. a level-wise or depth-wise approach. Also, LightGBM being leaf-

wise is more accurate than other BAs since it can reduce more loss 
while growing on the same leaf, and it also ensures reduced memory 
consumption. In the current study, while implementing LightGBM, RF 
has been used as the basic boosting type.

TABLE V. Feature Selection Through RFE Algorithm

Datasets Features selected through RFE Algorithm

Abdera WMC, CBO, RFC, LCOM, NPM, LCOM3, LOC, CAM

Ivy WMC, RFC, LCOM, Ce, NPM, LCOM3, LOC, CAM

jEdit RFC, LCOM, Ce, NPM, LCOM3, LOC, MFA, AMC

jTDS WMC, CBO, RFC, LCOM, Ce, NPM, LOC, AMC

Log4j WMC, LCOM, Ce, NPM, LOC, DAM, MOA, CAM

Poi WMC, CBO, RFC, LCOM, Ce, NPM, LOC, CAM

Rave WMC, RFC, LCOM, Ce, NPM, LOC, DAM, CAM

TABLE IV. Descriptive Statistics for Open Source Datasets (SD = Standard Deviation)

Metric
Abdera Ivy jEdit jTDS

Min Max SD Min Max SD Min Max SD Min Max SD
WMC 0 255 21.21 1 243 21.64 1 275 34.34 0 211 42.16
DIT 0 4 0.63 0 4 0.60 0 7 1.72 0 3 0.62
NOC 0 17 1.02 0 17 1.22 0 20 2.22 0 2 0.44
CBO 0 17 1.94 0 17 1.96 1 396 44.57 0 34 6.84
RFC 0 256 21.23 2 244 21.64 1 570 89.92 0 293 70.72
LCOM 0 32385 1724.93 0 29403 2158.27 0 21943 2605.30 0 21831 3432.78
Ca 0 14 1.64 0 17 1.74 0 327 37.20 0 30 4.95
Ce 0 5 0.93 0 9 1.17 0 116 14.86 0 30 5.07
NPM 0 254 20.65 0 215 18.96 0 228 27.81 0 191 40.07
LCOM3 1.0039 2 0.43 1.0041 2 0.42 0 2 0.57 0 2 0.47
LOC 0 1531 123.34 6 1461 132.98 1 10007 1471.109 4 8251 1448.33
DAM 0 1 0.49 0 1 0.47 0 1 0.44 0 1 0.39
MOA 0 327 14.81 0 7 0.69 0 13 2.59 0 14 2.40
MFA 0 1 0.17 0 1 0.12 0 0.9987 0.37 0 1 0.23
CAM 0 1 0.30 0.0556 1 0.28 0.0455 1 0.22 0 1 0.19
IC 0 3 0.28 0 2 0.21 0 3 0.58 0 2 0.41
AMC 0 5 2.24 0 5 2.39 0 139.451 32.32 0 255.11 46.30
Change 2 14667 1172.30 2 17586 1434.72 1 249 43.54 0 355 59.86

Metric
Log4j Poi Rave

Min Max SD Min Max SD Min Max SD
WMC 1 104 13.35 0 165 14.19 0 62 9.69
DIT 0 6 1.48 0 5 0.70 0 4 0.25
NOC 0 4 0.64 0 151 5.13 0 2 0.21
CBO 0 76 10.98 0 228 17.25 0 4 0.69
RFC 1 130 25.05 0 426 33.42 0 63 9.71
LCOM 0 5356 575.44 0 5908 475.71 0 1891 209.75
Ca 0 65 9.16 0 228 14.52 0 3 0.41
Ce 0 29 4.81 0 167 9.60 0 2 0.43
NPM 0 31 7.50 0 140 12.51 0 57 9.24
LCOM3 0 2 0.48 0 2 0.60 0 2 0.39
LOC 3 1864 283.14 0 4455 370.97 0 405 59.97
DAM 0 1 0.45 0 1 0.43 0 1 0.43
MOA 0 14 2.13 0 49 3.54 0 3 0.29
MFA 0 1 0.38 0 1 0.18 0 1 0.09
CAM 0.0726 1 0.24 0 1 0.24 0 1 0.31
IC 0 3 0.51 0 3 0.27 0 1 0.20
AMC 0 205 25.83 0 392.2222 23.40 0 5 1.69
Change 1 1612 194.36 2 17956 1331.08 1 470 55.08
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5. CatBoost
The fundamental algorithmic approaches behind CatBoost were 

explained by Prokhorenkova et al. [60] in 2018 in one of their studies. 
CatBoost is also a GBDT for handling categorical features well. It allows 
one to use the complete dataset for training, and an extensive pre-
processing of data is not required here. Rather than the pre-processing 
time, CatBoost deals with the categorical features while training. As 
per authors, target statistics can efficiently handle categorical features 
ensuring minimum loss of information. However, in regression, 
the initial value is calculated using a standard technique where the 
average value for a label in the dataset is considered. Overall, CatBoost 
is a robust, easy-to-use, and high in performance BA in the family of 
ML algorithms.

H. Cross-Validation Technique
Cross-validation is a model validation technique to account for the 

accuracy of a prediction model on new data & to check if this model can 
be generalized for real-world datasets. It is used in a scenario where the 
ultimate goal is prediction. For prediction, the model is trained using a 
known dataset (training set), whereas testing of this model is done on 
a new dataset (test set) after training. Several types of cross-validation 
approaches exist, such as LOO, k-fold, hold-out, etc. However, the k-fold 
technique is one of the most basic cross-validation forms with k equal to 
10 [61]. Its significance lies in the fact that it can use the dataset for dual 
purpose, i.e., training and testing. As per literature, 5-fold and 10-fold 
approaches are the most commonly used cross-validation approaches to 
design a model. According to [61], k-fold validation using moderate values 
of k, i.e., between 10-20, helps minimize the variance with an increase in 
the bias; k equal to 10 being the most preferred, most frequently used, 
and the most recommended one.

Further, if the value of k decreases say between 2-5, along with 
smaller sample size, then variance seeks in because of the instability 
in the training set, which further increases the variance. Hence, the 10-
fold cross-validation technique has been selected for the current study, 
keeping the above points in mind. In this technique, the complete 
dataset is sub-divided into 10 equal partitions, of which one partition 
is considered validation data for testing the model, whereas the rest 
of the partitions are utilized to train the prediction model. The same 
process is iteratively repeated 10 times for each of the 10 partitions, 
each partition being used as the validation set exactly once. Lastly, a 
single final estimation is reached by calculating an average of the 10 
results obtained above.

I. Prediction Accuracy Measures
This section presents various prediction accuracy measures for the 

current study to assess various BAs performance for SMP for all the 
seven datasets. Estimating and assessing the accuracy of a prediction 
model is an essential part of any study. This is done by comparing 
the dependent variable’s predicted value with its actual value and 
finding the corresponding value of the error. In literature, different 
residual-based prediction accuracy measures have been suggested 
by various researchers. However, in this study, the following three 
measures of accuracy have been selected for estimating the accuracy 
of the proposed prediction models, as suggested by Conte et al. [62] 
and Kitchenham et al. [63], [64] in their studies.

1. Root Mean Square Error (RMSE)
RMSE is the measure of standard deviation in the prediction errors, 

i.e., the residuals. It is calculated by taking the square root of Mean 
Square Error (MSE) using the formula defined by Conte et al. (1986) [62].

 (1)

where yi is the ith value being observed & i is the ith value, which 

is predicted by the prediction model. Further, from this formula, the 
formula for RMSE can also be derived. 

 (2)

Residuals measure the data points’ remoteness from the standard 
regression line, and RMSE measures these residuals’ spread. 
Alternately, RMSE describes the concentration of the data around the 
best line of fit. RMSE is one of the most widely and frequently used 
indicators to account for the goodness of fit in regression models. 
The significance of using RMSE may be attributed to the risk-averse 
predictors, where large deviations are penalized more in comparison 
to small deviations by RMSE. This happens as RMSE is based on the 
mean or average value obtained by summing the residuals’ squared 
values. Another implication of squaring the errors in determining 
the importance of RMSE lies in the fact that RMSE would be even 
more useful in cases where large errors may particularly be highly 
undesirable. RMSE is highly useful to compare several prediction 
models developed using different techniques. The magnitudes of the 
prediction errors for several times are accumulated into a compound 
indicator of the predictive power with the help of RMSE. Further, 
RMSE values may range from 0 to ∞ and are inconsiderate towards 
the errors’ direction. RMSE is a negatively-oriented indicator in which 
lower values are considered to be the better values. Also, RMSE does 
not essentially increase with a rise in the error variance but increases 
with a rise in the variance related to the frequency distribution of the 
magnitude of the errors.

2. Mean Magnitude of Relative Error (MMRE)
MMRE is the most frequently used quality indicator in software 

engineering while accounting for the performance of various software 
estimation models defined by Conte et al. (1986) [62].

 (3)

MMRE is different from relative error in the sense that unlike 
relative error, the absolute value of the differences between the 
actual & predicted values is used while calculating MMRE. The use of 
absolute value prevents both underestimation and overestimation by 
canceling each other out. MMRE measures the variance or the spread 
of accuracy (predicted / actual). To better understand what MMRE 
measures, ‘y’ is considered a normally distributed random variable 
having µ and σ2 as the mean and variance, respectively. Iglewicz [65] 
has already illustrated the following for a sample of ‘n’ observations, 
where  is the mean of those observations:

 as  (4)

On re-writing MMRE as below:

 (5)

it is evident that if i is an unbiased estimation of yi , then the value of 
 as expected is equal to 1. If zi is normally distributed having mean 

and variance equal to 1 and σz, respectively, then MMRE tends towards 
the value of . This illustrates that MMRE estimates the spread or 
the variance of the ‘z’ variable, which is not that susceptible to the 
large outliers as the RMS estimate is. As MMRE measures the spread, 
it would be wrong to call it a prediction accuracy metric. However, ‘z’ 
has an optimal defined value equal to 1, indicating whether or not the 
prediction system’s estimation is under or overestimated and hence a 
better criterion to indicate the prediction accuracy. This further shows 
that any prediction model’s quality can be described in respect of the 
average value of the ‘z’ variable, and MMRE is used for assessing the 
variability of this variable ‘z.’
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3. Pred(m)
It measures the proportion of the values predicted by the prediction 

models with a magnitude of MRE lower than or equal to a specific value.

 (6)

where ‘m’ represents the particular specified value, ‘k’ refers to the 
number of predictions in the dataset whose MRE is lower than or equal 
to ‘m’ & ‘n’ is the total number of observations in the dataset. Pred(m) 
measures the kurtosis or the shape of the accuracy (predicted / actual). 
Pred(m) is the percentage of predictions within m% of the initial or the 
actual values. ‘m’ is usually set to 25, 30, & 75 such that Pred(m) shows 
how much proportion of the predictions lie within the tolerance of 
25%, 30%, & 75% respectively. Further, Pred(m) is inconsiderate to the 
extent of the inaccuracy of the predictions that lie beyond a particular 
level of tolerance. For example, for two different prediction models 
whose predictions deviate by 27% and 270%, respectively; a Pred(25) 
indicator will not differentiate between the two models. Like MMRE, 
Pred(m) should preferably be formulated for prediction by considering 
the actuals’ percentage lying within m% of the prediction. As 
mentioned earlier, Pred(m) is a measure for kurtosis that provides the 
degree to which a particular distribution has been peaked surrounding 
the central value. To better understand Pred(m), consider a case where 
certain distribution is more peaked than a normal distribution. As a 
result, if a sample is selected from a distribution having more peak, 
then it would have comparatively more values within 25% (in case 
of Pred(25)) of the mean value than normal. On the other hand, if a 
sample is selected from a distribution having a flatter peak, it would 
have comparatively fewer values within 25% than the normal scenario.

J. Friedman Test for Ranking the Performance
Friedman test [66] is a statistical test, which is non-parametric 

in nature, to rank the performance of various algorithms used in a 
study by finding any significant difference between those algorithms’ 
performance. Here, this test has been used to rank the performance 
of different BAs used in this study. Before the test, a hypothesis is 
formulated.

Null Hypothesis (H0) - No significant difference exists between the 
performances of various BAs used in this study.

Alternate Hypothesis (H1) - A significant difference exists between 
the performances of various BAs used in this study.

Further, the Friedman measure is calculated using the given 
formula.

 (7)

where R represents the average rank for each BA, N stands for 
the number of datasets used in the current study, and k represents 
the number of BAs considered for the ranking. The value for χcalculated 
is calculated using (7) and further compared with χtabulated given 
in the distribution table for chi-square. If χcalculated, which is the 
Friedman measure, falls in the critical region, it is concluded that a 
significant difference exists between the performance of various 
BAs, thereby rejecting the null hypothesis & accepting the alternate 
hypothesis. However, if χcalculated does not fall in the critical region, it 
is then concluded that no significant difference exists between the 
performance of various BAs, thereby rejecting the alternate hypothesis 
and accepting the null hypothesis.

Each BA is ranked individually with the help of Friedman’s 
Individual Rank (FIR) using (8).

 (8)

where C represents the cumulative rank & N represents the total 

number of datasets. Based on the FIR values calculated for each BA, 
one having the lowest FIR value is declared to be the best performer 
whereas, on the other hand, BA having the highest FIR value is declared 
to be the worst performer. Further, suppose the values of FIR obtained 
for various prediction accuracy measures are found significant. In 
that case, post hoc analysis should be done using the Nemenyi test to 
check if the difference between various mean ranks obtained by the 
Friedman test is statistically significant or not. However, in this study, 
both Friedman and Nemenyi tests are performed only for MMRE.

K. Nemenyi Test for Post Hoc Analysis
Nemenyi test [67] is a test in statistics for post hoc analysis that 

intends to find groups of data that differ when statistical tests such as 
the Friedman test for multiple comparisons rejects the null hypothesis 
stating that no significant difference exists between the performance 
of various groups of data. This test is used to make pair-wise tests of 
performance for comparing the performance of various BAs used in 
this study to find if any statistical difference exists among them. The 
first step for conducting the Nemenyi test is to calculate the Critical 
Difference (CD), which depends on the total number of BAs & the 
number of datasets used, along with the level of significance, using (9).

 (9)

where k represents the total number of BAs, N represents the 
number of data samples & qα is the critical value as suggested by 
Demsar [68] in his study; based on the Studentized range statistics 
for a particular significance level. After calculating CD, the individual 
differences between the FIR values of different pairs of BAs are 
calculated to compare each possible pair of BAs’ performance during 
the post hoc analysis. If the difference calculated for each possible 
pair of BAs comes out to be either more than or equal to CD, then 
the performance of that particular pair is considered statistically 
significant for the selected level of significance. On the other hand, if 
this difference is less than CD, then that particular pair’s performance 
is statistically not significant.

IV. Results & Discussions

This section presents the results of the current study & a detailed 
discussion and analysis of these results to analyze different BAs for 
SMP using open-source datasets. A few of the selected plots for all 
the seven datasets showing true versus predicted values for the best 
performing BA based on MMRE values are presented in Fig. 4.

It is noted that based on the MMRE values, XGB performed the best 
for six out of the seven datasets except for jEdit, for which CatBoost 
performed the best. Subsequently, various RQs framed for the current 
study in the introduction section are answered in this section.

RQ1: Whether BAs can be applied for SMP?
Various prediction accuracy measures, i.e., RMSE, MMRE, and 

Pred(0.25), Pred(0.30) & Pred(0.75), have been used to analyze the 
performance of different BAs used in this study for all the seven 
datasets using (2), (3) and (6), respectively. The results obtained for all 
the five BAs validated using ten-fold cross-validation are presented, 
compared, and analyzed in this section.

Table VI provides the RMSE values for each of the BAs for all the 
seven datasets. The best value of RMSE for each dataset is marked in 
bold. It is clear from Table VI that based on the RMSE, GBM performed 
the best, resulting in the lowest RMSE values for three of the seven 
datasets, namely jEdit, jTDS, and Log4j, i.e., for 42.86% of the total 
datasets. Similarly, LightGBM performed the second-best in terms of 
RMSE for Ivy and Poi, i.e., for 28.57% of the datasets, whereas AdaBoost 
and CatBoost performed well for Abdera and Rave, respectively. 
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However, XGB came out to be the worst performer since it did not 
perform well for any of the datasets when RMSE is considered the 
accuracy measure. Overall, if we look at Table VI, it is concluded that 
the best RMSE value equal to 43.42 is obtained for the jEdit dataset 
using GBM.

TABLE VI. RMSE Values For All the Seven Datasets using BAs

Accuracy 
Measure RMSE

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

Boosting 
Algorithm

AdaBoost 986.25 1251.82 46.63 70.15 184.08 1241.31 55.81

GBM 1150.49 1389.05 43.42 67.54 179.01 1310.24 55.30

XGB 1164.34 1368.90 45.81 76.14 211.25 1324.29 58.57

LightGBM 1070.95 1199.34 54.92 70.21 195.85 1197.91 75.98

CatBoost 1077.89 1278.42 44.24 76.03 201.73 1230.27 54.78

The MMRE values for each of the BAs validated using ten-fold 
cross-validation for all the datasets are provided in Table VII. Also, 
the least obtained values of MMRE for each dataset, which are also 
the best, are marked in bold since a low value of MMRE indicates 
less error in prediction and hence better accuracy. Every row shows 
MMRE values for a particular BA on a specific dataset.

TABLE VII. MMRE Values For All the Seven Datasets using BAs

Accuracy 
Measure MMRE

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

Boosting 
Algorithm

AdaBoost 4.36 7.31 2.22 2.04 7.98 6.49 2.81

GBM 4.56 7.87 3.86 2.97 8.75 6.44 3.91

XGB 1.84 2.98 1.77 0.90 3.82 2.85 1.43

LightGBM 4.91 7.45 4.94 3.33 8.90 6.88 5.01

CatBoost 2.93 4.62 1.71 2.54 6.26 4.09 1.92

It is concluded from Table VII that based on the MMRE values so 
obtained, XGB performed the best for six out of seven datasets, i.e., for 
85.71% of the total datasets by providing the least values for MMRE. 
However, in the jEdit dataset, CatBoost performed the best in terms 
of MMRE with a value equal to 1.71. Overall, XGB performed the 
best with the jTDS dataset having MMRE value equal to 0.90 when 
MMRE is considered an accuracy measure to analyze different BAs 
performance over seven open-source datasets.

Further, the prediction accuracy of all the BAs for each of the 
datasets has been calculated at 25%, 30% & 75%, and results are summed 

up in Table VIII where each column for a particular dataset is further 
subdivided into three columns; one each for Pred(0.25), Pred(0.30) & 
Pred(0.75). Best obtained values are highlighted in the table for each 
dataset & each prediction accuracy level, i.e., 25%, 30%, and 75%.

On analyzing the values in Table VIII, it is observed that for 
Pred(0.25), which ranges up to 31%, CatBoost BA is found to be the 
most accurate in the case of Abdera. If we consider Pred(0.30) for 
prediction accuracy, which ranges up to 36%, it is found that CatBoost 
for Abdera performed the best. Again, for Pred(0.75), which ranges 
up to 79%, it is observed that XGB performed the best for Abdera by 
providing the highest prediction accuracy equal to 79%, which further 
assures the effectiveness of BAs for SMP. Overall, it is concluded that 
the best prediction accuracies are obtained for Abdera. Also, in the case 
of Pred(0.30), LightGBM performed the best for three out of the seven 
datasets, i.e., Ivy, jEdit, and Poi, whereas, in the case of Pred(0.75), XGB 
gave the best performance for six out of the seven datasets (excluding 
Log4j) with prediction accuracies ranging from 51% to 79% which are 
satisfactory and reasonable.

Further, the difference in the performance of different BAs for 
different datasets can be accounted to the wide range and variations in 
the values of various OO metrics and the dependent variable ‘Change’ 
measured through standard deviation as presented in Table IV, 
representing the descriptive statistics for each of the seven datasets. 
Hence, a different range of values is obtained for various prediction 
accuracy measures used in the current study. For example, if we 
consider the predictor variable ‘Change,’ then the difference between 
the maximum and minimum values for standard deviation so obtained 
or the range for standard deviation is 1391.18, which is really wide and 
hence the difference in performance.

Hence, based on each of the BAs’ overall performance for all the 
seven datasets based on the values obtained for the five prediction 
accuracy measures and from the comparative analysis of these 
measures, it can be concluded that BAs can effectively be applied for 
SMP.

RQ2: Which BA performs the best amongst different BAs 
based on various prediction accuracy measures for different 
open-source datasets?

A non-parametric statistical test named the Friedman test is applied 
for an extensive analysis of different BAs used in the current study 
to determine if a significant difference exists between various BAs. 
Friedman’s test is selected because it is a non-parametric test; it is 
safe and robust as it does not assume homogeneity of variance or the 
normal distributions as recommended by Demsar in his work [68]. 
The Friedman test has been conducted for comparing the performance 
of five different BAs applied on seven different datasets based on the 
MMRE values by calculating the value of critical region for the level of 
significance equal to 5% & degree of freedom equal to 4, i.e., 5 BAs 
minus 1 (or k-1 where ‘k’ is the total number of BAs used in this study). 
Value for χtabulated is read from the Chi-square table corresponding to 
the 95% significance level and degree of freedom equal to 4.

TABLE VIII. Pred(m) Values for All the Seven Datasets Using BAs

Accuracy 
Measure Pred (m)

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

Boosting 
Algorithm (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75)

AdaBoost 0.24 0.28 0.62 0.21 0.24 0.54 0.20 0.22 0.51 0.14 0.19 0.33 0.25 0.28 0.64 0.24 0.27 0.57 0.12 0.14 0.47

GBM 0.15 0.19 0.41 0.12 0.16 0.39 0.09 0.13 0.30 0.14 0.19 0.44 0.27 0.30 0.60 0.13 0.16 0.45 0.13 0.16 0.36

XGB 0.21 0.25 0.79 0.17 0.21 0.66 0.07 0.14 0.52 0.14 0.14 0.53 0.02 0.02 0.49 0.13 0.17 0.66 0.14 0.19 0.51
LightGBM 0.23 0.27 0.57 0.21 0.26 0.53 0.21 0.23 0.47 0.17 0.17 0.36 0.24 0.25 0.59 0.23 0.27 0.57 0.12 0.14 0.39

CatBoost 0.31 0.36 0.76 0.21 0.24 0.61 0.11 0.14 0.44 0.08 0.11 0.44 0.07 0.11 0.64 0.21 0.24 0.66 0.14 0.17 0.49
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Actual Vs Predicted Values for Abdera (XGB)
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According to the null hypothesis of Friedman’s test, which 
states that no significant difference exists between the performance 
of various BAs used in this study, it was found that at 0.05 level of 
significance, χcalculated which is the Friedman measure lies in the 
critical region for MMRE. Therefore, it is concluded by accepting 
the alternative hypothesis and rejecting the null hypothesis that a 
significant difference exists between the performances of various BAs 
used in this study. Test statistics for the Friedman test are stated in 
Table IX.

TABLE IX. Friedman Test - Test Statistics for MMRE

N 7
Chi-Square 24.914
Df 4
Asymp. Sig. .000

Further, each BA is ranked for its performance by calculating FIR 
from (8) based on MMRE, and the values obtained for the mean ranks 
of different BAs for MMRE are compiled in Table X. It is also known 
that the lowest mean rank indicates the best performance. Hence, it is 
evident from Table X that based on the MMRE values, XGB performed 
the best, whereas CatBoost performed the second best. Also, LightGBM 
is found to be the worst performer.

TABLE X. Mean Ranking of BAs on Applying Friedman Test for MMRE

Boosting Algorithm XGB CatBoost AdaBoost GBM LightGBM

Mean Rank 1.14 2.00 3.00 4.00 4.86

On exploring the reason for the difference in the performances 
of XGB and LightGBM, it was found that due to the use of Newton 
boosting in XGB, it is likely to learn better structures. Apart from this, 
XGB consists of an extra parameter for regularization, namely column 
sub-sampling (including built-in L1 & L2 regularization that prevents 
the model from being over-fitted) for reducing the correlation between 
each of the trees further. Also, XGB uses a histogram-based pre-sorted 
algorithm for computing the best split and achieve faster training. In 
contrast, LightGBM uses the GOSS technique, i.e., Gradient-based One 
Side Sampling, for filtering the data samples to find a value for the 
split. Unlike other algorithms, where trees grow horizontally (level 
wise), in LightGBM, trees grow vertically (leaf wise) by choosing the 
leaf having maximum delta loss.

A further implication of the results can be the utilization of boosting 
algorithms, especially the XGB, for developing different prediction 
models in a scenario where training data is limited, time for training is 
less, and the expertise for tuning of parameters also lacks.

RQ3: What is the comparative performance of various BAs 
during post hoc analysis when MMRE is taken as an accuracy 
measure?

After the Friedman test, post hoc analysis using the Nemenyi test 
is performed to check if the differences between the performances of 
various BAs based on the FIR values, as concluded in RQ2 above, are 
statistically significant or not.

The value for CD is calculated to be equal to 2.31 using (9) where 
k is taken to be 5 (number of BAs), and N is taken to be 7 (number 
of datasets). After this, all the possible pairs of BAs are formed with 
every other BA for calculating the rank differences between them, 
i.e., between the FIR values so obtained. Here, ten such combinations 
are formed for five different BAs for MMRE, and the same results are 
compiled in Table XI.

Values for differences in ranks greater than or equal to CD, i.e., 2.31, 
are shown in bold in Table XI. It is observed that 3 out of 10, i.e., 30% 
of the total pairs of BAs have been highlighted, which means 30% of 

the pairs have the difference above or equal to CD, showing that the 
performance of these pairs is found to be significantly different using 
Nemenyi test.

Differences calculated in Table XI also show that XGB performed 
better than GBM, and LightGBM, whereas CatBoost performed 
better than LightGBM only. Therefore, from this post hoc analysis of 
MMRE values, it is concluded that XGB and CatBoost significantly 
outperformed the rest of the BAs. However, the differences between 
the performances of all other pairs of BAs have not been found 
significant.

TABLE XI. Pair-Wise Rank Differences Between Different BAs in 
Terms of MMRE

Boosting Algorithm XGB CatBoost AdaBoost GBM LightGBM

XGB - 0.86 1.86 2.86 3.72

CatBoost - 1.00 2.00 2.86

AdaBoost - 1.00 1.86

GBM - 0.86

LightGBM -

RQ4: What is the comparison between the results obtained 
on applying various ML algorithms (other than the BAs) and 
the results obtained on implementing BAs?

To show why BAs are so good compared to other ML algorithms, 
a comparison of results between different ML algorithms and the BAs 
has been made through the RQ mentioned above based on the RMSE, 
MMRE, and different Pred(m) values. Four different ML algorithms 
belonging to four different categories, i.e., tree-based models (DTs), 
neural network-based models (MLP), ensemble models (Bagging), and 
linear models (Elastic - Net) have been selected for carrying out this 
comparison. All the four models, along with a brief description, have 
been presented as follows:

• Decision Trees (DTs): DTs are a supervised and non-parametric ML 
algorithm for solving classification & regression problems. DTs’ 
primary goal is to develop such predictive models where the response 
variable is predicted using the knowledge learned from various 
decision rules that have been inferred through the data attributes. 
Here, the rules are generated by breaking down the complex process 
of decision making into several simple decision rules which often 
provide us with easily interpretable solutions resembling the desired 
set of solutions [69]. DTs have several advantages, including DTs are 
easy to understand & interpret, require little or no data preparation, 
the computational cost is logarithmic to the number of training data 
points used in the tree, etc.

• Multi-layer Perceptron (MLP): MLP is again a supervised and 
neural network-based ML algorithm which learns the following 
function through training on the dataset,

f (•): Rin → Rout  (10)

where ‘in’ corresponds to the number of input dimensions and 
‘out’ represents the number of output dimensions. For a given 
set of attributes, say, X = x1, x2, ⋅⋅⋅, xl and a response variable y, 
MLP can provide a non-linear approximation of the function for 
regression or a classification problem. MLP consists of one or 
more hidden non-linear layers between the two layers, i.e., input 
& output layer. MLPs are capable of learning in real-time, and 
they can learn non-linear models also. Particularly, in the case of 
regression, backpropagation has been used for implementing MLP 
with identity function being the activation function or having no 
activation function at all for the output layer [70]. Also, the square 
error is used as the loss function having the response variable as a 
collection of several continuous values.
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• Bagging: Bagging is one of the ensemble ML methods that 
works by combining the predictions obtained from various base 
estimators built using a particular ML algorithm to improve the 
generalizability or robustness of the single estimator. Bagging 
belongs to the family of averaging methods out of the two 
prominent families of ensemble methods, i.e., the averaging 
methods and the boosting methods. The basic idea behind bagging 
[71] is to implement several independent base estimators (e.g., 
DTs, MLPs, etc.) over random subdivisions of the initial training 
set in the first instance and then taking out the average of each of 
the predictions to obtain a final prediction. Overall, the combined 
or aggregated bagging estimator is supposed to be better than the 
single estimators since the variance has been reduced.

• Elastic - Net (EN): EN [72] is a regularized linear ML algorithm 
for regression, which combines the penalties of two other linear 
models, i.e., the lasso & the ridge models, in a linear manner 
having L1 & L2 regularization, respectively. This aggregation 
encourages an efficient learning procedure, especially for 
the models having few non-zero weights like the lasso, with 
simultaneous maintenance of the properties of regularization 
for the ridge method. EN is advantageous in the case of multiple 
attributes being correlated to each other. However, the lasso is 
expected to select only one of them, that too randomly, whereas 
EN is expected to select both of them.

Further, all the ML models mentioned above have been implemented 
using similar procedures while implementing different BAs. All the 
algorithms have been implemented for seven open-source datasets 
(Abdera, Ivy, jEdit, jTDS, Log4j, Poi, & Rave) after pre-processing. 
Further, feature selection using the RFE algorithm and ten-fold cross-
validation has also been performed. The performance of these models 
has been evaluated using the same performance measures, viz, RMSE, 
MMRE, Pred(0.25), Pred(0.30), & Pred(0.75) for comparison of the 
results so obtained with various prediction models that have been built 
using BAs. The results obtained on applying these four algorithms, 
i.e., DT, MLP, Bagging, and EN for all the datasets based on RMSE, 
MMRE, and Pred(m), have been provided in Tables XII, XIII, & XIV, 
respectively.

TABLE XII. RMSE Values for All the Datasets Using ML Algorithms

Accuracy 
Measure RMSE

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

ML 
Algorithm
DT 1312.59 1719.58 71.55 71.60 198.66 1525.33 79.56
MLP 1203.93 1467.22 48.91 80.64 198.09 1334.38 61.76
Bagging 1215.03 1477.21 49.75 79.32 199.28 1452.23 61.72

Elastic - 
Net 1174.68 1431.94 43.27 73.84 197.56 1339.19 55.29

TABLE XIII. MMRE Values for All the Datasets Using ML Algorithms

Accuracy 
Measure MMRE

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

ML 
Algorithm
DT 6.80 15.27 6.19 0.98 9.00 11.35 3.15
MLP 6.14 11.25 7.82 11.19 9.77 6.59 8.33
Bagging 6.58 11.75 8.12 10.43 10.25 11.03 8.20

Elastic - 
Net 4.53 7.94 3.71 6.33 11.36 6.37 3.92

On comparing Table VI and Table XII showing the RMSE values 
for seven different datasets using BAs and other ML algorithms, 
respectively, it is observed that BAs have performed better than 
the other ML algorithms. Precisely, the RMSE values obtained for 
Abdera, Ivy, and Poi datasets are lower and better using any of the 
five BAs compared to all the four other ML algorithms, i.e., DT, MLP, 
bagging, and EN. In the jEdit dataset, four out of the five BAs, i.e., 
AdaBoost, GBM, XGB, & CatBoost, performed better than three out 
of the four other ML algorithms, i.e., DT, MLP, & bagging in terms of 
RMSE. Further, for jTDS and Log4j datasets, three out of the five BAs, 
viz., AdaBoost, GBM, & LightGBM (i.e., 60% of the total BAs) show 
comparatively lower values of RMSE than all other ML algorithms. 
Lastly, in the Rave dataset, CatBoost BA outperformed all the other 
ML models with a lower value of RMSE, whereas AdaBoost, GBM, & 
XGB BAs outperformed DT, MLP, & bagging models. Overall, based on 
the RMSE values provided in Table VI and Table XII and on comparing 
the lowest RMSE values (values marked in bold) computed for each 
dataset in both the tables, BAs show a better performance since the 
lowest, and hence the best RMSE values have been obtained using 
BAs as compared to other ML algorithms for six (Abdera, Ivy, jTDS, 
Log4j, Poi, & Rave) out of the seven datasets, i.e., for 85.71% of the 
datasets. As an example, the least RMSE value equal to 71.60 obtained 
for the jTDS dataset on applying the DT algorithm reduces to 67.54 on 
applying GBM BA, leading to an improvement of 5.67%. Subsequently, 
on analyzing the mean RMSE values obtained for all the BAs taken 
together and also for all the other ML algorithms as shown in Fig. 5, it 
is concluded that the performance of BAs (having comparatively lower 
RMSE values) is better than other ML algorithms for all the seven 
datasets. An overall improvement in the mean RMSE values equal to 
11.14%, 14.86%, 11.94%, 5.68%, 2.03%, 10.76%, and 6.95% for Abdera, 
Ivy, jEdit, jTDS, Log4j, Poi, and Rave datasets, respectively, has been 
achieved on applying BAs when compared to other ML algorithms.

Further, based on the MMRE values obtained for BAs and other 
ML algorithms presented in Table VII and Table XIII, it is evident that 
BAs performance is undoubtedly better than the other ML algorithms. 
Specifically, the lower MMRE values for three (AdaBoost, XGB, & 
CatBoost) out of the five BAs are better than all the four other ML 
algorithms, i.e., DT, MLP, bagging, & EN for both Abdera and jEdit 

TABLE XIV. Pred(m) Values for All the Datasets Using ML Algorithms

Accuracy 
Measure Pred (m)

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

ML 
Algorithm (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75)

DT 0.20 0.25 0.62 0.17 0.20 0.54 0.20 0.21 0.52 0.31 0.31 0.61 0.24 0.26 0.48 0.25 0.28 0.59 0.20 0.23 0.46
MLP 0.11 0.14 0.33 0.09 0.11 0.28 0.02 0.02 0.17 0.00 0.06 0.22 0.23 0.26 0.61 0.15 0.19 0.49 0.07 0.09 0.20
Bagging 0.10 0.12 0.30 0.09 0.11 0.26 0.01 0.01 0.15 0.00 0.06 0.25 0.22 0.24 0.59 0.10 0.12 0.28 0.07 0.09 0.20

Elastic - 
Net 0.14 0.17 0.39 0.11 0.14 0.38 0.10 0.14 0.30 0.14 0.14 0.28 0.19 0.25 0.57 0.13 0.16 0.43 0.11 0.15 0.36
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datasets. Also, GBM and LightGBM BAs performed better than three 
(DT, MLP, & bagging) out of the four other ML algorithms for Abdera 
and jEdit datasets. Next, considering the Ivy and Log4j datasets, it is 
observed that lower and better MMRE values have been achieved for 
all the five BAs as compared to any of the other ML algorithms. In the 
jTDS dataset, XGB outperformed all other ML algorithms, whereas, 
rest of the four BAs outperformed three (MLP, bagging, & EN) out 
of the four other ML algorithms. Proceeding to the Poi dataset, XGB 
and CatBoost BAs provide lower MMRE values than any other ML 
algorithms. At the same time, AdaBoost and GBM BAs performed 
better than three (DT, MLP, & bagging) of the other ML algorithms. 
Lastly, on considering the Rave dataset, it is found that three out 
of the five BAs, viz. AdaBoost, XGB, & CatBoost BAs show better 
MMRE values than all other ML algorithms. However, GBM BA 
shows better performance than MLP and bagging algorithms, and it 
performs almost as good as the EN algorithm. Overall, on comparing 
the lowest MMRE values (values marked in bold) provided for each 
dataset in Table VII and Table XIII using BAs and other ML algorithms, 
respectively, it is observed that BAs showcase a better performance 
due to the lowest and the best-obtained MMRE values for all the seven 
open-source datasets, .i.e. for 100% of the datasets. As an example, 
the least MMRE value equal to 9.00 obtained for the Log4j dataset 
on applying the DT algorithm reduces to 3.82 on applying XGB BA, 
leading to an improvement of 57.56%. Not only this, the mean MMRE 
values calculated for all the BAs taken together and for all the other 
ML algorithms have been depicted in Fig. 6. It is evident from Fig. 6 
that lower MMRE values have been obtained using BAs for all the 
seven datasets considered in this study which, further strengthens 
the conclusion stating that BAs are better than other ML algorithms 
for SMP. An overall improvement in the mean MMRE values equal to 
38.10%, 47.62%, 55.11%, 67.36%, 29.31%, 39.48%, and 48.81% for Abdera, 
Ivy, jEdit, jTDS, Log4j, Poi, and Rave datasets, respectively, has been 
achieved on applying BAs when compared to other ML algorithms.
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Fig. 5. Mean values of RMSE using BAs and other ML algorithms.

Subsequently, Table VIII and Table XIV present the Pred(m) 
values at 25%, 30%, and 75% using BAs and other ML algorithms. A 
comparison between these two tables also indicates BAs supremacy 
over other ML algorithms while predicting maintainability. Overall, 
comparing the best. i.e., the highest values (values marked in bold) 
obtained for Pred(0.25), Pred(0.30), & Pred(0.75) in both the tables, 
it is observed that these values are better using BAs than other ML 
algorithms for four out of the seven datasets, i.e., for 57.14% of the 
datasets (which is more than half). Further, for Poi and Rave datasets, 
better Pred(0.75) values have been obtained using BAs. Hence, it is 
clear that BAs perform better than other ML algorithms based on the 
Pred(m) values.
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Therefore, on the whole, it is concluded that BAs are good 
performers and indeed better than other ML algorithms. All the above 
analysis and comparison made under this RQ, based on the RMSE, 
MMRE, & Pred(m) values obtained on applying BAs and other ML 
algorithms to each of the seven open-source datasets, further support 
the supremacy of BAs over other algorithms.

Conclusively, this research work can further benefit the society, 
especially the software engineers, in predicting the maintainability 
of the software being developed well in advance, thereby reducing 
the overall software development costs. This reduction in overall cost 
is mainly attributed to reducing the maintenance cost in particular, 
which gets accumulated with each phase of SDLC if not taken care 
of. The growing demand for different software in society over the last 
few years due to the automation of several tasks has led to a surge in 
the design & development of various software systems in the software 
industry. However, these systems require to be maintained once they 
are delivered to the customer involving high costs. Therefore, a great 
deal of specific techniques or mechanisms is needed to bring down 
these high costs. This can only be done by estimating the software’s 
maintenance effort in the initial phases of development using some 
prediction models that can predict the software’s maintainability 
in good time with high precision. The current research would help 
developers achieve this goal of predicting maintainability by utilizing 
different SMP models developed using various BAs, as proposed 
in this study. These models not only help in the task of predicting 
maintainability but also outperform several other models available for 
predictive modeling. 

V. Threats to Validity

While conducting the current empirical study, certain potential 
threats to validity were encountered. This study has been performed 
on various open-source datasets, limiting its use and does not 
ascertain its applicability for various other types of software available 
in the industry for its generalization. However, a sincere attempt has 
been made to overcome this threat by using 10-fold cross-validation & 
applying all the five BAs over each of the seven datasets with different 
characteristics. The results obtained are possibly less biased and can 
further be generalized. Also, while developing prediction models using 
various BAs, hyper-parameter tuning of function parameters has not 
been performed. The default settings have been mainly used, which 
again becomes a limitation of this study since the results so obtained 
may be correct only to a first approximation. Apart from this, three of 
the most common threats to validity existent in any empirical study 
are presented below.
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Internal validity refers to an extent to which conclusions of an 
empirical study can support the claim for cause & effect, i.e., the 
independent & the dependent variables. An attempt has been made 
to minimize this effect by applying feature selection using the RFE 
algorithm and using only the selected variables to study their effect 
on maintainability.

External validity is the extent of the generalizability of the 
outcomes or the results of any empirical study. A set of seven open-
source datasets with different size, characteristics, and maintenance 
requirements has been used in this study to minimize this effect.

Construct validity is the quality of choice of various independent 
and dependent variables of a study, as this choice undoubtedly impacts 
the results of that study. So, the threat to construct validity arises 
from the choice of these independent and dependent variables. A set 
of seventeen OO metrics from different suites proposed by various 
researchers, namely Chidamber & Kemerer [47], Henderson-Sellers 
[49], and Bansiya & Davis [50] has been selected to minimize this 
threat rather than adhering to a particular metric suite.

VI.  Conclusion & Future Direction

The current study’s main objective was to analyze various 
ML based BAs for SMP using open-source datasets. An extensive 
analysis and comparison of five different BAs (AdaBoost, GBM, XGB, 
LightGBM, and CatBoost) were conducted using each of the seven 
empirically collected open-source datasets (Abdera, Ivy, jEdit, jTDS, 
Log4j, Poi, & Rave) to predict maintainability. Seventeen different OO 
metrics were selected from three different metrics suites to develop 
the prediction models. Feature selection using the RFE algorithm and 
cross-validation using the ten-fold cross-validation technique was 
also performed. Performance of various BAs was evaluated using 
RMSE, MMRE, Pred(0.25), Pred(0.30) & Pred(0.75) as the prediction 
accuracy measures. Further, to determine if a significant difference 
exists between different BAs performances & finding their mean 
ranks, a non-parametric statistical test named the Friedman test 
was conducted. Afterward, a post hoc analysis using an advanced 
statistical test named the Nemenyi test was also performed to identify 
if the difference in various BAs performance, if it exists, is statistically 
significant or not. Lastly, a comparison was made between the results 
obtained for SMP using the BAs and the results obtained on applying 
four other ML algorithms (DT, MLP, bagging, and EN). The major 
findings of the current study are as presented below.

• A reduction in features equal to 52.94% is achieved after feature 
selection using the RFE algorithm. 

• While calculating residual errors for all the datasets using RMSE 
and MMRE as the accuracy measures, it was found that in the 
case of RMSE, GBM performed the best, followed by LightGBM, 
whereas, in the case of MMRE, XGB performed the best.

• Prediction accuracies also confirm the use of BAs for SMP, 
particularly Pred(0.75), where XGB stood out to be the best 
performer with a fairly reasonable predictive ability for six out of 
seven datasets, i.e., for 85.71% of the datasets, ranging from 51% 
to 79%.

• The Friedman test results and post hoc analysis using the Nemenyi 
test further unfolded the superiority of XGB and CatBoost BAs 
over other selected BAs in the study for SMP using open-source 
datasets.

• The comparison between the results obtained for SMP using BAs 
and other ML algorithms revealed that BAs are indeed the better 
performers than other algorithms based on all the measures of 
accuracy considered in this study. 

Hence, prediction models developed using various BAs from the 
family of ML algorithms can indeed be implemented for SMP using 
open-source datasets. However, this is a limited implementation of the 
proposed study.

More research and studies can be planned in the future to implement 
the algorithms used in this study in isolation or in combination with 
other ML techniques for different types of software systems available 
in the industry, which are written in different programming languages 
to generalize the results of this study further. Different paradigms and 
models, more feature selection, dimensionality reduction, ensemble, 
and re-sampling techniques, can be considered while conducting 
future studies. Also, while developing prediction models in the future 
using the proposed algorithms, hyper-parameter tuning of different 
function parameters can be done as an extension to the current work.
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