
Regular Issue

- 89 -

* Corresponding author.

E-mail address: shikha.usict.140164@ipu.ac.in

Keywords

Boosting Algorithms,
Feature Selection,
Machine Learning,
Software Maintainability
Prediction, Software
Metrics.

Abstract

Software Maintainability is an indispensable factor to acclaim for the quality of particular software. It describes
the ease to perform several maintenance activities to make a software adaptable to the modified environment.
The availability & growing popularity of a wide range of Machine Learning (ML) algorithms for data
analysis further provides the motivation for predicting this maintainability. However, an extensive analysis
& comparison of various ML based Boosting Algorithms (BAs) for Software Maintainability Prediction (SMP)
has not been made yet. Therefore, the current study analyzes and compares five different BAs, i.e., AdaBoost,
GBM, XGB, LightGBM, and CatBoost, for SMP using open-source datasets. Performance of the propounded
prediction models has been evaluated using Root Mean Square Error (RMSE), Mean Magnitude of Relative Error
(MMRE), Pred(0.25), Pred(0.30), & Pred(0.75) as prediction accuracy measures followed by a non-parametric
statistical test and a post hoc analysis to account for the differences in the performances of various BAs. Based
on the residual errors obtained, it was observed that GBM is the best performer, followed by LightGBM for
RMSE, whereas, in the case of MMRE, XGB performed the best for six out of the seven datasets, i.e., for 85.71%
of the total datasets by providing minimum values for MMRE, ranging from 0.90 to 3.82. Further, on applying
the statistical test and on performing the post hoc analysis, it was found that significant differences exist in
the performance of different BAs and, XGB and CatBoost outperformed all other BAs for MMRE. Lastly, a
comparison of BAs with four other ML algorithms has also been made to bring out BAs superiority over other
algorithms. This study would open new doors for the software developers for carrying out comparatively more
precise predictions well in time and hence reduce the overall maintenance costs.

DOI: 10.9781/ijimai.2021.10.002

An Extensive Analysis of Machine Learning Based
Boosting Algorithms for Software Maintainability
Prediction
Shikha Gupta*, Anuradha Chug

University School of Information, Communication & Technology, Guru Gobind Singh Indraprastha
University, Sector - 16C, Dwarka, New Delhi - 110078 (India)

Received 12 February 2020 | Accepted 16 February 2021 | Published 8 October 2021

I. Introduction

SOFTWARE Maintenance, as described in the IEEE Standard for
Software Maintenance [1], refers to any modification in a software

product after its delivery for improving the performance or any other
attribute, for correcting the faults or for adapting the product according
to the modified environment. However, software maintenance
is not an easy activity because of the complexity that exists in the
maintenance behavior of various software systems. Also, a handsome
amount of cost is incurred while maintaining software since software
maintenance is a high-priced affair. A significant proportion of the
comprehensive cost of software during the Software Development Life
Cycle (SDLC) is spent in the maintenance phase alone since the cost
of maintenance keeps on accumulating with each phase of SDLC. It
has been observed that only 30-40% of the resources, including money,
time, and effort, are utilized in the development phase, whereas the
remaining 60-70% is used for the maintenance activities [1].

There exists a detailed standard for software quality known as
ISO/IEC 25010:2011. It describes eight product quality characteristics,
where each characteristic further comprises various sub-related
characteristics [2]. Fig. 1 depicts these eight quality characteristics,
along with the sub characteristics. Of all the quality characteristics,
maintainability is considered for evaluation in the current study since
it is one of the most significant characteristics.

In recent times, any software’s quality has come out as an essential
parameter to account for the software’s success. In turn, software
quality depends on two main types of attributes: categorized into
internal and external categories. Internal attributes like coupling,
cohesion, abstraction, inheritance, etc. are directly-measured from the
source code during the initial stages of SDLC at the developer level
and are hidden from the users. However, external attributes such as
durability, understandability, robustness, modifiability, analyzability,
etc. are visible to the users and are, in turn, measured indirectly with
the help of different internal attributes [3]. The external attributes may
also be measured through developers’ opinions who write the source
code for the open-source software by organizing surveys. However,
such surveys involve high costs and are also very time consuming and

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº2

- 90 -

may produce biased opinions due to the subjectiveness involved in the
external quality attributes. Contrarily, measurement of internal quality
attributes using Object-Oriented (OO) metric suites has been validated
by many researchers for predicting maintainability keeping in view
the relationship that exists between the OO metrics & maintainability
[4]–[9]. Hence, the current study also uses these OO metrics for
Software Maintainability Prediction (SMP).

Software maintainability these days has become one of the
essential external attributes of software, which further forms a basis
of research for many researchers working in the fields related to
software engineering. Software maintainability can be described
as the extent to which a particular software system can be changed
concerning the number of Lines of Code (LOC). The researchers’
fundamental goal is to develop such models for the prediction that are
proficient in predicting any software’s maintainability accurately and
well in advance. This further ensures optimum utilization of resources,
including not only money but also the effort and time put in by the
development team. Further, the prediction is not the only goal here, but
the predictions made should also have high prediction accuracies with
the least possible precision errors. Usually, predictions are made with
historical data of particular software for which the prediction model
is being developed, including both internal and external attributes. A
qualitative description of correlation among the internal & external
attributes is also found for SMP [3].

�ality of
So�ware
Product

Performance E�iciency

Compatibility

Functional Suitability

Usability

Reliability

Security

Maintainability

Portability

- Appropriateness
- Completeness
- Correctness

- Capacity
- Resource Utilization
- Time Behavior

- Adaptability
- Replaceability
- Installability

- Interoperability
- Coexistence

- Availability
- Fault Tolerance
- Maturity
- Recoverability

- Accessibility
- Appropriateness
- Operability Recognizability
- Learnability
- User Interface Aesthetics
- User Error Protection

- Accountability
- Accountability
- Confidentiality
- Non Repudiation
- Integrity

- Analyzability
- Modifiability
- Modularity
- Reusability
- Testability

Fig. 1. Model for quality of software product.

In order to estimate the internal quality attributes of software,
different metrics have been used such as Afferent Couplings (Ca),
Coupling between Object classes (CBO), Efferent Couplings (Ce), &
Inheritance Coupling (IC) for coupling; Cohesion among the Methods
of a class (CAM), Lack of Cohesion in Methods (LCOM), & Lack of

Cohesion among the Methods of a particular Class (LCOM3) for
cohesion; Depth of Inheritance Tree (DIT), Number of Children (NOC),
& Measure of Functional Abstraction (MFA) for inheritance; Weighted
Methods per Class (WMC), & Average Method Complexity (AMC)
for complexity; Lines of Code (LOC), & Number of Public Methods
(NPM) for size; Response for a Class (RFC) for cardinality; Data Access
Metric (DAM) for encapsulation; Measure of Aggregation (MOA) for
composition, etc. as compiled in [10], [11]. Software metrics are used
to monitor and improve various processes & products in software
engineering. These metrics measure various facets of software, such as
the design documents or the source code. However, there exist different
software metrics based on whether the paradigm is procedural or OO.
As per the existing literature, software systems have been analyzed
from three perspectives, i.e., the architecture of the system, its design,
and the code for SMP [4]. However, out of these, code-level analysis
for SMP is the most widely used perspective.

A significant breakthrough for the software industry comes with the
advent of Machine Learning (ML). ML [12] is a discipline of artificial
intelligence that pertains to the automatic learning capability of
different systems and the improvisation of the efficiency based on their
past experiences without any explicit programming or learning. The
primary focus of ML is developing such programs capable of accessing
the data and utilizing it to learn for themselves. The ML process
initiates with some data or observations to identify certain patterns
in that data, which can further be utilized to make efficient decisions
in the future based on the initial data provided. The most important
goal of ML is to make the computers capable of automatically learning
without human beings’ intervention or any kind of external assistance
and act accordingly. A wide variety of ML algorithms are currently
available for use, broadly classified into two major categories, i.e.,
supervised (classification & regression) and unsupervised (clustering
and association) ML algorithms. Other categories of ML algorithms
include semi-supervised and reinforcement learning. Nowadays,
ML finds its applications in almost every sphere of life, including
web search, computational biology, finance, e-commerce, software
engineering, robotics, social networks, debugging, disease diagnosis,
stock analysis, marketing analysis, and prediction, etc. Several ML
algorithms have been implemented in the fields mentioned above.

As an example, considering the stock analysis field, Sharma et al.
[13] in 2018 analyzed ten different supervised classifiers, including
logistic regression, C4.5, random forest, etc. for mining of stock
data using ICICI bank’s data with logistic regression outperforming
the other classifiers; Zhong and Enke [14], in 2019, presented a
hybrid of deep neural networks with traditional Artificial Neural
Networks (ANN) for predicting the return direction for the stock
market on a daily basis considering 60 economic & financial features.
Rasekhschaffe and Jones [15] in the same year described the primary
concepts and the use of ML algorithms in stock selection along with
the use of few ensemble models for forecasting stock returns while
minimizing the risk of over-fitting. Further, considering the disease
diagnosis field, Kaur and Sharma [16], in 2019, extensively reviewed
different supervised & nature-inspired ML techniques for mining and
analyzing the diagnosis of various psychological disorders using a
systematic 3-D search space methodology covering the diagnosis, the
disorder & the classification algorithms; and Reddy et al. [17], in 2020,
proposed an effective hybrid of adaptive Genetic Algorithm (GA) &
fuzzy logic approach (AGAFL) to help the doctors in the early and
timely diagnosis of the heart diseases. Again in 2020, Sharma and Kaur
[18] conducted a detailed review of the role of several meta-heuristic
algorithms based on nature-inspired rules in solving the problem of
selecting relevant features for a better classification in different fields;
disease diagnosis being the most assessed area. Afterward, in the field
of finance, Xiaomeng and Shuliang [19] in 2019, came up with an

Regular Issue

- 91 -

improved & efficient ML algorithm, i.e., MLIA for the prediction of
credit risk in the market of internet finance. Ghoddusi et al. [20] in the
same year performed a comprehensive review of various applications
of ML in the area of finance or energy economics, including areas like
demand forecasting, data processing, risk management, etc., where
support vector machines, ANN, and GA stood out to be the most
widely used techniques in the concerned field.

Coming back to the field of software maintainability, over the past
few years, researchers have developed different ML, evolutionary, &
statistical ensemble models for SMP based on the code level metrics
intended to predict software maintainability in the most accurate
possible manner. Some of the individual ML models developed in the
past include General Regression Neural Network (GRNN), Multilayer
Perceptron (MLP) [21], Feed Forward 3-Layer Back Propagation
Network (FF3LBPN) & Group Method of Data Handling (GMDH) [7].
Models based on nature-inspired algorithms include Evolutionary
Algorithms (EA) [22], GA, Functional Link ANN (FLANN), Clonal
Selection Algorithm (CSA) & Particle Swarm Optimization (PSO)
[23]. Further, the ensemble models developed to date include bagging
[8], [24] & boosting, particularly Adaptive Boosting (AdaBoost) [24].
Detailed information about existing models for SMP is provided in the
related work section.

Further, ML based boosting techniques have already been explored
& implemented successfully in various fields of software engineering
comprising software defect prediction [25], software reliability
modeling [26] & software fault proneness [27]. However, it is evident
from the past studies that none of the researchers has made extensive
use of existing Boosting Algorithms (BAs) for SMP apart from one
particular BA, i.e., AdaBoost, which still finds a mention in one or
two studies [24] for predicting maintainability. Therefore, this study
endeavors to predict software maintainability using various BAs and
perform an extensive analysis of these BAs for SMP. Boosting is a
homogeneous ML ensemble technique proposed by Freund in 1995
[28]. In boosting, an ensemble of classifiers is formed incrementally on
adding one classifier at a point in time utilizing the weighted averages
so that the base estimators or the weak learners can be converted into
strong learners before generating the final output. Unlike other ML
algorithms, BAs aim to improvise the prediction capability by training a
series of weak learners, each of which compensates for the weaknesses
in its preceding learner. BAs are usually intended to reduce the variance
and single estimators’ bias resulting in a much more stable model.
Various BAs are available today that can be used for solving complex
and data-driven real-world problems. A significant advantage of using
BAs is that these algorithms provide immense powers to the basic ML
algorithms, such as Decision Tree (DT), Random Forest (RF), regression,
MLP, etc. to improve the prediction accuracy outperforming the basic
models. This happens as BAs combine several weak hypotheses of the
base estimator that are moderately correct with an objective to derive
a notably accurate hypothesis. BAs take several rounds of operation,
after which a noteworthy improvement in the accuracy of the training
data is achieved. In every round of BAs, samples in the training set are
re-weighed, & the base estimator is run on the re-weighted training
samples. The BAs main motive is to drive the focus of the weak base
estimator towards the error-prone samples. This ultimately leads
to the final hypothesis, which is the weak hypotheses’ weighted
vote. Subsequently, the BAs major strengths include their easy
interpretability, availability of feature selection implicitly, resilience
towards over-fitting, and strong predictive capability.

Not only this, another significant motivation behind choosing
boosting algorithms to conduct this study comes from the effectiveness
of the tree boosting that fits the additive tree models having a high
ability of representation [29]. This is possible due to the adaptive
neighborhood’s property, which enables tree boosting use varying

degrees for flexibility of different regions in the input space. Hence,
it is robust to the dimensionality problem as it performs the feature
selection automatically by capturing interactions that are high in
order without getting broken. Further, suppose we talk in particular
about eXtreme Gradient Boosting (XGB) [29], [30]. In that case, it will
learn better structures of trees since these structures determine the
neighborhoods & are highly adaptive to the data. XGB uses smart
penalization for an individual tree, which can then have a different
number of terminal nodes apart from shrinkage. The benefit of using
penalization lies in the fact that all the leaves’ weight is not shrunk by
a common factor. Instead, the weights estimated through fewer pieces
of evidence in the data are shrunk even more heavily. Additionally,
XGB uses Newton boosting, unlike gradient boosting, & also includes
a parameter for randomization to further de-correlate individual trees,
which results in the reduction of the overall variance. Also, XGB has
a better learning capability. It uses high order approximation at each
iteration of the optimization problem & considers the tradeoff between
the bias & the variance while fitting the model.

The current study utilizes open-source datasets to analyze various
BAs for SMP. The underlying idea behind the selection of open-source
datasets for this study was the easy availability of these datasets
through various online platforms such as SourceForge & GitHub and
the need for generalization and validation of the proposed models
for other software in the industry. The study is conducted on a set of
seven empirically collected open-source datasets, namely, Abdera, Ivy,
jEdit, jTDS, Log4j, Poi, & Rave. A collection of seventeen OO software
metrics has been used as the independent variables. In contrast, the
maintenance effort (dependent variable) used here is ‘Change’, which
is equal to the number of lines that have been changed per class in the
maintenance history. Original datasets are pre-processed to remove
those rows where maintenance effort is equal to zero. Feature scaling
using MinMaxScaler and feature selection using the Recursive Feature
Elimination (RFE) technique is also performed for improving the
quality of data. Five different BAs, i.e., AdaBoost, Gradient Boosting
(GBM), XGB, LightGBM, and Categorical Boosting (CatBoost), are
selected for developing various prediction models for each dataset.

Models are validated using the ten-fold cross-validation technique,
and the capability of these models is assessed using Root Mean Square
Error (RMSE), Mean Magnitude of Relative Error (MMRE), Pred(0.25),
Pred(0.30) & Pred(0.75) taken as the prediction accuracy measures.
Friedman test to rank the performance of different BAs used in the
study and the Nemenyi test for conducting the post hoc analysis are
also performed based on the MMRE. Lastly, a comparison of results
achieved on applying the BAs with the results obtained on applying
four other ML algorithms (apart from the BAs), viz., DT, MLP,
bagging, and Elastic - Net (EN) is also made. Results show that BAs
can effectively be applied for SMP, which opens new ways for the
researchers to explore these algorithms further. This study’s worth lies
in the fact that predicting maintainability has become a crucial point of
consideration for the software developers throughout the SDLC while
developing any software. Also, the software has become a necessity
these days since many tasks are becoming automated each day, and
this conversion requires some software to be developed. Therefore, the
software industry’s importance and, in turn, the software is growing
leaps and bounds with each passing day. Since the software is being
developed, it needs to be maintained also, but as discussed earlier, a
handsome amount of cost is required to be spent in the maintenance
phase. Thus, some techniques or models are required for predicting
software maintainability sufficiently in advance. The current study
fulfills this requirement by providing several such models using ML
based BAs for a precise prediction of maintainability in good time
to help the software developers utilize the resources, such as the
money, time & effort judiciously. This would further bring down the

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº2

- 92 -

maintenance costs associated with any software development process
to a considerable extent.

The primary objectives of the current study can be summarized as
Research Questions (RQs).

RQ1: Whether BAs can be applied for SMP?

RQ2: Which BA performs the best amongst different BAs based
on various prediction accuracy measures for different open-source
datasets?

RQ3: What is the comparative performance of various BAs during
post hoc analysis when MMRE is taken as an accuracy measure?

RQ4: What is the comparison between the results obtained on
applying various ML algorithms (other than the BAs) and the
results obtained on implementing BAs?

The remaining paper that follows is organized as - Section II
describes the related work carried out in the current study field. Section
III discusses the datasets, independent variables, & the dependent
variables that have been used in the current study. Section IV describes
the complete research methodology, including pre-processing of
datasets, feature scaling & feature selection techniques, description of
BAs used, cross-validation technique, prediction accuracy measures,
statistical test, and post hoc analysis. Results and discussions are
described in Section V, whereas Section VI highlights the threats to
validity. Lastly, Section VII closes the paper with conclusions & future
directions.

II. Related Work

SMP has become a principal aspect to ascertain any software’s
quality in the industry over the last few years. Predicting this
maintainability in initial stages of development is the need of the hour
for efficient and optimum development of any software system. Over
the years, substantial research is already being done in the field of
SMP by various researchers. They have developed several prediction
models using different ML, hybrid, nature-inspired, & other suitable
techniques. A summary of these prediction models’ details, including
the information regarding the types of datasets, metrics suites, ML
techniques, validation methods, and the prediction accuracy measures
used to compare the performances of the developed prediction
models, is provided in Table I. The observed accuracy measures
prove that a strong relationship exists between the OO metrics & the
maintainability.

Li and Henry [31], in 1993, studied the validation of various
OO metrics with the maintenance for the first time using Quality
Evaluation System (QUES) & User Interface Management System
(UIMS) to prove the existence of a powerful relation among OO metrics
and the maintainability. Since then, many researchers have been
working in the area of SMP for QUES and UIMS datasets using OO
metrics [32]–[38]. Later, Malhotra and Chug [39], in 2012, proposed
three ML algorithms, i.e., GMDH, Probabilistic NN (PNN), & GAs,
using the Gaussian activation function to predict maintainability &
compared their performance with other existing models such as ANN.
Results showed that the GMDH model is comparatively more precise
& more accurate than the existing models. Again in 2012, Dubey et
al. [21] proposed using a robust & adaptive MLP NN model to predict
maintainability. MLP, when compared with other models, i.e., WNN
& GRNN, was found to be more superior. In another study conducted
by Ahmed and Al-Jamini in 2013 [3], fuzzy logic based prediction
models, i.e., Mamdani Fuzzy Inference Engine & T-S, were developed
& compared for SMP. In comparison, the Mamdani-based prediction
model gave the most accurate results of all. In 2014, Malhotra and
Chug [7] evaluated the GMDH technique’s effectiveness for predicting

maintainability by comparing it with the other two techniques,
i.e., FF3LBPN & GRNN. It was observed that the GMDH technique
performed the best with minimum error & high precision.

In another study, Malhotra and Chug [22] suggested using EAs for
SMP using ten-fold cross-validation. The model’s performance was
analyzed with the help of MRE, MMRE & Pred(q), and later compared
with other statistical and ML algorithms. It was found that EAs can
effectively predict maintainability with more accuracy and precision
as compared to other traditional methods. In 2015, Elish et al. [24]
presented three empiric studies for SMP using different homogeneous
& heterogeneous ensemble methods. They evaluated and compared
three of the heterogeneous ensemble methods to predict maintenance
effort, i.e., Weighted-based (WT), Average-based (AVG), and Best in
Training-based (BT) ensemble methods. Resultantly, ensemble models
came out to be the best when compared to other individual models.
All the ensemble and individual models were outperformed by the
BT ensemble method. In 2015 only, Kumar et al. [6] suggested using
class-level OO software metrics in predicting maintainability with the
help of a Neuro-GA for developing the prediction model for QUES
and UIMS datasets. Results indicated a successful implementation of
Neuro-GA for SMP by generating promising results.

Kumar and Rath [23], in 2016, suggested the use of three Artificial
Intelligence (AI) techniques, i.e., FLANN-GA, FLANN-PSO, and
FLANN-CSA, to develop models for predicting maintainability along
with a few feature reduction techniques. Best & improved results are
obtained using feature reduction with FLANN-Genetic. In 2016 again,
Chug and Malhotra [9] studied the effect of several ML techniques like
GRNN, GMDH, Support Vector Machines (SVM), M5Rules, etc., while
predicting the maintainability of seven different open-source software.
Results were analyzed for Mean Absolute Error (MAE), RMSE &
Pred(q) as the prediction accuracy measures, and it was found that the
proposed ML techniques successfully predicted the maintainability
for open source software & GMDH and GRNN with Genetic Adaptive
Learning (GGAL) performed better than other techniques. In another
study conducted by Kumar and Rath [40] in 2017, a Neuro-Fuzzy
approach - a hybrid of NN & fuzzy logic was proposed for SMP with
Principal Component Analysis (PCA) & Rough Set Analysis (RSA) for
selecting suitable features. Results showed that the Neuro-Fuzzy model
successfully predicts the software maintainability of OO systems with
a further improvement in accuracy using feature selection techniques
and parallel computing concepts. In 2018, Baskar and Chandrasekar
[41] proved the superiority of the Neuro-PSO (NPSO) model over
three other models, namely GMDH, GRNN, & PNN for SMP using
MRE, MMRE, & Pred(q) as the accuracy measures. Again in 2018,
Alsolai et al. [8] tried to assess the effectiveness of bagging models, i.e.,
the ensemble models for SMP & proved that there was a noteworthy
enhancement in the performance using the bagging models. Further,
if combined with k-Nearest Neighbour (k-NN) as the base model, the
bagging model outperformed all the other models resulting in high
accuracy.

In 2019, Jha et al. [42] put forth a deep learning approach (LSTM)
for SMP using large datasets and 29 OO metrics. They compared the
proposed approach with the results of five other ML algorithms, viz.
ridge regression, DT, quantile regression forest, SVM, & PCA, to further
affirm the LSTM approach’s superiority to other models. In the same
year, Wang et al. [43] introduced a fuzzy network-based approach for
SMP using UIMS & QUES datasets, resulting in an improvement in
transparency equal to 71.3% and an improvement in accuracy beyond
11.0%. Recently, in 2020, Gupta and Chug [44] described the cross-
project technique for predicting maintainability based on the RMSE
values leading to an improvement equal to 13.09% in the overall
performance of the predictive models. Again, Gupta and Chug [45]
in the same year presented an enhanced RF approach to predict

Regular Issue

- 93 -

TABLE I. Summarized Details of Different Prediction Models Developed by Researchers for SMP

Study Dataset Metric Suite Prediction
Model

Validation
Method

Prediction Accuracy
Measure/s (PAMs) Values for PAMs

Li & Henry
[31]

UIMS & QUES C&K metric suite MLR - -

Dagnipar
& Jahnke
[32]

Fujaba-UML (FUML)
& Dynamic Object

Browser (dobs)

Size-NIM & TNOS,
Inheritance-NOC &
AID, Cohesion-LCC

Regression
Model

LOO
R-square adjusted (between

61.60% & 99.70%)
Between 61.60 & 99.70 %

Thwin &
Quah [33]

QUES

DIT, MPC,
RFC, LCOM, DAC,
WMC, NOM, SIZE1

& SIZE2.

WNN, GRNN
10-cross-
validation

R squared, Correlation
coefficient r

R2=WNN-0.56067 & GRNN-
0.71139, r= WNN-0.7609805 &

GRNN-0.8580623

Koten &
Gray [34]

UIMS & QUES

DIT, NOC, MPC,
RFC, LCOM, DAC,

WMC, NOM, SIZE1,
SIZE2

Linear
Regression (LR),

BNM

10-cross
validation

Absolute Residual (Ab.Res.),
MRE, MMRE, Pred(q)

Using BNM, for UIMS, MMRE
= 0.972, pred(0.25) = 0.446,

pred(0.30) = 0.469
For QUES, MMRE = 0.452,

pred(0.25) = 0.391, pred(0.30) =
0.430

Aggarwal
et al. [35]

UIMS & QUES
LCOM, NOC, DIT,
WMC, RFC, DAC,

MPC, NOM
ANN - MARE, MRE MARE=0.265, MRE=0.09

Zhou &
Leung [36]

UIMS &
QUES

WMC, DIT, RFC,
NOC, LCOM, MPC,

DAC, NOM &
SIZE2 & SIZE1

MLR, ANN, RT,
SVR, MARS

LOO cross-
validation

Residual (Res.), Absolute
Residual Error (ARE), MRE,

MMRE, Pred(q)

Using MARS, for UIMS,
MMRE=1.86, pred(0.25)=0.28,

pred(0.30)=0.28,
For QUES, MMRE=0.32,

pred(0.25)=0.48, pred(0.30)=0.59

Elish &
Elish [37]

UIMS & QUES

C&K - WMC, DIT,
NOC, RFC, &

LCOM; Li & Henry
- MPC, DAC, NOM,
& SIZE2; & SIZE1

TreeNet
classifier

LOO cross-
validation

MMRE, MRE, Pred(q),
underestimation,
overestimation

For UIMS, MMRE=1.57,
pred(0.25)=0.31, pred(0.30)=0.41,

For QUES, MMRE=0.42,
pred(0.25)=0.58, pred(0.30)=0.65

Kaur et al.
[38]

UIMS & QUES
LCOM, DIT, WMC,
NOC, RFC, DAC,

MPC, NOM

ANN, FIS,
ANFIS -

MARE, MRE, R-value,
p-value

MARE=36.8% (feed forward
ANN), 25.5% (GRNN), 30.8% (FIS),

24.2% (ANFIS)

Malhotra
& Chug
[39]

UIMS & QUES

WMC, DIT, NOC,
RFC, LCOM, MPC,
DAC, NOM, Size1,

Size2

GMDH, GA,
PNN

Hold-out
MRE, MMRE, Pred(q),

R-Square, p-value

For GMDH, MMRE=0.210,
pred(0.25)=0.69, pred(0.30)=0.722,

pred(0.75)=0.944,
For GA, MMRE=0.220,

pred(0.25)=0.66, pred(0.30)=0.722,
pred(0.75)=0.972,

For PNN, MMRE=0.230,
pred(0.25)=0.68, pred(0.30)=0.75,

pred(0.75)=0.944,

Dubey et
al. [21]

UIMS & QUES

DIT, NOC, RFC,
WMC, LCOM,

MPC, DAC, NOM,
Size1, Size2

MLP NN -
R-square, r, MAE, min

Absolute Error (AE), max AE

Using MLP. for UIMS, R2=0.8274,
r=0.946, MAE=17.86, for QUES,
R2=0.988, r=0.976, MAE=5.264

Ahmed &
Al-Jamini
[3]

UIMS & QUES

DIT, NOC, MPC,
RFC, LCOM, DAC,

WMC, NOM, SIZE1,
SIZE2

Fuzzy logic-
based models
- Mamdani

Fuzzy Inference
Engine & T-S

-

MRE, Normalized Root
Mean square Error

(NRMSE), MMRE, Pred(q)

For UIMS, MMRE=0.53,
NRMSE=0.21, pred(0.25)=0.30,

pred(0.30)=0.35, for QUES,
MMRE=0.27, NRMSE=0.16,

pred(0.25)=0.52, pred(0.30)=0.62

Malhotra
& Chug
[7]

FLMS & EASY

WMC, DIT, NOC,
RFC, LCOM, MPC,
DAC, NOM, SIZE1,

SIZE2

GRNN,
FF3LBPNN &

GMDH
Hold-out

MRE, MMRE, Pred(q),
Overestimate, Underestimate

For GRNN, MARE=0.5476,
pred(0.25)=0.44, pred(0.30)=0.47,
for FF3LBPNN, MARE=0.4578,

pred(0.25)=0.51, pred(0.30)=0.59,
for GMDH, MARE=0.3566,

pred(0.25)=0.61, pred(0.30)=0.71

Malhotra
& Chug
[22]

Apache Poi & Rave
WMC, DIT, NOC,
CBO, RFC, LCOM,

LOC

A set of 14
statistical

regression,
traditional

ML & hybrid
algorithms

10-fold cross-
validation

MRE, MMRE, Pred(0.25),
Pred(0.30)

EAs achieved accuracy in the
range of 22-25%

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº2

- 94 -

Study Dataset Metric Suite Prediction
Model

Validation
Method

Prediction Accuracy
Measure/s (PAMs) Values for PAMs

Elish et al.
[24]

UIMS & QUES
for Regression

Problem

WMC, DIT, NOC,
RFC, LCOM, MPC,
DAC, NOM, SIZE1,

SIZE2

Different
homogeneous &
heterogeneous

ensemble
methods (AVG,

WT & BT
ensemble)

Ten-fold cross-
validation

MMRE, Standard Deviation
Magnitude of Relative Error

(StdMRE), Pred(q)

Using BT, for UIMS, MMRE=0.97,
StdMRE=1.61, pred(0.3)=25, for

QUES, MMRE=0.41, StdMRE=0.32,
pred(0.3)=60

Kumar et al.
[6]

QUES & UIMS

WMC, NOC, DIT,
RFC, LCOM, MPC,
DAC, NOM, SIZE1,

SIZE2

Neuro-GA

10-fold (QUES)
and 5-fold

(UIMS) cross-
validation

MAE, MARE, RMSE,
Standard Error of the Mean

(SEM)

MMRE=0.3155 (UIMS), 0.3775
(QUES)

Kumar &
Rath [23]

QUES & UIMS

WMC, DIT, NOC,
LCOM, RFC, MPC,
DAC, NOM, SIZE1,

SIZE2

FLANN-GA,
FLANN-PSO,
FLANN-CSA

QUES-10-
fold cross-
validation,

UIMS-5-fold
cross-

validation

MAE, MMRE, SEM, True
Error (e), Estimate of True

Error (ê)

Using FGA, MMRE=0.2881
(UIMS), 0.3889 (QUES), using
FPSO, MMRE=0.3238 (UIMS),
0.3650 (QUES), using FCSA,

MMRE=0.2843 (UIMS), 0.4469
(QUES)

Chug &
Malhotra [9]

7 Open Source
Software
(Drumkit,

OpenCV, Abdera,
Ivy, Log4j, jEdit,

JUnit)

WMC, DIT, NOC,
RFC, DAM, MOA,
MFA, CAM, AMC,

CBO, LCOM,
LCOM3, NPM, Ca,

Ce, IC, LOC

Thirteen
different ML

classifiers like
LR, M5Rules,

GMDH, GRNN,
SVM, PNN, etc.

Ten-fold cross-
validation

MAE, RMSE, Pred(q)
Pred(0.25) > 60% in all cases using
different ML techniques, GGAL &
GMDH superior of all techniques

Kumar &
Rath [40]

UIMS & QUES

DIT, WMC,RFC,
DAC,LCOM,
NOC,MPC,

NOM,SIZE1, SIZE2

Neuro-Fuzzy
Approach
& Parallel

Computing
concept

Five-fold cross
validation

MAE, MARE, MMRE, SEM,
True Error (e), Estimate of

True Error (ê)

MMRE=0.2826 (UIMS), 0.3375
(QUES)

Baskar &
Chandrasekar
[41]

QUES & UIMS

DIT, WMC, NOC,
CBO, LCOM, MPC,
RFC, DAC, NOM,

Size1, Size2

NPSO -
MRE, MMRE, Prediction

(Pred(q))

MaxMRE=2.02547,
MMRE=0.2931, pred(0.25)=0.2998,

pred(0.75)=0.5612

Alsolai [8] QUES

WMC, DIT, NOC,
RFC, LCOM, MPC,
DAC, NOM, SIZE2,

SIZE1

Individual
Models (RT,
MLP, k-NN,
M5Rules) &
a bagging

ensemble model

10-fold cross-
validation

MRE, MMRE, Pred(0.25),
Pred(0.30), Standard

Deviation of Absolute
Residuals (SD. Ab.Res.)

Using bagging ensemble
models, for RT, MMRE = 0.3,

pred(0.25)=0.6, pred(0.30)=0.7, for
MLP, MMRE=0.2, pred(0.25)=0.7,

pred(0.30)=0.8, for k-NN,
MMRE=0.1, pred(0.25)=0.9,
pred(0.30)=0.9, for M5Rules,
MMRE= 0.3, pred(0.25)=0.5,

pred(0.30)=0.6

Wang et al.
[43]

UIMS & QUES

DIT, NOC, MPC,
RFC, LCOM, DAC,

WMC, NOM, SIZE2,
SIZE1

Fuzzy network - MMRE, Transparency (TI) Best MMRE=0.443, best TI=1

Gupta &
Chug [44]

QUES & UIMS

DAC, DIT, LCOM,
MPC, NOC, NOM,
RFC, SIZE1, SIZE2,

WMC

The Cross-
Project

technique using
19 different
regression

models

10-fold cross-
validation

RMSE
Without CPSMP, Average
RMSE=82.31, with CPSMP,

Average RMSE=71.53

Gupta &
Chug [45]

QUES & UIMS

DAC, DIT, LCOM,
MPC, NOC, NOM,
RFC, SIZE1, SIZE2,

WMC

RF with three
different feature

selection
techniques

10-fold cross-
validation

R2 For QUES, R2=0.9207; for UIMS,
R2=0.9907

Regular Issue

- 95 -

maintainability by combining RF algorithm with three different feature
selection methods, i.e., chi-squared, RF, & linear correlation using R2
as the accuracy estimator. Results show a remarkable improvement in
the R2 values using the enhanced RF approach compared to the basic
existent RF approach. Further, Gupta and Chug [46] also propounded
an effective utilization of Least Squares SVM (LS-SVM) in predicting
maintainability by deriving notable values of MAE, RMSE, & MMRE
on using LS-SVM.

It is observable from Table I and from the discussion of various
studies conducted in the field of SMP that many researchers have
already proposed a vast number of prediction models for SMP to
date. However, most of them have used only the publicly available
traditional Li and Henry datasets [31] for conducting their research
rather than use open-source datasets. It was found that only two of
the studies have used open-source datasets [9], [22]. Also, none of the
researchers has made extensive use of ensemble methods, particularly
the boosting techniques with any kind of dataset, to predict software
maintainability apart from a few who considered ensemble models for
SMP in their study [8], [24]. Hence, to overcome the above-identified
gaps of the existing studies and due to the motivation gained through
the availability and effectiveness of various BAs as discussed in the
Introduction, the current study attempts to conduct an extensive
analysis of BAs for SMP using open-source datasets.

III. Research Methodology

This section presents a detailed elucidation of the seven empirically
collected open-source datasets used in this study and the process of
collecting them. The independent and dependent variables chosen for
the current study are also described in this section. A careful attempt
is made while selecting the independent variables. All the possible and
relevant design-related attributes of the OO paradigm, like abstraction,
inheritance, complexity, coupling, and cohesion, are covered to

sincerely analyze BAs capabilities for SMP. A collection of metrics
picked up from different suites proposed by various researchers is
selected, including the famous Chidamber & Kemerer (C&K) metrics
suite [47]. However, due to some shortcomings encountered in the
C&K metrics suite as identified by Malhotra and Chug [48], such
as it does not contain any metric to measure the extent of database
handling and also its inability to account for the structural complexity
that exists in any software; two more metric suites are also considered,
Henderson-Sellers [49] and Bansiya & Davis [50]. In totality, a set of
seventeen OO metrics covering all the three metric suites has been
used while conducting this study, as compiled in Table II.

The dependent variable used here is ‘Change,’ defined in respect
to the number of lines in the source code that were added, deleted, or
modified after delivering the final product to the customer. Further,
as stated in Section I, there are two types of software attributes, i.e.,
internal and external. Internal attributes like coupling, cohesion, etc.
can directly be measured by the developers during different SDLC
stages. In contrast, external attributes like maintainability need to
be measured indirectly using the metrics calculated for the internal
attributes. In this study, an attempt has been made to measure
an external attribute, i.e., maintainability (measured through the
dependent variable ‘Change’) based on internal attributes by finding
a correlation between different OO metrics & the dependent variable,
developing various SMP models using several different BAs.

The overall implementation for the current study has been
performed in Python 3 using Jupyter Notebook 5.7.8 platform. An
overview of the research methodology being adopted for this study
is depicted in Fig. 2. This section is further subdivided into different
sub-sections.

A. Datasets and Data Collection
In this study, seven empirically collected datasets, i.e., Abdera, Ivy,

jEdit, jTDS, Log4j, Apache Poi, and Apache Rave from various open-

TABLE II. Independent Variables Used in the Study

Metrics Definition

WMC (Weighted Methods per Class)
WMC measures the static complexity of all the methods, which is the summation of McCabe’s cyclomatic
complexity of those methods.

DIT (Depth of Inheritance Tree) DIT measures a class’s position in the inheritance hierarchy, root class having this value equal to zero.

NOC (Number of Children) The number of direct subclasses of a class is measured using the NOC metric.

CBO (Coupling between Object classes) The number of classes coupled to a particular class is measured through CBO.

RFC (Response for a Class)
The cardinality of the response set of a class is measured through RFC, which is nothing but the sum of the
number of local methods & number of methods called by these methods.

LCOM (Lack of Cohesion in Methods) The number of disjoint sets of local methods is measured through the LCOM metric.

Ca (Afferent Couplings) The number of classes that call a particular class is counted by the Ca metric.

Ce (Efferent Couplings) The number of other classes that are called by a particular class is counted by the Ce metric.

NPM (Number of Public Methods) The number of public methods of a class is counted by the NPM metric.
LCOM3 (Lack of Cohesion among the
Methods of a particular Class)

LCOM3 metric is used to overcome specific disadvantages of the LCOM metric.

LOC (Lines of Code) The number of code lines, excluding comments & blank lines, is measured using the LOC metric.

DAM (Data Access Metrics)
The ratio of the sum of private & protected methods of a particular class to the total number of attributes defined
for that class is calculated by the DAM metric.

MOA (Measure of Aggregation) The percentage of user-defined data in a particular class is calculated by the MOA metric.

MFA (Measure of Functional
Abstraction)

The ratio of inherited methods to total methods in a class is calculated by the MFA metric.

CAM (Cohesion among the Methods of
a class)

The similarity between different methods of a particular class is computed by the CAM metric.

IC (Inheritance Coupling) The number of parent classes to which a particular class is coupled is counted by the IC metric.

AMC (Average Method Complexity) The average value for McCabe’s cyclomatic complexity of all the methods is calculated by the AMC metric.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº2

- 96 -

source repositories such as SourceForge and GitHub are analyzed
using BAs for SMP. The details and description of various datasets
follow:

• Abdera (685 classes) - Abdera is an atom parser generator that is
used to build functionally a high in performance Internet for both
the ends, i.e., the client and the server, by producing such designed
documents which are high in quality. (https://github.com/apache/
abdera)

• Ivy (613 classes) - Ivy is an assembly of various programs and open
source libraries, which allow the broadcast of information using
text messages along with a mechanism of subscription, which
is usually based on the regular expressions. (https://github.com/
apache/ant-ivy)

• jEdit (416 classes) - jEdit is one of the text editors written using
Java. It can run on any of the operating systems and is customizable
to a great extent. It is also extendable with the help of macros that
are written in different scripting languages. (https://sourceforge.
net/projects/jedit/)

• jTDS (64 classes) - jTDS is a free and open-source JDBC driver
for Sybase ASE & Microsoft SQL Server written purely in Java,
which is based on FreeTDS. Also, it is the fastest production-ready
JDBC driver that exists currently. (http://jtds.sourceforge.net/)

• Log4j (350 classes) - Log4j is a software that allows control over
log statements by the developer to decide which statements can be
output having arbitrary granularity. It can entirely be configured
at runtime with the help of externally configurable files. (https://
github.com/apache/log4j)

• Poi (939 classes) - Poi stands for “Poor Obfuscation Implementation”.
It is a free open source library written in Java which is used to read
and write confusing and hard to interpret document formats of
Microsoft Office such as Word, Excel, PowerPoint, etc. (http://poi.
apache.org/)

• Rave (671 classes) - Rave is a kind of mash-up supporting different
platforms since it is highly customizable. It is a light-weighted and
web-based data integration software written in Java that manages
various social gadgets by hosting different widgets. It works by
combining the data and functionality of two or even more than two
sources for creating some new services. (https://rave.apache.org/)

B. Independent Variables
A set of seventeen different OO design metrics taken from different

metrics suites proposed by several researchers in their studies [47],
[49], [50] has been selected as independent variables of the current
study to analyze different BAs for SMP. This set is chosen, keeping
in mind that all the essential design-related facets of an OO paradigm

Data Collection

Seven empirically collected Open-Source Datasets

Pre -processing of the original datasets (to resolve issues such as noise, inconsistency and incompleteness in the datasets by removing
rows where value for change is equal to zero)

Feature Scaling
using MinMax

Scaler

Feature Selection
using Recursive

Feature
Elimination (RFE)

technique

Selection of five di�erent Boosting
Algorithms (BAs), i.e., AdaBoost,

GBM, XGB, LightGBM, & CatBoost

Prediction Model

Ten -fold cr oss-validation and
developm ent of prediction models

Prediction Accuracy Measures to
evaluate the performance of

models

RMSE MMRE

Pred(0.25), Pred(0.30) &
Pred(0.75)

Analysis using Statistical Tests

Friedman Test based on the MMRE values

Nemenyi Test for post hoc analysis

Abdera Ivy jEdit jTDS Log4j Poi Rave

Fig. 2. Research methodology.

Regular Issue

- 97 -

like complexity, abstraction, inheritance, coupling, and cohesion are
covered. A glimpse of all the selected OO metrics, along with the
description, can be viewed in Table II.

C. Dependent Variable
The dependent variable used here is the maintenance effort, which

is the ‘Change’ measured as the number of LOCs for each of the classes
that were added, deleted, or modified in the new version compared
with the older version of particular software. This comparison is made
between two successive versions of the same software where the
new version is always the next version, by finding out the common
classes of both the versions & subsequently finding the exact count
of the lines that have been changed for each class. Each addition or
deletion concerning a line is counted as a single change. In contrast,
any modification is considered as two changes since, in modification,
every deletion is followed by a corresponding addition. Different data
points are generated for each class by calculating each of the OO
metrics’ values and then combining them with the corresponding
values of Change made in a particular class.

Further, the details of different open source systems used here,
including the version, size (number of classes), and the date of release,
are provided in Table III.

TABLE III. Details of Different Open Source Systems Used

Software Version Size Date of Release
Abdera 1.1.2 - 1.1.3 685 classes 15th January 2011 - 21st December 2012

Ivy 2.2.0 - 2.3.0 613 classes 13th June 2012 - 19th August 2015

jEdit 5.1.0 - 5.2.0 416 classes 28th July 2013 - 05th February 2015

jTDS 1.2.8 - 1.3.1 64 classes 08th June 2013

Log4j 1.2.16 - 1.2.17 350 classes 06th April 2010 - 06th May 2012

Poi 3.9 -3.10 939 classes 03rd December 2012 - 08th February 2014

Rave 0.21.1 - 0.22 671 classes 03rd May 2013 - 10th July 2013

D. Pre-processing of the Datasets
Pre-processing is one of the data mining techniques used for

transforming raw real-world data into an easy to understand
format resolving various issues such as noise (presence of outliers),
inconsistency (discrepancy of codes or names), incompleteness
(missing attribute values), lack of particular trend and error-proneness
in the original datasets. While calculating the dependent variable
during this study, a comparison between the old and new versions
of all the datasets was made. A Java-based data mining tool for
calculating the C&K Java metrics and several other metrics, namely,
CKJM extended (http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/), has been
used for empirical data collection. This tool processes the compiled
Java files through their byte code & then calculates 19 different size &
structure metrics for software. The results in the form of the metrics
calculated for each class are displayed on the standard output or are
saved in a particular file. The class-wise OO metrics (independent
variables) for the older version, for example, for version 2.2.0 of the
Ivy dataset, were collected on processing the jar file of that version
through CKJM extended tool.

Further, classes common to both the versions, i.e., old and new,
were extracted. Those classes added in the new version or deleted from
the old version were plainly discarded. Both the library and interface
classes were not included in this study. Further, those classes where
the value of Change was zero were again excluded while considering
the study’s datasets. A graphical representation for the percentage
reduction achieved for all the seven datasets is provided in Fig. 3.

After pre-processing, comparable classes for both versions were
received. Afterward, a line by line comparison of these classes was

made with the help of the Beyond Compare tool (https://www.
scootersoftware.com/index.php), which provides a quick & easy
comparison of files & folders at high speed. It verifies and compares
the designated files or folders thoroughly in a byte-by-byte manner
and further highlights the specified differences in a different color
(generally red). This is required to compute the dependent variable’s
value, i.e., Change for each class through a line by line comparison.
Each addition or deletion of a particular line in a class accounts for a
single change, whereas any modification in a particular line of code
accounts for two changes, .i.e., a single deletion followed by a single
addition.

As shown in Fig. 3, some datasets have even more than 70% of their
classes being discarded after pre-processing. However, such systems
have been included in the original datasets for this study aiming to
include diversified datasets where some datasets have a higher number
of classes that get changed between different versions in contrast to
the datasets where only a few of the classes get changed in going from
one version to another.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Pe
rc

en
ta

ge
 Re

du
ct

io
n

Abdera Ivy jEdit jTDS Log4j Poi Rave

7.30%
0.98%

79.09%

43.75%

74.86%

2.24%

67.06%

Datasets

Percentage Reduction after Pre-processing

Fig. 3. Percentage reduction after pre-processing.

Further, the descriptive statistics for all the seven datasets have been
provided in Table IV. Values highlighted in bold depict the minimum
standard deviation for a particular OO metric, whereas the values
highlighted in bold with an underline depict the maximum standard
deviation for a particular metric.

E. Feature Scaling
Feature Scaling is a technique performed during data pre-

processing to standardize a dataset’s independent variables in a
fixed range. It is also known as data normalization. Feature scaling
is done since some algorithms cannot perform appropriately without
normalization due to the original datasets’ varying range of values.
Various feature scaling methods are available for pre-processing data
such as MinMaxScaler, RobustScaler, StandardScaler, etc. Of these,
MinMaxScaler works by subtracting the minimum value from each
of the values in a feature and then dividing it by range where the
range is the difference of minimum & maximum values of a feature.
In this study also, MinMaxScaler [51] in Python has been applied to
normalize all the datasets used here, which transforms all the features
by rescaling them to a given range (here, this range is [0, 1]).

F. Feature Selection
Feature selection is a method for choosing a subset of variables

or features in ML to develop various models, ensuring the removal
of redundant & irrelevant features without incurring the loss of
information. It also enhances the prediction models’ prediction
accuracy since the quality of datasets due to the removal of
inconsistent and noisy data and the model’s execution time improves.
Feature selection algorithms can broadly be classified under two

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº2

- 98 -

categories: the wrapper methods & the filter methods, as suggested by
Kohavi and John [52]. However, a third category is also known as the
embedded methods that combine the quality of wrappers and filters
and simultaneously perform model fitting and feature selection such
as lasso, ridge regression, etc. Wrappers usually evaluate a feature
subset’s performance based on the learning algorithm’s resulting
performance, such as forward selection, backward elimination, & RFE,
etc. On the other hand, filter methods such as Pearson’s correlation,
Linear Discriminant Analysis (LDA), etc. generally use some proxy
measure for evaluating the importance of the features based on some
inherent characteristics without incorporating any learning algorithm.
This is contrary to wrapper methods that use error rate for scoring a
subset of features. Also, filters are computationally less intensive and
faster than wrappers and produce a subset such that it is not tuned to
some specific prediction model, making it a more general subset than
the one derived from the wrappers.

In this study, one of the wrapper methods called RFE [53] has been
used for selecting a subset of independent variables from all the initially
selected seventeen independent variables. The improved results
obtained in one of the studies conducted for the Intrusion Detection
System [54] using the RFE algorithm for ranking the features provided
the motivation for using the RFE algorithm in the current study as well
for the selection of features. According to the study mentioned above,
RFE improves accuracy by counting only the essential features while
training, which reduces the learning time. An overall improvement
of 0.4% in precision, between 16.2% and 26.8% improvement in false-
negative rate, and a one-third reduction in time is achieved. RFE, in
general, fits a model by recursively removing the weakest features by
taking into account smaller & smaller groups of features, based on the
significance of each of the features till a desired count for the features
is subsequently reached. This importance is adjudged based on an
external estimator, here, therespective boosting algorithms, that assign
some weights to the features. Initially, the estimator training is done
using a complete set of features, and the importance is obtained for
each of the features. After this, the features with the least importance
are removed from the initial set (here, one at each iteration since the
value for parameter ‘step,’ i.e., the count for features to be removed
at each iteration is set equal to 1). This procedure is repeated for the
reduced set in a recursive manner until a desired set of features that
should be selected is eventually obtained. However, in the current
study, the default value for the parameter ‘n_features_to_select,’ i.e.,
the count of the features to be selected has been used. This default
value is ‘None’ and selects half of the total features leaving eight out
of seventeen variables in this study, almost equal to half. This way, the
RFE algorithm reduces the initial feature set by 52.94%.

Here, only the default values of different parameters for RFE have
been used without any changes since the primary focus of the current
study is to explore boosting algorithms. However, analyzing the role
of tuning of different RFE algorithm parameters for feature selection
can form a good base for future studies.

Features selected for all the seven datasets obtained by applying
the RFE feature selection algorithm are presented in Table V. It is
evident that out of a total of seventeen independent variables, LCOM,
NPM, and LOC are found to be the most commonly selected variables.
Following them, WMC, RFC, and Ce are the second most commonly
selected independent variables. However, DIT, NOC, Ca, and IC have
not been selected for any dataset. Also, MOA and MFA came out to be
the least significant variables based on the RFE algorithm.

Further, the results in Table V show that each dataset has a different
set of features obtained from the RFE algorithm. This difference can
be explained through the descriptive statistics presented in Table IV,
where values highlighted in bold depict the minimum values, whereas
those highlighted in bold with an underline depict the maximum

values for a particular metric. The values for standard deviation shows
the extent of variation in different OO metrics’ values for each of
the datasets. The difference in the standard deviations of each of the
OO metrics for all the seven datasets accounts for the difference in
selecting various features for every dataset using the RFE method since
different metrics affect distinct datasets differently while predicting
maintainability. Also, due to a comparatively large difference in the
variation of values for some OO metrics that have been calculated by
finding the range of standard deviation for each metric from Table IV,
only a particular set of metrics are selected by the RFE algorithm. For
example, the most commonly selected metrics, i.e., LCOM, LOC, RFC,
NPM, WMC, and Ce, have considerable variation in their values for
almost all the datasets, which have a significant impact in predicting
maintainability. Hence, these metrics have been selected by RFE for
almost all the datasets.

G. Boosting Algorithms
This sub-section provides an overview of different BAs, i.e., the

ensemble of ML algorithms used in the current study to develop
various SMP prediction models. A set of five most commonly used
BAs, namely AdaBoost, GBM, XGB, LightGBM, and CatBoost, has
been applied to identify specific patterns while training each of the
seven datasets. These algorithms explore the complex relationship or
the correlation among various independent variables & the dependent
variable, using the knowledge derived during the training process for
making predictions.

1. AdaBoost
AdaBoost is one of the first ensemble boosting techniques proposed

by Freund and Schapire [55], [56] to be adapted in practice to solve
both regression & classification problems. It works by creating multiple
sequential models from poorly performing models, each correcting the
previous model’s errors to increase the accuracy to build a reliable
model ultimately. It is an iterative ensemble technique that generally
uses DTs for modeling. However, any ML technique can be used as a
base classifier, provided it accepts the weights on the training set. In
the current study, the DT regressor has been used as the base estimator
while implementing AdaBoost. The basic idea behind AdaBoost is
to ensure that the unusual observations are predicted accurately by
setting up the weights of classifiers and training data samples in every
iteration. AdaBoost is expected to fulfill two main conditions; first, the
classifier’s interactive training on several weighted training examples
should be done, and second, it should try to provide an accurate fit
for the above examples in each iteration by minimizing the error in
training.

2. GBM
GBM is another ensemble ML algorithm used for classification &

regression problems by combining multiple weak learners to develop a
strong learner. Friedman described GBM in two of his popular studies
in 1999 and 2001 [57], [58]. Generally, Regression Trees (RTs) are used
as base learners, and each tree is built subsequently in a series based
on the errors measured by the previous tree, and the foremost goal is
to overcome these errors. The difference here is that the weights are
not incremented for the misclassified values; instead, an attempt is
made to optimize and reduce the loss function that adds several weak
learners by adding some new model. Broadly, GBM comprises three
main components, i.e., the loss function that should be optimized, an
additive model for minimizing the loss function & a weak learner for
making the predictions.

3. XGB
XGB is a highly effective, novel, and advanced implementation for

the GBM ensemble ML algorithm, particularly RTs and K classification.

Regular Issue

- 99 -

It was proposed by Chen and Guestrin in 2016 [30]. It prevents
over-fitting and intends towards the optimization of computational
resources. It is possible through the simplification of objective
functions by allowing the combinations of regularization, provided an
optimum computational speed is also maintained alongside. During
the training phase, automatic parallel calculations are performed for
various functions in XGB. XGB is approximately ten times faster than
any other BA and is also known as a “regularized boosting technique.”
In the current study, ‘gbtree’ booster, i.e., tree-based models, have been
used to run at every iteration.

4. LightGBM
LightGBM was proposed by Ke et al. [59] as a newer implementation

of Gradient Boosting DT (GBDT). It is a fast and distributed framework
based on DT algorithms and is used for different ML tasks such as
ranking & classification. It makes use of a leaf-wise strategy while
splitting the trees with the best fit, unlike other algorithms that use
. a level-wise or depth-wise approach. Also, LightGBM being leaf-

wise is more accurate than other BAs since it can reduce more loss
while growing on the same leaf, and it also ensures reduced memory
consumption. In the current study, while implementing LightGBM, RF
has been used as the basic boosting type.

TABLE V. Feature Selection Through RFE Algorithm

Datasets Features selected through RFE Algorithm

Abdera WMC, CBO, RFC, LCOM, NPM, LCOM3, LOC, CAM

Ivy WMC, RFC, LCOM, Ce, NPM, LCOM3, LOC, CAM

jEdit RFC, LCOM, Ce, NPM, LCOM3, LOC, MFA, AMC

jTDS WMC, CBO, RFC, LCOM, Ce, NPM, LOC, AMC

Log4j WMC, LCOM, Ce, NPM, LOC, DAM, MOA, CAM

Poi WMC, CBO, RFC, LCOM, Ce, NPM, LOC, CAM

Rave WMC, RFC, LCOM, Ce, NPM, LOC, DAM, CAM

TABLE IV. Descriptive Statistics for Open Source Datasets (SD = Standard Deviation)

Metric
Abdera Ivy jEdit jTDS

Min Max SD Min Max SD Min Max SD Min Max SD
WMC 0 255 21.21 1 243 21.64 1 275 34.34 0 211 42.16
DIT 0 4 0.63 0 4 0.60 0 7 1.72 0 3 0.62
NOC 0 17 1.02 0 17 1.22 0 20 2.22 0 2 0.44
CBO 0 17 1.94 0 17 1.96 1 396 44.57 0 34 6.84
RFC 0 256 21.23 2 244 21.64 1 570 89.92 0 293 70.72
LCOM 0 32385 1724.93 0 29403 2158.27 0 21943 2605.30 0 21831 3432.78
Ca 0 14 1.64 0 17 1.74 0 327 37.20 0 30 4.95
Ce 0 5 0.93 0 9 1.17 0 116 14.86 0 30 5.07
NPM 0 254 20.65 0 215 18.96 0 228 27.81 0 191 40.07
LCOM3 1.0039 2 0.43 1.0041 2 0.42 0 2 0.57 0 2 0.47
LOC 0 1531 123.34 6 1461 132.98 1 10007 1471.109 4 8251 1448.33
DAM 0 1 0.49 0 1 0.47 0 1 0.44 0 1 0.39
MOA 0 327 14.81 0 7 0.69 0 13 2.59 0 14 2.40
MFA 0 1 0.17 0 1 0.12 0 0.9987 0.37 0 1 0.23
CAM 0 1 0.30 0.0556 1 0.28 0.0455 1 0.22 0 1 0.19
IC 0 3 0.28 0 2 0.21 0 3 0.58 0 2 0.41
AMC 0 5 2.24 0 5 2.39 0 139.451 32.32 0 255.11 46.30
Change 2 14667 1172.30 2 17586 1434.72 1 249 43.54 0 355 59.86

Metric
Log4j Poi Rave

Min Max SD Min Max SD Min Max SD
WMC 1 104 13.35 0 165 14.19 0 62 9.69
DIT 0 6 1.48 0 5 0.70 0 4 0.25
NOC 0 4 0.64 0 151 5.13 0 2 0.21
CBO 0 76 10.98 0 228 17.25 0 4 0.69
RFC 1 130 25.05 0 426 33.42 0 63 9.71
LCOM 0 5356 575.44 0 5908 475.71 0 1891 209.75
Ca 0 65 9.16 0 228 14.52 0 3 0.41
Ce 0 29 4.81 0 167 9.60 0 2 0.43
NPM 0 31 7.50 0 140 12.51 0 57 9.24
LCOM3 0 2 0.48 0 2 0.60 0 2 0.39
LOC 3 1864 283.14 0 4455 370.97 0 405 59.97
DAM 0 1 0.45 0 1 0.43 0 1 0.43
MOA 0 14 2.13 0 49 3.54 0 3 0.29
MFA 0 1 0.38 0 1 0.18 0 1 0.09
CAM 0.0726 1 0.24 0 1 0.24 0 1 0.31
IC 0 3 0.51 0 3 0.27 0 1 0.20
AMC 0 205 25.83 0 392.2222 23.40 0 5 1.69
Change 1 1612 194.36 2 17956 1331.08 1 470 55.08

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº2

- 100 -

5. CatBoost
The fundamental algorithmic approaches behind CatBoost were

explained by Prokhorenkova et al. [60] in 2018 in one of their studies.
CatBoost is also a GBDT for handling categorical features well. It allows
one to use the complete dataset for training, and an extensive pre-
processing of data is not required here. Rather than the pre-processing
time, CatBoost deals with the categorical features while training. As
per authors, target statistics can efficiently handle categorical features
ensuring minimum loss of information. However, in regression,
the initial value is calculated using a standard technique where the
average value for a label in the dataset is considered. Overall, CatBoost
is a robust, easy-to-use, and high in performance BA in the family of
ML algorithms.

H. Cross-Validation Technique
Cross-validation is a model validation technique to account for the

accuracy of a prediction model on new data & to check if this model can
be generalized for real-world datasets. It is used in a scenario where the
ultimate goal is prediction. For prediction, the model is trained using a
known dataset (training set), whereas testing of this model is done on
a new dataset (test set) after training. Several types of cross-validation
approaches exist, such as LOO, k-fold, hold-out, etc. However, the k-fold
technique is one of the most basic cross-validation forms with k equal to
10 [61]. Its significance lies in the fact that it can use the dataset for dual
purpose, i.e., training and testing. As per literature, 5-fold and 10-fold
approaches are the most commonly used cross-validation approaches to
design a model. According to [61], k-fold validation using moderate values
of k, i.e., between 10-20, helps minimize the variance with an increase in
the bias; k equal to 10 being the most preferred, most frequently used,
and the most recommended one.

Further, if the value of k decreases say between 2-5, along with
smaller sample size, then variance seeks in because of the instability
in the training set, which further increases the variance. Hence, the 10-
fold cross-validation technique has been selected for the current study,
keeping the above points in mind. In this technique, the complete
dataset is sub-divided into 10 equal partitions, of which one partition
is considered validation data for testing the model, whereas the rest
of the partitions are utilized to train the prediction model. The same
process is iteratively repeated 10 times for each of the 10 partitions,
each partition being used as the validation set exactly once. Lastly, a
single final estimation is reached by calculating an average of the 10
results obtained above.

I. Prediction Accuracy Measures
This section presents various prediction accuracy measures for the

current study to assess various BAs performance for SMP for all the
seven datasets. Estimating and assessing the accuracy of a prediction
model is an essential part of any study. This is done by comparing
the dependent variable’s predicted value with its actual value and
finding the corresponding value of the error. In literature, different
residual-based prediction accuracy measures have been suggested
by various researchers. However, in this study, the following three
measures of accuracy have been selected for estimating the accuracy
of the proposed prediction models, as suggested by Conte et al. [62]
and Kitchenham et al. [63], [64] in their studies.

1. Root Mean Square Error (RMSE)
RMSE is the measure of standard deviation in the prediction errors,

i.e., the residuals. It is calculated by taking the square root of Mean
Square Error (MSE) using the formula defined by Conte et al. (1986) [62].

 (1)

where yi is the ith value being observed & i is the ith value, which

is predicted by the prediction model. Further, from this formula, the
formula for RMSE can also be derived.

 (2)

Residuals measure the data points’ remoteness from the standard
regression line, and RMSE measures these residuals’ spread.
Alternately, RMSE describes the concentration of the data around the
best line of fit. RMSE is one of the most widely and frequently used
indicators to account for the goodness of fit in regression models.
The significance of using RMSE may be attributed to the risk-averse
predictors, where large deviations are penalized more in comparison
to small deviations by RMSE. This happens as RMSE is based on the
mean or average value obtained by summing the residuals’ squared
values. Another implication of squaring the errors in determining
the importance of RMSE lies in the fact that RMSE would be even
more useful in cases where large errors may particularly be highly
undesirable. RMSE is highly useful to compare several prediction
models developed using different techniques. The magnitudes of the
prediction errors for several times are accumulated into a compound
indicator of the predictive power with the help of RMSE. Further,
RMSE values may range from 0 to ∞ and are inconsiderate towards
the errors’ direction. RMSE is a negatively-oriented indicator in which
lower values are considered to be the better values. Also, RMSE does
not essentially increase with a rise in the error variance but increases
with a rise in the variance related to the frequency distribution of the
magnitude of the errors.

2. Mean Magnitude of Relative Error (MMRE)
MMRE is the most frequently used quality indicator in software

engineering while accounting for the performance of various software
estimation models defined by Conte et al. (1986) [62].

 (3)

MMRE is different from relative error in the sense that unlike
relative error, the absolute value of the differences between the
actual & predicted values is used while calculating MMRE. The use of
absolute value prevents both underestimation and overestimation by
canceling each other out. MMRE measures the variance or the spread
of accuracy (predicted / actual). To better understand what MMRE
measures, ‘y’ is considered a normally distributed random variable
having µ and σ2 as the mean and variance, respectively. Iglewicz [65]
has already illustrated the following for a sample of ‘n’ observations,
where is the mean of those observations:

 as (4)

On re-writing MMRE as below:

 (5)

it is evident that if i is an unbiased estimation of yi , then the value of
 as expected is equal to 1. If zi is normally distributed having mean

and variance equal to 1 and σz, respectively, then MMRE tends towards
the value of . This illustrates that MMRE estimates the spread or
the variance of the ‘z’ variable, which is not that susceptible to the
large outliers as the RMS estimate is. As MMRE measures the spread,
it would be wrong to call it a prediction accuracy metric. However, ‘z’
has an optimal defined value equal to 1, indicating whether or not the
prediction system’s estimation is under or overestimated and hence a
better criterion to indicate the prediction accuracy. This further shows
that any prediction model’s quality can be described in respect of the
average value of the ‘z’ variable, and MMRE is used for assessing the
variability of this variable ‘z.’

Regular Issue

- 101 -

3. Pred(m)
It measures the proportion of the values predicted by the prediction

models with a magnitude of MRE lower than or equal to a specific value.

 (6)

where ‘m’ represents the particular specified value, ‘k’ refers to the
number of predictions in the dataset whose MRE is lower than or equal
to ‘m’ & ‘n’ is the total number of observations in the dataset. Pred(m)
measures the kurtosis or the shape of the accuracy (predicted / actual).
Pred(m) is the percentage of predictions within m% of the initial or the
actual values. ‘m’ is usually set to 25, 30, & 75 such that Pred(m) shows
how much proportion of the predictions lie within the tolerance of
25%, 30%, & 75% respectively. Further, Pred(m) is inconsiderate to the
extent of the inaccuracy of the predictions that lie beyond a particular
level of tolerance. For example, for two different prediction models
whose predictions deviate by 27% and 270%, respectively; a Pred(25)
indicator will not differentiate between the two models. Like MMRE,
Pred(m) should preferably be formulated for prediction by considering
the actuals’ percentage lying within m% of the prediction. As
mentioned earlier, Pred(m) is a measure for kurtosis that provides the
degree to which a particular distribution has been peaked surrounding
the central value. To better understand Pred(m), consider a case where
certain distribution is more peaked than a normal distribution. As a
result, if a sample is selected from a distribution having more peak,
then it would have comparatively more values within 25% (in case
of Pred(25)) of the mean value than normal. On the other hand, if a
sample is selected from a distribution having a flatter peak, it would
have comparatively fewer values within 25% than the normal scenario.

J. Friedman Test for Ranking the Performance
Friedman test [66] is a statistical test, which is non-parametric

in nature, to rank the performance of various algorithms used in a
study by finding any significant difference between those algorithms’
performance. Here, this test has been used to rank the performance
of different BAs used in this study. Before the test, a hypothesis is
formulated.

Null Hypothesis (H0) - No significant difference exists between the
performances of various BAs used in this study.

Alternate Hypothesis (H1) - A significant difference exists between
the performances of various BAs used in this study.

Further, the Friedman measure is calculated using the given
formula.

 (7)

where R represents the average rank for each BA, N stands for
the number of datasets used in the current study, and k represents
the number of BAs considered for the ranking. The value for χcalculated
is calculated using (7) and further compared with χtabulated given
in the distribution table for chi-square. If χcalculated, which is the
Friedman measure, falls in the critical region, it is concluded that a
significant difference exists between the performance of various
BAs, thereby rejecting the null hypothesis & accepting the alternate
hypothesis. However, if χcalculated does not fall in the critical region, it
is then concluded that no significant difference exists between the
performance of various BAs, thereby rejecting the alternate hypothesis
and accepting the null hypothesis.

Each BA is ranked individually with the help of Friedman’s
Individual Rank (FIR) using (8).

 (8)

where C represents the cumulative rank & N represents the total

number of datasets. Based on the FIR values calculated for each BA,
one having the lowest FIR value is declared to be the best performer
whereas, on the other hand, BA having the highest FIR value is declared
to be the worst performer. Further, suppose the values of FIR obtained
for various prediction accuracy measures are found significant. In
that case, post hoc analysis should be done using the Nemenyi test to
check if the difference between various mean ranks obtained by the
Friedman test is statistically significant or not. However, in this study,
both Friedman and Nemenyi tests are performed only for MMRE.

K. Nemenyi Test for Post Hoc Analysis
Nemenyi test [67] is a test in statistics for post hoc analysis that

intends to find groups of data that differ when statistical tests such as
the Friedman test for multiple comparisons rejects the null hypothesis
stating that no significant difference exists between the performance
of various groups of data. This test is used to make pair-wise tests of
performance for comparing the performance of various BAs used in
this study to find if any statistical difference exists among them. The
first step for conducting the Nemenyi test is to calculate the Critical
Difference (CD), which depends on the total number of BAs & the
number of datasets used, along with the level of significance, using (9).

 (9)

where k represents the total number of BAs, N represents the
number of data samples & qα is the critical value as suggested by
Demsar [68] in his study; based on the Studentized range statistics
for a particular significance level. After calculating CD, the individual
differences between the FIR values of different pairs of BAs are
calculated to compare each possible pair of BAs’ performance during
the post hoc analysis. If the difference calculated for each possible
pair of BAs comes out to be either more than or equal to CD, then
the performance of that particular pair is considered statistically
significant for the selected level of significance. On the other hand, if
this difference is less than CD, then that particular pair’s performance
is statistically not significant.

IV. Results & Discussions

This section presents the results of the current study & a detailed
discussion and analysis of these results to analyze different BAs for
SMP using open-source datasets. A few of the selected plots for all
the seven datasets showing true versus predicted values for the best
performing BA based on MMRE values are presented in Fig. 4.

It is noted that based on the MMRE values, XGB performed the best
for six out of the seven datasets except for jEdit, for which CatBoost
performed the best. Subsequently, various RQs framed for the current
study in the introduction section are answered in this section.

RQ1: Whether BAs can be applied for SMP?
Various prediction accuracy measures, i.e., RMSE, MMRE, and

Pred(0.25), Pred(0.30) & Pred(0.75), have been used to analyze the
performance of different BAs used in this study for all the seven
datasets using (2), (3) and (6), respectively. The results obtained for all
the five BAs validated using ten-fold cross-validation are presented,
compared, and analyzed in this section.

Table VI provides the RMSE values for each of the BAs for all the
seven datasets. The best value of RMSE for each dataset is marked in
bold. It is clear from Table VI that based on the RMSE, GBM performed
the best, resulting in the lowest RMSE values for three of the seven
datasets, namely jEdit, jTDS, and Log4j, i.e., for 42.86% of the total
datasets. Similarly, LightGBM performed the second-best in terms of
RMSE for Ivy and Poi, i.e., for 28.57% of the datasets, whereas AdaBoost
and CatBoost performed well for Abdera and Rave, respectively.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº2

- 102 -

However, XGB came out to be the worst performer since it did not
perform well for any of the datasets when RMSE is considered the
accuracy measure. Overall, if we look at Table VI, it is concluded that
the best RMSE value equal to 43.42 is obtained for the jEdit dataset
using GBM.

TABLE VI. RMSE Values For All the Seven Datasets using BAs

Accuracy
Measure RMSE

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

Boosting
Algorithm

AdaBoost 986.25 1251.82 46.63 70.15 184.08 1241.31 55.81

GBM 1150.49 1389.05 43.42 67.54 179.01 1310.24 55.30

XGB 1164.34 1368.90 45.81 76.14 211.25 1324.29 58.57

LightGBM 1070.95 1199.34 54.92 70.21 195.85 1197.91 75.98

CatBoost 1077.89 1278.42 44.24 76.03 201.73 1230.27 54.78

The MMRE values for each of the BAs validated using ten-fold
cross-validation for all the datasets are provided in Table VII. Also,
the least obtained values of MMRE for each dataset, which are also
the best, are marked in bold since a low value of MMRE indicates
less error in prediction and hence better accuracy. Every row shows
MMRE values for a particular BA on a specific dataset.

TABLE VII. MMRE Values For All the Seven Datasets using BAs

Accuracy
Measure MMRE

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

Boosting
Algorithm

AdaBoost 4.36 7.31 2.22 2.04 7.98 6.49 2.81

GBM 4.56 7.87 3.86 2.97 8.75 6.44 3.91

XGB 1.84 2.98 1.77 0.90 3.82 2.85 1.43

LightGBM 4.91 7.45 4.94 3.33 8.90 6.88 5.01

CatBoost 2.93 4.62 1.71 2.54 6.26 4.09 1.92

It is concluded from Table VII that based on the MMRE values so
obtained, XGB performed the best for six out of seven datasets, i.e., for
85.71% of the total datasets by providing the least values for MMRE.
However, in the jEdit dataset, CatBoost performed the best in terms
of MMRE with a value equal to 1.71. Overall, XGB performed the
best with the jTDS dataset having MMRE value equal to 0.90 when
MMRE is considered an accuracy measure to analyze different BAs
performance over seven open-source datasets.

Further, the prediction accuracy of all the BAs for each of the
datasets has been calculated at 25%, 30% & 75%, and results are summed

up in Table VIII where each column for a particular dataset is further
subdivided into three columns; one each for Pred(0.25), Pred(0.30) &
Pred(0.75). Best obtained values are highlighted in the table for each
dataset & each prediction accuracy level, i.e., 25%, 30%, and 75%.

On analyzing the values in Table VIII, it is observed that for
Pred(0.25), which ranges up to 31%, CatBoost BA is found to be the
most accurate in the case of Abdera. If we consider Pred(0.30) for
prediction accuracy, which ranges up to 36%, it is found that CatBoost
for Abdera performed the best. Again, for Pred(0.75), which ranges
up to 79%, it is observed that XGB performed the best for Abdera by
providing the highest prediction accuracy equal to 79%, which further
assures the effectiveness of BAs for SMP. Overall, it is concluded that
the best prediction accuracies are obtained for Abdera. Also, in the case
of Pred(0.30), LightGBM performed the best for three out of the seven
datasets, i.e., Ivy, jEdit, and Poi, whereas, in the case of Pred(0.75), XGB
gave the best performance for six out of the seven datasets (excluding
Log4j) with prediction accuracies ranging from 51% to 79% which are
satisfactory and reasonable.

Further, the difference in the performance of different BAs for
different datasets can be accounted to the wide range and variations in
the values of various OO metrics and the dependent variable ‘Change’
measured through standard deviation as presented in Table IV,
representing the descriptive statistics for each of the seven datasets.
Hence, a different range of values is obtained for various prediction
accuracy measures used in the current study. For example, if we
consider the predictor variable ‘Change,’ then the difference between
the maximum and minimum values for standard deviation so obtained
or the range for standard deviation is 1391.18, which is really wide and
hence the difference in performance.

Hence, based on each of the BAs’ overall performance for all the
seven datasets based on the values obtained for the five prediction
accuracy measures and from the comparative analysis of these
measures, it can be concluded that BAs can effectively be applied for
SMP.

RQ2: Which BA performs the best amongst different BAs
based on various prediction accuracy measures for different
open-source datasets?

A non-parametric statistical test named the Friedman test is applied
for an extensive analysis of different BAs used in the current study
to determine if a significant difference exists between various BAs.
Friedman’s test is selected because it is a non-parametric test; it is
safe and robust as it does not assume homogeneity of variance or the
normal distributions as recommended by Demsar in his work [68].
The Friedman test has been conducted for comparing the performance
of five different BAs applied on seven different datasets based on the
MMRE values by calculating the value of critical region for the level of
significance equal to 5% & degree of freedom equal to 4, i.e., 5 BAs
minus 1 (or k-1 where ‘k’ is the total number of BAs used in this study).
Value for χtabulated is read from the Chi-square table corresponding to
the 95% significance level and degree of freedom equal to 4.

TABLE VIII. Pred(m) Values for All the Seven Datasets Using BAs

Accuracy
Measure Pred (m)

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

Boosting
Algorithm (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75)

AdaBoost 0.24 0.28 0.62 0.21 0.24 0.54 0.20 0.22 0.51 0.14 0.19 0.33 0.25 0.28 0.64 0.24 0.27 0.57 0.12 0.14 0.47

GBM 0.15 0.19 0.41 0.12 0.16 0.39 0.09 0.13 0.30 0.14 0.19 0.44 0.27 0.30 0.60 0.13 0.16 0.45 0.13 0.16 0.36

XGB 0.21 0.25 0.79 0.17 0.21 0.66 0.07 0.14 0.52 0.14 0.14 0.53 0.02 0.02 0.49 0.13 0.17 0.66 0.14 0.19 0.51
LightGBM 0.23 0.27 0.57 0.21 0.26 0.53 0.21 0.23 0.47 0.17 0.17 0.36 0.24 0.25 0.59 0.23 0.27 0.57 0.12 0.14 0.39

CatBoost 0.31 0.36 0.76 0.21 0.24 0.61 0.11 0.14 0.44 0.08 0.11 0.44 0.07 0.11 0.64 0.21 0.24 0.66 0.14 0.17 0.49

Regular Issue

- 103 -

Actual Vs Predicted Values for Abdera (XGB)

True Values (Change)
0

0
2000

2000

4000

6000

8000

10000

12000

14000

0

200

400

600

800

1000

1200

1400

1600

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

50

100

150

200

250

0

50

100

150

200

250

300

350

0

0

100

200

300

400

2500

5000

7500

10000

12500

15000

17500

4000 6000 8000 10000 12000 14000

0 50 100 150 200 2500 50 100 150 200 250

0 200 0

0 100 200 300 400

2500 5000 7500 10000 12500 15000 17500400 600 800 1000 1200 1400 1600

300 350

2000 4000 6000 8000 10000 12000 14000 16000 18000
True Values (Change)

True Values (Change) True Values (Change)

True Values (Change) True Values (Change)

True Values (Change)

Pr
ed

ic
tio

ns
 (C

ha
ng

e)

Pr
ed

ic
tio

ns
 (C

ha
ng

e)

Pr
ed

ic
tio

ns
 (C

ha
ng

e)
Pr

ed
ic

tio
ns

 (C
ha

ng
e)

Pr
ed

ic
tio

ns
 (C

ha
ng

e)

Pr
ed

ic
tio

ns
 (C

ha
ng

e)

Pr
ed

ic
tio

ns
 (C

ha
ng

e)

Actual Vs Predicted Values for Ivy (XGB)

Actual Vs Predicted Values for JEdit (CatBoost) Actual Vs Predicted Values for jTDS (XGB)

Actual Vs Predicted Values for Log4j (XGB)

Actual Vs Predicted Values for Rave (XGB)

Actual Vs Predicted Values for Poi (XGB)

(a)

(c)

(e) (f)

(g)

(b)

(d)

Fig. 4. Plots for (a) Abdera; (b) Ivy; (c) jEdit; (d) jTDS; (e) Log4j; (f) Poi; (g) Rave showing true versus predicted values for the best performing BA based on
the MMRE values.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº2

- 104 -

According to the null hypothesis of Friedman’s test, which
states that no significant difference exists between the performance
of various BAs used in this study, it was found that at 0.05 level of
significance, χcalculated which is the Friedman measure lies in the
critical region for MMRE. Therefore, it is concluded by accepting
the alternative hypothesis and rejecting the null hypothesis that a
significant difference exists between the performances of various BAs
used in this study. Test statistics for the Friedman test are stated in
Table IX.

TABLE IX. Friedman Test - Test Statistics for MMRE

N 7
Chi-Square 24.914
Df 4
Asymp. Sig. .000

Further, each BA is ranked for its performance by calculating FIR
from (8) based on MMRE, and the values obtained for the mean ranks
of different BAs for MMRE are compiled in Table X. It is also known
that the lowest mean rank indicates the best performance. Hence, it is
evident from Table X that based on the MMRE values, XGB performed
the best, whereas CatBoost performed the second best. Also, LightGBM
is found to be the worst performer.

TABLE X. Mean Ranking of BAs on Applying Friedman Test for MMRE

Boosting Algorithm XGB CatBoost AdaBoost GBM LightGBM

Mean Rank 1.14 2.00 3.00 4.00 4.86

On exploring the reason for the difference in the performances
of XGB and LightGBM, it was found that due to the use of Newton
boosting in XGB, it is likely to learn better structures. Apart from this,
XGB consists of an extra parameter for regularization, namely column
sub-sampling (including built-in L1 & L2 regularization that prevents
the model from being over-fitted) for reducing the correlation between
each of the trees further. Also, XGB uses a histogram-based pre-sorted
algorithm for computing the best split and achieve faster training. In
contrast, LightGBM uses the GOSS technique, i.e., Gradient-based One
Side Sampling, for filtering the data samples to find a value for the
split. Unlike other algorithms, where trees grow horizontally (level
wise), in LightGBM, trees grow vertically (leaf wise) by choosing the
leaf having maximum delta loss.

A further implication of the results can be the utilization of boosting
algorithms, especially the XGB, for developing different prediction
models in a scenario where training data is limited, time for training is
less, and the expertise for tuning of parameters also lacks.

RQ3: What is the comparative performance of various BAs
during post hoc analysis when MMRE is taken as an accuracy
measure?

After the Friedman test, post hoc analysis using the Nemenyi test
is performed to check if the differences between the performances of
various BAs based on the FIR values, as concluded in RQ2 above, are
statistically significant or not.

The value for CD is calculated to be equal to 2.31 using (9) where
k is taken to be 5 (number of BAs), and N is taken to be 7 (number
of datasets). After this, all the possible pairs of BAs are formed with
every other BA for calculating the rank differences between them,
i.e., between the FIR values so obtained. Here, ten such combinations
are formed for five different BAs for MMRE, and the same results are
compiled in Table XI.

Values for differences in ranks greater than or equal to CD, i.e., 2.31,
are shown in bold in Table XI. It is observed that 3 out of 10, i.e., 30%
of the total pairs of BAs have been highlighted, which means 30% of

the pairs have the difference above or equal to CD, showing that the
performance of these pairs is found to be significantly different using
Nemenyi test.

Differences calculated in Table XI also show that XGB performed
better than GBM, and LightGBM, whereas CatBoost performed
better than LightGBM only. Therefore, from this post hoc analysis of
MMRE values, it is concluded that XGB and CatBoost significantly
outperformed the rest of the BAs. However, the differences between
the performances of all other pairs of BAs have not been found
significant.

TABLE XI. Pair-Wise Rank Differences Between Different BAs in
Terms of MMRE

Boosting Algorithm XGB CatBoost AdaBoost GBM LightGBM

XGB - 0.86 1.86 2.86 3.72

CatBoost - 1.00 2.00 2.86

AdaBoost - 1.00 1.86

GBM - 0.86

LightGBM -

RQ4: What is the comparison between the results obtained
on applying various ML algorithms (other than the BAs) and
the results obtained on implementing BAs?

To show why BAs are so good compared to other ML algorithms,
a comparison of results between different ML algorithms and the BAs
has been made through the RQ mentioned above based on the RMSE,
MMRE, and different Pred(m) values. Four different ML algorithms
belonging to four different categories, i.e., tree-based models (DTs),
neural network-based models (MLP), ensemble models (Bagging), and
linear models (Elastic - Net) have been selected for carrying out this
comparison. All the four models, along with a brief description, have
been presented as follows:

• Decision Trees (DTs): DTs are a supervised and non-parametric ML
algorithm for solving classification & regression problems. DTs’
primary goal is to develop such predictive models where the response
variable is predicted using the knowledge learned from various
decision rules that have been inferred through the data attributes.
Here, the rules are generated by breaking down the complex process
of decision making into several simple decision rules which often
provide us with easily interpretable solutions resembling the desired
set of solutions [69]. DTs have several advantages, including DTs are
easy to understand & interpret, require little or no data preparation,
the computational cost is logarithmic to the number of training data
points used in the tree, etc.

• Multi-layer Perceptron (MLP): MLP is again a supervised and
neural network-based ML algorithm which learns the following
function through training on the dataset,

f (•): Rin → Rout (10)

where ‘in’ corresponds to the number of input dimensions and
‘out’ represents the number of output dimensions. For a given
set of attributes, say, X = x1, x2, ⋅⋅⋅, xl and a response variable y,
MLP can provide a non-linear approximation of the function for
regression or a classification problem. MLP consists of one or
more hidden non-linear layers between the two layers, i.e., input
& output layer. MLPs are capable of learning in real-time, and
they can learn non-linear models also. Particularly, in the case of
regression, backpropagation has been used for implementing MLP
with identity function being the activation function or having no
activation function at all for the output layer [70]. Also, the square
error is used as the loss function having the response variable as a
collection of several continuous values.

Regular Issue

- 105 -

• Bagging: Bagging is one of the ensemble ML methods that
works by combining the predictions obtained from various base
estimators built using a particular ML algorithm to improve the
generalizability or robustness of the single estimator. Bagging
belongs to the family of averaging methods out of the two
prominent families of ensemble methods, i.e., the averaging
methods and the boosting methods. The basic idea behind bagging
[71] is to implement several independent base estimators (e.g.,
DTs, MLPs, etc.) over random subdivisions of the initial training
set in the first instance and then taking out the average of each of
the predictions to obtain a final prediction. Overall, the combined
or aggregated bagging estimator is supposed to be better than the
single estimators since the variance has been reduced.

• Elastic - Net (EN): EN [72] is a regularized linear ML algorithm
for regression, which combines the penalties of two other linear
models, i.e., the lasso & the ridge models, in a linear manner
having L1 & L2 regularization, respectively. This aggregation
encourages an efficient learning procedure, especially for
the models having few non-zero weights like the lasso, with
simultaneous maintenance of the properties of regularization
for the ridge method. EN is advantageous in the case of multiple
attributes being correlated to each other. However, the lasso is
expected to select only one of them, that too randomly, whereas
EN is expected to select both of them.

Further, all the ML models mentioned above have been implemented
using similar procedures while implementing different BAs. All the
algorithms have been implemented for seven open-source datasets
(Abdera, Ivy, jEdit, jTDS, Log4j, Poi, & Rave) after pre-processing.
Further, feature selection using the RFE algorithm and ten-fold cross-
validation has also been performed. The performance of these models
has been evaluated using the same performance measures, viz, RMSE,
MMRE, Pred(0.25), Pred(0.30), & Pred(0.75) for comparison of the
results so obtained with various prediction models that have been built
using BAs. The results obtained on applying these four algorithms,
i.e., DT, MLP, Bagging, and EN for all the datasets based on RMSE,
MMRE, and Pred(m), have been provided in Tables XII, XIII, & XIV,
respectively.

TABLE XII. RMSE Values for All the Datasets Using ML Algorithms

Accuracy
Measure RMSE

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

ML
Algorithm
DT 1312.59 1719.58 71.55 71.60 198.66 1525.33 79.56
MLP 1203.93 1467.22 48.91 80.64 198.09 1334.38 61.76
Bagging 1215.03 1477.21 49.75 79.32 199.28 1452.23 61.72

Elastic -
Net 1174.68 1431.94 43.27 73.84 197.56 1339.19 55.29

TABLE XIII. MMRE Values for All the Datasets Using ML Algorithms

Accuracy
Measure MMRE

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

ML
Algorithm
DT 6.80 15.27 6.19 0.98 9.00 11.35 3.15
MLP 6.14 11.25 7.82 11.19 9.77 6.59 8.33
Bagging 6.58 11.75 8.12 10.43 10.25 11.03 8.20

Elastic -
Net 4.53 7.94 3.71 6.33 11.36 6.37 3.92

On comparing Table VI and Table XII showing the RMSE values
for seven different datasets using BAs and other ML algorithms,
respectively, it is observed that BAs have performed better than
the other ML algorithms. Precisely, the RMSE values obtained for
Abdera, Ivy, and Poi datasets are lower and better using any of the
five BAs compared to all the four other ML algorithms, i.e., DT, MLP,
bagging, and EN. In the jEdit dataset, four out of the five BAs, i.e.,
AdaBoost, GBM, XGB, & CatBoost, performed better than three out
of the four other ML algorithms, i.e., DT, MLP, & bagging in terms of
RMSE. Further, for jTDS and Log4j datasets, three out of the five BAs,
viz., AdaBoost, GBM, & LightGBM (i.e., 60% of the total BAs) show
comparatively lower values of RMSE than all other ML algorithms.
Lastly, in the Rave dataset, CatBoost BA outperformed all the other
ML models with a lower value of RMSE, whereas AdaBoost, GBM, &
XGB BAs outperformed DT, MLP, & bagging models. Overall, based on
the RMSE values provided in Table VI and Table XII and on comparing
the lowest RMSE values (values marked in bold) computed for each
dataset in both the tables, BAs show a better performance since the
lowest, and hence the best RMSE values have been obtained using
BAs as compared to other ML algorithms for six (Abdera, Ivy, jTDS,
Log4j, Poi, & Rave) out of the seven datasets, i.e., for 85.71% of the
datasets. As an example, the least RMSE value equal to 71.60 obtained
for the jTDS dataset on applying the DT algorithm reduces to 67.54 on
applying GBM BA, leading to an improvement of 5.67%. Subsequently,
on analyzing the mean RMSE values obtained for all the BAs taken
together and also for all the other ML algorithms as shown in Fig. 5, it
is concluded that the performance of BAs (having comparatively lower
RMSE values) is better than other ML algorithms for all the seven
datasets. An overall improvement in the mean RMSE values equal to
11.14%, 14.86%, 11.94%, 5.68%, 2.03%, 10.76%, and 6.95% for Abdera,
Ivy, jEdit, jTDS, Log4j, Poi, and Rave datasets, respectively, has been
achieved on applying BAs when compared to other ML algorithms.

Further, based on the MMRE values obtained for BAs and other
ML algorithms presented in Table VII and Table XIII, it is evident that
BAs performance is undoubtedly better than the other ML algorithms.
Specifically, the lower MMRE values for three (AdaBoost, XGB, &
CatBoost) out of the five BAs are better than all the four other ML
algorithms, i.e., DT, MLP, bagging, & EN for both Abdera and jEdit

TABLE XIV. Pred(m) Values for All the Datasets Using ML Algorithms

Accuracy
Measure Pred (m)

Datasets Abdera Ivy jEdit jTDS Log4j Poi Rave

ML
Algorithm (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75) (0.25) (0.30) (0.75)

DT 0.20 0.25 0.62 0.17 0.20 0.54 0.20 0.21 0.52 0.31 0.31 0.61 0.24 0.26 0.48 0.25 0.28 0.59 0.20 0.23 0.46
MLP 0.11 0.14 0.33 0.09 0.11 0.28 0.02 0.02 0.17 0.00 0.06 0.22 0.23 0.26 0.61 0.15 0.19 0.49 0.07 0.09 0.20
Bagging 0.10 0.12 0.30 0.09 0.11 0.26 0.01 0.01 0.15 0.00 0.06 0.25 0.22 0.24 0.59 0.10 0.12 0.28 0.07 0.09 0.20

Elastic -
Net 0.14 0.17 0.39 0.11 0.14 0.38 0.10 0.14 0.30 0.14 0.14 0.28 0.19 0.25 0.57 0.13 0.16 0.43 0.11 0.15 0.36

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº2

- 106 -

datasets. Also, GBM and LightGBM BAs performed better than three
(DT, MLP, & bagging) out of the four other ML algorithms for Abdera
and jEdit datasets. Next, considering the Ivy and Log4j datasets, it is
observed that lower and better MMRE values have been achieved for
all the five BAs as compared to any of the other ML algorithms. In the
jTDS dataset, XGB outperformed all other ML algorithms, whereas,
rest of the four BAs outperformed three (MLP, bagging, & EN) out
of the four other ML algorithms. Proceeding to the Poi dataset, XGB
and CatBoost BAs provide lower MMRE values than any other ML
algorithms. At the same time, AdaBoost and GBM BAs performed
better than three (DT, MLP, & bagging) of the other ML algorithms.
Lastly, on considering the Rave dataset, it is found that three out
of the five BAs, viz. AdaBoost, XGB, & CatBoost BAs show better
MMRE values than all other ML algorithms. However, GBM BA
shows better performance than MLP and bagging algorithms, and it
performs almost as good as the EN algorithm. Overall, on comparing
the lowest MMRE values (values marked in bold) provided for each
dataset in Table VII and Table XIII using BAs and other ML algorithms,
respectively, it is observed that BAs showcase a better performance
due to the lowest and the best-obtained MMRE values for all the seven
open-source datasets, .i.e. for 100% of the datasets. As an example,
the least MMRE value equal to 9.00 obtained for the Log4j dataset
on applying the DT algorithm reduces to 3.82 on applying XGB BA,
leading to an improvement of 57.56%. Not only this, the mean MMRE
values calculated for all the BAs taken together and for all the other
ML algorithms have been depicted in Fig. 6. It is evident from Fig. 6
that lower MMRE values have been obtained using BAs for all the
seven datasets considered in this study which, further strengthens
the conclusion stating that BAs are better than other ML algorithms
for SMP. An overall improvement in the mean MMRE values equal to
38.10%, 47.62%, 55.11%, 67.36%, 29.31%, 39.48%, and 48.81% for Abdera,
Ivy, jEdit, jTDS, Log4j, Poi, and Rave datasets, respectively, has been
achieved on applying BAs when compared to other ML algorithms.

M
ea

n
RM

SE
 V

al
ue

s

Abdera Ivy jEdit jTDS Log4j Poi Rave

Datasets

Boosting Algorithms Other Machine Learning Algorithms

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1089.98
1226.56
1297.51

1523.99

47.00
53.37

72.01
76.35

194.38
198.40

1260.80
1412.78

60.09
64.58

Mean Values of RMSE using BAs and other ML Algorithms

Fig. 5. Mean values of RMSE using BAs and other ML algorithms.

Subsequently, Table VIII and Table XIV present the Pred(m)
values at 25%, 30%, and 75% using BAs and other ML algorithms. A
comparison between these two tables also indicates BAs supremacy
over other ML algorithms while predicting maintainability. Overall,
comparing the best. i.e., the highest values (values marked in bold)
obtained for Pred(0.25), Pred(0.30), & Pred(0.75) in both the tables,
it is observed that these values are better using BAs than other ML
algorithms for four out of the seven datasets, i.e., for 57.14% of the
datasets (which is more than half). Further, for Poi and Rave datasets,
better Pred(0.75) values have been obtained using BAs. Hence, it is
clear that BAs perform better than other ML algorithms based on the
Pred(m) values.

M
ea

n
M

M
RE

 V
al

ue
s

Abdera Ivy jEdit jTDS Log4j Poi Rave

Datasets

Boosting Algorithms Other Machine Learning Algorithms

0.00

2.00

4.00

6.00

8.00

10.00

12.00

3.72

6.01
6.05

11.55

2.90

6.46
7.23 7.14

2.36

10.10

5.35

8.84

3.02

5.90

Mean Values of MMRE using BAs and other ML Algorithms

Fig. 6. Mean values of MMRE using BAs and other ML algorithms.

Therefore, on the whole, it is concluded that BAs are good
performers and indeed better than other ML algorithms. All the above
analysis and comparison made under this RQ, based on the RMSE,
MMRE, & Pred(m) values obtained on applying BAs and other ML
algorithms to each of the seven open-source datasets, further support
the supremacy of BAs over other algorithms.

Conclusively, this research work can further benefit the society,
especially the software engineers, in predicting the maintainability
of the software being developed well in advance, thereby reducing
the overall software development costs. This reduction in overall cost
is mainly attributed to reducing the maintenance cost in particular,
which gets accumulated with each phase of SDLC if not taken care
of. The growing demand for different software in society over the last
few years due to the automation of several tasks has led to a surge in
the design & development of various software systems in the software
industry. However, these systems require to be maintained once they
are delivered to the customer involving high costs. Therefore, a great
deal of specific techniques or mechanisms is needed to bring down
these high costs. This can only be done by estimating the software’s
maintenance effort in the initial phases of development using some
prediction models that can predict the software’s maintainability
in good time with high precision. The current research would help
developers achieve this goal of predicting maintainability by utilizing
different SMP models developed using various BAs, as proposed
in this study. These models not only help in the task of predicting
maintainability but also outperform several other models available for
predictive modeling.

V. Threats to Validity

While conducting the current empirical study, certain potential
threats to validity were encountered. This study has been performed
on various open-source datasets, limiting its use and does not
ascertain its applicability for various other types of software available
in the industry for its generalization. However, a sincere attempt has
been made to overcome this threat by using 10-fold cross-validation &
applying all the five BAs over each of the seven datasets with different
characteristics. The results obtained are possibly less biased and can
further be generalized. Also, while developing prediction models using
various BAs, hyper-parameter tuning of function parameters has not
been performed. The default settings have been mainly used, which
again becomes a limitation of this study since the results so obtained
may be correct only to a first approximation. Apart from this, three of
the most common threats to validity existent in any empirical study
are presented below.

Regular Issue

- 107 -

Internal validity refers to an extent to which conclusions of an
empirical study can support the claim for cause & effect, i.e., the
independent & the dependent variables. An attempt has been made
to minimize this effect by applying feature selection using the RFE
algorithm and using only the selected variables to study their effect
on maintainability.

External validity is the extent of the generalizability of the
outcomes or the results of any empirical study. A set of seven open-
source datasets with different size, characteristics, and maintenance
requirements has been used in this study to minimize this effect.

Construct validity is the quality of choice of various independent
and dependent variables of a study, as this choice undoubtedly impacts
the results of that study. So, the threat to construct validity arises
from the choice of these independent and dependent variables. A set
of seventeen OO metrics from different suites proposed by various
researchers, namely Chidamber & Kemerer [47], Henderson-Sellers
[49], and Bansiya & Davis [50] has been selected to minimize this
threat rather than adhering to a particular metric suite.

VI. Conclusion & Future Direction

The current study’s main objective was to analyze various
ML based BAs for SMP using open-source datasets. An extensive
analysis and comparison of five different BAs (AdaBoost, GBM, XGB,
LightGBM, and CatBoost) were conducted using each of the seven
empirically collected open-source datasets (Abdera, Ivy, jEdit, jTDS,
Log4j, Poi, & Rave) to predict maintainability. Seventeen different OO
metrics were selected from three different metrics suites to develop
the prediction models. Feature selection using the RFE algorithm and
cross-validation using the ten-fold cross-validation technique was
also performed. Performance of various BAs was evaluated using
RMSE, MMRE, Pred(0.25), Pred(0.30) & Pred(0.75) as the prediction
accuracy measures. Further, to determine if a significant difference
exists between different BAs performances & finding their mean
ranks, a non-parametric statistical test named the Friedman test
was conducted. Afterward, a post hoc analysis using an advanced
statistical test named the Nemenyi test was also performed to identify
if the difference in various BAs performance, if it exists, is statistically
significant or not. Lastly, a comparison was made between the results
obtained for SMP using the BAs and the results obtained on applying
four other ML algorithms (DT, MLP, bagging, and EN). The major
findings of the current study are as presented below.

• A reduction in features equal to 52.94% is achieved after feature
selection using the RFE algorithm.

• While calculating residual errors for all the datasets using RMSE
and MMRE as the accuracy measures, it was found that in the
case of RMSE, GBM performed the best, followed by LightGBM,
whereas, in the case of MMRE, XGB performed the best.

• Prediction accuracies also confirm the use of BAs for SMP,
particularly Pred(0.75), where XGB stood out to be the best
performer with a fairly reasonable predictive ability for six out of
seven datasets, i.e., for 85.71% of the datasets, ranging from 51%
to 79%.

• The Friedman test results and post hoc analysis using the Nemenyi
test further unfolded the superiority of XGB and CatBoost BAs
over other selected BAs in the study for SMP using open-source
datasets.

• The comparison between the results obtained for SMP using BAs
and other ML algorithms revealed that BAs are indeed the better
performers than other algorithms based on all the measures of
accuracy considered in this study.

Hence, prediction models developed using various BAs from the
family of ML algorithms can indeed be implemented for SMP using
open-source datasets. However, this is a limited implementation of the
proposed study.

More research and studies can be planned in the future to implement
the algorithms used in this study in isolation or in combination with
other ML techniques for different types of software systems available
in the industry, which are written in different programming languages
to generalize the results of this study further. Different paradigms and
models, more feature selection, dimensionality reduction, ensemble,
and re-sampling techniques, can be considered while conducting
future studies. Also, while developing prediction models in the future
using the proposed algorithms, hyper-parameter tuning of different
function parameters can be done as an extension to the current work.

Acknowledgment

This research work has been supported by the O/o Director
(Research & Consultancy), GGSIPU under the FRGS scheme through
the project entitled, “Determination of Optimum Refactoring Sequence
after Prioritization of Classes on the basis of their bad smell,” dt.
03.05.2019, Ref. No. GGSIPU/DRC/FRGS/ 2019/1553/62.

References

[1] “IEEE Standard for Software Maintenance,” IEEE Std 1219-1993, 1993, doi:
10.1109/IEEESTD.1993.11557.

[2] “ISO/IEC 25010:2011(en) Systems and software engineering — Systems
and software Quality Requirements and Evaluation (SQuaRE) —
System and software quality models,” 2011. https://www.iso.org/obp/
ui/#iso:std:iso-iec:25010:ed-1:v1:en.

[3] M. A. Ahmed and H. A. Al-Jamimi, “Machine learning approaches for
predicting software maintainability: a fuzzy-based transparent model,”
IET software, vol. 7, no. 6, pp. 317–326, 2013, doi: 10.1049/iet-sen.2013.0046.

[4] N. Zighed, N. Bounour, and A.-D. Seriai, “Comparative Analysis of Object-
Oriented Software Maintainability Prediction Models,” Foundations of
Computing and Decision Sciences, vol. 43, no. 4, pp. 359–374, 2018, doi:
10.1515/fcds-2018-0018.

[5] H. Alsolai and M. Roper, “Application of Ensemble Techniques in
Predicting Object-Oriented Software Maintainability,” in Proceedings of
the Evaluation and Assessment on Software Engineering, 2019, pp. 370–
373, doi: 10.1145/3319008.3319716.

[6] L. Kumar, D. K. Naik, and S. K. Rath, “Validating the effectiveness of
object-oriented metrics for predicting maintainability,” Procedia Computer
Science, vol. 57, pp. 798–806, 2015, doi: 10.1016/j.procs.2015.07.479.

[7] R. Malhotra and A. Chug, “Application of Group Method of Data Handling
model for software maintainability prediction using object oriented
systems,” International Journal of System Assurance Engineering and
Management, vol. 5, pp. 165–173, 2014, doi: 10.1007/s13198-014-0227-4.

[8] H. Alsolai, “Predicting Software Maintainability in Object-Oriented
Systems Using Ensemble Techniques,” in 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2018, pp.
716–721, doi: 10.1109/ICSME.2018.00088.

[9] A. Chug and R. Malhotra, “Benchmarking framework for maintainability
prediction of open source software using object oriented metrics,”
International Journal of Innovative Computing, Information and Control,
vol. 12, no. 2, pp. 615–634, 2016.

[10] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, pp. 476–
493, 1994, doi: 10.1109/32.295895.

[11] R. Malhotra and A. Chug, “Software Maintainability: Systematic
Literature Review and Current Trends,” International Journal of Software
Engineering and Knowledge Engineering, vol. 26, no. 8, pp. 1221–1253,
2016, doi: 10.1142/S0218194016500431.

[12] D. Michie, D. J. Spiegelhalter, C. C. Taylor, and others, “Machine learning,”
Neural and Statistical Classification, vol. 13, no. 1994, pp. 1–298, 1994.

[13] M. Sharma, S. Sharma, and G. Singh, “Performance analysis of statistical

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº2

- 108 -

and supervised learning techniques in stock data mining,” Data, vol. 3,
no. 4, p. 54, 2018, doi: 10.3390/data3040054.

[14] X. Zhong and D. Enke, “Predicting the daily return direction of the stock
market using hybrid machine learning algorithms,” Financial Innovation,
vol. 5, no. 1, p. 4, 2019, doi: 10.1186/s40854-019-0138-0.

[15] K. C. Rasekhschaffe and R. C. Jones, “Machine learning for stock
selection,” Financial Analysts Journal, vol. 75, no. 3, pp. 70–88, 2019, doi:
10.1080/0015198X.2019.1596678.

[16] P. Kaur and M. Sharma, “Diagnosis of human psychological disorders
using supervised learning and nature-inspired computing techniques: a
meta-analysis,” Journal of medical systems, vol. 43, no. 7, p. 204, 2019, doi:
10.1007/s10916-019-1341-2.

[17] G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, D. S. Rajput, R. Kaluri, and
G. Srivastava, “Hybrid genetic algorithm and a fuzzy logic classifier for
heart disease diagnosis,” Evolutionary Intelligence, vol. 13, no. 2, pp. 185–
196, 2020, doi: 10.1007/s12065-019-00327-1.

[18] M. Sharma and P. Kaur, “A Comprehensive Analysis of Nature-Inspired
Meta-Heuristic Techniques for Feature Selection Problem,” Archives
of Computational Methods in Engineering, pp. 1–25, 2020, doi: 10.1007/
s11831-020-09412-6.

[19] X. Ma and S. Lv, “Financial credit risk prediction in internet finance
driven by machine learning,” Neural Computing and Applications, vol. 31,
no. 12, pp. 8359–8367, 2019, doi: 10.1007/s00521-018-3963-6.

[20] H. Ghoddusi, G. G. Creamer, and N. Rafizadeh, “Machine learning in
energy economics and finance: A review,” Energy Economics, vol. 81, pp.
709–727, 2019, doi: 10.1016/j.eneco.2019.05.006.

[21] S. K. Dubey, A. Rana, and Y. Dash, “Maintainability prediction of
object-oriented software system by multilayer perceptron model,” ACM
SIGSOFT Software Engineering Notes, vol. 37, no. 5, pp. 1–4, 2012, doi:
10.1145/2347696.2347703.

[22] R. Malhotra and A. Chug, “Application of evolutionary algorithms for
software maintainability prediction using object-oriented metrics,” in
Proceedings of the 8th International Conference on Bioinspired Information
and Communications Technologies, 2014, pp. 348–351, doi: 10.4108/icst.
bict.2014.258044.

[23] L. Kumar and S. K. Rath, “Hybrid functional link artificial neural network
approach for predicting maintainability of object-oriented software,”
Journal of Systems and Software, vol. 121, pp. 170–190, 2016, doi: 10.1016/j.
jss.2016.01.003.

[24] M. O. Elish, H. Aljamaan, and I. Ahmad, “Three empirical studies on
predicting software maintainability using ensemble methods,” Soft
Computing, vol. 19, no. 9, pp. 2511–2524, 2015, doi: 10.1007/s00500-014-
1576-2.

[25] J. Zheng, “Cost-sensitive boosting neural networks for software defect
prediction,” Expert Systems with Applications, vol. 37, no. 6, pp. 4537–
4543, 2010, doi: 10.1016/j.eswa.2009.12.056.

[26] E. O. Costa, G. A. de Souza, A. T. R. Pozo, and S. R. Vergilio, “Exploring
genetic programming and boosting techniques to model software
reliability,” IEEE Transactions on Reliability, vol. 56, no. 3, pp. 422–434,
2007, doi: 10.1109/TR.2007.903269.

[27] M. Akour, I. Alsmadi, and I. Alazzam, “Software fault proneness
prediction: a comparative study between bagging, boosting, and
stacking ensemble and base learner methods,” International Journal of
Data Analysis Techniques and Strategies, vol. 9, no. 1, pp. 1–16, 2017, doi:
10.1504/IJDATS.2017.10003991.

[28] Y. Freund, “Boosting a weak learning algorithm by majority,” Information
and computation, vol. 121, no. 2, pp. 256–285, 1995, doi: 10.1006/
inco.1995.1136.

[29] D. Nielsen, “Tree boosting with xgboost-why does xgboost win‘ every’
machine learning competition?,” NTNU, 2016.

[30] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining, 2016, pp. 785–794, doi:
10.1145/2939672.2939785.

[31] W. Li and S. Henry, “Object-oriented metrics that predict maintainability,”
Journal of systems and software, vol. 23, no. 2, pp. 111–122, 1993, doi:
10.1016/0164-1212(93)90077-B.

[32] M. Dagpinar and J. H. Jahnke, “Predicting maintainability with object-
oriented metrics-an empirical comparison,” in 10th Working Conference
on Reverse Engineering, 2003. WCRE 2003. Proceedings., 2003, pp. 155–164,

doi: 10.1109/WCRE.2003.1287246.
[33] M. M. T. Thwin and T.-S. Quah, “Application of neural networks for

software quality prediction using object-oriented metrics,” Journal of
systems and software, vol. 76, no. 2, pp. 147–156, 2005, doi: 10.1016/j.
jss.2004.05.001.

[34] C. Van Koten and A. R. Gray, “An application of Bayesian network
for predicting object-oriented software maintainability,” Information
and Software Technology, vol. 48, no. 1, pp. 59–67, 2006, doi: 10.1016/j.
infsof.2005.03.002.

[35] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Application
of artificial neural network for predicting maintainability using
object-oriented metrics,” Transactions on Engineering, Computing and
Technology, vol. 15, pp. 285–289, 2006, doi: 10.5281/zenodo.1058483.

[36] Y. Zhou and H. Leung, “Predicting object-oriented software
maintainability using multivariate adaptive regression splines,” Journal
of systems and software, vol. 80, no. 8, pp. 1349–1361, 2007, doi: 10.1016/j.
jss.2006.10.049.

[37] M. O. Elish and K. O. Elish, “Application of treenet in predicting object-
oriented software maintainability: A comparative study,” in 2009 13th
European Conference on Software Maintenance and Reengineering, 2009,
pp. 69–78, doi: 10.1109/CSMR.2009.57.

[38] A. Kaur, K. Kaur, and R. Malhotra, “Soft computing approaches for
prediction of software maintenance effort,” International Journal of
Computer Applications, vol. 1, no. 16, pp. 69–75, 2010, doi: 10.5120/339-
515.

[39] R. Malhotra1 and A. Chug2, “Software Maintainability Prediction using
Machine Learning Algorithms,” Software engineering : an international
Journal (SeiJ), vol. 2, no. 2, pp. 19–36, 2012.

[40] L. Kumar and S. K. Rath, “Software maintainability prediction using
hybrid neural network and fuzzy logic approach with parallel computing
concept,” International Journal of System Assurance Engineering and
Management, vol. 8, no. 2, pp. 1487–1502, 2017, doi: 10.1007/s13198-017-
0618-4.

[41] N. Baskar and C. Chandrasekar, “An Evolving Neuro-PSO-based
Software Maintainability Prediction,” International Journal of Computer
Applications, 2018, doi: 10.5120/ijca2018916305.

[42] S. Jha et al., “Deep learning approach for software maintainability metrics
prediction,” Ieee Access, vol. 7, pp. 61840–61855, 2019, doi: 10.1109/
ACCESS.2019.2913349.

[43] X. Wang, A. Gegov, F. Arabikhan, Y. Chen, and Q. Hu, “Fuzzy network
based framework for software maintainability prediction,” International
Journal of Uncertainty, Fuzziness and Knowledge Based Systems, vol. 27,
no. 5, pp. 841–862, 2019, doi: 10.1142/S0218488519500375.

[44] S. Gupta and A. Chug, “Assessing Cross-Project Technique for Software
Maintainability Prediction,” in Procedia Computer Science, 2020, vol. 167,
pp. 656–665, doi: 10.1016/j.procs.2020.03.332.

[45] S. Gupta and A. Chug, “Software maintainability prediction using an
enhanced random forest algorithm,” Journal of Discrete Mathematical
Sciences and Cryptography, vol. 23, no. 2, pp. 441–449, 2020, doi:
10.1080/09720529.2020.1728898.

[46] S. Gupta and A. Chug, “Software maintainability prediction of open
source datasets using least squares support vector machines,” Journal of
Statistics and Management Systems, vol. 23, no. 6, pp. 1011–1021, 2020,
doi: 10.1080/09720510.2020.1799501.

[47] S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite for object
oriented design,” 1991, doi: 10.1145/118014.117970.

[48] R. Malhotra and A. Chug, “An empirical study to redefine the
relationship between software design metrics and maintainability in
high data intensive applications,” in Proceedings of the World Congress on
Engineering and Computer Science, 2013, vol. 1.

[49] B. Henderson-Sellers, Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc., 1995.

[50] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on software engineering,
vol. 28, no. 1, pp. 4–17, 2002, doi: 10.1109/32.979986.

[51] “MinMaxScaler Link.” https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.MinMaxScaler.html (accessed Dec. 14, 2019).

[52] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial intelligence, vol. 97, no. 1–2, pp. 273–324, 1997, doi: 10.1016/
S0004-3702(97)00043-X.

Regular Issue

- 109 -

[53] “RFE Documentation.” https://scikit-learn.org/stable/modules/generated/
sklearn.feature_selection.RFE.html (accessed Dec. 16, 2019).

[54] K. T. Khaing, “Enhanced Features Ranking and Selection using Recursive
Feature Elimination (RFE) and k-Nearest Neighbor Algorithms in Support
Vector Machine for Intrusion Detection System,” International Journal of
Network and Mobile Technologies, vol. 1, no. 1, pp. 1832–6758, 2010.

[55] Y. Freund, R. E. Schapire, and others, “Experiments with a new boosting
algorithm,” in Thirteenth International Conference on International
Conference on Machine Learning (ICML’96), 1996, vol. 96, pp. 148–156.

[56] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997, doi: 10.1006/
jcss.1997.1504.

[57] J. H. Friedman, “Stochastic gradient boosting,” Computational statistics
& data analysis, vol. 38, no. 4, pp. 367–378, 2002, doi: 10.1016/S0167-
9473(01)00065-2.

[58] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001, doi: 10.1214/
aos/1013203451.

[59] G. Ke et al., “Lightgbm: A highly efficient gradient boosting decision
tree,” in Advances in Neural Information Processing Systems, 2017, pp.
3146–3154.

[60] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“CatBoost: unbiased boosting with categorical features,” in Advances in
Neural Information Processing Systems, 2018, pp. 6638–6648.

[61] R. Kohavi and others, “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” in 14th International Joint
Conference on Artificial Intelligence (IJCAI’95), 1995, vol. 14, no. 2, pp.
1137–1145.

[62] S. D. Conte, H. E. Dunsmore, and Y. E. Shen, Software Engineering Metrics
and Models. Benjamin-Cummings Publishing Co., Inc. Redwood City, CA,
USA, 1986.

[63] B. A. Kitchenham, S. MacDonell, L. Pickard, and M. Shepperd, “Assessing
prediction systems,” The Information Science Discussion Paper Series,
University of Otago, vol. 99/14, 1999, [Online]. Available: http://hdl.
handle.net/10523/1015.

[64] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd,
“What accuracy statistics really measure,” IEE Proceedings-Software, vol.
148, no. 3, pp. 81–85, 2001, doi: 10.1049/ip-sen:20010506.

[65] B. Iglewicz, “Robust scale estimators and confidence intervals for
location,” Understanding robust and exploratory data analysis, p. 405431,
1983.

[66] M. Friedman, “A comparison of alternative tests of significance for the
problem of m rankings,” The Annals of Mathematical Statistics, vol. 11, no.
1, pp. 86–92, 1940, doi: 10.1214/aoms/1177731944.

[67] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 485–496, 2008, doi: 10.1109/TSE.2008.35.

[68] [J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

[69] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE transactions on systems, man, and cybernetics, vol. 21,
no. 3, pp. 660–674, 1991, doi: 10.1109/21.97458.

[70] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, classification,”
IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 683–697, 1992, doi:
10.1109/72.159058.

[71] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996, doi: 10.1023/A:1018054314350.

[72] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the royal statistical society: series B (statistical
methodology), vol. 67, no. 2, pp. 301–320, 2005, doi: 10.1111/j.1467-
9868.2005.00527.x.

Shikha Gupta

Shikha Gupta received her Master’s degree in Computer
Applications at Indira Gandhi National Open University
(IGNOU), New Delhi, India in December 2017. She has
been awarded the University Gold Medal for securing
first position in order of merit and CEMCA Award 2019
for being the Best Female Student in the Master Degree
Programme. Currently, she is pursuing her PhD from

University School of Information, Communication & Technology, Guru Gobind
Singh Indraprastha University, New Delhi, India since September 2018. Her
research interests include software engineering, data mining and machine
learning.

Anuradha Chug

Dr. Anuradha Chug has long teaching experience of almost
30 years to her credit as faculty and in administration at
various educational institutions in India. She has worked as
guest faculty in Netaji Subhash Institute of Information and
Technology, Dwarka, New Delhi and Regular Faculty at
Government Engineering College, Bikaner. Before picking

the current assignment as Assistant Professor at USICT, GGSIP University, she
has also worked as Academic Head, Aptech, Meerut and Program Coordinator
at Regional Centre, Indira Gandhi National Open University (IGNOU), Meerut.
In academics, she has earned her doctorate degree in Software Engineering from
the Delhi Technological University, Delhi, India. Before pursuing PhD, she has
achieved top rank in her M.Tech (IT) degree and conferred the University Gold
Medal in 2006 from Guru Gobind Singh Indraprastha University. Previously
she has acquired her Master’s degree in Computer Science from Banasthali
Vidyapith, Rajasthan in the year 1993. Her H-index as reported by Google
Scholar is 12. She has published more than 50 research papers in international
and national journals and conferences. She has also served as reviewer of several
national and international journals and conferences in the area of software
engineering (ACM transaction, IJKESE, FOCS, IEEE Access, Neurocomputing,
Informatica, Inderscience, etc). She is also the recipient of DST funded project
entitled “Application of Internet of Things (IoT) in Agriculture Sector” as CO-
PI. She is passionate to design, develop and deploy IoT applications in various
aspects of human life. She has delivered many talks featuring Data Mining, IoT,
Mining Software Repositories at various FDPs, student talks, etc.

