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Abstract

The paper presents a novel architecture and method for speech synthesis in multiple languages, in voices of 
multiple speakers and in multiple speaking styles, even in cases when speech from a particular speaker in 
the target language was not present in the training data. The method is based on the application of neural 
network embedding to combinations of speaker and style IDs, but also to phones in particular phonetic 
contexts, without any prior linguistic knowledge on their phonetic properties. This enables the network not 
only to efficiently capture similarities and differences between speakers and speaking styles, but to establish 
appropriate relationships between phones belonging to different languages, and ultimately to produce 
synthetic speech in the voice of a certain speaker in a language that he/she has never spoken. The validity of 
the proposed approach has been confirmed through experiments with models trained on speech corpora of 
American English and Mexican Spanish. It has also been shown that the proposed approach supports the use 
of neural vocoders, i.e. that they are able to produce synthesized speech of good quality even in languages that 
they were not trained on.
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I. Introduction

MODERN text-to-speech (TTS) systems should not only be able 
to produce intelligible and natural-sounding speech but also to 

produce speech in multiple voices, styles, and preferably in multiple 
languages as well. Any TTS system which can handle input text in 
more than one language, and produce speech based on it, is referred to 
as multilingual TTS [1]. Multilingual TTS systems have a wide range 
of application. Besides being used within speech-to-speech language 
translation systems and interactive language tutoring systems, this 
functionality is necessary for a TTS system to be able to insert an 
occasional foreign language word into otherwise mono¬lingual 
speech, or even to alternate between languages in a manner consistent 
with the syntax and phonology of each language, which is referred to 
as code mixing.

The simplest solution to multilingual synthesis is based on 
simultaneous use of separate monolingual systems. However, since 
such systems are typically trained on speech corpora recorded by 
different speakers, this inevitably leads to inferior quality in code-
mixing scenarios. On the other hand, TTS systems which can produce 
multiple languages in the voice of a single speaker, but typically 
require speech corpora from bilingual or polyglot speakers, are 
referred to as polyglot TTS [1], [2]. The capability to produce speech 

in a particular language although the training speech data in the voice 
of the target speaker does not contain any speech in that language is 
referred to as cross-lingual speech synthesis. It represents a natural 
alternative to using polyglot speakers for the production of training 
data, brought about by scientific and technological development in 
machine learning. 

Initial attempts at producing cross-lingual synthesis were proposed 
for concatenative systems in the early 2000s and were based on 
creating phoneme mappings between source and target language 
[3]–[5]. Such approaches were able to generate phonetically accurate 
speech output, but since the intonation they were able to achieve was 
based on the existing source language, they were mostly applicable in 
code-mixing scenarios to generate some foreign words. Furthermore, 
sufficiently accurate phoneme mappings could be established only 
between languages with similar phonetic content. Another approach 
to concatenative cross-lingual synthesis is based on frame-level 
mapping. In the algorithm proposed in [6], source speaker recordings 
in language L1 are first spectrally warped towards target speaker 
recordings in language L2. Warped trajectories from source speaker 
are used for guiding the selection of appropriate frame-level spectral 
features from the target speaker, resulting in a set of utterances in 
L1 made from frames belonging to the target speaker. Selected target 
speaker frame features are then used for training a Hidden Markov 
Model (HMM) system capable of producing speech in the voice 
of the target speaker, but in L1, a language absent from the initial 
speech corpus of the target speaker. An extension of this approach is 
described in [7], proposing the use of bilinear spectral warping instead 
of piecewise linear, inclusion of original speech from target speaker 
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in L2 into the training set for the HMM, as well as joint treatment of 
phonemes from both L1 and L2 based on their places and manners of 
articulation. 

The shift of the focus in speech synthesis from concatenative to 
parametric approaches, brought about by the need for increased 
flexibility, has also influenced the development of cross-lingual speech 
synthesis. The first such approach, based on HMM, has enabled 
cross-lingual synthesis based on state mapping [8]. In this approach 
a bilingual speaker corpus is used to create two decision trees and an 
appropriate mapping between their terminal nodes is then established 
based on KL divergence. The obtained mapping is then applied to a 
monolingual speaker to generate speech in a new language. A language 
conversion method based on a mapping between terminal nodes of two 
decision trees created for average voice models is presented in [9]. A 
framework which attempts to factorize speaker and language features, 
which are modelled using a range of transforms, is presented in [10]. 

A major breakthrough in the development of high-quality para-
metric TTS did not come until the advent of neural networks. Scientific 
progress in this area has led to a number of different approaches to 
cross-lingual speech synthesis as well. For instance, in the research 
proposed in [11] acoustic features used to produce speech in the target 
language are created by a deep bidirectional long short-term memory 
(DB LSTM) network on the basis of phonetic posteriorgrams (PPG). 
The network is trained using original acoustic features of the target 
speaker as well as PPGs of the target speaker in the source language, 
obtained by a speaker-independent automatic speech recognition 
(ASR) system in the target language. Synthesis involves input of an 
arbitrary text to a general TTS in the target language (trained on 
any non-target speaker), which is then converted into a PPG by the 
ASR. The PPG features are then fed to the DB LSTM, which generates 
acoustic features of the target speaker in the target language, according 
to the input text. In [12] a deep neural network (DNN) based ASR is 
used to match senones from one speaker-dependent HMM TTS in the 
source language and another one in the target language. An example 
of multi-speaker and multi-language DNN TTS model is presented 
in [13]. This model uses separate input layers for each language 
and separate output layers for each speaker, while hidden layers are 
shared among all speakers and languages, and cross-lingual synthesis 
is achieved by combining cor responding input language layers and 
output speaker layers. In [14] unsupervised adaptation of multi-
lingual TTS is performed by way of a search for a linguistic context 
which matches the available acoustic features to the greatest degree. It 
has been shown that a multi-speaker architecture in language L2 can 
be adapted by using speech data from a single speaker in language L1 
to obtain TTS in language L2 in the voice of the target speaker. 

Recently, end-to-end systems, which enable speech to be produced 
directly from text, have achieved remarkable results [15]–[17], 
but they require very large quantities of training data to produce 
synthetic speech of high quality. The end-to-end approach has also 
been introduced into the area of cross-lingual TTS. Most notable 
approaches to cross-lingual end-to-end speech synthesis based on 
Tacotron2 were presented in [18]–[20]. In [18] and [19] the Tacotron2 
model is extended with speaker, language, tone and stress embeddings, 
while [18] introduces an additional adversarial speaker classifier and 
residual encoder. A speaker encoder based on ResCNN architecture, 
used for creating embeddings which condition the Tacotron2 system 
for predicting spectral envelopes, is presented in [20]. In all three 
methods shared IPA representations of phonemes are used. In [21] 
speaker embeddings for bilingual speakers are analysed and it has 
been shown that these embeddings form distinct, partly overlapping 
clusters. Cross-lingual speech synthesis is obtained by applying a 
translation of cluster embeddings learned from a bilingual speaker to 
a monolingual one using a Tacotron based architecture.

In spite of their great potential, a major drawback of end-to-end 
systems is their requirement not only for extreme computational 
power but also for very large quantities of speech data, which is a 
problem for under-resourced languages. The model that will be 
presented in the paper enables high quality speech synthesis, even 
in cross-lingual scenario, with very limited resources. It is evaluated 
through 5 listening tests, examining (1) whether the quality of synthesis 
decreases in comparison with monolingual TTS; (2) how the quality 
of synthesis in the original language by the proposed model compares 
with cross-lingual synthesis; (3) whether voice characteristics remain 
preserved in the cross-lingual scenario; (4) to what extent synthesis 
quality is degraded when the multilanguage model is adapted to a new 
speaker; and (5) how a neural vocoder compares to a deterministic one 
in the cross-lingual scenario.

The remainder of the paper is organized as follows. In Section II, 
we present a novel method and architecture for speech synthesis in 
multiple languages, in voices of multiple speakers and in multiple 
speaking styles, as well as speech data used in the training and 
evaluation of the proposed method. In Section III we give a detailed 
presentation of the experiments and their results. In Section IV we 
discuss the results of the experiments and in Section V we draw 
appropriate conclusions about the performance of the proposed 
method and outline the directions of future work.

II. Methods

This section will give a detailed presentation of the architectures of 
the models used in the experiments, training data, as well as specific 
points related to the implementation of models.

A. Models
The model proposed in this research builds upon our previous 

solution for monolingual speaker/style dependent speech synthesis 
based on embedding [22]. Both models follow the standard structure 
of speaker-dependent TTS, which will be outlined below.

1. Standard Speaker-Dependent TTS
A standard speaker-dependent TTS system consists of two neural 

networks, one for predicting phonetic segment durations, and the 
other for predicting acoustic features for each frame. The inputs of both 
networks contain linguistic information extracted from phonetically 
and prosodically annotated text. In order to take into account phonetic 
context, the inputs of both networks include not only the phonemic 
identity of the current phone, but the identities of phones at positions 
from −2 to 2 relative to the current phone. Phonemic identities are 
presented to the network as one-hot vectors, with some obvious 
exceptions, e.g. if a phone is sentence initial, features related to 
positions −2 and −1 are undefined and hence represented by all-zero 
vectors. Individual prosodic features are also presented to the network 
as additional inputs in binary form, and each of them represents an 
answer to a yes/no question typically related to the type and position 
of a particular prosodic event with respect to the current phone (such 
as: “Is the current phoneme in a stressed syl lable?”, “Is the number of 
syllables until the next phrase break greater than 3?” etc.). The acoustic 
network also obtains the information regarding phone durations 
and position of the current frame relative to its HMM state. In the 
synthesis phase, the outputs from the duration network are used as 
additional inputs to the acoustic network. The outputs of the acoustic 
network are typically converted to synthetic speech waveforms using 
an appropriate vocoder. A number of approaches have been proposed 
to extend such a model to enable it to handle multiple speakers and/
or speech styles [22]–[24], or to adapt it to a certain speaker and/or 
speech style [14], [22], [25].



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº2

- 112 -

2. Monolingual Speaker/Style-Dependent TTS Based on Embedding
The model used as a starting point in this research, represents an 

extension of the standard speaker-dependent TTS, which supports 
multiple speakers and styles and requires a very limited quantity of 
speech data for adaptation [22]. This model follows the basic structure 
of the standard speaker-dependent TTS in that it is based on two neural 
networks, one predicting phone durations and the other predicting 
frame-level acoustic features, both using phonetic transcriptions and 
prosodic features as inputs. 

.  .  ..  .  .

.  .  .

Output features (durations or acoustic parameters)

Input features (phonetic
transcription and prosodic
features, as well as phone

durations in case of
acoustic network)

Embedding

Speaker/style/cluster combination

Fig. 1. Architecture of either of the two neural networks that predict phone 
durations or acoustic features in monolingual speaker/style-dependent TTS 
based on embedding (MTTSE) [22].

The model presented in [22], capable of adaptation to different 
speakers and styles, uses an embedding vector as supplementary 
information at the input of both acoustic and duration networks, as 
shown in Fig. 1. This embedding vector, obtained in the training phase, 
uniquely represents a particular combination of speaker, speech style 
and cluster (a portion of the training data consistent in acoustic and 
prosodic quality, which typically corresponds to a single recording 
session). In other words, speaker ID, style ID and cluster ID are jointly 

represented as a single one-hot vector, which is converted into an 
appropriate joint embedding through training. In the resulting low-
dimensional embedding space created by the network, the distance 
between points representing particular speak er/style/cluster (SSC) 
combinations reflects their similarity in terms of acoustic features 
and speech rate, which helps the network to efficiently generalize 
on unseen speech data. Hereafter, this model will be referred to as 
“monolingual text-to-speech based on embedding” (MTTSE). 

3. The Proposed Model
The essential problem in a multilanguage scenario arises from the 

discrepancies between linguistic features across languages. To begin 
with, two languages generally do not share the same phonological 
inventory. Although it is usually possible to identify certain phonemes 
as common to multiple languages in a cross-lingual scenario, treating 
them as such can have negative effects since there may still be slight 
differences at the phonetic level. For that reason, the proposed model 
treats all phonemes from all languages as separate entities, which are 
uniquely represented as one-hot vectors, and then embedded into a 
low-dimensional space, as was the case with unique SSC combinations 
in MTTSE. The idea behind this approach is that the distance between 
points in the phonetic embed ding space should reflect the degree of 
similarity between cor responding phones regardless of their language. 
The proposed model, hereafter referred to as “cross-lingual text-to-
speech based on embedding” (CTTSE), uses 5 different embeddings 
for each phone in the corpus, and they are related to the phonemic 
identity of phones at positions from −2 to 2 relative to the current 
phone, as shown in Fig. 2. The size of this vector equals the sum of the 
sizes of phoneme inventories of all languages covered by the system, 
and phonetic embedding achieves efficient dimensionality reduction. 
Such an approach allows the network to decide e.g. to what degree the 
English /s/ and the Spanish /s/ are similar, and no expert knowledge is 
needed to match phonemes across languages. 

As is the case with MTTSE, besides phonetic features, both the 
duration network and the acoustic network require prosodic features 
at their inputs. The proposed model assumes that the same prosodic 
annotation scheme is used for all languages included in the training. 
For that reason, it was possible to consider a great majority of prosodic 
features to be common between languages and to present them to the 
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Fig. 2. Architecture of either of the two neural networks that predict phonetic segment durations or acoustic features within the model proposed 
for cross-lingual speaker/style-dependent TTS based on embedding (CTTSE).
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neural network directly, as shown in Fig. 2. If this were not the case, 
prosodic inventories would also be different across languages, and 
some form of prosodic embedding would have been necessary. 

The proposed model not only allows multi-lingual speech syn-
thesis but cross-lingual synthesis as well. Namely, using a specific 
speaker-style embedding at synthesis stage will produce the voice 
of the desired speaker in the desired speaking style regardless of the 
language of the input text. Since the information of phonetic features, 
prosodic features and voice-related features are separated, they can 
be used in different combinations, enabling synthesis in the voice of a 
speaker who has never been “heard” speaking the target language, i.e. 
whose training data do not contain any speech in the target language.

Besides being able to perform cross-lingual speech synthesis, the 
proposed model is also capable of adaptation to the voice of a speaker 
not seen in the training phase, just as was the case with MTTSE, based 
on adaptation speech data in any of the languages in the initial model. 
The first phase is aimed at establishing the embedding for the new 
speaker/style, and it begins by random initialization of the values in 
the embedding layers of both networks. In this phase of the adaptation 
process, only the values in the embedding layers of both networks are 
adjusted through back-propagation while the rest of the networks is 
kept unchanged. The model with embedding layers adapted in such a 
way synthesizes speech that already resembles the target speaker/style 
to some extent. However, the quality of synthesized speech can be 
further improved through the second phase of the adaptation process, 
in which the same training data is used again, but the embedding layer 
is frozen, while the weights in the networks are modified according to 
the back-propagated error.

B. Data
The speech data used in this research include two languages, 

American English and Mexican Spanish, with a total duration of about 
31 hours. All recordings were sampled at a rate of 22.05 kHz and 16 
bits per sample were used. Some recordings were made in professional 
studios, while others were obtained from publicly available audiobooks 
or speeches. In the data of each speaker, styles and clusters are 
identified. The entire speech corpus is phonetically and prosodically 
annotated, and the prosodic annotation of both languages follows 
the Tone and Break Indices (ToBI) set of conventions, with certain 
extensions related to the degree of acoustic realization of pitch accents, 
as proposed in [26]. In other words, instead of predicting the acoustic 
features related to the prosody of synthetic speech based on high-level 
linguistic features such as part-of-speech (POS) and semantic tags, 
more explicit control over the prosody of synthetic speech is assumed.

The corpus of American English includes recordings of 10 female 
and 13 male voices, with 9 of them including speech data in more than 
one speaking style. On the whole, there are 82 different SSCs, ranging 
in length from 1.1 minutes to 1 hour, with a median of 13.8 minutes. 
The recordings of 17 speakers have been made in a professional studio, 
while the recordings of the remaining 6 speakers have been obtained 
from public speeches available on the Internet, and their acoustic 
quality is inferior. The corpus of Mexican Spanish includes recordings 
of 54 female and 57 male voices, however, just two of them include more 
than one speaking style. On the whole, there are 123 different SSCs, 
ranging in length from 0.8 minutes to 28.8 minutes, with a median 
of 1.2 minutes. Only 2 voices, the ones including multiple speaking 
styles, were recorded in a professional studio, while the others have 
been obtained from different publicly available speech corpora, and 
their acoustic quality is inferior. The speech rates of the two languages 
are also significantly different (72 ms per phone for Spanish and 117 
ms per phone for English). An overview of the speech data used in this 
research is given in Table I.

TABLE I. Speech Data Used in the Experiment

American English Mexican Spanish 

Number of  
speakers

Female 10 54
Male 13 57

Total 23 111

Speaker/ 
style/cluster 
combinations  
(SSC)

Total number 82 123
Min. duration 0:01:10 0:00:50
Max. duration 0:59:59 0:28:49

Mean duration 0:18:58 0:02:32
Median duration 0:13:48 0:01:13

Duration
Studio quality 22:47:39 2:48:05

Inferior quality 3:07:04 2:24:19
Total 25:54:43 5:12:24

C. Model Implementation
The experiments are based on two single language models (for 

American English and Mexican Spanish) as well as one multilanguage 
model. The implementation of all models used in the experiments is 
based on the Merlin toolkit [27] and the TensorFlow framework [28].

1. Single Language Models
The single language models used for reference in this research 

represent monolingual TTS systems based on embedding (MTTSE), 
whose architecture is described in Section II.A.2. 

The duration network has an input layer of size 641 for English 
and 610 for Spanish, 3 feedforward layers of size 1024 with tangent 
hyperbolic activation functions, one LSTM layer of size 1024, and 
a linear output layer of size 5, for the prediction of the durations of 
each HMM state of a phone. The exact size of the input layer for both 
languages is determined by their phoneme inventories and specific 
implementation details, which will be illustrated in detail for the case 
of American English. Firstly, besides the standard 39 phonemes in the 
phoneme inventory, the set of phoneme identifiers used in this research 
also included silence and non-phonemic glottal stop. Secondly, if the 
articulation of a phone was significantly impaired even taking into 
account its context, it was labelled as “damaged” and considered as a 
separate phoneme (e.g. “damaged /m/” as opposed to /m/). This was 
taken into account only in the input section related to the phonemic 
identity of the current phone, while in the sections related to positions 
±1 and ±2 this impairment was disregarded. Thus, the size of the 
input section related to the current phone is 80, while the sizes of the 
remaining 4 sections are 41 each (Fig. 1). Finally, 82 SSC combinations 
and 315 prosodic features used for English bring the total size of 
the input layer to 641, as mentioned previously. Following the same 
reasoning, the total size of the input layer for Mexican Spanish (610) 
can be obtained taking into account the size of its standard phonemic 
inventory (28), the number of existing SSC combinations (123), and 
the number of prosodic features used (309). It should be noted that, 
although essentially the same prosodic annotation scheme was used 
for both languages, there were nevertheless certain language-specific 
features of minor significance, which explains the difference between 
the numbers of prosodic features used for the two languages. The 
sizes of SSC embeddings are 10 for the English model, and 12 for the 
Spanish model.

The architecture of the acoustic network is basically the same, with 
the input layer for both languages increased by 9 to accommodate 
for new frame related features [27]. As in the case of the duration 
network, hidden layers contain 1024 neurons, while the output layer 
contains 130 neurons, whose outputs correspond to the values of 
40 mel-generalized cepstral coefficients (MGC), 2 band aperiodicity 
coefficients (BAP), the value of fundamental frequency, the first and 
second derivatives of all features previously mentioned, as well as one 
feature related to the degree of voicing (VUV). 
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2. Multilanguage Models
The multilanguage model used in the experiments has been 

built along the principles of cross-lingual TTS based on embedding 
(CTTSE), outlined in Section II.2. 

In the multilanguage model a joint phoneme inventory of size 70 is 
used, including two non-phonemic glottal stops (one per language) as 
well as silence as phoneme identifiers. As was the case with MTTSE, 
the current phone is represented by a one-hot vector which considers 
poorly articulated phones as separate phonemes. Finally, 205 SSC 
combinations and 286 binary prosodic features shared between the 
two languages bring the total size of the input layer to 908 (Fig. 2). The 
size of the SSC embedding is set to 15, the size of the embedding related 
to the current phone is set to 10, while the sizes of the embeddings 
related to phones at positions ±1 and ±2 are set to 5.

3. The Choice of Hyperparameters
The choice of the size of the networks was largely based on our 

previous research related to embedding [22]. For instance, it has been 
shown that a smaller network (512 neurons per hidden layer instead 
of 1024) would produce synthetic speech of somewhat inferior quality. 
While most inputs to the networks are binary (0 or 1), the 9 frame-
related inputs to the acoustic network are normalized to the range [0,1] 
at the global level. On the other hand, the output acoustic features are 
standardized (mean = 0, std = 1) at the level of an individual speaker, 
since it has been shown that doing otherwise would greatly degrade 
the quality of synthetic speech in a cross-lingual scenario. In cases 
of both MTTSE and CTTSE, the optimizer used is stochastic gradient 
descent with a momentum of 0.9, and starting learning rates of 0.008 
for the duration network and 0.01 for the acoustic network.

As to the choice of the sizes of particular embeddings, from a 
theoretical standpoint, in order to keep the volume of a hypersphere 
which corresponds to one SSC (or one phoneme) in the embedding 
space relatively constant, a logarithmic dependency between the 
number of SSC (or the number of phonemes) and the embedding size 
is implied. However, in practice the choice of the size of an embedding 
is complicated by a number of issues. For instance, for an SSC 
embedding, it is not the same if a new SSC is actually a new speaker 
or just a new style of an existing speaker or even just a new cluster. In 
the research presented in [22], varying the embedding size from 4 to 
40 for 67 SSC and a single language was shown to have surprisingly 
little impact on the performance. In this research, the size of the SSC 
embedding for the single language model for English was set to 10 
(the values 10, 15 and 25 have been tested). Having in mind that there 
are about twice as many SSCs in the Spanish data, but that they also 
contain many more unique speakers, the size of the SSC embedding 
for the single language model for Spanish was set to 12. As to the 
size of phoneme embeddings in the multilanguage model, they greatly 
depend on the actual overlap between phonemic inventories of the 
two languages, not only on the phonological level, but on the phonetic 
level as well. Since the union of phoneme inventories of English and 
Spanish contains 67 phonemes, and since in the case of the current 
phoneme a phone with impaired articulation was considered as a 
separate phone, the values of 5, 10 and 15 were tested as the sizes of 
the embedding of the phonemic identity of the current phone, and 
the value of 10 was chosen as the one producing the highest quality 
of synthetic speech. In case of phones at positions ±1 and ±2, the 
size of the embedding was set to 5 since they carry less important 
information, and the impairment in their articulation is disregarded 
(i.e. impaired phones are not treated as separate phonemes). It was 
also established that, although final synthesis does not vary much in 
quality, embedding space looks more sensible for specific embedding 
sizes. Table II illustrates the case when the embedding size is set to 10, 
listing the nearest neighbours for certain phonemes. It can be seen, 

with some exceptions, that the distance in the embedding space indeed 
reflects the acoustic similarity between phonemes. For instance, 
English and Spanish /k/ are quite similar on the phonetic level as well, 
which is why the network has set them closely together in the acoustic 
space, unlike English and Spanish /b/, whose phonetic features are 
somewhat different. The anomaly of English /ʔ/ being identified as the 
closest neighbour of Spanish /a/ remains unexplained, but it should be 
noted that its influence on the quality of synthesis may be minor, since 
the acoustic features are formed not only on the basis of the current 
phoneme embedding but on the basis of embeddings at positions ±1 
and ±2 as well, and /ʔ/, unlike /a/, is almost exclusively found between 
vowels. It should also be noted that the positions of embedding of 
phonemes with impaired articulation in the embedding space are 
irrelevant since these phonemes will never be used in synthesis. 

TABLE II. Nearest Neighbours of Certain Phonemes in Case the Size 
of the Phoneme Identity Embedding Is Set to N = 10, With Respective 

Euclidean Distances Given in Brackets

Phone 1st neighbour 2nd neighbour 3rd neighbour
Sp. /b/ En. /w/ (2.61) Sp. /w/ (3.48) Sp. /g/ (3.49)
Sp. /k/ En. /k/ (3.04) Sp. /g/ (3.21) En. /g/ (3.43)
Sp. /ɾ/ En. /r/ (4.20) En. /ɚ/ (4.39) En. /d/ (4.98)
Sp. /a/ En. /ʔ/ (2.49) En. /ɑː/ (3.14) En. /e/ (3.51)
Sp. /e/ En. /j/ (2.07) En. /e/ (2.68) En. /ɪ/ (2.16)
Sp. /u/ Sp. /o/ (2.41) En./oʊ/ (3.03) Sp. /w/ (3.41)

In both single language and multilanguage models, the duration 
network was trained for 100 epochs, while the acoustic network was 
trained for 45 epochs. Particular attention has been giving to the 
choice of the batch size. As the duration model is phone aligned, the 
batch size is represented as a product of the number of streams and the 
number of phonemes, where a single stream is made of concatenated 
sentences from the corpus. The batch size for the duration model 
was set to 8×50, which means that the update of weights is carried 
out each time a sequence of 50 phonemes from 8 different streams 
of sentences is processed by the network. The values given above 
were chosen after testing 4 to 16 streams and 16 to 50 phonemes per 
stream or even a single sentence as the entire batch, having in mind 
that for both languages the average sentence length in the corpus is 
close to 50 phonemes. Although it has been shown that the choice 
of one sentence per batch is satisfactory for synthesis of a speaker-
language combination that exists in the training corpus, it is not 
suitable for cross-lingual scenario since it results in synthetic speech 
whose dynamics resemble the original language too much (e.g. an 
English speaker would speak Spanish too slowly). On the other hand, 
a batch size of 8×50 has shown to be suitable for high-quality synthesis 
regardless of whether the speaker-language combination exists in the 
training corpus or not. In the case of the acoustic network, batch size 
is represented as the product of the number of streams and the number 
of frames of length 5 ms per stream. By testing different combinations 
of values it has been found that, although high-quality synthesis for a 
speaker-language combination existing in the corpus is possible with 
batches as small as 32×25, cross-lingual scenario requires at least a 
batch size of 4×400. This implies that the update of weights should be 
done each time a sequence of 400 frames (corresponding to 2 seconds 
of speech, i.e. one half of an utterance of average length) from 4 
different streams of sentences is processed by the network. 

The imbalance between the representation of particular SSCs in the 
training corpora for both languages has been mitigated by using SSC-
specific weight coefficients. Namely, when the total loss  for a batch 
is calculated, weight coefficients which boost the contributions of SSCs 
underrepresented in a particular training corpus are taken into account: 

 (1)
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where Nb is the size of a batch (in samples, i.e. phones or frames),  
Nout is the size of the output layer, wj is the weight coefficient 
corresponding to the SSC relevant to the j-th sample of the batch, 
and yij and tij are the calculated (predicted) and the target value of the 
i-th output for the j-th sample of the batch, respectively. The weight 
coefficient wk corresponding to k-th SSC is given by: 

 (2)

where Nk is the total number of utterances corresponding to k-th 
SSC, and α is a normalization factor given by:

 (3)

where Nssc is the total number of SSCs.

4. Generation of Speech Waveforms
The first approach to the generation of speech waveforms from 

predicted acoustic features was based on WORLD, a widely-used 
deterministic vocoder [29]. It assumes a minimum phase for the 
spectrum and by using the predicted acoustic features it converts 
the cepstral features into a linear amplitude spectrum and produces 
excitation signal by mixing a pulse and a noise signal in the frequency 
domain, where each frequency band is weighted by a value of predicted 
band aperiodicity acoustic features. Finally, it generates a speech 
waveform based on the source-filter model. The second approach 
was based on WaveRNN [30], an increasingly popular neural vocoder, 
which predicts the more significant and the less significant halves 
of the 16-bit output sample separately, and supports simultaneous 
prediction of several output samples. Since it requires extreme 
processing power and large quantities of training data per speaker, 
it has been tested just for a single speaker who was most represented 
in the available training data, in order to establish whether the cross-
lingual scenario is possible with a neural vocoder and how the use of 
a neural vocoder instead of a conventional one affects the quality of 
cross-lingual synthesis.

III. Experiments and Results

A. Experiment 1: Single Language Vs. Multilanguage Model
The aim of Experiment 1 is to compare the quality of speech 

generated using the multilanguage (ML) model and the single 
language (SL) model in a speaker’s native language. Although ML in 
this experiment supports only two languages, it can be easily extended 
to more languages. It should be emphasized that in this research an 
extreme disbalance between the corpora of two languages exists – the 
English corpus is 5 times bigger than the Spanish one (~25h vs ~5h) 
but includes far fewer different speakers (23 vs 111, or 83 unique SSC 
vs 124 unique SSC).

Since there are original and synthesized recordings of the same 
sentences (withheld during training) it was possible to conduct 
objective evaluation of the quality of synthesized speech, based on 
a comparison of values of acoustic features extracted from original 
recordings and those predicted by the TTS model. The standard 
measures are: mel-cepstral distance (MCD), root mean square error of 
the fundamental frequency (RMSE F0), correlation between predicted 
and true fundamental frequency (CORR F0), root mean square error of 
phoneme duration expressed in frames per phone (RMSE DUR) as well 
as correlation between predicted and true phoneme durations (CORR 
DUR). Table III shows the objective measures for each language. 

Since subjective evaluation is still considered in the literature as 
the most reliable way of establishing the quality of speech synthesis, a 
comparison between synthetic speech obtained by ML and SL models 
was also carried out through a preference test including 31 non-native 

listeners, who declared themselves as having sound knowledge of 
both English and Spanish. Each listener was given 20 tasks (10 per 
language). In each task there were two sentences with the same 
linguistic content – one sentence synthesized by SL model and the 
other one by ML model. In the preference test each language was 
represented by 5 speakers, 2 male and 3 female ones. The listeners were 
asked to select the utterance of better quality in terms of intelligibility 
and naturalness, and the answer “no preference” was also acceptable. 
The results of the preference test are given in Fig. 3.

TABLE III. Objective Measures of Distance Between Synthesized and 
Natural Speech

MCD
(dB)

RMSE 
F0 (Hz)

CORR  
F0 

RMSE 
DUR 

CORR 
DUR 

English
SL 5.26 32.30 0.90 5.79 0.84
ML 5.39 33.34 0.89 5.58 0.85

Spanish
SL 5.29 24.39 0.91 5.68 0.77
ML 5.19 24.39 0.91 5.61 0.78
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Fig. 3.  Results of subjective comparison of the quality of speech 
synthesized by SL and ML.

B. Experiment 2: Speech Quality in a Cross-Lingual Scenario
The aim of Experiment 2 was to evaluate the quality of cross-lingual 

speech synthesis. Since in a cross-lingual scenario, ground truth 
examples (original recordings) do not exist, the only way of testing the 
quality of synthesis is subjective evaluation. Since it included rating 
the utterances delivered by different target speakers on a MOS scale 
rather than simple comparison, only native speakers of English and 
Spanish participated in the listening tests.

Two listening tests were carried out with 2 groups of 21 listeners 
per group – one for English and the other for Spanish. In each test 
there were 10 tasks, containing 4 utterances each. In each task the 
content of all utterances was the same, but two were synthesized by a 
speaker-language combination that exists in the training corpus, while 
the other two were synthesized by a speaker-language combination 
that does not exist in the corpus (i.e. cross-lingual scenario). Each of 
the 4 utterances in a task was delivered in the voice of a different 
speaker, of whom 2 were native English (male and female) and 2 native 
Spanish (male and female). In the entire test containing 10 tasks, there 
are sentences from 8 different speakers. In each task, listeners were 
asked to evaluate the quality of 4 synthesized sentences in terms of 
intelligibility and naturalness on a 1 to 5 MOS scale. Multiple speakers 
were introduced to neutralize any bias that a listener may have 
towards a specific voice. The results of the experiment are presented 
in Fig. 4. and Fig. 5.
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English Spanish
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Fig. 4.  Results of subjective comparison of the quality of original-language and 
cross-lingual synthesis (mean values with 95% confidence intervals are shown).
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C. Experiment 3: Voice Similarity in a Cross-Lingual Scenario
The aim of Experiment 3 was to establish to what extent the 

characteristics of a speaker’s voice remain preserved in the cross-
lingual scenario. However, the task of evaluating voice characteristics 
is not easy when the entire sentence, even the language, is different. 
For that reason, the test has created as follows. 

Each of the 32 tasks in a test included a pair of utterances and 
the listeners were asked to state their opinion as to whether both 
utterances were delivered by the same “virtual speaker” on a 1 to 5 
scale defined as follows:

1. I am sure the utterances were delivered by different speakers;

2. I think they were delivered by different speakers;

3. I do not know whether they were delivered by the same speaker;

4. I think they were delivered by the same speaker;

5. I am sure they were delivered by the same speaker.

In each pair, one utterance was in Spanish and the other in 
English, both produced by the ML model. Consequently, in case of 
pairs of sentences from the same speaker, one sentence is necessarily 
synthesized using the cross-lingual scenario. There were 8 tasks for 
each of the 4 different target speakers (one for each combination 
of gender and native language). Half of the pairs of sentences in 32 
tasks were delivered by the same speaker, while in the other half the 
utterances were delivered by different, but similar speakers. The test 
was presented to 31 non-native listeners, and the results are shown 
in Fig. 6.

D. Experiment 4: Adaptation to a New Speaker
The aim of Experiment 4 is to establish whether it is necessary to 

retrain the entire multispeaker (MS) ML model when a new speaker 
appears in order to obtain cross-lingual synthesis, or it is sufficient 

to adapt the existing MS ML model to new speaker data, as described 
in Section II.A.3. In the experiment two new native English speakers 
were introduced – a female, whose training corpus can be considered 
as small (10 min, 4 SSCs, inferior quality), and a male, whose training 
corpus can be considered as being of moderate size (45 min, 3 SSCs, 
studio quality).

The preference test consisted of 20 pairs of utterances, 10 per 
speaker, of which 5 were in English (original speaker-language 
combination) and 5 in Spanish (cross-lingual scenario). In each pair 
of utterances, one was synthesized by the multispeaker model that 
included the target speaker in the training corpus, while the other 
was synthesized by the model which had been adapted to the target 
speaker. A total of 31 non-native listeners were asked to select the 
utterance of better quality in terms of intelligibility and naturalness, 
and the answer “no preference” was also acceptable. The results are 
shown in Fig. 7.

 

51%

73%

25%

12%

24%

15%

0% 20% 40% 60% 80% 100%

En.

Sp.

Multi-speaker Speaker adaptation No preference

Fig. 7.  Results of subjective comparison of the quality of multi speaker and 
speaker adaptation synthesis.

E. Experiment 5: Deterministic Vs. Neural Vocoder
The aim of Experiment 5 is to compare results that can be obtained 

by using a deterministic vocoder and from the data-driven vocoder, 
both in original-language and cross-lingual scenario. In this research 

 

1,00

2,00

3,00

4,00

5,00

F1_en:

6:31:12

F2_en:

1:29:22

M1_en:

7:19:58

M2_en:

0:38:16

F1_sp:

0:38:37

F2_sp:

0:11:57

M1_sp:

0:34:37

M2_sp:

0:01:11

English Spanish

Fig. 5.  Results of subjective comparison of the quality of original-language and cross-lingual synthesis for individual speakers (suffixes 'en' and 'sp' indicate the 
original language of each speaker). The amounts of available training data are also indicated.
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Fig. 6. Results of the evaluation of voice similarity in case of cross-lingual speech synthesis: (a) overall; (b) for each target speaker individually. Labels 'Same' and 
'Different' indicate whether both sentences in a pair were delivered by the same speaker.
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WORLD vocoder was used as a widely-used example of a deterministic 
vocoder, while WaveRNN was selected as an increasingly popular and 
efficient data-driven vocoder. At first sight, the experiment may not 
seem immediately related to this research since any vocoder produces 
speech samples given appropriate acoustic features at its input, 
and thus it may not be obvious that the purpose of the experiment 
is anything beyond a simple comparison between WORLD and 
WaveRNN. However, it should be taken into account that a neural 
vocoder has to be trained in order to produce speech based on acoustic 
features, and in the cross-lingual scenario, training data for a specific 
voice in the target language does not exist. In other words, the vocoder 
is required to produce speech in a language it has not heard before, 
and the experiment aims to establish whether this is at all practicable, 
and whether the possible loss in the quality of synthesized speech is 
acceptable.

A comparison between synthetic speech obtained by WORLD and 
WaveRNN was carried out through a preference test including 31 non-
native listeners, who declared themselves as having sound knowledge 
of both English and Spanish. Each listener was given 10 tasks (5 per 
language). In each task the listeners were presented with two sentences 
with the same linguistic content – one sentence synthesized using 
WORLD and the other one using WaveRNN. All speech samples used 
in the experiment were synthesized in the voice of the English speaker 
(a female one, neutral style) with the most data in the training corpus. 
The samples representing original speaker-language combinations 
and cross-lingual synthesis were equally represented and randomly 
distributed in the test. The listeners were asked to select the utterance 
of better quality in terms of intelligibility and naturalness, and the 
answer “no preference” was also acceptable. The results of Experiment 
5 are presented in Fig 8. 

IV. Discussion

In this section an interpretation of the results will be presented, 
outlining their importance in view of the recognized limitations of 
the study. To illustrate the quality of speech synthesized by different 
approaches described in the paper, and to substantiate the results of 
the listening tests, the speech samples used in the tests have been 
made available at: www.alfanum.ftn.uns.ac.rs/crosslingual.

A. Experiment 1: Single Language Vs. Multilanguage Model
Based on objective measures of distance between acoustic features 

of original and synthesized speech (Table III), it can be concluded 
that in most cases the performance in a certain language of the ML 
model matches the performance of SL models. The results related to 
phone durations are slightly improved, as well as acoustic measures 
for the language with less data. This is in line with the expectation 
that, given enough training data, a SL model is capable of producing 
synthetic speech of high quality, and the use of a ML model may be 
advantageous since it is capable of overcoming the lack of training 
data for underrepresented languages. On the other hand, the results 
of the subjective evaluation (Fig. 3) show that there is no significant 
difference between compared methods, although the SL model is 
slightly preferable than the ML model in the case of English. This can 
be explained by the fact that in case of English much more training 
data were available, and since the SL model had enough material for 
training, adding a new language was only a distraction for the network. 
On the other hand, in case of Spanish, a three-way tie among the 
preference of SL, preference of ML and no preference at all, indicates 
that the additional language was not a distraction, although it did not 
improve the Spanish synthesis either. Our expectation that the benefit 
from the use of ML model increases with the increase of the number 
of underrepresented languages as well as the scarcity of training 

data, will be the subject of further research, as soon as prosodically 
annotated data in more languages become available.

It should be noted that a similar analysis has been conducted in [18], 
including a comparison of the quality of synthesis from end-to-end SL 
and ML models. Speech data used in [18] also exhibited a significant 
imbalance regarding the representation of each language (387 hours 
of English vs. 97 hours of Spanish and 68 hours of Chinese). The ML 
model was based on three languages – English, Spanish and Chinese. 
It was concluded that there was no significant degradation in case 
of ML, although SL was found to be slightly preferable (MOS grades 
were 0.1 lower for ML on average). It was also confirmed that SL was 
especially preferable in case of English (the difference in grades was 
more than 0.2), than in case of other two languages (the difference in 
grades was less than 0.1).

B. Experiment 2: Speech Quality in a Cross-Lingual Scenario
From the results of Experiment 2, shown in Fig. 4 and Fig. 5, it 

can be seen that, in general, higher quality synthesis is achieved for 
English, which could be expected since the English training corpus 
is 5 times larger than the Spanish one. However, taking into account 
only original speaker-language combinations (i.e. cases where speech 
is synthesized in the original language of the speaker), it is interesting 
to note that synthesis of Spanish speech was, on average, rated only 
0.2 lower than synthesis of English speech. This is a very encouraging 
result, having in mind the difference in the sizes of training corpora. 
More importantly, the results of Experiment 2 fully confirm the 
feasibility of cross-lingual speech synthesis based on CTTSE. Namely, 
the quality of cross-lingual synthesis has been rated as inferior to 
original-language synthesis by only 0.3 in both cases (English to 
Spanish and vice versa).

Analysing grades obtained for each individual speaker, it can be 
noticed that all target English speakers have grades higher than 3.5 
for synthesis in English, 2 of them even grades higher than 4.0, while 
the target Spanish speakers have obtained lower grades for synthesis 
in Spanish, 2 of them even less than 3.5. This may be explained by the 
fact that all English speakers have much larger training corpora than 
their Spanish counterparts. However, it is interesting to note that the 
Spanish speaker with only 1 minute of training data and the English 
speaker with more than 7 hours of training data obtained grades 
which differ by only 0.21 for their native languages. The differences 
between synthesis in the original language and cross-lingual scenario 
are smaller (up to 0.45) in case of Spanish speakers, where in one case 
the cross-lingual scenario was graded even better than synthesis in 
the original language. For English speakers, the cross-lingual scenario 
is graded usually as at least half a grade inferior to synthesis in the 
original language. However, no speaker-language combination 
obtained a grade below 3.1.

Although it was not mentioned in the comments of listeners since 
they were unaware of the origin of each utterance, it can safely be 
concluded that inadequate speech rate is one of the factors that have 
reduced the quality of cross-lingual speech synthesis. By comparing 
cross-lingual speech samples, it can be concluded that synthesized 
voices tend to preserve the speech rate of their original language, 
which implies that English voices speak Spanish unnaturally slow, 
while Spanish voices speak English unnaturally fast. This may be the 
consequence of the specific approach to network output normalization, 
which will be investigated further.

The quality of synthesis for underrepresented languages in [18] was 
graded as equal or slightly inferior to the case of the language which 
was represented with the most training data for an original speaker-
language combination (e.g. for Chinese the average MOS grade was 
approximately 0.3 lower than for English and Spanish). Switching to 
a cross-lingual scenario introduced a slight degradation in quality 
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(0.06 lower MOS grade in case of 3 languages, and 0.13 in case of 
only Spanish to English and vice versa). Although these results are 
better than in our research, it should be noted that in our research the 
amount of training data was 15 to 20 times smaller. Another research, 
presented in [13], contrary to our research and [18], used corpora 
of bilingual speakers in order to construct a ML model. They also 
conducted an experiment with 2 bilingual speakers and 1 monolingual 
speaker and tested the cross-lingual scenario (about 45 minutes of 
data for each speaker-language combination was used). The quality 
of synthesis obtained by the ML model in a cross-lingual scenario was 
graded with a MOS grade by 0.25 lower than in case of a SL model 
trained on data from only one speaker (standard TTS). 

C. Experiment 3: Voice Similarity in a Cross-Lingual Scenario
Experiment 3 aimed at establishing to what degree speech 

synthesized in another language retains the voice characteristics of the 
original speaker. As explained in Section III.C, the participants were 
asked to state whether they believe that each of the two utterances 
presented in a pair was delivered by the same “virtual speaker” on 
a 1 to 5 scale. If grades 5 and 4 can be considered as correct answers 
and grades 1 and 2 as wrong answers for pairs where the utterances 
correspond to the same speaker, and vice versa if they correspond to 
different speakers, the listeners answered correctly in 72% cases, could 
not decide in 8%, and gave the wrong answer in 20%. Fig. 6. provides 
a more detailed analysis of the results. Since the listeners recognized 
correctly that the speaker was the same in almost 70% cases, being sure 
in their answers (grade 5) in almost 40% cases, it can be concluded that 
the voice characteristics remained preserved in cross-lingual scenario. 
On the other hand, in case when the sentences in the pairs were 
actually delivered by different speakers, listeners correctly recognized 
it in almost 80% of cases, being sure (grade 1) in almost 50%. It can be 
noted that for the female English speaker the listeners were less sure 
in their answers and also the most indecisive in pairs where her voice 
was present.

It should be noted that the reported degradation in voice similarity 
in [18] in comparison with the original speaker-language case was as 
high as 1.0. The authors of [18] have also emphasized the problem of 
grading voice similarity in case the sentence or even the language is 
different, which is why we have opted for a different approach – to 
ask the listeners to identify whether the two utterances in different 
languages have been delivered by the same speaker. On the other 
hand, the evaluation of the voice similarity in [13] was quite simple. 
Namely, owing to the use of bilingual speakers, it was possible to 
directly compare the result of synthesis from the ML model in a cross-
lingual scenario with an original recording of the speaker in the target 
language. A decrease of the MOS grade by 0.58 with respect to the 
synthesis from SL model was reported.

D. Experiment 4: Adaptation to a New Speaker
The results of Experiment 4, shown in Fig. 7, indicate that re-

training the entire MS ML model from scratch including the new 
speaker produces speech of better quality than speaker adaptation 
(SA). The preference of MS ML over the SA approach is more 
emphasized in the case of Spanish, i.e. in case of the cross-lingual 
scenario. It can be assumed that, in adapting the existing model to 
the new speaker, the network is less ready to generalize and produce 
a new speaker-language combination because it overfits to the single 
speaker-language combination used for adaptation. 

The results do not differ much depending on whether the training 
corpus is small or of moderate size, although SA has shown to be more 
acceptable in the case of the speaker with a moderate training corpus. 
It is interesting to note that during speaker adaptation, embedding 
values for the phonemes of the language not existing in the corpus 

of the new speaker will not be updated. However, this should not 
lead to a significant difference in quality with respect to the cross-
lingual scenario in which a speaker is included in the training of the 
original ML model, since in that case his/her data will influence only 
the embeddings for the phonemes of languages that exist in his/her 
training corpus.

E. Experiment 5: Deterministic Vs. Neural Vocoder
From the results of Experiment 5, shown in Fig. 8, it can be seen 

that, while WaveRNN is preferable over WORLD in both English and 
Spanish, i.e. in both original language and cross-lingual synthesis, 
the preference in case of English is negligible. As is well known, both 
vocoders have their own specific properties, e.g. while synthesis by 
WORLD is relatively stable but with a constant impairment in quality 
referred to as “buzzing” [31], the synthesis by WaveRNN generally 
sounds more natural but is less stable. A point of some relevance for 
this research is that WaveRNN synthesis includes a certain overtone 
which may affect the timbre of the voice, but it could not be spotted 
by listeners to whom the original voice is unknown. It should also be 
noted that, unlike WORLD, WaveRNN exhibits significant flexibility 
in terms of architecture and hyperparameters, so the results can be 
further improved. However, a downside of WaveRNN is the necessity 
of large corpora, and in this experiment, only one speaker with the 
sizable corpus was used, so its adaptation or multispeaker training are 
the subjects of further research.
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Fig. 8. Results of subjective comparison of the quality of utterances obtained 
by using WORLD and WaveRNN vocoders.

Most importantly, the experiment has shown that WaveRNN is able 
to produce high-quality synthetic speech even in the language it is 
not initially trained on, which confirms the assumption that acoustic 
features from the TTS model of one speaker are meaningful input to 
WaveRNN regardless of the language to which they may correspond.

V. Conclusion

The study presents a novel method for multilingual and cross-
lingual neural network speech synthesis. Firstly, it shows that the 
proposed method is capable of speech synthesis in multiple languages, 
and that it is a good basis for the creation of speech synthesis for 
languages in which a relatively small quantity of speech data is 
available. As its main point, the study shows that it is possible to 
synthesize speech in a specific person’s voice in a language that this 
person has never spoken. The quality of cross-lingual synthesis in 
terms of intelligibility and naturalness, as well as the resemblance of 
the synthesized voice in a cross-lingual scenario to the same voice 
in original language synthesis, were both established to be relatively 
high (a difference in quality on a MOS scale was found to be 0.3). Since 
it would be impractical to retrain the entire system each time a new 
speaker is introduced, a method for speaker adaptation in a cross-
lingual scenario was examined as an alternative and it was found that 
does not lead to an unacceptable loss in speech quality, particularly 
in the case of the language with greater overall quantity of training 
data. Finally, it has been shown that the proposed method for cross-
lingual synthesis supports the use of neural vocoders, even though it 
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means that they have to be trained on data in one language, and used 
for synthesis of speech in another. The study, thus, brings the state 
of the art in speech technology one step closer to the synthesis of 
arbitrary text in an arbitrary voice, speaking style and language, easily 
extensible to new speakers, styles and languages.

The study is somewhat limited by the fact that it was based on 
only two languages, with significant differences in both the number 
of speakers in the training corpus as well as the average quantity of 
available data per speaker. However, most of its results and conclusions 
are in agreement with expectations based on theoretical knowledge. 
Our future research on this topic will include the extension of the 
study to multiple languages as soon as more data become available. 
The study also raises a number of questions related to specific 
implementation of particular models, most notably the normalization 
of network outputs, which will also be investigated further in our 
future work.
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