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Abstract

Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input 
for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility 
of precipitation (rainfall) and non-precipitation (meteorology) as input data has received less attention. First, we 
propose a novel pre-processing mechanism for non-precipitation data by using principal component analysis 
(PCA). Before the imputation, PCA is used to extract the most relevant features from the meteorological data. 
The final output of the PCA is combined with the rainfall data from the nearest neighbor gauging stations and 
then used as the input to the neural network for missing data imputation. Second, a sine cosine algorithm is 
presented to optimize neural network for infilling the missing rainfall data. The proposed sine cosine function 
fitting neural network (SC-FITNET) was compared with the sine cosine feedforward neural network (SC-
FFNN), feedforward neural network (FFNN) and long short-term memory (LSTM) approaches. The results 
showed that the proposed SC-FITNET outperformed LSTM, SC-FFNN and FFNN imputation in terms of 
mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (R), with an average 
accuracy of 90.9%. This study revealed that as the percentage of missingness increased, the precision of the four 
imputation methods reduced. In addition, this study also revealed that PCA has potential in pre-processing 
meteorological data into an understandable format for the missing data imputation.
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I. Introduction

RAINFALL is a critical component of the hydrological cycle. 
Numerous hydrological research areas, such as flood forecasting 

[1], flood risk assessment [2], rainfall forecasting [3], climate 
variability analysis [4], and water resources modeling [5], require 
reliable and complete rainfall data series. However, hydrological data 
analysis is challenging due to the presence of missing rainfall data. 

For this reason, data imputation has attracted a great deal of attention 
from researchers to fill in the missing values with approximations. 
The traditional imputation approaches include listwise deletion [6], 
arithmetic mean and median imputation [7], and multiple imputations 
[8]. However, these methods are time-consuming and less accurate [9].

In recent years, numerous artificial neural network (ANN) studies 
have used historical rainfall data series from nearest neighbor 
stations to treat the problems of missing data [10]-[12]. More efficient 
algorithms, such as the Levenberg-Marquardt backpropagation 
algorithm [13], the Gaussian mixture model-based K-nearest neighbor 
(GMM-KNN) algorithm [14], and the Bayesian principal component 
analysis (BPCA) [15] have been applied to impute the missing values 
in water resource engineering.
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Although ANNs have been applied to treat the problem of 
missing data, ANNs tend to be trapped in local optima as it smoothly 
converges towards local minima rather than global minima. To 
overcome this, several novel approaches have been combined with 
ANNs to improve the performance of the estimation results. The sine 
cosine algorithm (SCA) is a metaheuristic technique developed by 
Mirjalili [16] to solve optimization problems using the sine and cosine 
trigonometric functions. SCA has been successfully applied in modal 
dimensional [17], short-term hydrothermal scheduling [18], support 
vector regression [19], and the traveling salesman problem [20]. To the 
best of the authors’ knowledge, there is no existing sine cosine neural 
network that focuses on missing rainfall data imputation.

Furthermore, the use of raw hourly rainfall data from nearest 
neighbor stations could be unreliable for the prediction of the missing 
data of the target station. The long dry periods contain long sequences 
of zero values at the beginning, middle, or end of the records, in which 
rain does not usually fall every hour. Modeling long dry rainfall 
periods poses challenges such as underestimation or overestimation 
of the length of long dry periods [21] and [22]. As a result, a neural 
network is not able to estimate the missing rainfall value based on 
hourly rainfall datasets accurately. Hence, the hourly rainfall dataset 
needs to be combined with other non-precipitation data for the 
estimation of missing rainfall data.

According to Kashiwao et al. [23], rainfall is caused by a variety 
of meteorological conditions, and the mathematical model for 
it is non-linear. The meteorological data have different units of 
measurement and accuracy. Thus, the meteorological data need to 
be pre-processed prior to imputation. Normalization is the most 
commonly used approach. Yen [24] applied a mapminmax approach 
to normalizing the meteorological parameters in the study, while 
Chhetri et al. [25] normalized the weather parameters using a 
min-max scaler. In addition, Grange [26] proposed using a random 
forest machine learning algorithm for meteorological normalization 
to detect interventions in an air quality time series. According to 
Kashiwao et al. [23], the investigation into the method used to choose 
meteorological data is needed because suitable data can vary among 
prediction points due to the difference in the effect of conditions, 
such as altitude, ocean current, and airflow. For this reason, this 
paper proposes using principal component analysis (PCA) as a 
novel pre-processing mechanism to extract the core relationships 
in the meteorological data. PCA is used to identify patterns in 
data and express the similarities and differences of the data [27]. 
PCA has been used in many studies to isolate independent factors 
(principal components) that significantly explain the variation of 
a dependent variable [28]-[32]. However, the compatibility of both 
non-precipitation and precipitation as input has been given less 
attention in previous studies. Therefore, we propose using PCA as a 
novel pre-processing tool for meteorological data and introduce the 
combination of significant principal components (PCs) and rainfall 
data from nearest neighbor gauging stations as the input for the 
estimation of missing rainfall values.

The contributions of this paper are the following:

• To introduce a pre-processing mechanism for non-precipitation 
data by using principal component analysis (PCA).

• To propose a sine cosine function fitting neural network (SC-
FITNET) imputation that focuses on missing time series data. 

• To evaluate the performances of sine cosine function fitting neural 
network (SC-FITNET) imputation with the state-of-art models 
for infilling missing rainfall values at different percentages of 
missingness.

II. Methodology

The proposed methodology employed in this study consists of two 
main phases, as shown in Fig. 1. The phases are the data preparation 
phase and the missing data imputation phase.

A. Phase 1: Data Preparation
In this study, the data preparation phase attempts to transform 

raw data into an understandable format prior to the missing data 
imputation. The data preparation phase involves data pre-processing 
and data integration. Due to the variety of measurement units, the raw 
meteorological data must be pre-processed. For example, the values 
of mean surface wind (direction) are stored at 00°, 010°, ..., 058°. These 
characters are considered noise in the data because the neural network 
could not understand and interpret those characters accurately. 
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Fig. 1. The proposed methodology of missing data imputation.

In the related literature, the advantages of PCA are able to reveal 
hidden structure in the dataset, detect outliners, and filter out the noise 
in data [33]. In addition, PCA is one of the most used approaches to 
pre-process the weather [28] and meteorological data [30]. Therefore, 
PCA was used to pre-process the raw meteorological data. 

PCA was proposed by Pearson [34] and formalized by Hotelling 
[35]. Using PCA, these meteorological data were transformed 
into a smaller number of variables. PCA reduces the number of 
meteorological features by constructing a new and smaller number 
of variables that capture a significant portion of the original 
meteorological features. The pre-process of meteorology data starts 
with normalizing the variables by subtracting the mean from each 
data point. Next, the covariance and correlation between every pair 
of variables (meteorological features) were calculated based on the 
following equations [27] and [36]:

  (1)
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where, cov(x, y) is the covariance of the variables x and y, xi and yi 
are the independent variable of observations,  and  are the mean 
values of the variables xi and yi, respectively and n is the number of 
data points in the observations.

 (2)

where, r(x, y) is the correlation of the variables x and y, sx is the 
sample standard deviation of the random variable x, and sy is the 
number of data points in the observations.

Then eigenvector and eigenvalue of the matrix are obtained as 
follows:

 (3)

 (4)

The eigenvector v of each variable can be obtained by identifying 
the determinant of its characteristic polynomial as follows:

 (5)

The eigenvalue can be formulated using the following Equation:

 (6)

After these steps, the principal components (PC_{1}, PC_{2}, …, PC_
{d}) can be determined. The first principal component accounts for the 
highest variance in the meteorological dataset, followed by the second 
principal component for the next highest variance. This continues 
until the total of the principal components is equal to the number of 
features in the meteorological dataset.

The last step is to compute the feature vector. A matrix M of 
dimensions n × d is represented as

 (7)

where, fij is a reduced feature vector from n × n original data to size 
n × d, n is the number of data points in the observations, and d is the 
number of principal components.  

The final output of the PCA is combined with the raw rainfall data 
from the nearest neighbor gauging stations and then used as the input 
to the neural network for missing data imputation.

B. Phase 2: Missing Data Imputation
The missing data imputation phase consists of two sub-phases, 

namely learning and imputation. In the learning sub-phase, the 
combined dataset from phase 1 will be used as an input to the neural 
network training. By using the ANN approach, the neural network 
is trained and optimized to learn the complex and non-linear 
relationships between the features in the dataset. The output of the 
learning sub-phase is an optimized network with a set of optimal 
network weights and biases. Next, the imputation sub-phase involves 
missing data estimation using the optimized network. During the 
missing data imputation, the estimated missing data are imputed into 
the missing values in the dataset. Hence, the final output of this phase 
is the imputed database.

III. Imputation Methods

Artificial neural networks (ANNs) based rainfall and runoff (R-R) 
modeling were first applied in the early 1990s. ANNs learn complex 
and non-linear relationships that are difficult to model using statistical 
approaches. Hence, in this study, four ANN models are employed to 
estimate the missing time series values. 

A. Feedforward Neural Network (FFNN)
 The feedforward neural network (FFNN) model is the simplest 

type of ANNs [37]. The architecture of the FFNN network consists 
of p -many inputs (input neurons), a single hidden layer with q-many 
hidden neurons, and a single output. A simulation for estimation of 
the missing rainfall data using FFNN was carried out with ten neurons 
in the hidden layer. The activation functions for the hidden layer and 
output layer are tan-sigmoid and purelin, respectively.

B. Sine Cosine Function Fitting Neural Network (SC-FITNET)
The function-fitting neural network (FITNET) is a feedforward 

network that forms a generalization of the input and output 
relationship. FITNET produces an associated set of target outputs, 
with tan-sigmoid transfer function in the hidden layers and linear 
transfer function in the output layer.  The FITNET model was trained 
with two hidden layers; a first hidden layer with 15 neurons and a 
second layer with three neurons. 

To improve the performance of missing data prediction, the 
FITNET model is optimized by the sine cosine algorithm (SCA). The 
improved neural network is therefore named as sine cosine function 
fitting neural network, abbreviated as SC-FITNET. The sine cosine 
algorithm (SCA) is a metaheuristic optimization technique introduced 
by Mirjalili [16] to solve continuous optimization problems. One of 
the most significant advantages of SCA is its simplicity, as reported 
by Qu et al. [17]. SCA has fewer parameters that need to be fine-
tuned compared to other algorithms. The capability of SCA in missing 
rainfall data imputation has not yet been explored. Hence, the SCA is 
employed to train the FITNET model for missing data prediction.

First, the network is trained using a function-fitting neural network 
to identify and learn the relationships between features in the dataset. 
Then, the SCA is employed to optimize the search solutions by 
determining the optimal network weights and biases.

SCA starts the optimization process with a set of search solutions, 
X. The set of search solutions is initialized randomly and repeatedly 
evaluated by an objective function. The objective of the training is 
to minimize the prediction error. The evaluation of the training is 
measured by the mean square error (MSE) as follows [38]: 

 (8)

where N is the number of observations, y is the actual value, and   
is the predicted value.

Next, the search solution is improved by the position-updating 
function in Equation (9)[16]. The SCA updates the best solutions 
obtained and denotes it as a destination point, P.

 (9)

where, Xi is the position vector of the current solution in the ith 
dimension, t is the current iteration, Pi is the destination solution, r1, 
r2, r3, r4 are random variables, and the r4 value is between 0 and 1.

As seen in (9), there are four parameters in SCA, namely r1, r2, r3 
and r4 . The parameter r1 is the movement direction parameter that 
determines the region of the next solution, which is updated using (10). 
The parameter r2 identifies the movement of forwards or outwards Pi  
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within the value of 0 and 2π. Next, the parameter r3 is the random 
weights of Pi with a value either less than 1 or greater than 1. The 
parameter r4 is used to switch between the sine and cosine functions.

 (10)

where, t is the current iteration, tmax is the maximum iteration of 
SCA, and a is a constant.

As the iteration of SCA increases, the ranges of sine and cosine 
in the position-updating functions are updated to optimize the local 
search, as shown in Line 7 of Algorithm 1. Then, the best network 
weights and biases are updated to improve the network model. The 
execution of the search solution will be halted if the network has 
achieved the minimum error or reached the maximum network 
epochs. Next, given the optimized network, the network model is 
tested with another dataset of the same format to predict the missing 
rainfall data. Then, the estimated missing rainfall data are imputed 
into the missing dataset. The proposed SC-FITNET imputation is 
presented in Algorithm 1.

Algorithm 1: The proposed sine cosine function fitting neural 
network (SC-FITNET) imputation
Input: Pre-processed meteorology and nearest neighbor rainfall
1.         Do
2.             Select random search agents (solutions) (X) and SCA
                parameters (r1, r2, r3 and r4)
3.             Do
4.                      Evaluate each of the search agents by the objective function 

5.                  Update the best solution obtained so far (P) 
6.                  Update the parameters r1, r2, r3 and r4

7.                    Update the position of search agents using Equation (9) 
8.             While (t < maximum number of iterations) 
9.             Return the best solution (P) obtained as the global                
                optimum solution
10.           Track the best network
11.           Update training state
12.       While (MSE > the minimum error) or (epoch < maximum 
            number of epochs)
13.       Use the optimized network 
14.       Train the optimized net for another dataset of the same format
15.       Do
16.           Impute the estimated values into the missing value
17.       While (there is missing value) 
Output: Imputed rainfall dataset

Note: The algorithm in the dotted line box was adapted from Mirjalili [16]

In addition, different values of the parameters are introduced to 
the SC-FITNET. The parameters are tuned based on the try and error 
method. The parameter settings are outlined in Table I.

TABLE I.  The SC-FITNET Parameters

Parameters for SC-FITNET Value
a 2

Search agents 30
Max number of epochs 1000
Max iteration of SCA 500

C. Sine Cosine Feedforward Neural Network (SC-FFNN)
The third model evaluated was a sine cosine feedforward neural 

network (SC-FFNN). The adaptation of the sine cosine algorithm 

into the feedforward neural network is employed to improve the 
accuracy of missing rainfall data imputation. The model was trained 
with ten neurons in the hidden layer. The SC-FFNN applied the same 
parameters setting, as in Table I.

D. Long Short-Term Memory (LSTM)
Long Short-Term Memory (LSTM) is a recurrent deep neural 

network model [39]. Recent studies have successfully applied LSTM 
based deep learning models for time series forecasting [40], data 
augmentation [41] and sequence labeling [42]. Hence, we developed 
a LSTM multivariate time series model to predict the missing values. 
The LSTM model consists of five layers; an input layer, two layers of 
LSTM, a fully connected dense layer, and an output layer, as illustrated 
in Fig. 2. The two LSTM layers are employed to model the time series 
relationship, while the fully connected layer takes the output of the 
LSTM layers to a final missing data prediction.

After data pre-processing, the data are reshaped into a multivariate 
format for the LSTM models. The activation function used in this 
model was the default tanh, Adam optimizer, 20 epochs of training 
with a batch size of 32, GPU execution environment, two hidden layers 
of 120 neurons each and one-time delay handling the prediction of 
missing time series.  

LSTM 

LSTM 

Fully connected layer 

Output layer 

Input layer (reshape input) 

Fig. 2.  The architecture of a LSTM network for multivariate time series 
prediction.

IV. Materials and Methods

A. Study Area
The selected study area for this study is Sungai Merang, or the 

Merang River gauge station, approximately 80 km from Kuching City, 
Sarawak, Malaysia. Sungai Merang is one of the five rainfall gauge 
stations in the Bedup River catchment, as shown in Fig. 3. Its nearest 
neighbor gauge stations over the basin are Bukit Matuh (BM), Semuja 
Nonok (SN), Sungai Busit (SB) and Sungai Teb (ST). The surface areas 
of the five rainfall gauge stations are SM: 8.550 km2; BM: 8.075 km2; 
SN: 7.600 km2, SB: 8.075 km2 and ST: 15.320 km2.

The primary vegetation in this area is paddy and fruit plantation. 
The area is mostly covered with clayey soils and partly covered with 
coarse loamy soil. The soil texture enhances the infiltration rate but 
reduces the surface runoff. Hence, the water supply plan for paddy 
irrigation is crucial and extremely important for the village. However, 
the water supply plan and hydrological data analysis are challenging 
due to the presence of missing rainfall values at the Sungai Merang 
gauge station. Therefore, this study focuses on the missing rainfall 
data imputation at that gauge station.
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Fig. 3.  Sungai Merang and its nearest neighbor gauging stations [3].

B. Meteorological Data
The meteorological data for Kuching station was acquired from the 

Malaysian Meteorological Department, as shown in Table II [43]. In 
this study, ten types of meteorological data were collected: date, time, 
the pressure at mean sea-level (MSL), dry-bulb temperature, relative 
humidity, mean surface wind (direction), mean surface wind (speed), 
rainfall duration, rainfall amount and cloud cover. 

TABLE II.  Meteorological Data From Kuching Station, Sarawak

Meteorological data Measurement Unit
Date YYMMDD
Time MST

Pressure MSL Hpa
Dry Bulb Temperature ° C

Relative Humidity %
Mean Surface Wind (direction) °

Mean Surface Wind (speed) m/s
Rainfall Duration min
Rainfall Amount mm

Cloud Cover (cloud amount) Oktas

C. Rainfall From Nearest Neighbor Stations
The rainfall data from the Sungai Merang gauging station and 

its nearest neighbor gauging stations were collected from the 
Department of Irrigation and Drainage, Sarawak, as shown in Table 
III [44]. Overall, the correlation coefficients between the Sungai 
Merang station and each of the neighbor stations are greater than 0.8 
and located within a radius range of 5 km. Since the Sungai Merang 
gauging station exhibits a high correlation coefficient with its nearest 
neighbor stations, the complete rainfall data series from the four 
neighbor stations of the corresponding hour, day, month and year are 
used to predict the missing values of Sungai Merang’s rainfall data. 
Based on the availability of continuous and complete data (without 
missing values) for the five gauging stations, this study analyzed the 
observed hourly rainfall data from the year 2002 until 2003. With a 
sample size of 11,680 complete records, the neural networks were 
trained with a training length of 8180 and tested with datasets of 3500 
records. In [45]-[48], the data were randomly deleted and removed 
from the testing datasets. Hence, for the preparation of missing values 
in rainfall data, this study employed a rate-based approach [49] in 
which 10%, 20%, 30%, 40%, and 50% were randomly removed from the 
testing datasets. In total, two sets of testing data were prepared for each 
percentage of the missingness. In this study, the missing data were 
categorized as missing completely at random (MCAR) [50] because the 
presence of missing rainfall data at the Sungai Merang gauge station is 
not affected by the data in that area or any nearby area.

TABLE III.  The Sungai Merang Gauging Station and Its Nearest 
Neighbor Gauging Stations

Station Name Latitude Longitude Distance from 
Sg Merang (km)

Correlation 
Coefficient

Sungai Merang 001 05 40 110 36 25 - -
Bukit Matuh 001 03 50 110 35 35 3.88 0.8558

Semuja Nonok 001 06 25 110 35 50 2.10 0.8647
Sungai Busit 001 05 25 110 34 40 3.44 0.8676
Sungai Teb 001 03 15 110 37 00 4.37 0.8046

D. Data Input Description
The number of data inputs, p, to the missing data imputation model 

was based on the number of cumulative principal components (PC_{1}, 
PC_{2}, …, PC_{d}) and raw rainfall data from the nearest neighbor 
stations. 

 (11)

where, PC is the principal component (s), {d } is the number of 
principal components, and NNS1, NNS2, NNS3, NNS4 are the complete 
rainfall from the four nearest neighbor stations (NNS).

E. Performance Measures
The performances of the two imputation methods are measured by 

the mean absolute error (MAE), root mean square error (RMSE), and 
correlation coefficient (R).

• Mean absolute error (MAE)

 (12)

• Root mean square error (RMSE)

 (13)

• The correlation coefficient (R)

 (14)

where N  is the total number of observations, Oi is the actual values 
of observations,  is the mean values of the actual observations, Ti is 
the imputed values, and  is the mean of the imputed values.

V. Experiment

The proposed SC-FITNET missing data imputation was compared 
with the FFNN imputation, the SC-FFNN imputation and LSTM 
multivariate time series imputation using a combination input p of 
the meteorological data series (cumulative PC) and rainfall data series 
from nearest neighbor stations. A different number of inputs p was 
introduced, from p1 to p10, to determine the significant input p to 
the neural network. The average result gave the minimum MAE and 
RMSE measures, but the highest measure of R was chosen as the 
significant input p. For better evaluation of the proposed algorithm, 
we tested the imputation algorithms on two missing datasets. For each 
missing dataset, all the imputation algorithms were executed with 30 
independent runs over each input p at different missing data rates 
(10%, 20%, 30%, 40%, and 50%). The average values of the performance 
measures for FFNN, SC-FFNN, SC-FITNET, and LSTM imputation, 
respectively, over two missing datasets, are presented in the following 
sub-sections.
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TABLE IV.  Comparison of MAE, RMSE, and R Values for FFNN Imputation at Different Percentages of Missingness

Input 
P

MAE (mm) RMSE (mm) R
10% 20% 30% 40% 50% AVG 10% 20% 30% 40% 50% AVG 10% 20% 30% 40% 50% AVG

P1 0.113 0.217 0.275 0.398 0.497 0.300 1.029 1.454 1.338 1.741 1.976 1.508 0.920 0.834 0.863 0.789 0.711 0.823

P2 0.120 0.237 0.316 0.445 0.572 0.338 0.994 1.587 1.495 1.810 2.517 1.681 0.929 0.861 0.882 0.806 0.761 0.848

P3 0.134 0.271 0.362 0.514 0.647 0.386 1.043 1.629 1.515 2.017 2.350 1.711 0.925 0.855 0.872 0.803 0.754 0.842

P4 0.108 0.212 0.280 0.397 0.497 0.299 0.871 1.210 1.103 1.435 1.638 1.251 0.947 0.896 0.914 0.856 0.808 0.884
P5 0.148 0.286 0.387 0.533 0.686 0.408 1.186 1.757 1.678 1.887 2.427 1.787 0.919 0.865 0.884 0.818 0.774 0.852

P6 0.153 0.316 0.424 0.573 0.762 0.446 1.160 2.658 2.585 2.349 3.949 2.540 0.920 0.862 0.877 0.812 0.764 0.847

P7 0.150 0.298 0.406 0.571 0.708 0.426 1.003 1.424 1.365 1.724 1.920 1.487 0.927 0.855 0.871 0.808 0.759 0.844

P8 0.148 0.290 0.391 0.549 0.690 0.413 1.070 1.513 1.393 1.773 2.061 1.562 0.917 0.841 0.868 0.792 0.723 0.828

P9 0.164 0.345 0.452 0.610 0.786 0.472 1.219 2.891 2.783 2.285 3.547 2.545 0.897 0.795 0.820 0.752 0.680 0.789

P10 0.166 0.313 0.424 0.588 0.742 0.447 1.056 1.484 1.381 1.767 2.024 1.542 0.919 0.847 0.868 0.798 0.727 0.832

TABLE V.  Comparison of MAE, RMSE, and R Values for  SC-FFNN Imputation at Different Percentages of Missingness

Input 
P

MAE (mm) RMSE (mm) R
10% 20% 30% 40% 50% AVG 10% 20% 30% 40% 50% AVG 10% 20% 30% 40% 50% AVG

P1 0.072 0.135 0.163 0.244 0.301 0.183 0.831 1.108 0.952 1.344 1.473 1.142 0.951 0.912 0.936 0.874 0.842 0.903
P2 0.087 0.165 0.214 0.310 0.388 0.233 0.830 1.108 1.014 1.375 1.534 1.172 0.952 0.914 0.930 0.870 0.837 0.901

P3 0.106 0.210 0.280 0.400 0.503 0.300 0.887 1.214 1.126 1.514 1.725 1.293 0.944 0.897 0.913 0.849 0.812 0.883

P4 0.116 0.228 0.296 0.427 0.529 0.319 0.957 1.305 1.140 1.546 1.739 1.337 0.933 0.875 0.905 0.832 0.785 0.866

P5 0.115 0.221 0.298 0.420 0.528 0.316 0.877 1.170 1.064 1.438 1.617 1.233 0.946 0.902 0.920 0.855 0.812 0.887

P6 0.113 0.220 0.296 0.420 0.522 0.314 0.869 1.158 1.038 1.425 1.591 1.216 0.947 0.904 0.925 0.857 0.815 0.889

P7 0.122 0.241 0.320 0.445 0.562 0.338 0.972 1.661 1.552 1.582 2.113 1.576 0.930 0.863 0.882 0.826 0.767 0.854

P8 0.142 0.279 0.381 0.537 0.665 0.401 1.019 1.412 1.324 1.733 1.920 1.481 0.929 0.876 0.897 0.829 0.786 0.863

P9 0.128 0.250 0.334 0.468 0.589 0.354 0.933 1.240 1.127 1.502 1.695 1.299 0.939 0.889 0.909 0.841 0.788 0.873

P10 0.123 0.242 0.322 0.454 0.568 0.342 0.909 1.179 1.088 1.469 1.640 1.257 0.942 0.897 0.917 0.849 0.809 0.883

TABLE VI.  Comparison of MAE, RMSE, and R Values for SC-FITNET Imputation at Different Percentages of Missingness

Input 
P

MAE (mm) RMSE (mm) R
10% 20% 30% 40% 50% AVG 10% 20% 30% 40% 50% AVG 10% 20% 30% 40% 50% AVG

P1 0.072 0.133 0.159 0.238 0.299 0.180 0.812 1.074 0.918 1.262 1.409 1.095 0.953 0.917 0.940 0.885 0.851 0.909
P2 0.081 0.153 0.189 0.277 0.347 0.209 0.873 1.187 1.034 1.362 1.529 1.197 0.946 0.896 0.921 0.864 0.826 0.890

P3 0.087 0.169 0.209 0.302 0.382 0.230 0.921 1.278 1.116 1.424 1.644 1.277 0.939 0.876 0.906 0.848 0.786 0.871

P4 0.093 0.176 0.219 0.318 0.401 0.241 0.956 1.302 1.128 1.463 1.686 1.307 0.935 0.873 0.906 0.840 0.774 0.866

P5 0.103 0.195 0.245 0.348 0.443 0.267 1.027 1.432 1.250 1.560 1.824 1.419 0.923 0.844 0.882 0.816 0.732 0.839

P6 0.100 0.192 0.240 0.342 0.432 0.261 1.002 1.397 1.220 1.537 1.771 1.385 0.928 0.851 0.887 0.822 0.747 0.847

P7 0.101 0.191 0.238 0.340 0.434 0.261 1.012 1.404 1.234 1.541 1.807 1.400 0.927 0.853 0.888 0.823 0.741 0.846

P8 0.155 0.301 0.402 0.559 0.707 0.425 1.175 1.656 1.541 1.871 2.174 1.683 0.915 0.834 0.871 0.811 0.729 0.832

P9 0.101 0.193 0.238 0.341 0.435 0.262 1.028 1.430 1.253 1.556 1.829 1.419 0.924 0.845 0.882 0.818 0.725 0.839

P10 0.085 0.176 0.207 0.304 0.396 0.234 0.927 1.371 1.182 1.598 1.878 1.391 0.938 0.860 0.897 0.807 0.712 0.843

TABLE VII.  Comparison of MAE, RMSE, and R Values for LSTM  Imputation at Different Percentages of Missingness

Input 
P

MAE (mm) RMSE (mm) R
10% 20% 30% 40% 50% AVG 10% 20% 30% 40% 50% AVG 10% 20% 30% 40% 50% AVG

P1 0.081 0.162 0.191 0.255 0.338 0.205 1.015 1.585 1.401 1.538 1.907 1.489 0.928 0.812 0.857 0.825 0.704 0.825

P2 0.080 0.160 0.188 0.251 0.335 0.203 1.016 1.584 1.399 1.539 1.903 1.488 0.928 0.813 0.857 0.825 0.706 0.826

P3 0.082 0.163 0.194 0.258 0.345 0.209 1.017 1.584 1.401 1.536 1.909 1.489 0.927 0.813 0.857 0.825 0.704 0.825

P4 0.080 0.159 0.187 0.248 0.333 0.201 1.010 1.581 1.398 1.532 1.900 1.484 0.928 0.813 0.857 0.827 0.708 0.827
P5 0.083 0.165 0.195 0.261 0.346 0.210 1.018 1.587 1.401 1.544 1.909 1.492 0.927 0.812 0.857 0.823 0.704 0.825

P6 0.083 0.165 0.195 0.262 0.348 0.210 1.017 1.586 1.399 1.541 1.909 1.491 0.927 0.812 0.857 0.824 0.705 0.825

P7 0.084 0.169 0.203 0.270 0.359 0.217 1.014 1.582 1.399 1.538 1.907 1.488 0.928 0.813 0.857 0.825 0.705 0.826

P8 0.080 0.159 0.185 0.249 0.332 0.201 1.025 1.590 1.405 1.548 1.919 1.497 0.926 0.811 0.856 0.822 0.700 0.823

P9 0.082 0.164 0.195 0.261 0.347 0.210 1.018 1.587 1.401 1.547 1.913 1.493 0.927 0.812 0.857 0.823 0.703 0.824

P10 0.081 0.162 0.192 0.257 0.341 0.207 1.013 1.584 1.401 1.538 1.906 1.488 0.928 0.813 0.857 0.825 0.706 0.826

Note: The best results obtained are made bold.



Special Issue on Current Trends in Intelligent Multimedia Processing Systems

- 45 -

A. Effect of Different Imputation Methods on Rainfall Data 
Series at Different Input P and Percentages of Missingness

Table IV, V, VI, and VII show the effects of different imputation 
methods on rainfall data series at different input p and missing rates. 
As seen in Table IV, the performances of FFNN increased as the input 
p decreased. Performance measures such as MAE, RMSE, and R show 
that FFNN achieved the best accuracy in total when input p4 was 
applied to the network. The average values of MAE, RMSE, and R 
measures for FFNN imputation were 0.299 mm, 1.251 mm, and 0.884 
at p4, respectively.

From Table V, among the input p values, the first and second input 
(p1, p2) demonstrated good performances for predicting missing 
rainfall data. In particular, the SC-FFNN imputation for p1 showed 
excellent performance in estimating the various percentages of 
missingness in terms of MAE, RMSE, and R. The SC-FFNN imputation 
achieved an average accuracy of 90 %. The average MAE and RMSE 
measures of SC-FFNN were 0.183 mm and 1.142 mm at p1, respectively. 

Meanwhile, the SC-FITNET imputation achieved optimal 
performance when the input p1 was used with an average accuracy 
of 90.9 %, as shown in Table VI. The average MAE and RMSE values 
are 0.180 mm 1.095 mm, respectively. On the other hand, performance 
measure such as MAE indicates the LSTM imputation achieved the 
lowest average error at the p4 and p8 as in Table VII. For the RMSE 
and R measures, the LSTM imputation obtained the best performances 
when input p4 was used, with an average value of 1.484 mm and 
0.827, respectively. Overall, input p1 is the significant input for SC-
FITNET and SC-FFNN imputation, while input p4 is the significant 
input for FFNN and LSTM imputation to achieve optimal imputation 
performances.

Furthermore, the study indicates the different missing rates would 
impact the accuracy of the missing data imputation. For example, when 
the missing rates increased from 10% to 50% at input p1, the MAE 
and RMSE measures increased from [0.072 mm, 0.831 mm] to [0.301 
mm, 1.473 mm] respectively, but R decreased from 0.951 to 0.842 when 
using SC-FFNN imputation. Overall, the same input p that achieved 
the lowest mean absolute error (MAE) might also achieve the highest 
correlation coefficient (R). However, at 10% and 20% missingness, this 
study revealed that the same input p with the lowest value of MAE 
achieved the second-highest value of R instead of the highest value. 
This happens when the SC-FFNN imputation is able to measure the 
error between the predicted and the eventual outcomes accurately, but 
the R measures of correlation and dependence between the predicted 
and observed rainfall were statistically not the strongest. 

A closer inspection revealed that the values of MAE for the four 
imputation methods linearly increased when the proportions of missing 
values increased. However, the values of RMSE linearly increased 
when the dataset had more than 30% missing values. This study 
supports the previous findings of Gill [51], Lee and Huber [52], Shang 
[53], Kim [54], and Ayilara [55] that the performance of imputation 
decreased when the proportion of missingness increased. According 
to Gill [51], the effect of missing data in information becomes very 
significant for hydrologic predictions as the percentage of missing 
data increases. Hence, this study concluded that more missing rainfall 
data in the dataset results in a poorer model performance, which is 
consistent with previous research [51]-[55].

B. Effect of Data Pre-processing Methods on Missing Data 
Prediction Performance

To investigate the effect of pre-processing data on the precision of 
missing rainfall imputation, a min-max normalization was used as a 
benchmark pre-processing data. The best performances obtained from 
the four models tabulated in Table IV, V, VI and VII were compared with 

the min-max normalization approach. For the min-max normalization 
approach, the raw meteorological and rainfall data were normalized 
as follows:

 (15)

where min(x) is the minimum value, max(x) is the maximum value, 
and X is the data point. 

Table VIII, IX and X show the effect of two different data pre-
processing methods on the missing data estimation performance in 
terms of MAE, RMSE and R. For the min-max normalization approach, 
this study revealed that the LSTM imputation outperformed the other 
three models due to its capability to correlate the features in data. 
The performance measures such as MAE, RMSE and R show that the 
LSTM imputation achieved the lowest MAE and RMSE but highest 
R, as in Table VII, IX and X. The SC-FITNET was the second place 
with an average accuracy of 59%, followed by SC-FFNN, and FFNN 
imputation at an average accuracy of 55% and 49%, respectively. 
However, the performances of SC-FITNET, SC-FFNN and FFNN 
became unreliable as the percentage of missing data increases. The 
min-max normalization approach leads to inaccurate prediction due 
to the presence of zeros during the long dry periods. As a result, the 
three neural network models were not able to estimate the missing 
rainfall accurately. Hence, the min-max normalization approach is not 
suitable to be used for the long dry periods because it does not handle 
outliers very well. 

TABLE VIII. Result on Imputation Process - Mean Absolute Error (MAE)

Missing 
rates

min-max proposed work - PCA

FFNN SC-
FFNN

SC-
FITNET LSTM FFNN SC-

FFNN
SC-

FITNET LSTM

10% 0.707 0.480 0.413 0.107 0.108 0.072 0.072 0.080

20% 1.418 0.968 0.833 0.203 0.212 0.134 0.133 0.159

30% 2.125 1.442 1.204 0.248 0.280 0.163 0.159 0.187

40% 2.846 1.938 1.617 0.348 0.397 0.244 0.238 0.248

50% 3.551 2.412 2.026 0.450 0.497 0.301 0.299 0.333

Avg 2.129 1.448 1.219 0.271 0.299 0.183 0.180 0.201

TABLE IX.  Result on Imputation Process - Root Mean Square Error 
(RMSE)

Missing 
rates

min-max proposed work - PCA

FFNN SC-
FFNN

SC-
FITNET LSTM FFNN SC-

FFNN
SC-

FITNET LSTM

10% 3.101 2.198 1.838 1.127 0.871 0.831 0.812 1.010

20% 4.471 3.158 2.661 1.659 1.210 1.108 1.074 1.581

30% 5.301 3.724 2.956 1.476 1.103 0.952 0.918 1.398

40% 6.158 4.351 3.421 1.716 1.435 1.344 1.262 1.532

50% 6.894 4.866 3.850 2.063 1.638 1.473 1.409 1.900

Avg 5.185 3.659 2.945 1.608 1.251 1.142 1.095 1.484

TABLE X.  Result on Imputation Process - Correlation Coefficient, R

Missing 
rates

min-max proposed work - PCA

FFNN SC-
FFNN

SC-
FITNET LSTM FFNN SC-

FFNN
SC-

FITNET LSTM

10% 0.693 0.754 0.794 0.910 0.947 0.951 0.953 0.928

20% 0.522 0.593 0.613 0.792 0.896 0.912 0.917 0.813

30% 0.495 0.558 0.612 0.840 0.914 0.936 0.940 0.857

40% 0.416 0.474 0.525 0.776 0.856 0.874 0.885 0.827

50% 0.343 0.409 0.409 0.637 0.808 0.842 0.851 0.708

Avg 0.494 0.558 0.591 0.791 0.884 0.903 0.909 0.827

Note: The best results obtained are made bold.
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On the other hand, the four models achieved higher performances 
when the proposed PCA data pre-processing approach was used. 
It shows that the proposed significant input was able to help the 
four models to estimate the missing time series at higher accuracy 
compared to the min-max approach. Performance measures such as 
MAE and RMSE show that the SC-FITNET has the lowest error rates 
among the other three models, while the SC-FFNN imputation was 
in second place. Furthermore, the correlation and coefficient, R-value 
indicates the SC-FITNET scored the highest average accuracy of 
90.9%, followed by SC-FFNN, FFNN and LSTM imputation.  It shows 
that the adaptation of sine cosine algorithm into the existing neural 
network (SC-FITNET and SC-FFNN) was able to optimize the neural 
network and achieved higher accuracy but lower MAE and RMSE 
values compared to the FFNN imputation.  The possible reason is that 
the position-updating function of SC-FITNET and SC-FFNN could 
positively optimize the entire search space for the best weights and 
biases of the neural networks and consequently increase the accuracy 
of the imputation. 

Furthermore, the LSTM performed slightly better when the 
proposed PCA data pre-processing approach was used than the min-
max approach. However, this study revealed that SC-FITNET and 
SC-FFNN slightly indicate a better prediction performance compared 
to the LSTM model. In addition to that, recent studies have shown 
that temporal convolutional networks (TCN) [56], and multilayer 
perceptron (MLP) [57] can outperform recurrent models such 
as LSTM. The LSTM model may require a large amount of data to 
perform better than the other methods. In terms of computational 
time, the LSTM model required more time to perform the missing 
data estimation process than the three models, FFNN, SC-FFNN and 
SC-FITNET (results not shown here). Hence, the FFNN, SC-FFNN and 
SC-FITNET models have the advantage of being computationally less 
costly compared to the LSTM model. In particular, there is a reduction 
of the average training time in the three models, approximately four 
times less than the LSTM model.

Overall, the SC-FITNET imputation has proven to be the top 
performer when the proposed PCA data pre-processing approach was 
used, while the LSTM imputation demonstrated the top performer for 
the min-max normalization approach.

VI. Conclusion

We investigated the potential of using meteorological and 
rainfall data from nearest neighbor gauging stations for infilling 
missing rainfall data. Before the imputation, this study introduced 
PCA to extract significant features from the meteorological data. 
The comparison of different combination input in imputation was 
presented and evaluated using four imputation methods, SC-FITNET, 
SC-FFNN, LSTM and FFNN. With medium size data of 11,680 real-life 
records, the four methods were trained and compared at five different 
percentages of missingness under MCAR conditions (10%, 20%, 30%, 
40%, and 50%). The study concluded that the proposed SC-FITNET 
imputation has a higher capability in treating missing values for the 
PCA pre-processed dataset than than the LSTM, SC-FFNN and FFNN 
imputation in terms of MAE, RMSE, and R. By adopting the position-
updating function, the proposed SC-FITNET imputation successfully 
achieved better accuracy in missing data estimation as compared to the 
other three approaches. Hence, the results of the proposed SC-FITNET 
imputation in this work support its use for infilling real-life missing 
rainfall data. In addition, the study revealed that the meteorological 
data (non-precipitation) and rainfall data (precipitation) from nearest 
neighbor stations are compatible and can be used as input for missing 
data imputation. The performances of the proposed PCA as data pre-
processing have an obvious advantage over the benchmark. 

For future work, considering a longer period of data, investigating 
other data pre-processing techniques and further testing the 
effectiveness of the proposed algorithm on different types of datasets 
are recommended. In addition, the imputed rainfall dataset could be 
used as an input in the hydrological data analysis. The imputed data 
could be employed to estimate the river flow and the occurrence of 
floods during the rainy season, to determine the severity and frequency 
of drought during the dry season, to design water supply, and other 
hydrological data analyses.
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