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Abstract

The pandemic caused by coronavirus COVID-19 has already had a massive impact in our societies in terms 
of health, economy, and social distress. One of the most common symptoms caused by COVID-19 are lung 
problems like pneumonia, which can be detected using X-ray images. On the other hand, the popularity 
of Machine Learning models has grown exponentially in recent years and Deep Learning techniques have 
become the state-of-the-art for image classification tasks and is widely used in the healthcare sector nowadays 
as support for clinical decisions. This research aims to build a prediction model based on Machine Learning, 
including Deep Learning, techniques to predict the mortality risk of a particular patient given an X-ray and 
some basic demographic data. Keeping this in mind, this paper has three goals. First, we use Deep Learning 
models to predict the mortality risk of a patient based on this patient X-ray images. For this purpose, we apply 
Convolutional Neural Networks as well as Transfer Learning techniques to mitigate the effect of the reduced 
amount of COVID19 data available. Second, we propose to combine the prediction of this Convolutional Neural 
Network with other patient data, like gender and age, as input features of a final Machine Learning model, 
that will act as second and final layer. This second model layer will aim to improve the goodness of fit and 
prediction power of our first layer. Finally, and in accordance with the principle of reproducible research, 
the data used for the experiments is publicly available and we make the implementations developed easily 
accessible via public repositories. Experiments over a real dataset of COVID-19 patients yield high AUROC 
values and show our two-layer framework to obtain better results than a single Convolutional Neural Network 
(CNN) model, achieving close to perfect classification.

* Corresponding author.

E-mail addresses: jesus.prada@estudiante.uam.es (J. Prada), yvonne.
gala@estudiante.uam.es (Y. Gala), analusie@ucm.es (A. L. Sierra).

I. Introduction

MACHINE Learning (ML) [1], is a branch of Artificial Intelligence 
whose objective is to build systems that automatically learn 

from data. The popularity of ML techniques has grown exponentially 
in recent years and they have been applied to solve a wide variety of 
problems, such as stock market prediction [2], fraud detection [3], or 
renewable energy prediction [4], [5].

Although often considered an independent field, Deep Learning 
(DL) [6], is not less and not more than just another family of Machine 
Learning models. However, it is a family of models with some 
extremely relevant properties, such as its high predictive power and 
its ability to perform end-to-end learning. A specific family of Deep 
Learning techniques, called Convolutional Neural Networks (CNNs) 
[7], presents a set of properties highly advantageous for its use in 
image classification tasks and has in recent years become the state-of-
the art for this type of problems.

Image recognition or image classification problems [8], are a set of 

tasks among the supervised learning [9] branch of ML problems which 
goal is to correct segment images into a pre-defined set of possible 
groups or classes. For instance, we may want to classify if an image 
contains a car, label 1, or not, label 0. Image classifications tasks show 
up often in the healthcare sector. Some examples of these problems 
will be Diabetic Retinopathy diagnosis [10], histological analysis [11], 
or tumor early detection [12].

Taking this into account, the aim and motivation of this research is 
to apply these techniques to predict the mortality risk of a COVID-19 
patient using X-ray images and demographic data of the patient. 

We divided our research in two different phases. The first step of 
this research is to use CNN models to predict the targeted mortality 
risk using solely X-ray images as input. We will call this model 
COVID-CheXNet. 

Once this COVID-CheXNet model is built, we aim to train a second 
model, which will act as a second layer, which will use as input the 
output of our COVID-CheXNet, numeric information regarding 
characteristics of the X-ray image, and other basic demographic patient 
data like gender and age of the patient. For this purpose, we tested 
some of the most popular and powerful Machine Learning models like 
Neural Nets [13], Support Vector Machines (SVMs) [14] or Extreme 
Gradient Boosting (XGBoost) [15], together with Logistic Regression 
and Random Forest [16] models that will act as benchmarks.
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To test the usefulness of this new framework, experiments using 
a public dataset of COVID-19 X-ray image data collection are carried 
out. One of the main difficulties to build these models, often found 
in healthcare real problems, is the reduced amount of X-ray data 
available right now for COVID-19 patients, even more reduced when 
we add to this the necessity of knowing if the outcome of that patient 
was or not an Exitus. Transfer Learning [17] has shown to be a good 
method to mitigate the negative effects of this lack of data and will be 
the approach followed in this paper to try to solve this issue.

Theoretical details and code implementations for this two-layer 
framework, are developed and made publicly available, as well as 
datasets used in the experiments.

The novelty of our research is mainly due to two factors. The first 
one is the aim itself, as to our knowledge this is the first study that tries 
to predict the mortality risk of a COVID-19 patient using ML models 
based on X-ray images. The other main novelty factor is our proposed 
two-layer framework that allow us to combine a CNN prediction 
based on X-ray images with other numerical sources of information 
like demographical data of the patient, as past research about using 
X-ray images to make predictions about other lung diseases has 
focused solely on the use of a single CNN model.

The rest of this paper is organized as follows. In Section II we 
compare the motivation and limitation of related works. A brief 
review of prior theoretical background for the main ML models tested, 
Deep Learning and CNN basic concepts is presented in Section III. 
Section IV gives an in-depth description of the proposed method, 
both COVID-CheXNet layer and the final second ML layer, as well 
as implementation details. In Section V we describe experiments over 
a real-world public COVID-19 dataset and show the corresponding 
results. Section VI analyzes the results obtained in these experiments. 
Finally, the paper ends with the Section VII on conclusions and 
possible lines of future work.

II. Related Work

COVID-19 research publications based on the use of ML techniques 
are still limited, but some works have some common ground with our 
research.

CNN models have already been shown to achieve good performance 
when solving the image recognition problem of classifying if a patient 
have pneumonia or other lung related diseases based on X-ray images 
[18]. However, the aim here is different to the more specific task we 
want to tackle in our research, which is to completely focus only on 
the COVID-19 disease among all lung related health problems.  

Convolutional Neural Networks have also been used to diagnose 
COVID-19 in patients based on X-ray images [19],[20] or CT scans 
[21]. However, we aim here to go a significant extra step and predict 
the mortality risk of this patient. We consider this to be much more 
helpful for clinicians, as when capable of performing an X-ray scan on 
a patient, clinicians will in most cases also be able to conduct a test for 
more accurate COVID-19 diagnosis, tests that are moreover getting 
cheaper and quicker to analyze with the passage of time.

Furthermore, these related studies directly use CNN models that 
use as input solely X-ray images. We propose here to combine this 
CNN predictions with a second layer model that also uses as input 
other numeric data, like demographical data about the patient and 
characteristics of the image. This is a critical difference as results show 
this two-layer framework greatly decreases prediction errors compared 
with the single CNN layer that only uses X-ray images as input. 

Novelty of our approach is confirmed in [22], a recent paper that 
reviews research of AI applied for fighting coronavirus and that 
heavily mentions the use of DL techniques to diagnose COVID-19 but 

does not make any reference that points to the existence to this day 
of a research about the use of ML to predict mortality risk in these 
patients.

III. Prior Theoretical Background

A. Support Vector Machine
The aim of SVM is to obtain the best separating hyperplane possible 

between two o several different classes. We will focus here on the 
2-class or binary problem. In real-world problems, usually finding 
a hyperplane which separates perfectly the data is not possible. 
Therefore, defining the slack variables ξ = (ξ1, ξ2 … ξN), one natural way 
to define this problem will be

 (1)

where M is the margin between the training points for class 1 and 
-1, ξi is the absolute value of the amount by which the prediction  
f (xi) = xi

Tβ + β0 is on the wrong side of its margin.

Reference [23] shows that this problem is equivalent to the 
following convex constrained optimization problem

 (2)

where the parameter C is often called cost. It is easy to see that the 
hard margin case corresponds to C = 1, that leads to ∑ξi = 0, i.e. not a 
single point on the wrong side of the margin.

The problem solved in practice is the dual formulation derived 
using Lagrangian techniques [24].

 (3)

With the called Karush-Kuhn-Tucker conditions as restrictions.

Finally, using the kernel trick and a kernel function, k(xi; xj ), 
satisfying Mercer’s condition [25] we can get the following analogous 
formulation

 (4)

that allow us to extend the previous linear version of the SVM 
problem to a non-linear one.

B. Extreme Gradient Boosting
Boosting models aim to combine different individual models, 

usually called weak learners, into a single final more powerful model, 
commonly called strong learner.

In Boosting, weak learners are of a homogenous nature, i.e., they all 
come from the same family of models. Normally this family of models 
are decision trees or combination of them, Random Forest models.
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These weak learners are trained in a sequential fashion. The basic 
idea is that each individual model would be a simple high bias model, 
like a shallow tree, and the subsequent weak learner will correct its 
errors, reducing the bias and increasing the goodness of the final 
model or strong learner. 

In computational terms, the sequential nature of the method could 
be a drawback, but the aim is that this negative factor gets balanced 
by the fact that each individual weak learner is a basic low variance 
model and thus fast to train.

In Gradient Boosting models, the strong learner, S, is defined by the 
following equation

 (5)

where Ii represents each one of the individual weak learners and ci 
their corresponding coefficients.

In summary, Gradient Boosting follows this iterative algorithm:

1. Errors, 𝐸, are initialized with the target value to be predicted. 
Therefore, the first weak learner will predict the desired label.

2. Another individual model that predicts errors 𝐸 is trained.

3. The new individual model is added to our final combined model, 
with 𝑐_𝑖 the coefficient that minimizes the global error of the new 
combined model 𝑆_𝑘.

4. The value of the errors E = 𝐸 (𝑆_ (𝑘)) corresponding the new 
combined model 𝑆_𝑘 is updated.

5. Steps 2-4 are repeated until the model converges or the maximum 
number of iterations is reached.

Extreme Gradient Boosting (XGBoost) is just an optimized 
implementation of standard Gradient Boosting models.

C. Artificial Neural Net
An Artificial Neural Net (ANN) model is made up of a collection of 

connected units called neurons, where the output of each neuron is 
computed by some non-linear function, called activation function, of 
the sum of its inputs. Neuron connections have weights, so activations 
of different neurons can have bigger impact than others.  Neurons of 
one layer connect to neurons of the preceding and following layers. In 
between the input and output layers are zero or more hidden layers.

Given a training sample and a target to predict, an ANN will 
compute all the activation functions from the input layer to the output 
layer, obtaining a final prediction as a result. We call this a forward 
pass.

Once this forward pass has been performed, we need an algorithm 
to propagate backwards the error from the units in the output layer to 
the units in preceding layers to update model weights using techniques 
like gradient descent. This is called the backward pass. This algorithm 
is called backpropagation and is used to optimize ANNs. The goal of 
backpropagation is to be able to extend gradient descent to all the 
layers in the network. Backpropagation defines the error associated 
to a hidden unit as the weighted average of the errors of the units in 
the adjacent layer. The gradient descent for a layer j, with k as the next 
layer and i as the previous one, will have the following formulation

 (6)

where EL represents the local error, wji is the weight of the 
connection from unit i to unit j, sj = ∫wji zi the sum of the weighted 
inputs of unit j, zi the output of unit i, and δi the generalized error at 
unit j.

This can be shown [26] to be equivalent to

 (7)

D. Deep Artificial Neural Net
The concept of Deep Learning has had different interpretations 

in recent years. Deep learning is often employed simply to refer to 
a specific subset of Artificial Neural Networks. It is used to name 
ANNs with many hidden layers. However, the Deep Learning 
denomination has also been used to refer to any type of Machine 
Learning model framework which consists of an iterative process of 
several optimization steps or layers. An example of this is Deep Belief 
Networks (DBNs) [27], a type of ML models used for unsupervised 
learning. Another example of Deep Learning structure using models 
other than Neural Networks can be found in [28].

Nevertheless, it is true that clearly the link between Deep Learning 
and Deep Artificial Neural Nets is strong and almost ever-present 
nowadays. Several factors have probably had an impact on this, 
including the fact that ANNs schema adapts almost perfectly to the 
concept of DL framework and some of the first groundbreaking 
advances in DL corresponding to deep ANNs.

In recent years, the popularity of DL models has increased in 
a spectacular manner, due to the wide availability of powerful 
computing facilities, advances on the theoretical underpinnings of 
multilayer perceptrons (MLPs), several improvements on their training 
procedures and a better understanding of the difficulties related to 
many layered architectures, like better weight initialization methods 
and new activation functions such as Rectified Linear Unit (ReLU). To 
all these factors we can add the appearance of multiple development 
frameworks such as TensorFlow [29] and Keras [30]. 

E. Convolutional Neural Network
In the past, image classification Machine Learning models used raw 

pixels to classify the images. You can classify dogs for instance based 
on color histograms and edge detection, i.e. by color and ear shape. 
This method has been successful but has its limitations, especially 
when it encounters images with more complex patterns.

Convolutional Neural Networks are a type of neural network model 
which allows us to extract higher representations from an image. 
Unlike the classical image recognition where the image features are 
defined manually as a previous step, CNN takes the image’s raw pixel 
data, trains the model, then extracts the features automatically for 
better classification. 

This type of approach, where expert knowledge to pre-process 
the image is not needed, is usually known as end-to-end learning, 
and is one of the main reasons behind the recent popularity of these 
models.

In its most basic version, CNNs are a combination of two type of 
layers:

• Convolution layer: sweeps a moving window through images 
and then calculates the filter dot product of the pixel values. This 
allows convolution to emphasize relevant features.

• Pooling layer: Replaces output of convolution with a summary 
to reduce data size and processing time. This summary can be 
for instance the maximum or mean value among a set of several 
values. This allows pooling to determine features that produce the 
highest impact and reduces the risk of overfitting.

F. Transfer Learning
Until recently, conventional ML and Deep Learning algorithms have 

been traditionally designed to work in isolation. These algorithms are 
trained to solve a specific task and the models must be rebuilt from 
scratch once the task changes.

However, it is well-known that humans have an inherent ability 
to transfer knowledge from one task to another. What we acquire as 
knowledge while learning about one task, we can utilize in the same 
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way to solve related tasks. The more related the tasks, the easier it is 
for humans to transfer our knowledge.

Transfer Learning method tries to apply this same intuition to Deep 
Learning models, overcoming the isolated learning paradigm and 
utilizing knowledge acquired for one task to solve related ones.

The idea is that, when trying to solve a task using DL models, 
instead of training the model from scratch one can reutilize totally or 
partially other DL models trained to solve similar tasks. For instance, 
a model built to detect cats, could be reused to detect instead dogs.

There are four main transfer learning approaches, depending on 
how much reutilization of the previous model is done:

1. Reutilize only the Deep Learning structure, i.e., the configuration 
and order of the different layers. All the corresponding weights are 
trained from scratch using the data related to the new task.

2. Reuse the DL structure and use trained weights as initial values. 
All the weights will be updated using the new data, in a process 
usually called fine tuning.

3. Reuse the DL structure and the weights of some layers, update the 
rest. You will select a threshold layer, up until this layer all weights 
will remain fixed, the layer from this point to the output layer will 
be updated using the new data.

4. Reutilize the DL structure with the same weights. Model weights 
will not be adapted to the new task and only extra layers added to 
the base ones will serve to adapt the model to your task. This can 
only be a valid option when the two problems are similar.

IV. Proposed Method

This section aims to describe the technical details of the proposed 
ML framework to solve the task of predicting mortality risk for a 
COVID-19 patient. Details of the dataset and experiments carried out 
to test its efficacy are detailed in Section V.

A. First Layer
As described in Section I, the aim of our first layer is to build a 

model able to give a mortality risk using as input only X-ray images 
from COVID-19 patients, which we will call COVID-19 CheXNet. We 
decided that for this purpose the most suited family of models were 
CNN models, as they have proved repeatedly to be the best option in 
image classification tasks like the one in hand.

As stated before, one of the main difficulties when trying to solve 
our task was the lack of available data. Due to its novelty, there are 
not many X-ray images publicly available for patients with confirmed 
COVID-19 diagnosis. Furthermore, this shortage of availability was 
multiplied by the fact that in our case the target is the outcome, Exitus 
or no Exitus, of the patient. Datasets with both X-ray images and 
patient outcome were difficult to find and their volume small.

To deal with this drawback, we applied two methods: First, we 
make use of transfer learning techniques to take advantage of the 
knowledge extracted by CNN models from previous research in 
similar tasks. Second, we also applied data augmentation methods to 
create new synthetical X-ray images.

We describe our data augmentation approach in Section V.C, so 
we will focus here on the transfer learning methodology applied. 
CheXNet model [31] is a Convolutional Neural Network that achieves 
Radiologist-Level Pneumonia Detection on Chest X-Rays. It has been 
shown to have a margin of >0.05 AUROC over previous state of the 
art results and an F1 score of 0.435 (95% CI 0.387, 0.481), higher than 
the radiologist average of 0.387 (95% CI 0.330, 0.442). This CheXNet 
model is trained using a Deep Learning structure called Densenet-121, 
a 121-layer convolutional neural network, the simplest DenseNet 

among those designed over the ImageNet dataset. The Densenet-121 
structure is shown in Fig. 1.
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Fig. 1. Densenet-121 layer structure. 

We use as our base model this CheXNet CNN. We opted to go for 
method 4 of transfer learning, as described in Section III.F, i.e., reusing 
the Densenet-121 structure and preserving the weights of CheXNet, 
fine-tuning only some additional layer weights to our new COVID-19 
dataset.

To the Densenet-121 structure, we added two dense ReLU activation 
layers with 512 and 256 units, respectively. Finally, we added a logistic 
layer with sigmoid activation that will generate the final prediction of 
our model. This is binary classification problem, so only one unit is 
needed. All these layers are separated by dropout layers.

As our tackled problem represents an example of unbalanced 
classification task, i.e. there are more cases of non-Exitus label than 
Exitus outcomes, we set different class weights to balance the impact 
of each class on the CNN loss function. Therefore, errors in the 
minority class are penalized more than errors in the majority class.

All weights from the base CheXNet are frozen, i.e. not updated 
using our new data. Weights from these extra layers will define the 
correct adaptation of our COVID-19 CheXNet model to the problem 
we want to tackle. 

Implementation of our proposed COVID-19 CheXNet in Python 
can be found on GitHub1. This implementation is based on the use of 
Keras.

B. Second Layer
Once we have a mortality risk prediction based solely on X-ray 

images coming from our first layer CheXNet model, the goal of our 
second layer model is to combine this prediction output with basic 
demographic data like gender, age and location, and basic details of 
the X-ray scan like the view used and the offset, to compute a new 
mortality prediction. This way we aim to get an improved mortality 
risk prediction with respect to the one obtained in the first layer, as we 
are now basing our prediction on additional information.

This is done using the following approach. Mortality risk prediction 
of layer 1 model becomes the first input column of a new input dataset, 
that has as remaining columns or input variables information related 
to demographics and X-ray image characteristics of each patient. As 
target of this dataset, we will use again the outcome of the patient, 
Exitus (1) or survival (0). This new combined dataset is passed as input 
to our second layer ML model to generate new and improved mortality 
risk predictions as our final output. The total list of input variables 
used as inputs of this second layer can be found in Table I.

To decide which model to use in this second layer we compute 
a grid search testing Logistic Regression, Random Forests, SVM, 
XGBoost and ANN models. The first two are more basic ML families, 
but we decided to include them due to having a low dimensionality 
dataset and to at least provide a good benchmark reference. 

1 https://github.com/jesuspradaalonso/COVID-19-CheXNet-
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TABLE I. Input Data of Second Layer Model

Type Variable
CheXNet Mortality risk prediction

Demographics
Gender

Age
Location

X-ray
View
Offset

We carry out hyperparameter optimization for each one of these 
families of models, as will be described in Section V.D.

The implementation needed to build this second layer model is also 
available on our GitHub1, both in R and Python versions.

C. Two-layer Framework Diagram
Object process diagram of this two-layer framework is presented 

in Fig. 2.

Layer 1 Input

X-Ray Images
Layer 1

Mortality Risk
Prediction

X-Ray
Characteristics

Demographic
data

ML model
(SVM, ANN, 
XGBoost, ...)

Layer 2
Mortality Risk

Prediction

CNN

Layer 1 Model Layer 2 Input Layer 2 Model Final Output

Fig. 2. Proposed two-layer framework diagram. 

V. Experiments and Results

To test the performance of our proposed models described in 
Section IV we evaluate its goodness over an experiment based on 
public data available on COVID-19 patients.

A. Dataset
We used two sources to build our dataset:

• covid-chestxray-dataset2: GitHub with information, both X-ray 
images and basic clinical data, for 209 COVID-19 patients.

• Spanish society of medical radiology, SERAM, COVID-19 data3. 
From this source 12 registers where manually extracted.

Therefore, the combined dataset contains 221 registers. For each 
register the following information of the patient is available:

• X-ray chest image.

• Gender.

• Age.

• Hospital location.

• X-ray view: anteroposterior (AP) or posteroanterior (PA).

• X-ray offset.

This dataset can be found in our public GitHub repository1.

B. Train/val/test Split
Although the optimal ratio of data used in train, validation and 

test depends on the problem at hand, the most recommended [32] 
approach is to split the data into 70% for training and 30% for test, and 
this is the ratio we follow in our experiments. 

In our problem the split must be carried out based on patient id, not 
per row or register. The reason for this is that in the dataset there are 

2 https://github.com/ieee8023/covid-chestxray-dataset
3 https://covid19.espacio-seram.com/index.php

some patients with more than one X-ray entry, and it will be a clear 
case of data leaking to have different images belonging to the same 
patient in different splits. 

This patient-based split has two consequences. First, standard 
cross-validation implementations, which are row-based, could not be 
used. Thus, we preferred to use a fixed validation set instead of cross-
validation. To create this validation set without reducing more the 
training set, already small due to data limitations, we decided to use 
half of the patient ids belonging to the test set as validation.

Second, we applied the 70-30 ratio to the number of rows, the ratio 
in terms of patient ids used for train and validation/test is different, as 
not all patients have the same number of X-ray images in the dataset.

Taking all this into consideration, our original dataset is split for 
training, validation, and test purposes as follows:

1. Train: 65% of patient ids. 

2. Validation: 17.5% of patient ids.

3. Test: 17.5% of patient ids.

In addition, the split also considers the class of each case, thus 
preserving the class imbalance ratio over the three sets of data.

Data augmentation techniques are applied to train and validation 
sets as explained in the next section.

C. Data Augmentation
We have already seen that one of the methods to deal with the 

problem of a small dimensionality in our available dataset is to use 
transfer learning to reutilize knowledge extracted from other data, as 
described in Section IV.A

Other popular tool to reduce the impact of this issue is called 
data augmentation [33]. As having a large dataset is crucial for the 
performance of the deep learning model, these tools aim to create 
synthetic examples based on the original dataset.

There are two main approaches to generate these new artificial 
samples:

• Generate modifications over the original dataset. The changes 
applied can be of different nature: affine transformations like 
rotation and translation, perspective transformations, contrast 
changes, gaussian noise, dropout of regions, hue/saturation 
changes, cropping/padding, blurring, etc.

• Create images from scratch based on the global distribution found 
in the original dataset. For this purpose, Generative Adversarial 
Networks (GANs) [34] are the state-of-the-art.

We decided to apply rotation and contrast modifications for this 
experiment to create new images, as they are one of the most common 
changes you can find among real X-ray images carried out in hospitals.

Therefore, if we decide that the batch size used in each epoch when 
training the CNN model is for instance 32 images, in each epoch of 
the CNN training process each one of these 32 images would be the 
result of randomly selecting one of the original training images and 
then apply random rotation and contrast modifications to it. Thus, we 
could say that the data pool when using data augmentation consists of 
an infinite set of images, all of them variations from the original train 
data pool images.

D. Hyperparameter Optimization
Each family of Machine Learning models has a set of 

hyperparameters that are to be optimized to find the optimal model of 
that family for a given ML task.

Usually this is done by performing a grid search, where you train a 
different model for each possible combination of hyperparameters you 
want to analyze, each model is evaluated using a chosen metric over 
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a validation set, and the selected hyperparameter values are the ones 
that correspond to the best performing model. We followed this grid 
search approach in our experiments.

The detailed list of all the hyperparameters we optimized in our 
grid search can be found in Table II.

TABLE II. Hyperparameters Optimized for CHEXNET Model Used in the 
First Layer and  Each ML Family Tried as Model in the Second Layer

Model Hyperparameter

CheXNet
epochs

batch size
learning rate

Random Forest
number of trees

nº of candidates at each split
minimum size of terminal nodes

SVM
cost

gamma

XGBoost

eta
gamma

max_depth
min_child_weight

subsample
colsample_bytree
num_parallel_tree

nrounds
lambda
alpha

ANN

number of units
epochs

batch size
learning rate

E. Evaluation Metric
As evaluation metric we use the Area Under the Curve (AUC), the 

most standard evaluation metric for binary classification problems. 
It is defined as the area under the receiver operating characteristic 
(ROC) curve, defined by the False Positive Rate (FPR) in the x-axis and 
the True Positive Rate (TPR) in the y-axis, where: 

 (8)

 (9)

where TP, TN, FP, and FN are the true positives, true negatives, 
false positives, and false negative values, respectively.

F. Experiment Results
AUC results achieved, for both first and second layer models, are 

presented in Table III. For the case of the COVID-19-CheXNet model, 
we also show the difference in performance with or without the use of 
the data augmentation techniques described in Section V.C.

TABLE III. AUC Results for Each Model and Dataset

Model AUC Train AUC Val AUC Test
COVID-19-CheXNet w/o 

data augmentation 0.93 0.87 0.85

COVID-19-CheXNet w 
data augmentation 0.93 0.93 0.94

Second Layer 0.99 1 1

Furthermore, the AUC curve obtained by our COVID-19-CheXNet 
over the test set is shown in Fig. 3. 
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Fig. 3. COVID-19-CheXNet AUC Test. Blue curve represents test AUC for our 
first layer CNN model predictions. Red dashed line represents a model with 
an AUC of 0.5 and is used as reference.

We also used heatmaps to visualize which lung areas produced 
a higher activation in our COVID-19-CheXNet model for deceased 
patients, which could be useful for practitioner’s analysis. One 
example is shown in Fig. 4.
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Fig. 4. COVID-19-CheXNet heatmap for a deceased patient.

Finally, we also analyzed the variable importance of each one of the 
six input variables of the second layer model, by means of conducting a 
ROC curve analysis on each predictor. Results can be found in Table IV.

TABLE IV.  Second Layer Model Variables Importance in Terms of AUC

Variable Rank AUC
pred 1 0.94
age 2 0.71
sex 3 0.63

offset 4 0.57
view 5 0.56

location 6 0.53

VI. Discussion

Several conclusions can be drawn from our experiment results 
shown in Section V.F. First, all our models achieve a high AUC value, 
above 0.93 for train and 0.85 over test, which seems to point to a good 
effectiveness of our transfer learning approach, described in Section 
IV.A. 

In addition, the positive impact of using data augmentation is 
clear comparing the results of COVID-19-CheXNet with and without 
applying these techniques. 11% and 7% improvement of AUC is 
achieved over the validation and test sets, respectively. This shows 
how data augmentation helps the model to generalize better and not 
suffer from overfitting problems.

Third, our second layer model can achieve close to perfect 
performance over the test set. Although the exact AUC values 
obtained could be impacted by the use of a small dataset and the results 
should be corroborated once larger volumes of COVID-19 X-ray and 
outcome data are available, the improvement observed between our 
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first and second layer models performance shows that our intuition 
that combining mortality risk prediction based solely on X-ray images 
with other basic demographic and image information could yield even 
better predictions seems to be valid. 

Finally, variable importance analysis shows that the prediction 
output of the COVID-19-CheXNet first layer model is clearly the 
factor with greater prediction power among the six predictors used 
by our second layer model. The top three is completed with age and 
sex variables, which seems in line with recent research [35] that have 
already pointed out them as relevant factors in COVID-19 mortality.

The main contributions of this paper are four. First, we aim to 
predict the mortality risk of COVID-19 patients based on X-ray images 
to help clinicians lessen the impact of this disease. Some research has 
been done on the use of Deep Learning models to diagnose COVID-19 
based on this type of images, as reviewed in Section II, but we consider 
that our model predictions can have a bigger positive impact, as 
diagnosis can always be done using clinical tests once the patients is 
in the hospital, as would be the case for a patient suitable of getting 
an X-ray scan.

Second, we propose to add a second layer to this first model using 
X-ray images, which will use a combination of the prediction of the 
first layer DL model and basic demographics of the patients and 
characteristics of the image. This will allow to further optimize final 
mortality risk predictions, but it is an approach that has received little 
attention and no approaches like this are found in the literature about 
COVID-19 prediction models.

Third, we combined two different sources of data to create a unique 
and novel COVID-19 dataset, providing X-ray images as well as basic 
demographic information for a total of 221 registers. Data related to 
COVID-19 is still rare, so we hope this could help further research.

Finally, we make our model implementations and datasets used in 
our experiment publicly accessible via GitHub, as detailed in Section 
IV. Principles of Reproducible Research are always recommended but 
not always followed, and we wanted to be definitive on this aspect.

VII. Conclusion and Future Work

A. Conclusions
This paper presents a proposed method to predict mortality risk 

on COVID-19 patients combining a CNN model based only in X-ray 
images, with a second layer ML model which uses as input the output 
of that CNN first layer model together with other basic patient 
demographic and image technical properties information.

Results show that our proposed method achieves close to or even 
perfect performance regarding AUC over the test dataset used in our 
experiments. 

Furthermore, results also evidence that our proposed techniques, 
like transfer learning, data augmentation and the addition of a second 
layer model improve the overall prediction power of the final model, 
which seems to confirm out hypothesis and the usefulness of our 
proposed framework. 

B. Future Work
We know that the main limitation of our research is the small dataset 

we were obliged to work with due to COVID-19 data availability. 
Therefore, conclusions drawn from our experiment results should 
be confirmed with a different and larger dataset. We are currently 
collaborating with Hm group of hospital in Spain to use a dataset of 
more than 2310 patients which we hope could greatly enhance our 
model power and statistical significance of our conclusions. We hope 
to have experiment results over this new dataset in the coming months.

Furthermore, a more exhaustive optimization of our models in terms 
of more layer weights being fine-tuned, additional data augmentation 
techniques being applied, and a bigger hyperparameter grid search 
being carried out, can be tested to search for a model performance 
improvement, and we plan to conduct these experiments with the 
larger dataset earlier mentioned.

Recent proposed frameworks that allow to mix images input with 
numeric information in a single CNN are suited to the problem we try 
to tackle. Experiments using these models could be carried out and 
results compared with our two-layer proposed framework. 

Finally, using GANs as data augmentation tool has been shown to 
improve results obtained by models in healthcare classification tasks 
[36], and we aim to test it in our proposed framework.
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