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Abstract

The aberration in human electrocardiogram (ECG) affects cardiovascular events that may lead to arrhythmias. 
Many automation systems for ECG classification exist, but the ambiguity to wisely employ the in-built feature 
extraction or expert based manual feature extraction before classification still needs recognition. The proposed 
work compares and presents the enactment of using machine learning and deep learning classification on time 
series sequences. The two classifiers, namely the Support Vector Machine (SVM) and the Bi-directional Long 
Short-Term Memory (BiLSTM) network, are separately trained by direct ECG samples and extracted feature 
vectors using multiresolution analysis of Maximal Overlap Discrete Wavelet Transform (MODWT). Single 
beat segmentation with R-peaks and QRS detection is also involved with 6 morphological and 12 statistical 
feature extraction. The two benchmark datasets, multi-class, and binary class, are acquired from the PhysioNet 
database. For the binary dataset, BiLSTM with direct samples and with feature extraction gives 58.1% and 80.7% 
testing accuracy, respectively, whereas SVM outperforms with 99.88% accuracy. For the multi-class dataset, 
BiLSTM classification accuracy with the direct sample and the extracted feature is 49.6% and 95.4%, whereas 
SVM shows 99.44%. The efficient statistical workout depicts that the extracted feature-based selection of data 
can deliver distinguished outcomes compared with raw ECG data or in-built automatic feature extraction. The 
machine learning classifiers like SVM with knowledge-based feature extraction can equally or better perform 
than Bi-LSTM network for certain datasets.
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I. Introduction

THE automation in electrocardiogram (ECG) measurement 
enables users to monitor their cardiac signals using smart 

portable devices like wearables [1]. Any heart complexity is 
immediately observed, reported, or consulted to the experts. 
With these advancements, ECG classification and analysis are 
upgraded from machine learning to deep learning. The change of 
data from 1D to 2D or 3D or vice versa requires high accuracy and 
low computational time. The computer configuration needs to get 
compatible with new technologies.

There are two phases for the automatic detection and realization 
of any cardiac anomaly. These phases are feature extraction and 
classification, such as binary or multi-class. The feature extraction 
stage gives flexibility to any algorithm to become efficient and 
increase the performance rate. It is based on a thorough knowledge 

of the inputs and dataset. With expert experience added, it becomes a 
powerful tool to extract the desired features easily. If features extracted 
are large in dimensions or direct data samples are acquired, the 
need comes from feature compression [2] or reduction. This feature 
selection filters primary significant features that make an easy input 
for classifiers. The second stage is classification, where the classifier 
algorithm gets trained by the collected input feature dataset to predict 
the test data and unknown data. This type of automation is seen in 
traditional models that use artificial intelligence and machine learning. 
The traditional models require a separate feature extraction module 
like features extracted by experience, signal processing techniques, 
and classification algorithms. These may include wavelet features 
[3], [4], [5], Principal Component Analysis (PCA) [6], Independent 
Component Analysis (ICA) [7], [8], and statistical features [9]. Wavelet 
Transform (WT) has shown a high impact on ECG analysis as wavelet 
decomposition gives its sub-bands and coefficients at different levels. 
This disintegration helps in finding unique features for analysis. A 
wavelet design devoted to noise suppression with the Hidden Markov 
Model (HMM) gives successful multi-classification with distinctive 
feature extraction [10].
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Recently, technology up-gradation has given deep learning 
algorithms that have a single end-to-end structure for feature 
extraction and classification. These innovations have given many new 
classification algorithms like Recurrent Neural Network (RNN), Long 
Short-Term Memory (LSTM), Convolutional Neural Network (CNN) 
[11], [12], [13], a hybrid structure like CNN with Bidirectional LSTM 
[14] and active classification using deep learning networks [15]. There 
is another interesting combination of CNN and LSTM that feature 
extract and classify ECG signals of variable length and achieving 
accuracy of 98.10% [16]. These models learn features automatically 
and get trained.

This experimental study, analyze and compare BiLSTM network 
and SVM classification algorithm on 1D sequential ECG data. The 
paper contributes towards,

• Implementing discrete wavelet-based denoising and Maximal 
Overlap Discrete Wavelet Transform (MODWT) based feature 
extraction method for extracting 6 morphological and 12 statistical 
ECG attributes.

• Providing no information loss due to time in-variant, non-
orthogonal, less variable estimation, and stationary detail time 
series achieved by the multi-resolution analysis of MODWT.

• Illustrating the application and the data-based choice to use 
machine learning or deep learning for 1-D signals of arbitrary 
length.

• Conduction of a systematic experiment that demonstrates that 
SVM can perform as good as the BiLSTM network on the same 
benchmark PhysioNet ECG datasets in similar conditions.

In addition to this, the arrhythmic features are discussed and 
supervised by cardiac experts. The classification outcome shows that 
extracted featured ECG data yields higher performance than raw ECG 
data for deep learning and machine learning classification techniques.

II. Preliminaries

A. Multi-resolution Wavelet Transform
Wavelet Transform (WT) has a wide application area for non-

stationary electrical signals like biomedical. WT provides time-
frequency information simultaneously. The signal representation at 
various frequency levels and analyzing it through high and low pass 
filters at different scales give the concept of multi-resolution analysis. 
MODWT is indifferent to the start point selection of a time series 
sequence. MODWT implements DWT twice, once to original series and 
another to its transformation, and then merges the outputs. MODWT 
coefficients are scaling (~sk,m), wavelet (~wk,m), approximation (~ak,m) 
and detail (~dk,m). These coefficients are described as,

  (1)

  (2)

 (3)

 (4)

where ~go = ~g, periodized to length N and  ~ho = ~h, periodized 
to length N [17].

MODWT can manage arbitrary sample dimensions as it is an 
undecimated type of wavelet transform. The multi-resolution of 
MODWT exhibits the zero-phase filtering giving an advantage to 
the extracted features to be time-aligned. The characteristics like less 
variable estimation and content retention help MODWT be well-
suited with time series as recommended in [18], [19].

B. Support Vector Machine (SVM)
SVM represents supervised machine learning models implementing 

kernel functions for non-linear mapping space. SVM can handle binary 
and multi-class problems efficiently. Many real-world applications 
are successfully implemented using support vector classification. 
The working is based on an optimal separable hyperplane [20]. 
The hyperplane corresponds to a non-linear decision margin for 
classification.

SVM deals with noisy and sparse datasets efficiently. SVM is an 
exception in handling large and small datasets.

C. Bidirectional Long Short-Memory (BiLSTM) Network
After the growth of machine learning, RNN has ideally started 

by retaining and utilizing state information. Storing previous time 
information leads to a memory unit. An improvement over RNN, 
i.e., LSTM classifier has a gating mechanism that manages long term 
input data. It has three layers: input, forget, and output layer. For a 
complete long sequence of data, Bidirectional RNN proposes forward 
and backward state RNN.

BiLSTM network uses two LSTMs for both the past token state 
and future token state. The information is processed from left to right 
and vice-versa. For each time stride, there is a hidden forward layer 
containing an unknown unit function that operates on the previous 
hidden state, input forward state, and hidden back layer having a 
hidden unit that stores future hidden state and input to the current 
step. A long vector comprises forward and backward representation. 
Moreover, the final outputs are the predictions [21].

TABLE I. Dataset Acquisition from PhysioNet

PhysioNet Datasets Description Size of ECG Signal
For Binary
DB1:
the PhysioNet 2017   
Challenge
Sampling rate:
300 Hz at 16-bit resolution

Normal Signal 
(N_S)

Atrial Fibrillati-on 
Signal (AFib_S)

Total:
5665 x 9000
4937 x 9000
718 x 9000

For Multi-class
DB2: includes 3 Datasets
• MIT-BIH Arrhythmia 
• The BIDMC Congestive 

Heart Failure
• MIT-BIH Normal Sinus 

Rhythm
Sampling rate :
128 Hz at 16-bit resolution

Arrhythmia Signal 
(A_S)

Congestive heart 
failure (CHF_S)

Normal Sinus 
(NS_S)

Total:
162 x 65536
96 x 65536

30 x 65536

36 x 65536

III. Proposed MODWT Multiresolution Analysis Based 
SVM and BiLSTM Scheme

The detailed feature extraction and classification modules are 
structured in Fig. 1.

A. ECG Dataset Acquisition
The frequently used PhysioNet databases are involved in the 

present study. A detailed description of the dataset acquisition is 
tabulated in Table I. For the binary dataset, the PhysioNet 2017 
Challenge [22] includes two types of ECG signals, such as Normal 
(N_S) and Atrial fibrillation (AFib_S). The data is stored at 300 Hz 
with 0.5-40 Hz of bandwidth. The direct samples of each signal give 
accurate signal statistics. The length of each signal is trimmed to 9000 
samples for balanced data collection. The multi-class dataset requires 
three different ECG signals from three different PhysioNet databases, 
namely  MIT-BIH Arrhythmia Database  for Arrhythmia ECG Signal 
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(A_S), the BIDMC Congestive Heart Failure Database for Congestive 
heart failure Signal (CHF_S) and  MIT-BIH Normal Sinus Rhythm 
Database  for Normal Sinus Signal (NS_S). The data collection has 
65536 samples of each ECG recording, which is sampled at 128 Hz [23].

B. Pre-processing Unit
During the pre-processing stage, the collection of raw ECG samples 

is refined by two processes, such as normalization that returns data 
with the centre to zero and standard deviation to one. The amplitude 
variation is reduced to a minimum, and consistent data is available 
for further processing. The next step is to filter ECG and remove 
noise artifacts like baseline wander and power line interferences. 
In the present work, the discrete wavelet transform (DWT) is 

implemented using the Daubechies wavelet family (db4). The 
wavelet decomposition, removal of undesired detail, and approximate 
coefficient and reconstruction of signal results in filtered ECG signal 
[24]. Fig. 2 and Fig. 3 displays normalized and filtered ECG signal.

C. Feature Extraction
For the feature extraction process, a preliminary session was 

conducted to determine the difference between arrhythmic conditions 
involved in the present study. Cardiac experts supervise the feature 
recognition workout. MODWT and MODWT Multiresolution 
Analysis (MODWTMRA) are applied for extracting the distinctive 
attributes. The filtered ECG signal is decomposed to level 4 using 
Daubechies(db4) wavelet, and MRA is applied that results in detail 
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Fig. 1. Block Diagram of proposed feature extraction and classification module.
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(D1, D2, D3, D4) and an approximation coefficient (A4). D4 exactly 
matches the original sample coordinates. So, it is used for extracting 
the morphological features using signal processing techniques [25].

For the binary dataset DB1, 18 feature vectors comprising 
6 morphological and 12 statistical features are extracted. The 
morphological features are the amplitudes of prominent peaks (P, R, 
T,’QRS’ complex), RR interval, and Pcount. As it is observed in Fig. 2 that 
in atrial fibrillation P peaks are not prominent, and their count varies 
from normal ECG. Also, there is a difference in RR interval, Ramp, 
and Tamp. The statistics are applied to the coefficients reducing their 
dimensions to achieve better results. The attributes are mean of A4, 
standard deviation, and variance of D1, D2, D3, D4, and A4. And lastly, 
maximum MRA energy from all scales. The ECG signal dimension 
reduces from 5655 x 9000 to 5665 x 18 to be used by the classifier.

For the multi-class dataset (DB2), the ECG signal count is few for 
classification. So, beat segmentation from 162 ECG signals is required. 
The beat segmentation requires R peak location and 99 samples before 
R peak and 100 samples after R peak, comprising 120 samples for each 
heartbeat count. It is observed that the three different ECG signals such 
as A_S, CHF_S, and NS_S are very similar in morphological metrics, 
and only the slope and QRS width have shown variation, as presented 
in Fig. 3. So, these extracted 120 data points of every single heartbeat 
can directly be used. The ECG signal dimensions reduce from 162 x 
65536 to 22400 x 120 ECG beats and can be used by the classifier.

D. Classification
The differentiating feature vectors of datasets DB1 and DB2 are 

inputted to the classifiers such as the BiLSTM network and SVM. 
The two categories of data are imported to a simple BiLSTM network 
layer. For DB1, the input to BiLSTM is direct samples (5665 x 9000) 
and featured data (5665 x 18). For DB2, the input to BiLSTM is direct 
samples (162 x 65536) and featured data (22400 x 120). The output size 
of the BiLSTM layer is kept 100 units, and the output mode is set to 
‘last’ that maps input signal into 100 features. The other attributes of 
BiLSTM training are adaptive moment estimation, mini-batch size of 
150 for each epoch, maximum epochs of 10, Initial learning rate as 
0.01, and gradient threshold is set to 1 to stabilize output.

In parallel, SVM is also used as a classifier, and the input is 5665 x 18 
featured ECG signals, and 22400 x 120 featured ECG beats. SVM uses 
three kernel functions that are linear, rbf, and quadratic or polynomial.

IV. Experimental Results

The proposed classification setup requires both the ECG signal as 
well as ECG beat. So, features are extracted, and beats are detected 
from the signal. For extensive performance analysis and evaluation, 
two different datasets are created from PhysioNet, namely DB1(binary-
dataset) comprising normal(N_S) and abnormal (AFib_S) signals, and 
DB2(multi-class) comprising three different ECG beats such as AB, 

CFB, and NSB. The classification results are realized using MATLAB 
(R2018 working environment for academic use), and NVIDIA Discrete 
graphics with GPU are used for the training process.

ECG data signals and beats are grouped as testing and training 
data. The training process helps the classifier train on existing data, 
whereas the testing process checks the accuracy of the classifier on 
unknown or new data. As for DB1, the AFib_S signals are very few 
compared to N_S (718: 4937), so data augmentation is proposed that 
is also known as oversampling. The MATLAB function ‘repmat’ is 
used for this purpose. As for DB2, the three different ECG beats are 
good in the count. So, there is no need of data repetition. The data 
partitioning scheme is not required for the BiLSTM network as the 
neural network shuffles the data automatically. Nevertheless, for SVM, 
5-fold and 10-fold cross-validation schemes are implemented for DB1 
and DB2, respectively. The proposed testing and training arrangement 
yield efficient results. Table IV gives training and testing of data 
information.

Fig. 4 to Fig. 7 show the accuracy obtained with the BiLSTM network 
scope. Each plot is divided into two sections. The top section depicts 
the training process, and the bottom section depicts the training loss 
simultaneously. The respective confusion matrix is also shown. Fig. 
4 presents the classification through the BiLSTM network for DB1 
using direct ECG samples showing training and testing accuracy of 
61.6% and 58.1%, respectively. Moreover, the same network inputted 
with a featured dataset, as shown in Fig. 5, depicts an improvement 
of training and testing accuracy of 81.5% and 80.7%, respectively. In 
the case of DB2, Fig. 6 shows the BiLSTM network with direct ECG 
samples, and Fig. 7 shows a vast improvement in training and testing 
accuracy from 88.8% to 95.9% and 49.6% to 95.4% respectively. Unlike 
the previous result, 120 segmented ECG data points help in the 
improvement of accuracy.

The statistical parameters are Overall Accuracy Analysis (OAA), 
Precision (%), Recall (%) and F1Score that are defined by,

 (5)

 (6)

  (7)

  (8)

where TPR: True Positive Response, FPR: False Positive Response, 
FNR: False Negative Response, and TNR: True Negative Response. 
TPR means truly existing and detected signal. FPR means not a true 
response but detected. FNR means to be a true response but not 
detected. F1 Score means minimum and maximum optimal recognition. 
Table II and Table III tabulates the classification performance of binary 
and multi-class SVM.
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TABLE II. Binary Classification Outcomes of SVM for DB1

Classifier
Type

Confusion Matrix Precision, % Recall, % F1 Score, %
OAA, %

N_S AFib_S N_S AFib_S N_S AFib_S N_S AFib_S

Linear
4789 237

99.66 95.40 95.28 99.67 97.42 97.49 97.46
16 4921

RBF
5026 0

99.74 100 100 99.73 99.87 99.86 99.87
13 4924

Polynomial
5026 0

99.76 100 100 99.75 99.88 99.87 99.88
12 4925

TABLE III. Multi-class Classification Outcomes of SVM for DB2

Classifier
Type

Confusion Matrix Precision, % Recall, % F1 Score, % OAA,
%AB CFB NSB AB CFB NSB AB CFB NSB AB CFB NSB

Linear

7984 13 3

99.57 98.18 98.83 99.8 98.15 98.63 99.68 98.17 98.73 98.9228 6282 90

6 103 7891

RBF

7995 3 2

99.98 98.39 99.73 99.93 99.68 98.73 99.96 99.03 99.23 99.441 6380 19

0 101 7899

Polynomial

8000 0 0

99.67 99.03 99.34 100 98.87 99.12 99.82 98.95 99.23 99.3720 6328 52

8 62 7930
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Fig. 8. Scatter diagram for SVM: (a) Binary Classification, (b) Multi-class classification.
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Fig. 8 displays a scatter diagram for SVM that discriminates 
coefficients of binary and multi-class datasets. The experimental results 
predict that with a large number of beat counts and a large dataset, 
SVM gives better accuracy for non-linear and non-stationary biological 
signals like ECG compared to the BiLSTM deep learning network.

V. Discussion

The impact of employing different classification techniques on 
direct, in-built, and knowledge-based handcrafted features of binary 
and multi-class ECG datasets has shown consequential observations, 
as indicated in Table IV.

The feature extraction before applying classification shows 
much better performance in the present study, and the same is also 
reported in [34]. For both the datasets, the accuracy rate of 95% and 
above is achieved only in the knowledge-based extracted features of 
ECG signals. The statistical variations can be justified by the points 
described below.  

A. ECG Feature Set
In the case of a binary dataset, using knowledge-based 18 extracted 

attributes with the BiLSTM network results in an increase of 19.9 % 
training accuracy and 22.6 % of testing accuracy compared to using 
direct raw ECG samples.

The same feature set with SVM results in an increase of 19.18 
% performance accuracy compared with the BiLSTM network. 
This means that if known features of arrhythmic ECG signal are 
differentiated and extracted, as shown in Fig. 2, machine learning can 
perform better than deep learning in such cases.

Similarly, for a multi-class dataset, ECG beat segmentation is done 
to demonstrate another positive impact of extracting PQRST data 
points of a single beat. These are hand-crafted direct 120 ECG data 
points of each heartbeat, as shown in Fig. 3. Using these features with 
the BiLSTM network results in an increase of 7.1 % training accuracy 
and 45.8 % of testing accuracy compared with using direct raw ECG 
samples or whole signal as input. The same feature set with SVM 
results in an increase of only 4.04 % accuracy compared with the 
BiLSTM network. This illustrates that instead of using all direct raw 
ECG samples, it is beneficial to use required and informative features 
with deep learning to increase performance accuracy above 95%. Also, 
machine learning algorithms like SVM can perform equal or better 
than deep learning networks like BiLSTM.

TABLE IV. Performance Comparison of the Implemented SVM and BiLSTM Models

Classification Data Partitions Feature set Classifier Accuracy (%)

Binary
No. of

classes: 2

Training Data: 8876
Testing Data: 980

For SVM:
5-fold cross validation

Direct Samples BiLSTM
Training 61.6
Testing 58.1

MODWT & MODWT MRA based 
morphological and statistical features 

(18 features)

BiLSTM
Training 81.5
Testing 80.7

SVM
Linear 97.46
RBF 99.87

Polynomial 99.88

Multi-class
No. of

classes: 3

Training Data: 13340
Testing Data: 8960

For SVM:
10-fold cross validation

Direct Samples BiLSTM
Training 88.8
Testing 49.6

MODWT & MODWT MRA based 
Beat Segmentation (120 Data points)

BiLSTM
Training 95.9
Testing 95.4

SVM
Linear 98.92
RBF 99.44

Polynomial 99.37

TABLE V. Performance Comparison of the Proposed Models with Other State-of-the-art Methods

Literature Classes Number of ECG 
beats Extracted Features Classifier Accuracy (%)

Sahoo et al.   (2017) [26] 4 1071
MRA of DWT

(Temporal and morphological)
SVM 98.39 %

Plawiak (2018) [27] 17 1000
Genetic optimization, selection and the spectral 

power density estimation
SVM 98.85%

Guerra et al. (2019) [28] 4 49,691
Wavelets, Higher order statistics, morphological 

and local binary patterns
Multiple SVM 
combination

94.50%

Zubair et al. (2016) [29] 5 - End-to-end CNN 92.70%

Acharya et al. (2017) [30] 2 110094 End-to-end CNN 95.22%

Acharya et al. (2017) [31] 5 109,449 End-to-end CNN 94.03%

Lodhi et al. (2018) [32] 2 81,652 End-to-end CNN 93.53%

Lui et al. (2018) [33] 4 - End-to-end CNN-LSTM 94.62%

Proposed models (2020)

2 186,615
Direct Samples BiLSTM 58.1%

MODWT & MODWT MRA based features
BiLSTM 80.7%

SVM 99.88%

3 22,400
Direct Samples BiLSTM 49.6%

MODWT & MODWT MRA based beat 
segmentation

BiLSTM 95.4%
SVM 99.44%
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B. Performance Comparison with Existing Literatures
The efficient classification outcomes performed by different 

methods recently are illustrated in Table V. The robust feature 
extraction techniques like wavelet decomposition are used before 
classifiers like SVM, as reported in [26], [28]. Sahoo et al. [26] detected 
the QRS complex using MRA of WT with SVM classification on 
MIT–BIH ECG database of PhysioNet achieving 98.39% accuracy 
and a meager error rate 0.42%. In 2018, Pawel Pławiak achieved 
98.85% accuracy on ECG fragments using feature extraction with 
pre-processing. ECG characteristics were estimated using PSD and 
tested using genetic optimization and selection before employing 
SVM classification on 1000 cardiac beats [27]. An ensemble SVM, i.e., 
multi SVM approach, is demonstrated with wavelet-based, HOS, LBP, 
and many amplitude values for feature extraction with specific SVMs 
[28]. The ensemble methodology implemented showed satisfactory 
performance of 94.50 % of accuracy.  

The automatic in-built feature extraction concept is also known 
as the End-to-end technique, is used in deep learning algorithms, as 
reported in [29]-[33]. Zubair et al. [29] employed a small patient-specific 
ECG dataset to implement CNN achieving classification accuracy of 
92.50 % for five different beats. Acharya et al. [30] proposed CNN to 
diagnose normal and myocardial beat with an accuracy of 95.22%. They 
investigated ECG beats with and without noise removed. Another CNN 
model was designed by Acharya et al. [31] in 2017, depicting 94.03% 
accuracy with high-frequency noise removal technique on 109,449 
ECG beats. They classified five different ECG classes with improved 
generalization capability. Lodhi et al. [32] achieved 93.53 % accuracy 
by designing a 20-layered CNN model for binary classification, 
including 81,652 beats. Another model introduced by Lui et al. [33] has 
a sequence of CNN and BiLSTM for multi-class MI diagnosis classifying 
4 categories and achieving a performance rate of 94.62%.

The accuracy of 80.7% achieved by the proposed BiLSTM networks 
using hand-crafted feature extraction, yet it is lower than the accuracy 
of 95.4 % achieved by proposed BiLSTM network using informative 
beat segmented direct ECG data points. Besides, the proposed SVM 
with MODWT extracted features outperforms CNN and BiLSTM 
networks with built-in or hand-crafted features by achieving an 
accuracy rate of 99.88% for binary and 99.44% for multi-classification 
respectively. More evidence is reported in [35] where the combination 
of MRA of DWT with Online Sequential Extreme Learning Machine 
(OSELM) as classifier has achieved a 99.44% accuracy rate for two 
classes and 98.51% accuracy rate for multi-class, respectively.

C. Limitations
In the present study, there is the usage of data augmentation for 

BiLSTM networks, 5-fold, and 10-fold cross-validation for SVM due 
to small sample size constraints. So, overfitting issues can exist. This 
limitation can be rectified by experimenting with large size datasets. 
Moreover, by using same datasets of different studies and same 
validation methods the results can be directly compared considering 
similar environment.

VI. Conclusion

The proposed work is an experimental research analyzing the 
classification capability using in-built feature extraction of deep 
learning with machine learning using distinctive knowledge-based 
feature extraction on time series sequential ECG data. BiLSTM network 
with automatic feature extraction is implemented on the publicly 
accessible and available PhysioNet 2017 Challenge dataset, and then 
the same two-class dataset is treated with SVM using manual feature 
extraction derived using MODWT, and MODWTMRA. The 18 feature 
vectors of normal and Atrial Fibrillation ECG signals are extracted 

under the supervision of cardiac experts. Another dataset comprising 
of three different classes from the PhysioNet database is also used. 
For this, feature extraction involves beat segmentation comprising 120 
informative data points of each category of ECG beat. In both cases, 
under similar experimental scenarios, the raw ECG data is firstly fed 
to BiLSTM networks, then hand-crafted ECG features to the BiLSTM 
network and SVM. The research outcomes suggest that deep learning 
with in-built feature extraction cannot always be an efficient method 
for all types of ECG datasets. However, machine learning with manual 
feature extraction can prove to show better performance in certain 
experimental conditions.

The pre-processing and feature extraction are two significant 
preliminaries before classification for one-dimensional data. The hand-
crafted feature extraction involves expert experiences and control of 
signal data. It is observed that for a long duration dataset instead of 
training BiLSTM with raw ECG samples, it is justified to train with 
informative segmented beat data points or distinctive vital feature 
set for desired outcomes. Also, the appropriate feature extraction 
like wavelet decomposition can be incorporated in the deep learning 
algorithms to achieve high-performance classification.

For future direction, the featured input data can be made robust 
and refined to achieve higher accuracy using network classifiers by 
applying dimensionality reduction techniques.
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