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Abstract

Nuclei segmentation in whole-slide imaging (WSI) plays a crucial role in the field of computational pathology. 
It is a fundamental task for different applications, such as cancer cell type classification, cancer grading, and 
cancer subtype classification. However, existing nuclei segmentation methods face many challenges, such as 
color variation in histopathological images, the overlapping and clumped nuclei, and the ambiguous boundary 
between different cell nuclei, that limit their performance. In this paper, we present promising deep semantic 
nuclei segmentation models for multi-institutional WSI images (i.e., collected from different scanners) of 
different organs. Specifically, we study the performance of pertinent deep learning-based models with nuclei 
segmentation in WSI images of different stains and various organs. We also propose a feasible deep learning 
nuclei segmentation model formed by combining robust deep learning architectures. A comprehensive 
comparative study with existing software and related methods in terms of different evaluation metrics and the 
number of parameters of each model, emphasizes the efficacy of the proposed nuclei segmentation models.

DOI:  10.9781/ijimai.2020.10.004

I. Introduction

Nowadays, digital pathology is rapidly gaining momentum as a 
proven and essential technology. Its popularity has grown in 

the last decade due to the improvements in hardware and software. 
The whole-slide imaging (WSI) refers to the scanning of conventional 
glass slides to produce high-resolution digital images slides, that 
can be stored and accessed using dedicated software. The potential 
applications of digital pathology comprise cell segmentation, counting 
cancer cells, and prognosis of cancers.

Cell segmentation refers to the process of identifying groups of 
pixels that represent cell nuclei. This process is often complicated, 
especially in the presence of adjacent or overlapping cells and color 
variation in histopathological images. It is one of the core operations 
in histopathology image analysis. So, in the context of computational 
pathology, accurate nuclei segmentation techniques are highly needful 
for extracting, mining, and interpreting sub-cellular morphologic 
information from digital slide images. Several extracted descriptors 
such as cell nuclei shape and number of cell nuclei in WSI images are 

key components of studies such as the determination of cancer types, 
cancer grading, and prognosis [1].

Indeed, there is diverse tissue types, variations in staining, and 
cell types, leading to different visual characteristics of WSI images. 
These variations make the segmentation of nuclei segmentation a 
challenging task (see Fig. 1).  The visual characteristics of WSI images 
make it very difficult to develop traditional image processing-based 
segmentation algorithms that give acceptable nuclei segmentation 
results. The difficulty increases when the segmentation algorithms 
handle WSI images taken from several cancer patients and collected 
at different medical centers for various organs, such as breast, kidney, 
prostate, and stomach [4]. Existing nuclei segmentation software and 
toolboxes include Cell profiler [2] and ImageJ-Fiji [3]. Cell Profiler 
simultaneously measures the size, shape, intensity, and texture of 
a variety of cell types in a high throughput manner [2]. ImageJ-Fiji 
exploits the latest software engineering practices to merge powerful 
software libraries with a wide range of scripting languages to allow 
fast prototyping of image processing algorithms [3].

In turn, the success of deep learning models with several computer 
vision-based applications encouraged researchers to make extensive 
efforts of works attempted at developing image segmentation 
approaches using deep learning models. Of note, the nuclei 
segmentation task necessitates an enormous effort to manually create 
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pixel-wise annotations to be used for training deep learning models. 
For instance, a multi-path dilated residual network was proposed 
in [14] for nuclei segmentation and detection. In [17], a nuclei 
segmentation method based on deep convolutional neural networks 
(DCNNs) for histopathology images was proposed. However, existing 
nuclei segmentation methods may achieve good results with a 
dataset of WSI images and poor performance with other datasets. 
The main reasons for these limited results are color variations in 
histopathological images resulted from acquiring WSI from different 
scanners, the overlapping and clumped nuclei, and the ambiguous 
boundary between adjacent cell nuclei. 

Breast Kidney

Stomach Prostate

Fig. 1. Examples of WSI images for multi-organ samples.

To tackle these challenges, in this paper, we present promising 
deep semantic nuclei segmentation models for multi-institutional 
histopathology images of different organs. These deep learning-based 
semantic segmentation models are trained in a supervised way to focus 
on the nuclear regions and to discriminate between nuclear pixels and 
other pixels. In this way, the models can learn nuclei-aware features, 
color information, as well as recognizing the complete cells. Indeed, 
such promising nuclei segmentation models can be used to extract apt 
features for nuclear morphometrics. Also, it could contribute to the 
advancement of digital pathology software. 

The key contributions of this paper are:

• Study the performance of different deep learning models with 
nuclei segmentation in WSI images of various stains and various 
organs. A challenging multi-institutional multi-organ WSI image 
dataset is used in this paper (publicly available dataset).

• Propose a feasible deep learning nuclei segmentation model 
formed by combining robust deep learning architectures (so-called 
PSPSegNet). It achieves 3.48% improvement on the F1-score and 
6.62% improvement on aggregated Jaccard index (AJI).

• A comprehensive comparative study with existing software and 
related methods is presented, in terms of different evaluation 
metrics and the number of parameters of each model. Also, the 
use of nuclei segmentation models to count the number of nuclei 
in WSI images.

Below, we present the remaining sections of this paper. In Section 
II, we study and discuss the related work. In Section III, we explain the 
methodology in detail. Section IV includes the experimental results, 
comparisons and discussion. Section V concludes the paper and gives 
different points of future work.

II. Related Work

In the last years, various deep learning models have been 
employed for performing different segmentation tasks in biology [4]. 
Generally, most outstanding deep segmentation models are based on 
convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), encoder-decoders architecture, and generative adversarial 
networks (GANs). 

 Naylor et al.  [5] introduced a fully automated method for cell nuclei 
segmenting in WSI images based on three segmentation models, namely 
PangNet, a fully convolutional network (FCN), and DeconvNet. They 
ensembled the three segmentation models, obtaining an F1-score of 
0.80. Also, Naylor et al. [6] proposed a segmentation method of nuclei 
in histopathology data based on CNN. They proposed a distinct idea to 
segment toughing or overlapping nuclei by formulating the problem 
as a regression task, where they aim at predicting the distance map 
of nuclei. They claimed that the main problem in the segmentation 
of nuclei is that segmentation methods tend to segment adjacent or 
overlap nuclei one object. Their approach outperforms some related 
nuclei segmentation methods on the AJI score.

Wang et al. [7] proposed a bending loss regularized network 
for nuclei segmentation in histopathology images. The proposed 
bending loss defines high penalties to contour points with large 
curvatures and applies small penalties to contour points with a slight 
curvature. Minimizing bending loss can avoid generating contours 
that encompass multiple nuclei. In the case of histopathology images, 
nuclei have a smooth shape, and the points on the boundaries of nuclei 
have small curvature changes. In turn, the points on the contour with 
large curvature changes have a high probability of being the touching 
points of two or multiple nuclei. The nuclei segmentation scheme 
comprises three steps: 1) a preprocessing step for color normalization, 
2) an encoder-decoder architecture with the bending loss, and 3) a 
postprocessing step described in [8] was employed. The proposed 
model was validated on the MoNuSeg dataset, obtaining an AJI score 
of 0.621 with the same organ test and score of 0.641 with different 
organ tests.

Al-Kofahi et al. [9] proposed a three-step cell nuclei segmentation 
approach:  1) the detection of the cells using a deep learning-based 
model to obtain pixel probabilities for nuclei, cytoplasm, as well 
as background, 2) the separation of touching cells based on blob 
detection and shape-based watershed techniques that can distinguish 
between the individual nuclei from the nucleus prediction map, and 
3) the segmentation of the nucleus and cytoplasm. With four different 
datasets, they obtained an accuracy of 0.84. Besides, Cui et al. [10] 
proposed an automatic end-to-end deep neural network algorithm 
for the segmentation of individual nuclei. They introduced a nucleus-
boundary model to predict nuclei and their boundaries simultaneously 
using a fully convolutional neural network. They obtained the area 
of each nucleus via a simple, fast, and parameter-free postprocessing 
procedure. This method can segment a 1000x1000 image in less than 
5 seconds, which facilitates precisely segment WSI images in an 
acceptable time.

In [11], Qu et al. proposed a weakly supervised segmentation 
framework based on partial points annotation in histopathology 
images. The framework consists of two stages: 1) a semi-supervised 
strategy to learn a detection model, and 2) a segmentation model is 
trained from the detected nuclei locations in a weakly-supervised 
manner. Specifically, the authors employed the original WSI images 
and the shape before nuclei to obtain two types of coarse labels from 
the points annotation using the Voronoi diagram and a k-means 
clustering algorithm. These rough labels are used to train a deep 
learning model, and then a dense conditional random field is utilized 
in the loss function to fine-tune the trained model. With a multi-organ 
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WSI dataset, they achieved a dice score of 0.73. In [12], a conditional 
generative adversarial network (cGAN) model was proposed for 
nuclei segmentation, where the segmentation problem was posed as 
an image-to-image translation task rather than a classification task. A 
large dataset of synthetic WSI images with perfect nuclei segmentation 
labels was generated using an unpaired GAN model.  Both synthetic 
and real data with spectral normalization and gradient penalty for 
nuclei segmentation were used to train the cGAN model.

Zhou et al. [13] presented a deep learning-based model called 
contour-aware informative aggregation network (CIA-Net) with a 
multilevel information aggregation module between two task-specific 
decoders. Instead of using independent decoders, this model exploits bi-
directionally aggregated task-specific features to model the spatial and 
texture dependencies between nuclei and contour. Besides, a smooth 
truncated loss is utilized to mitigate the perturbation from outliers. As 
a result, the CIA-Net model is almost built using informative samples, 
and so its generalization capability could be enhanced (i.e., with 
multi-organ multi- center nuclei segmentation tasks). With the 2018 
MICCAI challenge of the multi-organ nuclei segmentation dataset, 
they achieved a Jaccard score of 0.63. 

Furthermore, the authors of [14] proposed a multi-path dilated 
residual network for nuclei segmentation and detection. This network 
comprises the following: 1) a multi-scale feature extraction step based 
on D-ResNet and feature pyramid network (FPN), 2) a candidate 
region network, and 3) a final network for detection and segmentation. 
The segmentation network involves segmentation, regression, and 
classification sub-networks. With the MonuSeg dataset, they obtained 
an AJI of 0.46. Mercadier et al. [15] presented a nuclei segmentation 
framework based on DCNNs. They formulated the problem as 
segmentation in a holistic manner rather than the classification of 
patches. The dataset employed is partially annotated, and they used a 
weighted background model for the network to give more importance 
to the boundaries of nuclei. 

Furthermore, the authors of [16] used a modified version of the 
U-Net [28] architecture, so-called U-Net++, in which they combined 
U-Nets of varying depths. With the nuclei segmentation task, they 
achieved an improvement of 0.0187 with the intersection-over-union 
(IoU) metric compared to U-Net. The authors of [17] proposed a nuclei 
segmentation method based on DCNNs for WSI images. To segment 
nuclei, they used the Mask R-CNN model [18] with color normalization. 
In particular, the method includes three major steps: preprocessing, 
nuclei segmentation, and postprocessing. In the preprocessing step, 
they applied several augmentation techniques to increase the amount 
of training data and used a color normalization method to reduce the 
color variation in WSI images. For nuclei segmentation, they followed 
the implementation of the Mask R-CNN framework stated in the 
original paper [18] for the backbone network and employed a feature 
pyramid network (FPN). In the postprocessing, they applied multiple 
inference methods to improve the segmentation results, obtaining an 
F1-score of 0.91.

It is worth noting that color variation in histopathological 
images, the overlapping and clumped nuclei, and the ambiguous 
boundary between different cell nuclei limit the performance of the 
above-mentioned nuclei-segmentation methods.  Besides, most of 
the models proposed for this task are complex and do not give the 
required results. In this study, we present promising deep semantic 
nuclei segmentation models for overcoming the above-mentioned 
limitations. To demonstrate the potency of these models, we consider 
WSI images collected from different scanners of different organs, 
namely breast, kidney, colon, stomach, prostate, liver, and bladder.

III. Methodology

A. Nuclei Segmentation Framework
Several deep learning-based semantic segmentation approaches 

have been proposed in the last decade, supported by the outstanding 
ability of convolutional neural networks (CNN) in producing semantic 
and hierarchical image features [19]. In our study, we choose five of the 
most popular models used for semantic segmentation and adapt them 
to the nuclei cell segmentation task. Fig. 2 presents the framework of 
nuclei segmentation, which consists of training and testing phases.

 As shown in Fig. 2 (a), the training phase includes a preprocessing 
step, training the segmentation model, and a postprocessing step. In 
the preprocessing step, we apply the sparse stain color normalization 
method of [20] to reduce the variability of color between multi-
institutional and multi-organs WSI images. The size of WSI images is 
high (1000×1000 pixels), and thus it very difficult to train deep learning 
models with such image size. Thus, we split each WSI into four non-
overlapped sub-images. In the postprocessing stage, we assemble the 
segmented masks corresponding to the four non-overlapped sub-
images to restore the original image size. 

In the training step, we train different deep learning-based 
segmentation models. To mitigate overfitting and enhance 
generalization of the deep learning models, we employ data 
augmentation techniques. Specifically, we randomly crop 200 patches 
from training images to augment the data. The number of cropped 
patches is empirically tuned. 

 

Testing Image

Preprocessing Postprocessing

Trained Deep 
Learning Model Evaluation

Metrics

Segmentation Output

 

Training Images Ground-Truth

Preprocessing

WSI dataset
for multi-organ
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Calculating

a. Training Phase

b. Testing Phase

Fig. 2.  Nuclei segmentation framework: a) training phase, and b) testing phase.

As shown in Fig. 2 (b), in the test phase we also employ the 
preprocessing step to normalize the stain of test images and split each 
test image into four non-overlapped images. Of note, preprocessing 
step is important to make the same setting used to train the models. 
After we get the segmented image from a trained model, we apply 
postprocessing operations to restore the original image size. Besides, 
we use a connected component algorithm to detect cells and count 
them. Finally, we evaluate the performance of the nuclei segmentation 
models in terms of pixel-level F1-score (Dice score) and object-level 
AJI score metric.

B. Deep Learning-based Semantic Segmentation Models
Fully convolutional network (FCN): In [21], Long et al. proposed 

the FCN architecture that receives an input image with arbitrary size 
and produces pixel-wise predictions (i.e. segmentation mask), as 
shown in Fig. 3. They demonstrated that end-to-end and pixels-to-
pixels deep convolutional networks could deliver promising results 
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with the semantic segmentation task. FCN includes deconvolutional 
layers to up-sample coarsely deep convolutional layer outputs to 
dense pixels of any desired resolution.

foward/inference

backward/learning

2

64

pixelwise
 predicti

on

256

segmentatio
n g.t

Fig. 3. Diagram of the FCN architecture.

The main idea behind FCN is to create a semantic segmentation 
network by adjusting state-of-the-art classification networks as 
such AlexNet [22], the VGG net [23], and GoogLeNet [24] into fully 
convolutional networks and transfer their representations to the 
segmentation task (e.g. use of fine-tuning techniques). It is worth 
noting that the structure of FCN allows generating segmentation maps 
for images of any resolution without employing fully connected layers, 
and therefore the FCN architecture is considered as one of the most 
innovative deep learning architecture that opened the door for several 
innovations in image segmentation based on deep learning [19]. 
Besides, skip connections are used to combine semantic information 
of different layers to produce accurate and detailed segmentation 
results. Specifically, skip connections enable information to flow, 
avoiding information loss because of other elements on deep learning 
architectures, such as max-pooling (down-sampling) and dropout 
layers. The common FCN architectures are FCN-32, FCN16, and FCN8 
[21], which are based on VGG-16 backbone [23]. In our study, we use 
FCN8 as it gives the best performance.

DenseNet: Several subsequent approaches to semantic segmentation 
have been inspired by FCN [21], of them the architecture of FC-
DenseNets [25]. In short, Jégou et al. [25] extended the architecture 

of densely connected convolutional networks (DenseNets) [26], which 
has achieved remarkable results on image classification tasks, to the 
semantic segmentation problem. In DenseNet, each layer is connected 
to other layers in a feed-forward fashion to facilitate the training 
process.  Also, a feature reuse approach is implemented to enable all 
layers to access their preceding layers. 

Fig. 4 (a) shows the architecture of FC-DenseNet, which consists of 
the down-sampling path described in [26] and the upsampling path 
which allows recovering the full resolution of input images. As shown, 
in the down-sampling path the input to a dense block is concatenated 
with its output, which yields a linear growth in the number of feature 
maps. Notably, in the down-sampling path, the increase in the number 
of features is recompensed by decreasing in spatial resolution of each 
feature map after the pooling operation.

Fig. 4 (b) presents the architecture of the dense block. Of note, in 
FC-DenseNets an up-sampling process referred to as transition up. 
Transition up modules consist of a transposed convolution that up-
samples the previous feature maps. The up-sampled feature maps are 
then concatenated to the ones coming by skip connection to form the 
input of a new dense block.

U-Net: Ronneberger et al. [28] proposed the U-Net architecture, 
which also is inspired by FCN architecture. The core idea of U-Net and 
its training strategy is based on the use of data augmentation methods 
to effectively learn from the available annotated samples.  As shown in 
Fig. 5, the U-Net architecture is built based on the scheme of encoder-
decoder networks, which enable capturing the contextual features 
from input images. The down-sampling path of U-Net (encoder 
network) follows the typical architecture of FCN to extract features. At 
each down-sampling step, the number of feature channels is doubled. 
The up-sampling path (decoder network) consists of deconvolution 
layers. Feature maps from the encoder network are concatenated with 
the corresponding ones of the decoder network to avoid losing pattern 
information (spatial information). Finally, a 1x1 convolution layer is 
used to generate the segmentation mask, where each pixel of the input 
channel is assigned to one of the classes.

Input

64

128

256

512

1024

Output

Conv 3x3, BN, ReLU

Conv 1x1

Max bool 2x2

Up Sample with factor 2

Fig. 5. Diagram of the U-Net architecture.  

SegNet: In [29], Badrinarayanan et al. presented the SegNet 
architecture, which consists of an encoder network and a decoder 
network followed by a pixel-wise classification layer, as shown in Fig. 
6. The encoder network of SegNet is similar to the first 13 convolutional 
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Fig. 4. Diagram of the FC-DenseNets architecture: (a) the two paths of FC-
DenseNets architecture for semantic segmentation, and (b) a dense block with 
4 layers.
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layers of VGG16 [23] without fully connected layers. The decoder 
network of SegNet comprises a hierarchy of decoders, where each one 
corresponds to an encoder layer. The decoder layers use max-pooling 
indices received from the corresponding encoder layers to perform 
non-linear up-sampling of the feature maps, which eliminates the need 
for learning to up-sample. The up-sampled maps are then convolved 
with trainable filters to produce dense feature maps. 

Although U-Net and SegNet have similar architecture, U-Net does 
not reuse pooling indices, and it transfers the entire feature map to 
the corresponding decoder layers and concatenates them with the up-
sampled feature maps, which costs more memory.

Input

Pooling Indices

Output

Conv + BN + ReLU booling

Up-Sampling So�Max

Fig. 6.  Diagram of the SegNet architecture.

Self-correction mechanism with CE2P network: In [30], Li et al. 
introduced a training strategy called self-correction for human parsing 
(SCHP), which can iteratively improve the reliability of supervised 
labels as well as the learned models during the training process. The 
architecture used in SCHP is inspired by the CE2P architecture used 
in [31]-[32]. It consists of three main branches, namely parsing, edge, 
and fusion. The training strategy can be divided into two procedures: 
model aggregation, and label refinement (self-correction mechanism). 
A cyclically learning scheduler is used to produce reliable pseudo 
masks. Self-correction is performed iteratively by aggregating the 
current learned model with the former optimal one in an online 
manner. 

In this study, a cyclically learning scheduler with warm restarts is 
used. In each cycle of the self-correction mechanism, we compute a 
set of weights (models),  and the corresponding 
predicted labels, . After each training cycle, 
the current model weights  are combined with the weights of the 
previous cycle  to obtain new weights , as follows:

 (1)

Likewise, the predicted labels of the current cycle are combined 
with the labels of the previous cycle, as follows: 

 (2)

where n refers to the current cycle number (0 ≤ m ≤ M) and  is the 
generated pseudo-labels (pseudo masks) with the model .

PSPSegNet (PSP with SegNet): In [33], Zhao et al. developed 
the pyramid scene parsing network (PSPNet), which considers the 
strength of the global context of the image to enhance the local level 
predictions. The authors of PSPNet claim that FCN based architectures 
do not employ a suitable strategy to utilize the context of the whole 
image. Thus, they proposed a pyramid pooling module (PPM) to 
incorporate global contextual information. For each input image, 
PSPNet utilizes a pre-trained ResNet (feature extractor) to get feature 
maps. The feature maps from the feature extractor are pooled at 

four different scales corresponding to four different pyramid levels. 
Then, PPM is used to produce various sub-region representations, 
succeeded by up-sampling and concatenation layers to produce the 
final feature maps (i.e. the final representation) that comprise global 
and local contextual-information. The final representation is inputted 
into a convolution layer to produce the per-pixel prediction (i.e. the 
segmentation mask).

To improve the nuclei segmentation results, in this study, we present 
the PSPSegNet by combining PPM (the key component of PSPNet) 
with the SegNet architecture, as shown in Fig. 7. We use ResNet [34] 
as the encoder of SegNet, succeeded by the PPM module. The encoder 
feature maps are concatenated with the up-sampled outputs of the 
pyramid levels and then fed into the decoder of the SegNet to produce 
the segmented image.

Input

SegNet
Encoder

Block

SegNet
Decoder

BlockFeature
maps

ConcatPyramid Pooling Module

Output

Pooling up-sample

Fig. 7.  Diagram of the PSPSegNet architecture.

In this study, we analyze the performance of the five models 
explained above (FCN, FC-DenseNet, U-Net, Self-correction, and 
PSPSegNet) with the nuclei segmentation task. We train them using 
the MoNuSeg dataset [27]. In the test phase, we separately assess the 
performance of each trained model.

C. Model Evaluation
In this study, we use the aggregated Jaccard index (AJI) proposed 

in [27] and F1-score (dice score) to assess the performance of the 
nuclei segmentation methods. AJI is an extended version of the 
Jaccard index which divides the aggregated intersection cardinality 
by the aggregated union cardinality between the ground truth (G) 
and segmented masks. If AJI equals 1, it means that we obtain perfect 
nuclei segmentation results. AJI can be expressed, as follows: 

 (3)

where  is the ground truth masks, 
are the prediction nuclei segmentation outputs,  is the connected 
component from the prediction output that maximizes the Jaccard 
index. Ind is the list of indices of pixels that do not belong to any 
element in ground truth (G).

The F1-score is the harmonic mean between the precision and 
recall. The F1-score is identical to the dice coefficient, which can be 
formulated, as follows:

  (4)

where TP, FP, FN refers to the true positive, false positive, and false-
negative rates, respectively.

IV. Experimental Results and Discussion

A. Dataset
In our experiments, we use the MoNuSeg dataset [27], which 

contains 30 WSI images with annotations. MoNuSeg is a very 
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challenging dataset as it has WSI images of 7 organs (breast, kidney, 
colon, stomach, prostate, liver, and bladder) collected at different 
medical centers (i.e., various stains). The size of each WSI image is 
1000×1000. Of the 30 WSI images, we use 23 WSI images for training 
the models and the rest for testing. Mainly, we keep one WSI image for 
each organ in the testing set. 

B. Implementation Details
As introduced in Section III.A, the computation cost of training 

deep learning models makes it very difficult to train them with the 

very high resolution of the input image (1000×1000 pixels). Therefore, 
in the preprocessing step, we apply the sparse stain normalization 
method of [20] on each WSI image and then rescale it to 1024×1024, 
and then we divide it into four non-overlapping sub-images of size 
512×512.  We augment the training data by cropping 200 512×512 
patches from each WSI image randomly. Thus, the total training 
dataset has 4692 of 512×512 patches, and the testing set has 28 sub-
images (7 WSI images × 4 splits). A GTX1080 with an 8GB memory 
GPU is used to run the experiments. All models are trained for 100 
epochs, the stochastic gradient descent (SGD) is used as an optimizer 

TABLE I. Summarization of Models Architecture 

FCN FC-DenseNet U-Net

Input Layer, in_ch= 3

Feature Extraction Layers

3x3 Conv+ReLU (2 layers) + MaxPool (S= 2), F= 64
3x3 Conv+ReLU (2 layers) + MaxPool (S= 2), F= 128
3x3 Conv+ReLU (3 layers) + MaxPool (S= 2), F= 256
3x3 Conv+ReLU (6 layers) + MaxPool (S= 2), F= 512

First Layer
3x3 Conv, F= 48

Contracting Path Layers

3x3 Conv+BN+ReLU (2 layers) + MaxPool (S= 2), F=64
3x3 Conv+BN+ReLU (2 layers) + MaxPool (S= 2), F=128
3x3 Conv+BN+ReLU (2 layers) + MaxPool (S= 2), F=256
3x3 Conv+BN+ReLU (2 layers) + MaxPool (S= 2), F=512

Down Sampling Layers
DB (4 layers)   + TD, F= 112
DB (5 layers)   + TD, F= 192
DB (7 layers)   + TD, F= 304
DB (10 layers) + TD, F= 464
DB (12 layers) + TD, F= 656

Up-sample Layers
  3x3 DeConv + BN + ReLU, F= 512
  3x3 DeConv + BN + ReLU, F= 256
  3x3 DeConv + BN + ReLU, F= 128
3x3 DeConv + BN + ReLU, F= 64
3x3 DeConv + BN + ReLU, F= 32

Bottleneck Layers

DB (15 layers), F= 896

Middle Layers

3x3 Conv+BN+ReLU (2 layers) + MaxPool (S= 2), F=1024

Output (Classifier)_Layer
1x1 Conv, C =2

Down Sampling Layers
 TU + DB (12 layers), F= 1088
TU + DB (10 layers), F= 816
TU + DB   (7 layers), F= 578
TU + DB   (5 layers), F= 284
TU + DB   (4 layers), F= 256

Expanding Path Layers
Upsample (scale=2) + 3x3 Conv+BN+ReLU (2 layers), F= 512
Upsample (scale=2) + 3x3 Conv+BN+ReLU (2 layers), F= 256
Upsample (scale=2) + 3x3 Conv+BN+ReLU (2 layers), F= 128
Upsample (scale=2) + 3x3 Conv+BN+ReLU (2 layers), F= 64

Output Layer
1x1 Conv, C = 2

SoftMax

Output Layer
1x1 Conv, C = 2

PSPSegNet SelfCorrection

Input Layer, in_ch= 3

First Layer
7x7 Conv+BN+ReLU (1 layer) + MaxPool (S= 2), F=64

First Layers
3x3 Conv+BN+ReLU (2 layers), F =64

3x3 Conv+BN+ReLU+ MaxPool (S =2), F=128

Encoders Layers (ResNet Backbone)
 

  3 x [(1x1 Conv+BN) + (3x3 Conv+BN)+(1x1 Conv+BN) + ReLU], F= 256
  4 x [(1x1 Conv+BN) + (3x3 Conv+BN)+(1x1 Conv+BN) + ReLU], F= 512 
23 x [(1x1 Conv+BN) + (3x3 Conv+BN)+(1x1 Conv+BN) + ReLU], F= 1024 
  3 x [(1x1 Conv+BN) + (3x3 Conv+BN)+(1x1 Conv+BN) + ReLU], F= 2048

Feature Extraction Layers (ResNet Backbone)
 3 x [(1x1 Conv+BN) + (3x3 Conv+BN)+(1x1 Conv+BN) + ReLU], F= 256

    4 x [(1x1 Conv+BN) + (3x3 Conv+BN)+(1x1 Conv+BN) + ReLU], F= 512 
23 x [(1x1 Conv+BN) + (3x3 Conv+BN)+(1x1 Conv+BN) + ReLU], F= 1024 
  3 x [(1x1 Conv+BN) + (3x3 Conv+BN)+(1x1 Conv+BN) + ReLU], F= 2048

Context_Encoding:
[AvgPool + (1x1 Conv+BN+ReLU)] (4 layers), F=4069

3x3 Conv+BN+ReLU, F= F= 2048

PPM Layer:
[AvgPool + (1x1 Conv+BN+ReLU)] (4 layers), F=2048

1x1 Conv, F= 2048

Parsing Module_Layers
1x1 Conv+BN+ReLU (4 layers), F =256

1x1 Conv, F= 2

Edge_Module Layers
1x1 Conv+BN (4 layers), F= 256

3x3 Conv, F= 2

Up-sample Layers
5x5 Conv+BN (4 layers), F=1024, 512, 64, 32 respectively

Decoder Layers:
1x1 Conv+BN+ReLU, F = 1024
1x1 Conv+BN+ReLU, F = 512
1x1 Conv+BN+ReLU, F = 64
1x1 Conv+BN+ReLU, F = 32

Output Fusion Module Layers:
1x1 Conv+BN+ReLU, F=2

1x1 Conv, C= 2
Output_Layers:

1x1 Conv+BN+ReLU, F=2
3x3 Conv, C= 2
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with an initial learning rate of 1e-1, a momentum of 0.99, and a weight 
decay of 1e-8.   A batch size of two images is used.

Table I presents the architecture summarization of FCN, FC-
DenseNet, U-Net, PSPSegNet, and Self-Correction models. Where 
S, F and C stand for stride, the number of feature maps (filters), and 
the number of output classes, respectively.  With the FCN model, we 
follow the FCN8 architecture presented in [21] and use VGG-16 [23] 
as a feature extractor with its 13 convolutional layers. We decapitate 
VGG-16 by discarding the final classifier layer. An up-sampling with 5 
deconvolution layers is employed after extracting the features. Finally, 
we utilize a 1x1 convolution with channel dimension 2 to predict 
scores for each nuclei class. 

In the FC-Dense model, DB refers to the Dense-Block shown in 
Fig. 4. (b), where each layer in the block consists of a 3×3 convolution 
layer with a batch normalization layer followed by ReLU activation.  
TD refers to transition down operation using a 2×2 max-pooling layer 
with a stride of 2, and TU refers to the transition-up process using a 
3x3 transpose convolution layer with a stride of 2. 

We follow the same implementation of FC-DenseNet103 
architecture presented in [25]. This architecture is built from 103 
convolutional layers; the first convolutional layer is applied onto 
the input, 38 convolutional layers in the down-sampling path, 15 
convolutional layers in the bottleneck, and 38 convolutional layers in 
the up-sampling path. Besides, 5 TD are used, each one containing a 
convolution, and 5 TU, each one containing a transposed convolution. 
Finally, a 1×1 convolution layer and a Softmax non-linearity are used 
to provide the per class distribution at each pixel. 

In the U-Net model, two 3×3 convolutional layers followed by 
ReLU and 2×2 max-pooling operation with stride two are used in each 
encoder block. In each decoder block, two deconvolution layers are 
used, which are then concatenated with the corresponding feature 
maps of the encoder layers. The final layer of the decoder has a 1x1 
convolution to map each 64-feature vector to two classes.  

In the case of the PSPSegNet model, we use ResNet-101 architecture 
in the encoder. We implement a PPM between the encoder and the 
decoder. A bilinear up-sampling operation that consists of four 5×5 
convolution layers with batch normalization is applied after PPM. The 
decoder includes four layers, where each consists of 1×1 convolution 
and batch normalization layers. Finally, a 1×1 convolution layer 
followed by a 3×3 convolution layer is used to provide the per class 
distribution at each pixel.

In the Self-Correction model, we use ResNet-101 [34] as a backbone 
of the feature extractor and use an ImageNet [35] pre-trained weights 
to commit with the same implementation in [30]. We adopt the PSP 

network [33] as a context encoding module. The parsing module 
and edge module comprise four 1×1 convolution layers with batch 
normalization and ReLU followed by one 1×1 convolution layer 
for the parsing module and one 3×3 convolution layer for the edge 
module. Finally, a fusion module is employed, which includes a 1×1 
convolution layer with batch normalization and ReLU followed by a 
1×1 convolution layer to predict scores for each nuclei class. Table II 
presents the architecture and the source code links of each model. 

TABLE II. Models Architecture Backbones

Model Backbone GitHub links

FCN VGG-16 https://github.com/pochih/FCN-pytorch

FC-Dense Net - https://github.com/bfortuner/pytorch_tiramisu

U-Net - https://github.com/LeeJunHyun/Image_Segmentation

PSPSegNet ResNet-101 https://github.com/alexgkendall/SegNet-Tutorial

Self-
Correction 

ResNet-101 
https://github.com/PeikeLi/Self-Correction-
Human-Parsing

C. Results and Discussion
Table III shows the segmentation results of the nuclei segmentation 

models with the MoNuSeg dataset in terms of the dice coefficient 
(F1-score) and AJI score. As shown, FCN obtains F1-score of 0.8467 
and AJI of 0.6418, which are lower than the other four models. FC-
Dense Net and U-Net achieve improvements on the F1-score of 1.2% 
and 1.56%, respectively, when compared to FCN. Besides, they give 
gains on the AJI of 2.28% and 3.38%, respectively. PSPSegNet obtains 
the best results with 3.48% improvement on the F1-score and 6.62% 
improvement on AJI, thanks to PPM that encourages the PSPSegNet 
model to learn global context features of WSI images. The F1-score 
and AJI of PSPSegNet are 0.26% and 0.66% higher than the ones of 
Self-Correction. This analysis reveals that both PSPSegNet and Self-
Correction could be used to get suitable nuclei segmentation results. 

TABLE III. Comparison Between the Nuclei Segmentation Models

F1-Score AJI

FCN 0.8467 0.6418

FC-Dense Net 0.8587 0.6646

U-Net 0.8623 0.6756

PSPSegNet 0.8815 0.7080

Self-Correction 0.8792 0.7014

F1-scores for all test samples for each evaluated model

(a) (b)

AJI scores for all test samples for each evaluated model
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Fig. 8. Boxplots of F1-score and AJI of the five nuclei segmentation models: (a) F1-score, and (b) AJI.
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Fig. 8 shows the boxplots of F1-score and AJI for all nuclei 
segmentation models. Given the scores of test images with a particular 
model, a boxplot can be displayed based on a five-number summary: 
the minimum, the maximum, the sample median, and the first and 
third quartiles. In Fig. 8, the red horizontal line refers to the sample 
median. As shown, the PSPSegNet and Self-Correction models have not 
any outliers on F1-score and AJI values. U-Net model has the highest 
median F1-score and AJI, but it produces the highest number of outliers 
on both evaluation metrics. However, FCN has AJI less than U-Net; it 
has a lower number of outliers. As we can see, PSPSegNet and Self-
Correction models almost achieve the same median AJI and F1-score 
values. PSPSegNet achieves the maximum AJI and F1-scores when 
compared to other models, while FCN produces the minimum values.

Fig. 9 presents samples of segmented WSI images of different 
organs. We can notice that segmentation results can vary from one 
organ to another. For example, the WSI image of the liver organ (Fig. 9 
(a)) has several big nuclei and some of them are overlapped. As shown 
in Fig. 9 (a) Col. 6, the PSPSegNet model accurately segments the cell 
nuclei with an AJI score 0.635, while the FCN model gives the worst 
segmentation results with an AJI score of 0.349 (Fig. 9 (a), Col. 3). We 
believe that the good performance of PSPSegNet is a result of the 
employment of PPM that integrates multi-scale maps in the middle of 
the model to learn WSI image context features. The same conclusion 
can be said for the colon organ WSI image (Fig. 9 (c)) and the bladder 
WSI image (Fig. 9 (e)).

(a) Liver.

(b) Breast.

(c) Colon.

(d) Kidney.

(e) Bladder.

(f) Prostate.

(g) Stomach.

Fig. 9. Segmentation results of all models with different organs (liver, breast, colon, kidney, prostate, bladder, and stomach). The first and second columns 
represent the original input image and ground truth mask, respectively. Columns 3-7 represent the output mask of FCN, FC-DenseNet, U-Net, PSPSegNet, and 
SelfCorrection, respectively.
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Fig. 9 (b) shows a WSI image of the breast organ that has a 
noticeable color stain variation with a lot of overlapped nuclei. As 
shown in Fig. 9 (b) Col. 7, the Self-Correction model obtains the 
best performance with an AJI score of 0.655, thanks to the cyclically 
learning scheduler that enhances the segmentation results. The 
same conclusion can be said for the WSI image of the kidney organ 
shown in Fig. 9 (d). Fig. 9 (g) presents a WSI image of the stomach 
organ that has a dense number of nuclei. As we can see, all models 
produce good segmentation results. Specifically, the PSPSegNet 
model achieves the best results with an AJI score of 0.829. It is 
worth noting that all models obtain good segmentation results 
with stomach, liver and breast WSI images. However, in the case of 
the most complex WSI images that have color stain variation and 
overlapped nuclei, PSPSegNet and Self-Correction models produce 
the best segmentation results.

As nuclei segmentation is crucial to cell counting, it is interesting 
to study the performance of the five segmentation models with 
this task. In this regard, Fig. 10 presents a comparison between the 
number of cell nuclei in the predicted masks of each segmentation 
model and the ground-truth. To count the number of cell nuclei 
in each mask, we employ the connected component algorithm. 
In this experiment, we empirically set a threshold of 70 pixels for 
the minimum area of cells. As shown in Fig. 10, the number of cell 
nuclei obtained by the PSPSegNet model is a bit higher than the 
ones of the ground-truth, while the number of cell nuclei obtained 
by the Self-Correction model is close to the ground-truth. In turn, 
FCN, FC-Dense, and U-Net models have a lower number of cells 
than the ground-truth.

Fig. 11 shows a comparison between the number of parameters of 
FCN, FC-DenseNet, U-Net, PSPSegNet, and self-correction models. 
As shown, there is a noticeable variation in complexity between the 
nuclei segmentation models. It is worth noting that the good results 
achieved with the PSPSegNet model (F1-score 0.882 and AJI score 
0.708) cost a massive number of parameters that exceed 122 million.
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Fig. 10. Comparison between the number of cell nuclei in the predicted masks 
of each segmentation model and the ground-truth.

The Self-Correction model has 66 million parameters, which is 
almost half of PSPSegNet while achieving acceptable segmentation 
results (F1-score 0.879 and AJI score 0.701). However, the number 
of parameters of the FC-DenseNet model is less than the FCN 
model (around 9 million); it achieves a better F1-score and AJI. 
The FC-DenseNet model is also better than the U-Net model in 
terms of the number of parameters without a big difference in the 
segmentation results. 
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Fig. 11. Comparison between the number of parameters of FCN, FC-
DenseNet, U-Net, PSPSegNet, and self-correction models.

In this study, we also ensemble the prediction masks of the top 
three models (U-Net, PSPSegNet, and self-Correction) using a simple 
pixel-wise aggregation function, as follows:

Ens = OR [Umask , AND (PSPmask , Smask)] (5)

where Umask , PSPmask , and Smask are the  prediction masks of U-Net, 
PSPSegNet, and Self-Correction models, respectively. Ens is the 
ensemble output. This ensemble method increases the AJI score to 
0.7103 (0.23% improvement on the AJI compared to PSPSegNet). 

Indeed, pathologists prefer to use easy and friendly software to 
segment cells from histopathology images. One of the most popular 
software is ImageFIJI [3]. Fig. 12 shows the segmentation results of the 
ImageFIJI program.  As shown, the segmentation result of ImageFIJI 
is worse than the one of the proposed ensemble model (U-Net, 
PSPSegNet, and Self-Correction models). Also, ImageFIJI gives an AJI 
score of 0.533, which is much lower than the one of FCN model (the 
worst nuclei segmentation model presented in this study). Therefore, 
PSPSegNet could be a proposing nuclei segmentation method for 
pathologists.

Ground Truth ImageFIJI Assembled Output

Fig. 12.  Segmentation results of (middle) ImageFIJI software, and (right) 
ensemble of U-Net, PSPSegNet, and Self-Correction models.

In the literature, several studies have also used the MoNuSeg 
dataset and evaluated the segmentation models using F1-score and 
AJI.  For instance, the study of [12] proposed a deep conditional 
generative adversarial network (cGAN) model, the study of [11] 
proposed a weakly supervised deep nuclei segmentation model, and 
the study of [7] presented the bending loss regularized network, to 
segment nuclei in WSI images. Mahmood et al. [12] obtained an F1 
score of 0.866 and an AJI score 0.721, Qu et al. [11] achieved an F1 
score of 0.778 and an AJI score of 0.505, and Wang et al. [7] obtained 
an AJI score 0.641. Based on the results mentioned above, we can 
conclude that PSPSegNet and self-correction approach outperforms all 
these approaches in term of pixel-level F1-score. Besides, the results 
achieved in [11] are much lower than the ones of PSPSegNet, and Self-
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Correction models in terms of F1-score and AJI, noting that weakly 
supervised nuclei segmentation using points annotation technique 
may not be appropriate for cell nuclei segmentation. In terms of 
object-level AJI score, we can see that the results of [12] exceed our 
models, noting that this approach depends on synthetic training data 
that may not produce very accurate cell shapes. 

To end, the models presented in this study can overcome the 
challenges that existing nuclei methods face. Specifically, PSPSegNet 
achieves promising performance in terms of the F1-score AJI scores. 
Thus, PSPSegNet could be a feasible nuclei segmentation tool for 
pathologists. It is worth noting that the segmentation model presented 
in this paper can be used to segment region of interest in several 
medical image modalities, such as the segmentation of nipples in 
thermograms [35], segmentation of pectoral muscle in mammograms 
[36], and vessel segmentation in fundus images [37].  

V. Conclusion

In this paper, we have presented promising deep semantic nuclei 
segmentation models in WSI images of different organs and collected 
from various clinics. To overcome the challenges that existing nuclei 
segmentation models face, we have sought the efficacy of pertinent 
deep learning models with nuclei segmentation task. Besides, we have 
consolidated robust deep learning architectures to build an efficient 
deep learning nuclei segmentation model (named PSPSegNet).

To demonstrate the performance of the nuclei segmentation models, 
we have used a well-known multi-organ WSI image dataset that 
includes WSI collected from different organs and scanners. We have 
comprehensively compared the performance of the nuclei 
segmentation models and exiting software in terms of the F1-score 
metric, object-level AJI metric, and the number of trainable 
parameters. The proposed PSPSegNet model achieved the highest 
performance with a pixel-level F1-score of 0.8815 and an object-level 
AJI score of 0.7080. PSPSegNet achieves promising results, but it has 
122 million trainable parameters. In comparison with FCN, PSPSegNet 
achieved 3.48% improvement on the F1-score and 6.62% improvement 
on AJI.

Interesting results have been obtained with the Self-correction 
model with an F1-score of 0.8815 and AJI-score of 0.7080 with almost 
67 million trainable parameters. Of note, the number of trained 
parameters of FCN, FC-DenseNet, and U-Net models ranges from 
9 to 34 million, but they obtained lower segmentation performance 
than PSPSegNet with F1-scores of 0.847, 0.859, 0.862 respectively, and 
AJI scores of 0.641, 0.665, 0.676 respectively. Also, we have compared 
the performance of PSPSegNet with existing software (ImageFIJI), 
noting that PSPSegNet achieves better results. The experimental 
results emphasize that the PSPSegNet model could be used in the cell 
counting task. 

The future work will include several extensions of the current study:

• The use of different aggregation strategies to combine the 
individual nuclei segmentation models. 

• Incorporation of stain normalization techniques into the deep 
learning framework with different strategies.

• Converting the WSI images to other coordinate systems, such as 
the log-polar coordinates [39] and the curvilinear coordinates [37] 
to improve the nuclei segmentation results. 
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