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I. Introduction

Generally, Artificial Intelligence (AI) can be encompassed in 
some functional graphical and mathematical models that act as a 

symbolic system [1]. Greater impact can be achieved when symbolic 
operations have been integrated inside the Artificial Neural Network 
(ANN). ANN known as the conductive system has received careful 
attention due to its ability to evaluate the complex nonlinear dataset 
[1]. ANN has been successfully used in solving non-limited applications 
such as classification and optimization of approximation functions. 
However, the functionality of ANN can be measured by embedding 
the correct symbolic rule to govern the whole neural system. Logic 
programming has been a language of ANN for decades. Wan Abdullah 
[2] successfully explored the neural network that has been governed 
by logic programming. In this work, logical rule embodied ANN and 
the characteristic of the network will be examined by using Lyapunov 
energy analysis. The minimization of energy as a solution to the 
combinatorial representation motivates the integration of logical rules 
in a neural network [3]-[6]. The question remains on how one can 
choose the best ANN model in order to embed logic programming.

The reliable ANN model typically has the least prediction and 
classification error analysis. In that regard, Radial Basis Function 

Neural Network (RBFNN) fascinated the researchers from sciences and 
engineering field because of simpler networks structure, faster learning 
speed and better approximation capabilities. As stated by Hamadneh 
et al. [7] in their paper, RBFNN can be used to develop separate models 
for the shear stress and heat transfer rate due to simpler networks 
structure. RBFNN is a feedforward neural network that contains 
3 neuron layers (input, hidden and output layers). The input layer 
(containing input neurons) receives information being transferred 
to the hidden layer for data synthesis and training. The synthesized 
data will be used in the output layer (containing output neuron). 
The foundation of having 3 layers is to minimize the classification 
and prediction error in RBFNN [8]. Hamadneh et al. [4] initially 
implemented logic programming in RBFNN. Their proposed network 
explored the capability of HornSAT as a logical rule in RBFNN. In this 
case, logical structure of RBFNN is solely dependent on 3 parameters: 
the center of all input neurons, its widths, and its Gaussian activation 
function. Despite the fact that RBFNN can be applied effectively, the 
number of neurons in a hidden layer for RBFNN will determine the 
complexity of the network [9]. If the number of neurons in the hidden 
layers is not enough, the learning in RBFNN fails to achieve optimal 
convergence. However, if the number of neurons in the hidden layers 
is very high, the network will experience overlearning [10]. Since the 
complexity of RBFNN increases as the number of clauses increase, an 
optimization algorithm becomes crucial.  

Yang and Ma [11] have successfully applied the Sparse Neural 
Network (SNN) algorithm for optimizing the number of hidden 
neurons. The core mechanism of SNN is in reducing the error via trial 
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and error approach for determining the number of hidden neurons 
explicitly from the set of neurons. The limitation of SNN paradigm 
can be seen in extensive computational time during the number of 
hidden neuron computation process. Inspired by several works of 
[12]-[14], the 2 Satisfiability (2SAT) logic representation will be 
utilized with RBFNN to determine the important parameters for the 
hidden layer that control the number of hidden neurons. In fact, 2SAT 
is selected since it is complying with RBFNN based on the structure 
and representations. 

Another major component of 2SAT in RBFNN is the training method 
that has a significant influence on the performance of RBFNN. On this 
matter, a plethora of global optimization methods have been extensively 
applied due to their global search capability. Metaheuristics algorithm 
is a popular algorithm to search for a near optimal solution for RBFNN 
[15], [16]. There are various nature-inspired and recently developed 
optimization algorithms such as Genetic Algorithm, Differential 
Evolution algorithm, Particle Swarm Optimization algorithm, Artificial 
Bee Colony, etc. and many of these proved their suitability to many 
engineering optimization problems [17].

The theoretical basis of the Genetic Algorithm (GA) has been 
developed by Holland [18]. The first who used GA in a problem 
involving the control of gas-pipeline transmission were Goldberg and 
Holland [19]. Other studies have been made by Hamadneh et al. [4] 
who used GA to train the hybrid model RBFNN with higher-order SAT 
logic. In this study, they used the full training paradigm to train RBFNN 
with higher-order SAT logic using k-means cluster algorithm and GA. 
The quest of finding the optimal algorithm was continued by Pandey et 
al. [20] who compared Multiple Linear Regression (MLR) and genetic 
algorithm to predict temporal scour depth near-circular pier in non-
cohesive sediment. This study utilized 1100 laboratory experimental 
data-sets to develop the generalized scour equation using MLR and GA. 
In recent publications, Jing and Li [21] developed a reliability analysis 
method by integrating GA with RBFNN. This paper adopted GA to find 
the “potential” most probable point (MPP) in the optimization problem 
by control the density of samples to refine the RBFNN. 

Differential evolution (DE) was first introduced by Storn and 
Price [22] to solve the various global optimization problems. DE is a 
manageable yet powerful evolutionary algorithm with the advantages 
of less parameter, high simplicity, and fast convergence [22]. DE has 
been beneficial to various networks such as Hopfield Neural Network 
[23] and feed-forward neural networks [24]. Chauhan & Chandra [22] 
proposed the DE algorithm to train a wavelet neural network (WNN) 
by minimizing network error to obtain the proper relationship from 
the input vector in the input layer to the output vector in the output 
layer. Tao et al. [25] utilized the DE algorithm to improve RBFNN as 
the prediction model for the coking energy consumption process. 
Particle Swarm Optimization algorithm (PSO) is a nature-inspired 
evolutionary algorithm that imitates the influence of bird migration 
behavior [26]. PSO algorithm is one of the evolutionary algorithms 
proposed by Kennedy and Eberhart [27]. In some succeeding works, 
Qasem & Shamsuddin [28] proposed the PSO algorithm for enhancing 
RBFNN learning by optimizing the parameters of the hidden layer 
and output layer. Another study has been made by Alexandridis et 
al. [29], who used the PSO algorithm to optimize the construction of 
RBFNN. The proposed model was able to solve classification problems 
and solve function approximations with improved generalization 
capabilities and accuracy.

Karaboga and Basturk [30], [31] proposed the Artificial Bee 
Colony algorithm (ABC) to gain computational edge in optimizing the 
capability of both local search and global search. ABC was inspired by 
collective behaviors of bees gathering honey in an optimized pattern. 
ABC has been beneficial to various networks such as Hopfield Neural 
Network [14] and Hermite Neural Network [32]. Kurban & Besdok 

[33] utilized ABC to estimation the centers, width, and weights as the 
main parameters of RBFNN. Yu and Duan [34] proposed an optimized 
ABC in RBFNN integrated with Fuzzy C mean Clustering. In this paper, 
2 layers of optimization in ABC were reported to increase the accuracy 
of the image fusion. Jafrasteh and Fathianpour [35] proposed hybrid 
RBFNN by introducing perturbation in ABC. The proposed system 
was reported to capture non-linear relationship in ore grade data. In 
another development, Satapathy et al. [36] combined the benefit of 
kernel trained ABC to further optimize the capability of RBFNN. The 
proposed RBFNN managed to increase the classification accuracy of 
EEG signal for epileptic seizure identification. The perspective has 
been expanded by Aljarah et al. [37] when they introduced hybrid 
ABC with RBFNN to solve well known datasets. On the perspective of 
logic programming in RBFNN, little studies have been done to optimize 
the parameter of RBFNN by using ABC. Kasihmuddin et al. [14] has 
demonstrated the ability of ABC to serve as an effective learning 
algorithm in Hopfield Neural Network (HNN). One of the notable 
use of ABC is proposed by Jiang et al. [30]. In this work, the ABC is 
employed for optimizing the parameters of RBFNN and predicting the 
ecological pressure. In another development, Menad et al. [38] have 
utilized the RBFNN framework with ABC algorithm (RBFNN-ABC) for 
predicting the carbon dioxide solubility and concentration in brine. 
The results manifested the capability of ABC in optimizing RBFNN 
that result in higher accuracy. By hybridizing RBFNN with 2SAT logic, 
here we examine the effects of ABC on the training phase as a single 
framework, RBFNN-2SATABC. Worth noting that the proposed model 
will be compared with the existing models. Thus, the main motivation 
of employing ABC in this research is due to: 

1. According to Kasihmuddin et al. [14], [62], ABC has outperformed 
the other algorithm such as [5] and [6] in enhancing the training 
phase for bipolar 2SAT logical representation. We extended the non-
binary representation for optimizing the parameter entrenched in the 
hidden layer of RBFNN as inspired by the binary operators consist of 
employed bees and onlooker bees’ phase. 

2. Several current studies such as Menad et al. [38] and Jiang et al. 
[39] utilize the ABC in optimizing the prediction capability of RBFNN. 
Both local search and global search capability reduce the chances for 
ABC to achieve sub-optimal fitness. Motivated by these recent works, 
ABC algorithm is applied in improving the output quality from the 
output weight thereby improving the performance of the structure 
RBFNN-2SAT.

To this end, the contributions of this paper are as follows: 

1. This paper explores another perspective in approaching implicit 
knowledge by using an explicit learning model. Real-life problem 
(implicit representation) is learnable by using a set of explicit 
mathematical representation (2SAT logical rule). 

2. This is the first attempt to embed 2SAT logical rule (knowledge) 
to the feed-forward neural networks (learner). In this study, the 
2SAT logical rule has been embedded in RBFNN by systematically 
obtaining the optimal value of parameters (center and width). 
2SAT logical rule is expected to optimize the structure of the 
RBFNN by fixing the number of hidden neurons involved.

3. Since the training of the proposed RBFNN always converges to 
suboptimal output weight, this paper will explore the capability of 
Artificial Bee Colony (ABC) compared to other existing established 
metaheuristics. The aim of the training model in RBFNN is to 
obtain the optimal output weight with the lowest iteration error. 
Extensive experimentation with various performance metrics has 
been conducted to reveal the effectiveness of ABC in the proposed 
RBFNN-2SAT.

4. The proposed RBFNN provides an interesting perspective. 
RBFNN obtained the output weight of 2SAT by minimizing the 
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objective function with the structurally systematic parameters. 
This approach is interestingly different from Sathasivam [40] that 
utilized the Wan Abdullah method in finding the correct synaptic 
weight (output weight). Although both paradigms utilized ABC 
in optimizing the proposed methods, the method proposed in 
this paper deals with non-binary optimization compared to the 
existing method. Therefore, the proposed method creates a new 
possible horizon for logic programming in the neural networks. 

The rest of this paper is arranged as follows. The 2SAT logical 
rule is formulated in the first section. After the overview structure 
of the general RBFNN, the proposed hybrid model integrated with 
2SAT is constructed. Accordingly, the proposed training model via 
metaheuristics algorithm namely GA, DE, PSO, and ABC will be 
discussed in detail. Finally, this paper presents numerical results to 
show the effectiveness of ABC in optimizing 2SAT in RBFNN and we 
conclude the paper with some remarks and future work. 

II.  Boolean 2 Satisfiability Representation

Satisfiability (SAT) is demarcated as a logic rule with an array 
of clauses composed of binary literals. SAT is effectively governed 
by positive [5] and negative outcomes. The main structure of SAT 
representation is shown as follows:

(a) Consists of a set of m variables of 1 2 3, , ,....., mv v v v . 

(b) Composes of a set of literals. A literal refers to the variable v  or 
a negation of a variable, v¬ .

(c) A set of n discrete clauses, 1 2 3, , ,..., nl l l l . Every single clause 
composes of literals strictly combined by only ∧  logical operator.

Every variable can only take a bipolar value which is 1 or 0 
that exemplifies the idea of true and false. Another variant of SAT 
representation is 2 Satisfiability. 2 Satisfiability (2SAT) consist of set 
of clauses that contain strictly 2 literals. The general formula for 2SAT 
logic is as follows:

2
1 1 1

,where , 2
n k n

SAT i i i j
i i j

P l l C D k
= = =

= ∧ = ∨ ∨ =
 (1)

where il  refers to the clauses of 2SAT, meanwhile andi iC D  denote 
the literals, ∨  refers to Disjunction (OR), and ∧  is an logical operator 
of Conjunction (AND).

The goal of 2SAT logic is to establish the ideal logical model of 
RBFNN to calculate the parameters of the hidden layer which 
contribute in deciding the number of hidden neurons in the hidden 
layer. Ideally, a combinatorial problem is similar to an ordinary 
mathematical model with quantifiable rate of change. Unfortunately, 
that statement does not hold if the specific combinatorial problem is 
dynamical and appeared as non-linear or linearly distributed. There 
were several efforts to represent the combinatorial problem via 2SAT 
formulation [42], [43]. These combinatorial problems contain implicit 
knowledge and could not be represented in standard rate of changes 
[44]. From that perspective, 2SAT is the main representation because 
this logical rule has a huge flexibility in terms of state (1 or 0) compared 
to standard mathematical representation.

III. Radial Basis Function Neural Network 

Radial Basis Function Neural Network (RBFNN) is a variant of feed 
forward neural network with hidden interconnected layer which was 
pioneered by Lowe and Moody [45], [46]. Compared to other network, 
RBFNN has a more integrated structure and architecture.  In terms 
of structure, RBFNN contains three neuron layers for computation 
purposes (See Fig. 1) [47]. In the input layer, m neurons represent the 

input data that was transferred to the system. During the training 
phase, the parameters (center and width) will be calculated in the 
hidden layer. The parameters obtained will be used to calculate the 
output weight in the output layer. To reduce the dimensionality from 
the input to the output layer, a Gaussian activation function has been 
introduced. The Gaussian activation function, ( )i xϕ  of the hidden 
neuron in RBFNN is as follows [48], [49]:

( )
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ji j j
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=

−

=
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( ) ( )Q x
i x eϕ −=  (3)

where cj , iσ  are the center and width of the hidden neuron, 
respectively. In this case, jx  is a input value for N  input neurons and 
the Euclidean norm  from neuron i to j can be defined as follows: 

2

' '
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j m j
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where '
jiw  is the input weight between the input neuron j and the 

hidden neuron i. Structurally, jx  is a input data in the training set and 
the hidden neuron i. ic  is the center of the hidden neuron. The final 
output of RBFNN ( )iF w  is given by the following:

( ) ( )
1

j

i i i k
i

F w w xϕ
=

=∑
 (5)

where ( ) ( ) ( ) ( ) ( )( )1 2 3, , ,.....,i NF w F w F w F w F w=  is the output value 
of RBFNN and the output weight is given by 1 2( , ,..., )i Nw w w w= .

The aim of RBFNN is to obtain the optimal weights iw  that satisfy 
the desired output value. In RBFNN, the hidden neuron provides a 
set of function that represents input pattern spanned by the hidden 
neuron [4], [47].
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Fig. 1. Structure of RBFNN.

In this section, we will consider no training in conventional method 
Radial Basis Function Neural Network. Radial Basis Function Neural 
Network no-training paradigm was proposed by Vakil-Baghmisheh 
and Pavešić [50]. No training in Radial Basis Function is the simplest 
training because all the parameters were fixed. This method of 
training of RBFNN-2SAT does not have any practical value, because 
the number of prototype vectors should be equal to the number of 
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input data, and consequently the network will be too complex. Fig. 2 
shows the steps to integrate RBFNN no training with 2SAT, which can 
be abbreviated as RBFNN-2SATNT [9]:

Start

End

Given a logic Programming and convert the formula into 
Boolean algebra system

Determine the input data xi=[–2, –1, 0, 1] and the target output 
yi in RBFNN

Determine the centers are the input values of the training data 
ci=[–2, –1, 0, 1] 

To assign initial values to the output weights in the output layer 
by some random values in the range [–1, +1]

Calculate the width σi=[0.074, 0.056. 0.094, 0.105]

Compute the output linear equation actual output

| f (wi) – yi| ≤ ζ

Performance evaluation

Fig. 2. Flowchart of RBFNN-2SATNT.

The parameter ix  is the input data, whereas ic  = ix  is the center, iσ
is the width, and ζ  is the tolerance value.

IV. 2SAT Programming in RBFNN

Kasihmuddin et al. proposed logic programming by integrating 
2SAT rule with neural network [14], [51]. The weight of the 
network was determined by Wan Abdullah method [2] where the 
inconsistencies of 2 Satisfiability logical rule have been minimized. 
The only problem of the proposed network is the rigidness of the 
weight calculation. 2SAT can be embedded to RBFNN by representing 
the variable as input neuron. Each input neuron jx  constitutes {0,1} 
which signifies False and True. By using the value from input neuron, 
the parameters such as ic  and iσ  will be computed and the best number 
of hidden neuron will be obtained. In other words, embedding 2SAT 
as a logical rule makes RBFNN able to receive more input data with a 
fixed value of center and width. Hence the aim of the combination is to 
create a RBFNN model that classifies data based on 2SAT logical rule. 
Representation of 2SAT in RBFNN is given as the following formula:

2
1 1

k n
SAT i j

i j
P C D

= =
= ∨ ∨

 (6)

where . iC  and jD  are atoms. Applying embedding 
method of RBFNN, Eq. (6) will transform to:

( ) ( )
1 1

k n

i i j
i j

x I C I D
= =

= +∑ ∑
 (7)

( ) ( ) 1,
0,i j

whenC or DisTrue
I C or I D

whenC or Dis False


= 
  (8)

Eq. (7) and (8) are vital in calculating training data for each 2SAT 
clause. Hence the implementation of 2SAT in RBFNN is abbreviated 

as RBFNN-2SAT. Table I illustrates the input data of RBFNN-2SAT for:

2 , , ,SATP C D E F K L= ← ← ←  (9)

TABLE I. The Input Data and the Output Target data for

2 , , ,SATP C D E F K L= ← ← ←

Clause ,C D ← E F← K L←

DNF C D∨ E F∨ ¬ K L∨ ¬

The Input Data Form x C D= +  x E F= −  x K L= −  

Input Data in the Training Set xi 0 1 2 -1 0 1  -1    0    1

The Target Output Data yi 0 1 1 0 1 1  0     1    1

After finding the center and the width of the hidden layer, RBFNN 
will use the Gaussian function in Eq. (3) to calculate the output 
weight. As the number of clauses increase, RBFNN-2SAT requires 
more efficient learning method to find the correct output weight. In 
this paper, a metaheuristics algorithm will be implemented to find the 
optimal output weights that minimize the following objective function:

 
( ) ( )

1

j

i i i
i

f w w xϕ
=

=∑
 (10)

where ( )if w  is the final output classification of the RBFNN-2SAT.

V. Genetic Algorithm in RBFNN-2SAT

A Genetic Algorithm (GA) is a standard metaheuristic algorithm 
in solving various optimization problems. Given a finite solution 
space, the structure of a GA can be divided into local search and global 
search [52]. In a GA, the strings populations called chromosomes are 
represented in terms of solutions to the optimization problem [53]. 
The quality of the chromosome is denoted by the fitness value. At 
every generation, the fitness value of each chromosome is estimated, 
and the best fitness is selected as final solution. The chromosomes 
improve their fitness by implementing three (3) operators namely 
crossover, selection and mutation. Crossover promotes the exchange 
of information between chromosomes. Hamadneh et al. [4] used 
the GA to decide the centers of hidden neurons width and number 
of the hidden neuron by minimize the sum of absolute error of the 
actual outputs and the desired outputs. During selection, several 
chromosomes are selected from the current population depending on 
their fitness value. Mutation has been added to create genetic diversity 
of the chromosomes. In this paper, GA will be used to optimize the 
output weight of RBFNN-2SAT by reducing the training error. The 
implementation of GA in RBFNN is defined as RBFNN-2SATGA. In 
RBFNN-2SATGA, GA will calculate the output weight by using the 
centers, width in the hidden neuron. The steps involved in RBFNN-
2SATGA are as follows:

Step 1
Population Initialization: The output weights represented by a 

chromosome will be initialized. The representations of chromosomes 
are as follows:

( )1 2 3, , ,....,i Nw w w w w=  (11) 

The population has Npop chromosomes containing NN of random 
output weights. The aim is to minimize the objective function:
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1, 0

0,

j

i i
GA i i

w x
f w

Otherwise

ϕ
=


 ≤= 



∑
 (12)

where ( )GA if w  is the objective function in the RBFNN-2SATGA 
model.

Step 2
Fitness Computation: The fitness of each individual chromosome 

is calculated via a basis function of RBFNN-2SAT. The basis function 
used in this paper is shown in the following equation: 

( )( )
1

1i
GA i

fit
f w

=
+

, 0 1ifit≤ ≤  (13)

where ( )GA if w  is the objective function and ifit  is the fitness 
value.

Step 3
Selection: The chromosomes are arranged in descending order 

based on the value of the fitness function. Only the best chromosomes 
(with the highest fitness value) are kept while others are discarded. 
The selection probability, pi for each chromosome will be calculated 
by using the following equation:

0

i
i n

i
i

fitp

fit
=

=

∑
 (14)

Step 4 
Crossover: During the crossover phase, information from the 

parent will be randomly exchanged for creating offspring with 
different genetic composition. The location of the crossover will be 
randomly selected. Crossover phase will determine the number of 
cross-population according to the crossover rate. Given two parents wk 
and wm, the offspring wi

new will be produced by the following equations 
[54], [55]: 

( ), , 1,2,3,...
, 1

m k m inew
i

m i

w r w w p i n
w

w p
+ − ==  −  (15)

where pi is the probability, r is the crossover rate, wk is the 
chromosome with higher probability, wm is the chromosome with 
lower probability and the parameter k is choosen by the following 
equation:

( , ),
, 1

i

i

rand m n p
k

m p
=  −  (16)

where k + m = n and k > m. The value of k is uniformly distributed 
between k and m. 

Step 5
Mutation:  During the mutation phase, the chromosome 

information will be randomly assigned within the pre-determined 
range (often determined by the user). The mutation is expected to 
create a newly breed of chromosome. The equation involved is as 
follows:

( )5,5 , (0,1)
, (0,1)

new
m

i

rand rand
w

w rand
τ

τ

 − <= 
≥  (17)

where new
mw  is the new chromosome from mutation phase when 

[0,1]τ ∈ . 

Step 6
Termination: GA will iterate up to 10000 Generations. If a given 

solution termination criterion is met, the calculation of the algorithm 
is stopped or will go back to step 2 with i = i + 1. The final output of 
RBFNN-2SAT is a chromosome that contains optimal output weights 
of RBFNN-2SATGA.

VI. Differential Evolution Algorithm in RBFNN-2SAT 

Storn and Price [22] has fruitfully introduced a new evolutionary 
population-based algorithm called the Differential Evolutionary (DE) 
algorithm which typically is being used in numerical optimization. 
The fundamental framework of DE algorithm can be divided into 
local and global search with an adaptable function optimizer [56]. The 
core differences between GA and DE is that the selection operator 
in DE uses an equal probability to elect parents. Hence, the chance 
is independent towards the fitness value of the solutions. In the DE 
algorithm, every individual solution competes with its parent and the 
fittest one will win [57]. In this work, the DE algorithm will be adopted 
as a learning mechanism during the training phase. The purpose of the 
training is to compute the corresponding output weights that connect 
hidden neurons and output neurons of RBFNN-2SAT. The stages 
involved in RBFNN-2SATDE in optimizing the connection weights 
between the hidden layer and the output layer is represented in Fig. 3.

Start

End

Initialization of the population
w = (w1, w2, w3, ..., wn )

Randomly select the initial parameter
w0 = w1 + rand (0,1) (wu – wl)

| f (wi) – yi| ≤ ζ

Mutation is generated according to
wi

M = wi
0 + F (wi

u – wi
l)

Recombination

wi
R =

wi
M,    if (rand(0,1) ≤ Cr )

wi
0,    otherwise,

wi
best =

Selection
wi

R,    if ( f (wi
R ) ≤ f (wi

0 ))
wi

0,    otherwise,

Save as

No

Yes

Output
results

Stop

wi
best

i++

Fig. 3. Flowchart of RBFNN-2SATDE.

The real parameters wl and wu are lower and upper bounds, 
respectively. w0 is the initial parameter value distributed uniformly on 

the intervals [ , ]l u
i iw w . 

M
iw  is the mutation output weight, [0,2]F ∈  is 

the mutation factor. R
iw  is the recombination output weight, [0,1]rC ∈  

is the crossover probalitiy. ζ  is the tolerance value.

VII.  Particle Swarm Optimization Algorithm in RBFNN-
2SAT

The PSO algorithm is a class of iterative swarm-based searching 
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algorithm, deployed widely as the learning algorithm or universal 
optimization. The pioneer work of PSO was coined by Eberhart and 
Kennedy [26] by mathematically modelling the socio-behavioral 
feature of the bird flocking and fish schooling in their own population. 
The remarkable feature in PSO is the existence of adjustable free 
parameters, which makes it easy to implement and optimize. 
Specifically, PSO adopted a vigorous searching process by impending 
the best particle in a solution space [58]. Pursuing that, the potential 
solutions, named particles, fly over the searching space by succeeding 
the existing optimum particles. In addition, the changes in the position 
of the particles occur in PSO, where it is vital in searching for the 
best particle. This study adopts the PSO algorithm to optimize the 
output weight among the hidden neurons and the output neurons of 
RBFNN-2SAT. Therefore, the steps involved in RBFNN-2SATPSO are 
represented in Fig. 4.

Start

Initialization of the population w0, x0

Evaluate initial populations using objetive function f (wi)

If   f (xi) < f (pi
best)  then  pi

best = xi

If  f (xi) < f ( gi
best)  then  gi

best = xi

End

Save as wi
best

Output results

Stop

| f (wi) – yi| ≤ ζ

The particle updates its velocity:

wi+1 = Ω wi + ε1 rand1 (pi
best – xi) + ε2 rand2 (gi

best – xi)

The particle updates 
its position: xi+1 = xi + wi+1

i++

No

Yes

Fig. 4. Flowchart of RBFNN-2SATPSO.

The parameter Ω is the inertia weight, whereas ε1 = ε2 = 2 are 
acceleration constants, rand1= rand2 are experimented arbitrarily 
within [0, 1], best

ip  refers to the individual best position attained by 
the particle of the primary swarm, and best

ig  denotes the global best 
position completed by the particles of the sucessive swarm and the 
position of the new particle, xi. Additionally, ζ  is the tolerance value.

VIII.  Artificial Bee Colony Algorithm in RBFNN-2SAT

Artificial bee colony (ABC) algorithm has been introduced by 
Karaboga [59] in resolving various mathematical optimization 
problems. In ABC, the colony of bees contains three groups called 
employed bees, onlooker bees, and scout bees. Generally, employed 
bees bring quantities of nectar from the resource food to the hive. 
They will share the information about the source of food with a 
certain probability by dancing inside the hive. Then, onlooker bees 
stay in the dancing areas and decide source of food depending on the 
prospect (the probability) provided by the employed bees [32]. The 
other type of bees is called the Scout Bee, which conducts the random 
search for new sources of food if the quality of the food source is not 
in a satisfactory state. In this paper, ABC will be used to optimize the 
output weight of RBFNN-2SAT by reducing the training error. The 

implementation of ABC in RBFNN is defined as RBFNN-2SATABC. In 
this context, the function to be optimized is:

 

( )
( )

1

1, 0

0,

j

i i
ABC i i

w x
f w

Otherwise

ϕ
=


 ≤= 



∑
 (18)

where ( )ABC if w  is the objective function of the RBFNN-2SATABC 
model. The algorithm involved in RBFNN-2SATABC is as follows:

Step 1

Population Initialization: Initialize all the bee that is:

1, 2,( , ,..., ,..., )ji i i ji diw w w w w=
 (19)

in RBFNN-2SAT as: 

min max min[0,1] ( )ji j j jw w rand w w= + −
 (20)

where min max,ji j jw w w ∈  , minjw  and maxjw  are the minimum 
value and maximum value of the output weight with index of  

{1,2,..., }i n∈  and {1,2,..., }j d∈ . n is the number of employed bees (the 
number of solutions), and d is the dimension of the solution space 
(number of hidden neurons).

Step 2

Employed Bee Phase: Employed bee will search for the food 
source. The new food source (solution) for employed bees, employed

jiw  
is given as follows:

( )0,1employed
ji ji jkjiw w rand w w= + −    (21)

where j, k are selected randomly and the wjk is called the neighbor 
bee of wji. The value of  ( )employed

ABC jif w  will be calculated as follows:

( ) ( )
1

j
employed employed

ABC iji ji
i

f w w xϕ
=

=∑
 (22)

( )
1

1
i employed

ABC ji

fit
f w

=
+

 (23)

where ifit  is the fitness value of the bee.

Step 3

Onlooker Bee Phase: The probability value of the food sources 
will be calculated. Onlooker bee will perform exhange of information 
based on the following probability:

( )
( )

Onlooker

1

employed
i

i i SN
employed
i

i

fit w
p

fit w
=

=

∑
 (24)

By using the above probability, the food source will be obtained by 
using equation (21).

Step 4

Scout Bee Phase:  If the values of fitness of the employed bees are 
not improving by a number continuous predetermined of iterations, 
which is called (Limit) those food source are abandoned, and these 
employed bee become the scouts, and generate a new solution new

iw   
for the employed bee by using the following equation:
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( 5,5),
,

new
i

i

rand limit trial
w

w Otherwise
− >

= 
  (25)

Step 5

Termination: If the stopping criterion is met, then it stops and 
the best food source is memorized, otherwise, the algorithm returns 
to Step 2.

IX. Experimental Setup

All the proposed RBFNN-2SAT model will be executed and coded 
in Microsoft Visual C # 2008 Express program in Microsoft Window 
7, 64-bit, with 500 GB hard drive specification, 4096 MB RAM, and 
3.40 GHz processor. The lists of parameters used in each RBFNN-2SAT 
model are summarized in Table II to Table V. Simulated data sets will 
be obtained by randomly generate the input data. The choice of data 
reduces the possible bias of the data which covers a wider range of 
search space. Next, the number of neurons NN used in the experiment 
varies from 6 108NN≤ ≤ .

TABLE II. List of Parameters in RBFNN-2SATGA

Parameter Value

Number of iteration 10000

Selection type Wheel selection

Number of individuals 50

Mutation ratio 1

Mutation type Uniform

Crossover ratio 1

Crossover type Single point

TABLE III. List of Parameters in RBFNN-2SATDE

Parameter Value

Number of iteration 10000

Cr [0, 1]

F [0, 2]

Population 50

TABLE IV. List of Parameters in RBFNN-2SATPSO

Parameter Value

Ω 0.6

ε1 2

ε2 2

rand1 = rand2 [0,1]

Number of iteration 10000

TABLE V. List of Parameters in RBFNN-2SATABC

Parameter Value

No_Employed_bees

No_Onlooker_bees

No_Scout_bees

50

50

1

Limit 1000

Trial 10000

X. Results and Discussion

Hamadneh et al. [60] use mean square error as a metric to appraise 
the performance of the trained RBFNN. In this paper, both proposed 
hybrid models will be compared by using four performance metrics 
such as Root Mean Square Error (RMSE), Sum of Squares Error (SSE), 
Mean Absolute Percentage Error (MAPE) and CPU Time. The equation 
for each performance metrics is as follows:

 
( )( )2

1

1n

i i
i

RMSE f w y
n

=

= −∑
 (26) 

( )( )2
1

n

i i
i

SSE f w y
=

= −∑
 (27)

( )( )
1

100 n
i i

ii

f w y
MAPE

n y
=

−
= ∑

 (28) 

where ( )if w  is the actual output value, iy  is the target output 
value and n is number of the iterations. In addition, computation time 
will be considered in order to evaluate the efficiency of the RBFNN 
model.
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Fig. 5. RMSE value for all RBFNN-2SAT models.
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In this study, 2SAT logical rule is expected to perform comparatively 
exceptional to other non-systematic logical rule such as [6], [29], [61], 
[62], [63]. This is due to the variation of the number of variables in 
each clause. This causes RBFNN-2SAT to alter the dimension of the 
hidden layer. Imbalance signal from the hidden layer to the output 
layer will lead to imbalance value of parameters (centre and width) 
and high computation error. The results in Fig. 5 until Fig. 8 allow to 
deduce the following findings:

1. RBFNN-2SAT can receive more input data with a fixed value of 
center and width. In this case, RBFNN-2SATABC creates a model 
that classifies data based on 2SAT logical rule with minimum value 
of RMSE, SSE and MAPE. 

2. RBFNN-2SATABC has best performances in terms of errors as the 
number of neurons is increased. In the exploration front (employed 
bee), ABC locates the general range of the optimal output weight. 
The value of the output weight improves significantly during 
the exploitation phase (onlooker bees). Based on the result, the 
probability for RBFNN-2SATABC to reach the scout bee phase 
is approximately zero. In this case, RBFNN-2SATABC effectively 
explores different solution space in less iterations.

3. In terms of computation time, RBFNN-2SATABC was reported 
to be faster than the other RBFNN-2SAT model. At 20NN > , the 
possibility for the conventional method RBFNN-2SATNT to be 
trapped in trial and error state increases. Trial and error cause 
RBFNN-2SATNT to achieve pre-mature convergence. 

4. On the other hand, RBFNN-2SATGA has a relatively larger 
learning error because of ineffective initial crossover. It requires 
several iterations for RBFNN-2SATGA to produce high quality 
output weight. During that time, the only operator that is effective 
is mutation. The problem is worsened when the suboptimal output 
weight is a floating number.

5. RBFNN-2SATDE is reported to illustrate some drawbacks such 
as tendency to be trapped at sub-optimal output weight and 
slow convergence rate. In this case, RBFNN-2SATDE requires 
more iterations to satisfy ( )i if w y ζ− ≤  which results in the 
accumulation of error. In addition, the unbounded mutation 
operator in DE tends to create numerous alternate search space 
that reduces the probability of the RBFNN-2SATDE to achieve 
optimal output weight. 

6. In another perspective, RBFNN-2SATPSO has a relatively lower 
learning error compared to another model. This is due to the use 
of the particle in this algorithm that mimics our proposed ABC 
algorithm.  Although the result for RBFNN-2SATPSO seems quite 
promising, this algorithm lacks the control of the effective local 
search. In this case, as 10000t → , the search space for each 
particle will magnify indefinitely and result in suboptimal output 
weight. Hence, RBFNN-2SATPSO will converge prematurely.

These experiments show that the ABC algorithm can be 
successfully applied to train RBFNN-2SAT. Another observation is 
that the effectiveness of ABC can be seen vividly when the number of 
neurons increases. Moreover, ABC algorithm in RBFNN achieves more 
promising performance based on RSME by 94.8%, SSE by 72.9%, MAPE 
by 99.1%, and CPU time by 39.8%. This concludes that ABC in RBFNN-
2SAT could be used in practice to achieve better prediction results for 
the 2SAT logic programming.

XI. Conclusion

A hybrid paradigm, ABC algorithm incorporated with RBFNN and 
2SAT (RBFNN-2SATABC) has been fruitfully developed to foster the 
learning phase with different number of neurons. Following that, the 
work as reported in this paper reveals the significant differences in the 
performance of RBFNN-2SATABC in terms of Root Mean Square Error 
(RMSE), Sum of Squares Error (SSE), Mean Absolute Percentage Error 
(MAPE), and process time (computation time in seconds). Furthermore, 
the proposed paradigm offers an error of approximately 2% of 
MAPE, and faster computation time compared to RBFNN-2SATGA. 
Henceforth, the RBFNN-2SATABC has been clearly recognized to be 
more robust than the RBFNN-2SATGA in certain aspects which include 
better lower error and faster process time in performing 2SAT logic 
programming. As future development, the RBFNN-2SATABC can be 
improved by using different classes of Satisfiability logic ranging from, 
Major Satisfiability (MAJ-SAT), Weighted SAT, Maximum Satisfiability 
(MAX-SAT) and Unsatisfiable Satisfiability (MIN-UNSAT). This work 
also can be applied as a traditional optimization method to solve 
problems such as travelling salesman and N-queen’s problem. 
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