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Abstract

In the present paper, the B-spline curve is used for reducing the entropy of video data. We consider the color 
or luminance variations of a spatial position in a series of frames as input data points in Euclidean space R 
or R3. The progressive and iterative approximation (PIA) method is a direct and intuitive way of generating 
curve series of high and higher fitting accuracy. The video data points are approximated using progressive and 
iterative approximation for least square (LSPIA) fitting. The Lossless video data compression is done through 
storing the B-spline curve control points (CPs) and the difference between fitted and original video data. The 
proposed method is applied to two classes of synthetically produced and naturally recorded video sequences 
and makes a reduction in the entropy of both. However, this reduction is higher for syntactically created than 
those naturally produced. The comparative analysis of experiments on a variety of video sequences suggests 
that the entropy of output video data is much less than that of input video data.

DOI: 10.9781/ijimai.2020.12.002

I. Introduction

The technology of video compression has been a fundamental tool 
in video fields and multimedia communication for many years. 

The main objective of video compression is making a reduction in 
the volume of data by prospecting the correlations of video frames in 
such a way that a digital video file can be broadcast almost entirely 
over the network and stored on the computer disks. According to 
the required reconstruction, video compression techniques can be 
categorized into two large groups of lossy compression and lossless 
compression [1]–[3].

The increased use of high quality videos reveals the need for 
decreasing the volume of compressed video for transmission and 
storage, especially in social media networks. The lower the entropy 
of the data, the smaller the number of bits is required to encode them. 
Thus, this study aims to provide a practical procedure to reduce the 
entropy of the video data. Each color plane in the RGB space and 
subsequently RGB color image are respectively indicated using 8 bits/
pixel and 24 bits/pixel. The inter and intra frame codings are exerted on 
the image sequences to decrease the temporal and spatial redundancy 
of the data in the image sequences.

The study of curve construction from a data point set is widely 
employed as a modeling instrument in many areas such as image 
processing, computer graphics, computer aided design (CAD), reverse 
engineering, object shape detection, and scientific visualization. 
According to its application, curves of implicit, parametric, and 

subdivision type are applied to data fitting. Converting data points 
into parametric curves including B-spline or Bézier curves is 
extremely desired in engineering applications. Most of the papers in 
the literature used motion estimation for video data compression. In 
more recent ones, the parametric curves such as the Bézier curve or 
natural cubic spline have been applied to compress video data into 
small storage space.

The Bézier curve is constructed by Bernstein basis that has limited 
flexibility. The degree of curve is directly relative to the number of 
control points (CPs). For a complicated shape and data, a large number 
of CPs may be required. To overcome this shortcoming and provide 
more flexibility and control, the B-spline curve is suggested as the 
generalization of the Bézier curve. In case the number of CPs is high, 
the use of lower degree parametric curves is possible. In order to 
prevent the additional cost of computations for solving a large linear 
equations system, the progressive iterative approximation (PIA) is 
used that is computationally efficient and simple to implement.

The PIA method is a direct and intuitive way of generating curve 
series of high and higher curve fitting accuracy. The PIA method 
refrains from solving a large linear equations system with an additional 
computational cost. The PIA technique begins with an initial curve and 
adjusts the curve CPs in an iterative process. Then, the resulted point 
cloud is interpolated and approximated by the limit curve. In this paper, 
we propose a technique for lossless video data compression making 
use of the B-spline curve The color or luminance variations of a spatial 
position in a series of frames are considered as data points in Euclidean 
space ℝ or ℝ3. The data points are approximated using progressive and 
iterative approximation for least square fitting (LSPIA). The proposed 
method reduces entropy and has efficient computational complexity.
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In particular, our contributions are the following:

• We use the B-spline curve with remarkable flexibility to 
approximate the video data.

• The PIA method is applied to find the optimal CP of the B-spline 
curve with no need of solving a large linear equations system.

• Our method can be considered as a lossless video compression 
method that reduces the entropy of video data.

The organization of this paper is as follows. A brief summary of 
the related works is given in Section II. Section III provides a simple 
overview of LSPIA using the B-spline curve. The procedure of the 
proposed method using the B-spline curve to fit video data is explained 
in Section IV. Section V describes in detail the methodology adopted to 
design the video data compression. Section VI is dedicated to the study 
of the experimental results for various videos. A brief discussion on 
the proposed method in video compression is provided in Section VII. 
In the end, a conclusion is made in Section VIII.

II. Review of Literature

In recent decades, multiple processes have been developed in the 
field of curve fitting by the use of Bézier and B-spline curves. Biswas 
[4] used the quadratic Bézier curve for compression of the grayscale 
images. Bézier curve has been used to capture the outline of planar 
generic images. An outline capturing technique was presented in [5] to 
estimate the appropriate location of CPs by the utilization of the cubic 
Bézier curve properties. In [6], a method is designed to capture the 
outline of 2D shapes using the cubic Bézier curve with the emphasis 
given to local control of data points rather than the global error of 
square fitting. A novel outline capturing scheme for 2D shapes was 
introduced in [7] based on the Nelder-Mead simplex method.

In [8], the L-BFGS optimization is exerted on data points to which 
B-spline curve is fitted. Ebrahimi and Loghmani [9] used approximation 
BFGS methods to make optimization of the foot and CPs of the 
B-spline curve. The complexity per step in [9] is O(n), requiring only 
O(n) memory allocations. In [10], a practical approach to curve fitting 
is presented for the specification of the initial B-spline curve which 
is near to the target curve. A length parameter is presented by this 
method which allows adjustment to the number of CPs. This makes 
the initial B-spline curve more precise. The scaled BFGS algorithm 
is then employed for simultaneous optimization of control and foot 
points.

Lin et al. [11] introduced the phrase ”progressive iterative 
approximation” in 2005. The standard PIA procedure is not feasible 
for curve fitting with plenty of the data points when control and 
data points are equal in number [12]. Delgado and Pena [13] proved 
that the normalized B-basis is a totally positive basis with the fastest 
convergence rate. A local PIA format is designed in [14] and showed 
the convergence of the local format for the normalized totally positive 
based blending curve. An approach is proposed for weighted PIA of 
data points using normalized totally positive basis in [15] with a faster 
convergence rate. In [16], an extended PIA is introduced in which 
the number of given data points with storage requirement O(n) is 
higher than the number of CPs, where n is the number of the CPs. An 
adaptive data point fitting based on the PIA is proposed in [17]. Zhang 
et al. [18] developed a progressive T-spline method of fitting large-
scale datasets such as images of high precision. Deng and Lin [19] 
introduced the LSPIA where the number of data points is more than 
that of CPs. LSPIA provides a set of fitting curves making adjustments 
of the CPs and leading to the given data points through least square 
(LS) fitting as the final curve. Ebrahimi and Loghmani [20] presented 
the composite iterative method for LSPIA with a fast convergence rate. 
This method constructs a series of matrices applied to the adjusting 

vector on the base of the Schulz iterative method. A comprehensive 
survey on PIA methods has been provided in [21].

Motion Estimation (ME) is the most popular in removing the 
temporal redundancy in video compression that can be arranged into 
pixel and block motion estimations [22]. The motion vector in pixel 
motion estimation is computed for every pixel in the frame. The block 
motion estimation method divides frames into blocks and then the 
motion vector is computed for every block. In the interframe coding 
method, block motion estimation plays a key role in reducing temporal 
redundancy in the image sequence. A block-matching approach can be 
developed to modify the coding efficiency and video quality. In the 
past three decades, some improvements have been made in motion 
estimation techniques such as pelrecursive methods, optical flow, 
block matching algorithms, and parametric-based models [23].

By making some attempts, quick application and simple 
comprehension of block matching algorithms make them fundamental 
methods of motion estimation in video compression. The full search 
algorithm (FSA) is the easiest method in the block matching algorithms 
that has high computational cost. To accelerate the search procedure 
and decrease the computational complexity, several fast block 
matching algorithms, such as diamond search (DS) [24], hexagon 
search (HS) [25], three step search (TSS) [26], [27], four step search 
(FSS) [28] have been proposed.

To perform a method of fast motion estimation, Koga et al. [29] 
introduced TSS as a primary attempt. Compared to the full search, the 
TSS method has a less computational cost in terms of average search 
point and mean absolute difference.

The computational cost TSS method is less in average search point 
and mean absolute difference as compared to the full search method. 
The modified TSS algorithm is presented in [27] for weighted finite 
automata coding and block matching motion estimation methods to 
reduce the encoding time.

Video and image compression using parametric curves explored by 
many authors. Fu et al. [30] has been explored a video object encoding 
method pursuant to the data fitting trajectory of video object moving 
edges pixels that is suitable for the slowly moving video/ video data. 
The cubic spline interpolation is used in [31] to modify medical image 
compression for medicine applications. The cubic convolution spline 
interpolation is proposed on the basis of the LSs method to compress 
the image data in [32]. In [33], based on the natural cubic spline and 
parametric line fitting, a method for lossy compression is presented in 
order for compression of digital video data in the temporal dimension. 
The linear Bézier curve is used in [34] for the approximation of 
temporal video sequence in Euclidean space. Khan [35] has proposed 
an algorithm for lossless video compression which was based on the 
quadratic Bézier curve and least square technique.

III. The Progressive and Iterative Approximation for 
Least Square Fitting (LSPIA)

Here, we first formulate the blending curve and review the LSPIA 
(readers are referred to [19] for details).

A nonnegative basis  defined on a set I with 
 for all t ∈ I is taken as a blending basis.

A totally positive blending basis is defined as normalized totally 
positive (NTP) basis. Let  be an NTP 
blending basis. Then, assuming a sequence of the CPs  in ℝ or 
ℝ3, a blending curve as

 (1)
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can be considered. Suppose that  is an 
ordered data point sequence on a target curve to be fitted and

is the location parameters of . Taking 
 form  similar to the CPs, the initial 

blending curve  is defined:

 (2)

The  collocation matrix of the NTP blending 
basis  on  is

 (3)

At the beginning of the iteration, let

 (4)

 (5)

where µ is a non zero real scalar and

where λ0 is the largest eigenvalue of AT A. By the movement of the 
CPs  along the regulating vector , i.e.

 (6)

and the new curve,

 (7)

Similarly, obtaining the k-th blending curve Ck after the k-th 
iteration, we suppose 

 (8)

 (9)

we can generate the (k + 1)-th blending curve as follows

 (10)

The mentioned iterative process produces a curve sequence 
 whose limit is the LS fitting curve of the original 

data points  [19].

The initial situation of the  may be selected as

where . In addition, we adopt the uniform 
parametrization to assign the parameters  for .

In this study, having numerical computation stability and extensive 
use in image processing, we wxamine the LSPIA by B-spline curve. 
Having B-spline basis functions, B-spline is a blending curve. Let 

 be  CPs and  be the B-spline basis functions 
of degree r (or order r + 1) defined on a given nondecreasing real-
number knot vector U = , then a B-spline curve 
of degree r will be as follows

 (11)

where the B-spline basis functions  is defined recursively by 
the Boor formula

The proposed method works for any number of CPs and any degree 
of B-spline curve but from our experimental results, we notice that 
r = 3 and n = 7 are appropiate for degree of curve and number of CPs 
respectively. Further, the cubic B-spline basis are constructed on the 
knot vectors

where . According to the B-spline 
curve definition, it is clear that the properties of the B-spline basis 
function are passed t the B-spline curve. These properties are as 
follows:

• Partition of unity

• Affine invariance

• Convex hull property

• Local control

• Multiple knots

IV. Video Data Fitting With LSPIA

In this section, the process of the video data fitting using LSPIA 
is presented. Let a video include a sequence of m frames, and each 
frame possesses W × H pixels, where H and W respectively are the 
height and width of video frames. The value of each pixel in a frame 
is a data point in Euclidean space ℝ1 or ℝ3 for luminance or 3-D RGB, 
respectively. The temporal data of a spatial location

in m frames are , i. e.,  for luminance 
or  for 3-D RGB. Then, we approximate the m 
values of each spatial location  by the LSPIA method. 
Fig. 1 illustrates the RGB variation of a spatial position (50, 50) in 96 
Mobile and Calendar video sequence frames.

The video data from each spatial location in an sequence of frames 
(input data) is approximated with much less number of control points 
(output data) of the B-spline curve. This process is separately used to 
intensify RGB variations in the temporal dimension of each spatial 
position. The luminance values of a spatial position (50, 50) in 96 
Foreman video sequence frames are fitted using a cubic B-spline basis 
and LSPIA in Fig. 2.

V. Methodology

The main purpose of the proposed method is video data compression 
by reducing the entropy of output data. A smaller number of bits is 
needed to store the video data with lower entropy. In the first step, the 
color or luminance variations of a spatial position in series of frames 
are considered the input data in Euclidean space ℝ or ℝ3. In the next 
step, we use the B-spline curve and approximate the input video data 
with a considerably smaller number of CPs. In addition, LSPIA fits the 
input video data with low approximation errors and without solving 
a system of equations. In this step of the work, we need to store only 
the CPs of the B-spline curve to approximate the input data. In the 
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final step, the difference between primary and approximated video 
frames (DF) are also stored for lossless video compression. According 
to the curve fitting method used in this work, the difference between 
primary and cubic B-spline approximated data has limited values 
in the short-range in comparison to primary values in the primary 
video sequence. Therefore, the entropy of CP and DF in the proposed 
method is far less than that of the primary video sequence. It is worth 
mentioning that our method can be used for lossy video compression. 
The basic foundation of our method is explained in Algorithm 1.

We use the CPs of the B-spline curve to create the approximated 
video frames and then add the frame difference (FD) to reconstruct 
the original video. In contrast to the most existing methods that use 
the neighbor’s pixels to reduce spatial redundancy, our method merely 
uses temporal redundancy.

Algorithm 1. Video data compression using LSPIA

Input: A video includes a sequence of m frames, and each frame 
possesses W × H pixels;

Output: The CPs of B-spline curve and the difference between 
primary and approximated video frames (DF);

for i = 1 to W do
     for j = 1 to H do
        Consider the data of spatial location (i, j) in m frames ;

        Approximate  using LSPIA;

        Store the CPs of B-spline curve;

        Store the difference between  and B-spline curve (DF);

     end for
end for
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Fig. 2. B-spline curve fitting to the luminance values of a spatial position (50, 50) in 96 Foreman video sequence frames using LSPIA.
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Fig. 1. The RGB variation of a spatial position (50, 50) in 96 Mobile and Calendar video sequence frames.
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VI. Experiments and Results

The introduced technique described in the previous section has 
been applied to some synthetically produced and naturally recorded 
video sequences and its results have been compared with those 
obtained with the method in [35]. We compare our method with the 
technique proposed by khan [35] because it used the quadratic Bézier 
curve and entropy criterion.

According to the required reconstruction, the methods of video 
compression can be classified into two groups of lossless compression 
methods, in which the output video is identical to input video, and 
lossy compression methods, with generally provide much higher 
compression in which the output video is different from the input 
video.

Some innovative improvements have been recently made to lossy 
video compression to which interested readers can refer [27] and the 
references therein. The introduced method in this study is a lossless 
video compression and hence instead of PSNR, we use the entropy 
criterion to evaluate the efficiency of the compression method. The 
entropy is a scale of the required mean number of binary symbols for 
coding the source output. Encoding source output with the bit mean 
number equal to the source entropy is indicative of a desired lossless 
compression method.

Suppose a source (frame) of information has M symbols (pixel 
values) with individual probability Pi and 

The entropy of a single video frame can be defined by:

 (12)

We calculate the entropy of video using the mean entropy of all 
frames that construct the video sequence.

To evaluate the proposed method efficiency, five standard video 
sequences of different resolutions with sufficient complexity are 
selected for the simulation as listed in Table I and one of the frames of 
each input video sequence is represented in Fig. 3.

TABLE I. Schematic of the Test Video Sequences

Test video sequences Format Resolution Frames
Mobile and calendar RGB 352 × 240 96

Dinosaur RGB 352 × 288 96

Cloud RGB 352 × 240 96

Foreman Luminance 352 × 240 96

Hall and monitor Luminance 352 × 28896 96

The entropy of the videos is simply calculated using Equation (12). 
The output data in our method for computing entropy consists of 
the CPs and the difference between primary and approximated video 
frames (DF). The output data produced by algorithm [35] need to be 
stored and used in computing entropy which includes: (1) the end 
CPs of Bézier curve, (2) the middle CPs of Bézier curve, and (3) the 
difference between the quadratic Bézier approximated and original 
video sequences.

Table II compares the introduced method with algorithm [35] in 
terms of entropy. It can be seen that the significantly lower entropy is 
produced by the proposed method than those generated by [35].

TABLE II. Performance Comparison in Terms of Entropy

Video name Original video Method [35] Our method

Mobile and calendar 7.627 6.653 6.431

Dinosaur 7.163 2.736 2.334

Cloud 7.567 4.032 3.849

Foreman 7.228 5.124 4.576

Hall and monitor 7.233 3.918 3.243

a) Mobile and calendar sequence b) Dinosaur sequence

d) Foreman sequence e) Hall and monitor sequence

c) Cloud sequence

Fig. 3. One of the frames of video sequences.
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VII.  Discussion

The videos tested in the previous section are classified into two 
groups: (a) naturally recorded video sequences; and (b) synthetically 
created video sequences. Among them Hall, Mobile and Foreman 
video sequences are naturally recorded, while Cloud and Dinosaur 
video sequences are synthetically produced. Mobile and Calendar, 
Dinosaur and Cloud video sequences have RGB components while 
Foreman and Hall have a single component of luminance. Although 
our proposed method makes a decrease in the entropy of both 
classes of video sequences, the entropy of naturally recorded is more 
decreased than that of synthetically produced. In fact, the proposed 
algorithm performs significantly better for the synthetically created 
video sequences. It can be justified that the synthetically created video 
sequences have less temporal fluctuations and can be approximated 
with a small number of CPs. The number and degree of CPs in the 
B-spline curve are two factors that must be determined in our method.

The causes for the performance of our method are as follows:

1. Instead of the Bézier curve, the B-spline curve is used in our 
proposed method which has better interactive flexibility and local 
control property. Also, the number of CPs can be changed with 
no need of changing the degree of the B-spline curve. Hence, the 
introduced method creates a better approximation with desirable 
precision.

2. The input data in [35] are divided into segments based on 
the breakpoints and each segment is then approximated by a 
quadratic Bézier curve. This is while our method fits the input data 
without segmentation using a B-spline curve. This makes simpler 
computations for the method proposed compared to the method 
[35].

3. The LSPIA method used in this study approximates the video data 
with low fitting errors and without solving a system of equations.

4. The reduction in entropy is higher for synthetically produced than 
naturally recorded video sequences.

5. In comparison with block level fitting, the pixel level fitting 
provides more control over accuracy.

The other PIA methods such as composite iterative method with 
fast convergence rate [20] can be further used to find the optimal CP 
of the B-spline curve. The weighted parametric curves like the NURBS 
curve can be applied instead of the B-spline curve. This is a topic of 
interest for our future work. The authors plan to use the proposed 
method in H.264 coding that is a modern video compression method 
with lossless macro-block coding features.

VIII.  Conclusion

A practical method for lossless video compression with a B-spline 
curve has been introduced. The purpose of our method was to fit 
the data obtained from the color or luminance variations of a spatial 
position in series of frames. The LSPIA found the optimal CPs and 
approximated the input data. The introduced method can be used for 
3-D color spaces such as RGB, Y CbCr or HSV. The experimental results 
demonstrated an easier implementation of our proposed algorithm and 
substantially reduced entropy of video sequences. The superiority of 
our study lies behind the fact that it causes a reduction in the entropy 
of all video sequences, particularly the synthetically created ones.
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