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Abstract

Progress in predictive machine learning is typically measured on the basis of performance comparisons on 
benchmark datasets. Traditionally these kinds of empirical evaluation are carried out on large numbers of 
datasets, but this is becoming increasingly hard due to computational requirements and the often large number 
of alternative methods to compare against. In this paper we investigate adaptive approaches to achieve better 
efficiency on model benchmarking. For a large collection of datasets, rather than training and testing a given 
approach on every individual dataset, we seek methods that allow us to pick only a few representative datasets 
to quantify the model’s goodness, from which to extrapolate to performance on other datasets. To this end, 
we adapt existing approaches from psychometrics: specifically, Item Response Theory and Adaptive Testing. 
Both are well-founded frameworks designed for educational tests. We propose certain modifications following 
the requirements of machine learning experiments, and present experimental results to validate the approach.

DOI:  10.9781/ijimai.2021.02.009

I.	 Introduction

Thanks to the recent popularity of machine learning and artificial 
intelligence techniques, researchers and practitioners now have 

a very considerable choice of models and learning algorithms when 
facing a given task. However, as choices come with deliberations, 
selecting an appropriate model is also becoming more challenging. 
Traditionally, model selection involves two steps:

1.	 Gather related work and explore existing comparisons.

2.	 Prepare a shortlist and run the models within the target task for 
more detailed and local comparisons.

However, given the number of research areas and datasets available 
now, few research papers provide a fully comprehensive benchmark 
on all related datasets. There is also a considerable risk of confirmation 
bias. People tend to focus on datasets where the proposed approach 
leads to improvements, making it even harder to obtain a fair and 
comprehensive view of different methods [1]. Regarding the second 
step above, given the rapid rise in computational demands among 
recent approaches, it is often impractical to simultaneously cover a 
broad set of experiments.

Despite the emergence of platforms such as OpenML [2] that aim 
to collect experimental results via standard configurations, it still 
requires relatively large numbers of new experiments once a novel 
task/method is introduced. These additional experiments could take 
a non-trivial time to run given OpenML’s crowdsourcing nature. 
Although certain research areas and methods can come with formal 
guarantees, these only cover limited scenarios and most practices in 

the field still rely on experiments and empirical evaluations. Therefore, 
in this paper, we consider the problem of efficiently obtaining fair and 
reliable benchmarks on a set of models and datasets.

To get started, in this paper we focus on the typical setting of 
predictive machine learning. We assume some labelled datasets and 
several classifiers can be trained and tested on any possible combination. 
An experiment includes a set of evaluation measures, and we read 
the measurements to reflect the performance on any given model-
dataset pair. We want to investigate approaches that can accurately 
quantify performance on a large variety of models and datasets while 
limiting the overall computational costs. For this purpose, we refer 
to the fields of psychometrics and testing in education and borrow 
the frameworks of Item Response Theory [3], [4] and Computerised 
Adaptive Testing [5], [6]. Both frameworks assume the same scenario, 
where a participant is assigned several items to answer (response). A 
typical example would be educational tests, where each student is a 
participant, and each test question is an item.

Item Response Theory (IRT) is a collection of probabilistic models 
built on the participants’ responses to the items. In IRT, a representative 
setting assumes each participant has an ability parameter, and each 
item has a difficulty parameter. Both sets of parameters can affect 
the collected responses, but are not directly observable. IRT aims to 
learn these parameters from the collected responses, after which we 
can quantitatively interpret each participant’s level and item with the 
parameter magnitudes. We can further use these parameters to perform 
statistical transformations, such as to rank students on their estimated 
abilities (rather than ranking them on the observed responses).

Computerised Adaptive Testing (CAT) is a framework further 
built on top of IRT. IRT expects the availability of many responses 
from different participant-item combinations. Sometimes a specific 
combination might not be necessary. For instance, it is less informative 
to give a more challenging question to a student who just failed to 
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answer a much simpler one. The purpose of the CAT is to adaptively 
select the items according to previous responses so that the total 
number of items used in the test is kept at a relatively low level. Our 
work’s central hypothesis is that IRT and CAT can be used – with some 
essential modifications – for benchmarking machine learning models.

This paper focuses on predictive machine learning tasks, where 
every dataset is an item, and each model class is a participant. We aim 
to investigate the possibilities of using the IRT and CAT frameworks to 
obtain accurate benchmarks on each model-dataset combination while 
limiting the total number of experiments. The main contributions 
of the paper include: (1) We adapt and modify the IRT and CAT 
frameworks to incorporate the need for model benchmarks as in 
machine learning. (2) We establish a set of experiments to investigate 
and compare a set of IRT and CAT approaches in a machine learning 
context, and demonstrate the benefits of having adaptive testing in 
typical predictive tasks. The outline of the paper is as follows. We first 
give a brief introduction of the existing approaches from both IRT 
and CAT in section II, following proposed modifications on them for 
our benchmarking requirements in section III. Experiments on some 
standard models and datasets will be presented in section IV, and 
finally, additional discussions and insights are provided in section V.

II.	 Background

This section gives an overview of basic concepts and methods in 
IRT and CAT and introduces necessary notation. We also discuss some 
existing work on applying IRT in machine learning.

A.	Item Response Theory
Item Response Theory refers to a collection of methods that 

measure individual abilities, item (question) difficulties, and other 
potential attributes by checking individual responses to a set of items. 
IRT models are probabilistic models with latent variables, where the 
responses are the observations, and abilities, difficulties and other 
related parameters are the latent variables to be estimated. IRT 
models are of particular use when the responses distribute differently 
according to different items, and only averaging the responses does 
not adequately represent a participant’s ability. IRT is therefore 
particularly suitable for analysing the results of educational exams 
and many physiological tests. When it comes to machine learning 
experiments, where different datasets typically come with varying 
baseline performance, IRT provides an opportunity to treat the 
performance gains among these datasets fairly.

In the following, we introduce two conventional IRT models and 
discuss their parameter settings and applications. We use θ to denote 
the parameter of a particular candidate, and δ and a for item parameters 
(some IRT models have more than two item parameters). The notation 
R denotes the random variable of the responses.

1.	Two-parameter Logistic Model
The two-parameter (per item) logistic model is defined as follows:

	 (1)

	 (2)

 from which expectation and variance of R are obtained as follows: 

	 (3)

	 (4)

Here R ∈ {0, 1} is a binary response variable indicating whether a 
particular individual answered a particular item correctly, θ ∈   is 
the individual’s ability parameter, and δ ∈   is the item’s difficulty 
parameter. The two-parameter logistic model additionally has a 
discrimination parameter a on the items, which controls how rapidly 
the response distribution changes when candidate ability varies. 
Therefore, assume we have two participants with different abilities, 
an item with high discrimination tends to have higher differences 
between the responses from the two participants, respectively. Positive 
discrimination indicates that higher ability leads to higher expectation 
on the responses, and vice versa. Besides the two-parameter setting, 
there also exists a few variants on Logistic IRT. The three-parameter 
setting further adds a guessing parameter which lower-bounds the 
response expectation. A multinomial setting can also be adapted to 
support categorical responses beyond the binary setting.

2.	Three-parameter Beta Model
While the logistic model supports binary responses, a recently 

proposed IRT model extends the support to continuous response [7]:

	 (5)

	 (6)

	 (7)

It can then be shown that: 

	 (8)

	 (9)

Here R ∈ [0, 1] is a bounded continuous response, θ ∈ [0, 1], 
δ ∈ [0, 1] and a ∈  . Similar to the logistic case, a is a discrimination 
parameter that controls the change rate of responses according to the 
ratio between ability and discrimination. In addition to supporting 
continuous responses, one advantage is that the item characteristic 
curve of the three-parameter Beta model can have a variety of shapes 
beyond the usual sigmoid shape (for a > 1), including inverse-sigmoid 
(0 < a < 1), parabolic (a = 1) and even identity (a = 1, δ = 1/2). For the 
cases with a < 0, the Beta model can give a symmetry shape to the 
cases with a > 0 with respect to the vertical line of r = 0.5.

3.	Estimation of IRT Parameters
The estimation of IRT parameters proceeds as follows. We 

assume to have a bag of L items, denoted as  = {1, …, L}, and a bag 
of M participants, denoted as  = {1, …, M}. With a given experiment 
protocol, we can collect a set of N item-participant-response tuples, 
denoted as {(d1, f1, r1), …, (dN, fN, rN)}. Here di ∈  , fi ∈   represents a 
particular item / participant respectively, and ri is the corresponding 
response. Denote θ = {θ1, …, θM} as the parameter vector of abilities 
of all participants, ω = {ω1, …, ωL} as the vector of item parameters, 
and g(r; θ, ω) as the likelihood function of a selected IRT model. The 
maximum likelihood estimation can then be stated as:

	 (10)

Among specific applications, we can also see a Bayesian treatment 
[7], [8], where the aim is to calculate the full posterior of the 
parameters, hence capture the corresponding uncertainties. In this 
work, we primarily use maximum likelihood fitting in order to keep 
the computational cost manageable.
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B.	Computerised Adaptive Testing
The fundamental idea of CAT is that, rather than testing 

a participant with all the questions or a random sequence of 
questions, the participant is given questions with practical difficulty 
selected in real-time based on the current estimate of ability. We can 
then update the ability estimate with the response to the selected 
question and select the next question. Therefore, it is quite common 
to apply CAT based on a pre-trained IRT model, where we have 
estimated the difficulties (and other parameters) and abilities on a 
pool of items/participants.

As a result, most CAT approaches include three main components: 
an IRT model, an item selection method, and an item exposure 
method. As the name suggests, an item selection method determines, 
given the current ability estimate, how we select an item with 
appropriate difficulty to be the next question to estimate the ability 
better. Intuitively, we do not want the item to be too complicated or 
too simple for the actual ability, as in both cases the responses do not 
give much additional information about the ability. We introduce two 
common item selection methods in the following sections.

On the other hand, the item exposure method controls the marginal 
probability that a particular item is selected for the participant. The 
motivation is that we do not want a small number of questions to be 
exposed to the participants often. Such high exposure can potentially 
leak these questions to further participants hence affect later responses. 
In this work, we focus on the item selection criterion and discuss item 
exposure methods at the end of the paper.

1.	Fisher Item Information
We start with the most commonly adopted approach for item 

selection, which uses Fisher information [9], [10]. Given the current 
candidate ability θ, a fitted IRT model with the likelihood function 
g(r; ω, θ), and a set of L items with parameters {ω1, …, ωL}, the Fisher 
item information (FII) on the jth item is then calculated as:

	 (11)

	 (12)

Here (ωj, θ) refers to the corresponding probability measure of the 
IRT model. The Fisher item information calculates the variance of the 
likelihood gradient, so that we can find the item(s) that can potentially 
change the likelihood function to a more considerable extent.

2.	Kullback-Leibler Item Information
As illustrated above, FII only depends on the current estimate of 

the ability parameter θ according to the local gradient. Alternatively, 
one can consider calculating the information based on both the 
current estimate θ and a potential estimate θ . By considering different 
potential θ , we might obtain more global information for the item 
selection process. This idea motivates the KL information (KLI) [10], 
[11], which is constructed based on the Kullback-Leibler divergence 
between the IRT likelihood g with current ability θ and the one with 
an updated ability θ*. The divergence on the jth item with parameter ωj 
is defined as: 

	 (13)

However, during application time we do not have access to the 
updated parameter θ*, and hence cannot calculate the KL-divergence 
directly. As a solution, we consider the potential information from the 
jth item to be the integrated divergence around the current ability θ, 
given the fact that the KL divergence is non-negative: 

	 (14)

Hence, this KL item information is an aggregated gain around the 
current ability estimate, hence can be used to select the item with 
maximal information.

As mentioned, the main difference between FII and KLI is that the 
former only uses the local parameter estimates while the later obtains 
the information globally across different parameters [11]. The main 
benefit of the KLI approach is that it captures the changes in the 
ability parameter in both directions with a targeted range. Thus, it 
provides a way to merge the contributions from nearby regions on 
the item characteristic curve. On the other hand, FII is always based 
on the local gradient, requiring no extra configuration, which is more 
suitable when the ability estimate is closer to the actual value. KLI and 
FII can also prefer the same selection, particularly when the IRT model 
quantifies the responses well and has optimised likelihood on them. 
Later in the experiments, we adopt both of these two approaches to 
investigate their effectiveness for adaptive testing in machine learning 
empirically.

C.	Applications in Machine Learning
There has been some recent work adopting the IRT framework 

for machine learning model analysis [7], [12], [13]. All three apply 
IRT on a model-instance level, seeing a model as a participant and 
treating a data instance within a given dataset as an item. In [12], [13] 
the authors use the Logistic model and discuss the interpretation of 
the learnt IRT parameters, including models like the always-correct 
model (e.g. predicts the ground truth). The response reflects whether 
a model correctly predicts the target class. In [7], the authors propose 
the three-parameter Beta model and learn its parameter in a Bayesian 
setting (e.g. posterior of the parameters). As the Beta IRT model 
supports bounded continuous response, in [7], the authors selected 
the correct class’s predicted probability as the response.

III.	Proposed Methods

The benchmarking methods we propose in this paper require some 
modifications on top of existing IRT and CAT methods to apply them 
to the problem of model-dataset evaluation. In general, we consider 
the following two requirements for the IRT and CAT methods. (1) 
They should support modelling continuous gain/loss measures 
standard in machine learning. (2) The corresponding item information 
should be obtainable analytically or through efficient approximations. 
Furthermore, we discuss the preference for non-negative discrimination 
in the scenario of a model-dataset benchmarking.

A.	Modified Logistic IRT
The first modification is on the Logistic IRT family. Due to its 

original application scenario, the Logistic IRT family was used to 
model binary responses. As introduced above, to support CAT with 
a continuous response, the IRT needs to model a continuous response 
and provide the corresponding likelihood. The original Logistic IRT 
works on a Bernoulli assumption and the model estimates a mean 
parameter in the closed interval [0, 1]. While in Bernoulli distribution, 
the mean parameter is sufficient to calculate the likelihood, we need to 
consider another parameterisation for the continuous case. Although 
the Beta-3 IRT model uses the Beta likelihood and supports continuous 
response by default, it would also be valuable to keep an IRT model 
with sigmoid shape for better comparison. To achieve this, we replace 
the Bernoulli assumption with a logit-normal assumption in the IRT 
model. We use the original logistic function to calculate the mean of 
the response, and add a extra parameter s as the standard deviation: 
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	 (15)

	 (16)

	 (17)

The likelihood is then given as: 

	 (18)

However, as the logit transform is not linear, the expectation (mean) 
and variance don’t have closed forms: 

	 (19)

	 (20)

As both integrations involve the probability density function, 
the most straightforward solution here is to consider Monte-Carlo 
numeric integration (e.g., importance sampling): 

	 (21)

	 (22)

	 (23)

Here Q is the number of samples used in the calculation. In general, 
the approximation will be more accurate when using a larger Q. 
Although there is also a certain analytic approximation for the expected 
value (e.g. the probit approximation), we keep the sampling approach 
as it is also required to calculate item information as discussed later. 
With these modifications, the IRT model and corresponding CAT 
approaches can work with any bounded continuous response. While 
other possible extensions support continuous response [14], [15], we 
experimented particularly with the logistic and Beta-3 models given 
their close connection.

B.	Approximate Item Information
The second modification also aims to incorporate continuous 

responses. While using binary responses, both Fisher item information 
and KL item information can be derived analytically [11]. Such closed 
forms generally are no longer possible when switching to IRT models 
with continuous response. However, as the integration in both Fisher 
item information and part of KL item information calculates an 
expectation over a density function, we can approximate them again 
with Monte-Carlo sampling. For FII, the approximation is given as: 

And similarly for KL divergence: 

For both approximations we have ri ∼  (ωj, θ) to be random samples 
from the corresponding distribution.

While the calculation of FII is done with this single step, KLI still 
requires a further approximation to solve the second integration 
around θ, where we can consider a simple trapezoidal rule given ϵ is 
relatively small and KLωj(θ||θ) = 0: 

With these approximation approaches, both item information 
quantities can be calculated efficiently, which is relevant as item 
information needs to be calculated for every candidate dataset at every 
step of the adaptive testing process.

C.	The Constraint of Non-negative Discrimination
For typical IRT models, positive discrimination indicates the item 

has better average responses from candidates with higher ability 
estimates. In contrast, items with negative discrimination can be 
seen as tricky ones that cause stronger candidates to be more likely 
to give the wrong response than lower-ability candidates. In [13], 
the authors discuss the interpretation of negative discrimination in 
machine learning with each data instance being an item. One of their 
observations is that negative discrimination is often observed on 
instances within the regions where their opposite label dominates. A 
similar discussion can also be found in [7] with the Beta-3 IRT model. 
In this setting, the correct response from a model (candidate) when 
facing a data instance (item) is the instance’s correct label. Assume we 
have a bag of instances with a Bayes optimal probability of 0.9 to be 
a positive class, and we can then conclude that models with a higher 
ability estimate should be more likely to give the correct response 
(positive). However, as there is still a probability of 0.1 for an instance 
to be negative, an optimistic prediction from a good model becomes 
the wrong response for these instances. It is clear that negative 
discrimination indeed describes the situation for these minority 
instances, and having negative discrimination parameters is essential 
for the IRT model to fit the responses correctly.

We now switch to the dataset configuration addressed in this paper, 
where each participant is still a model, but each item is changed to be a 
particular dataset. We consider a response to be a single performance 
measurement obtained via fitting the model on a random training 
fold and measuring the model with the remainder of the dataset. We 
assume all performance metrics to be calculated as gain measures so 
that a higher measurement indicates a better response for the IRT 
models. Therefore, if a model has a stronger ability, we expect it to 
have a higher averaged performance on most of the datasets, meaning 
it statistically fits well with a variety of training sets (i.e., it can capture 
a large function space) and also generalises to unseen test sets (i.e., 
no over-fitting). The question is then if we can design a dataset so 
that stronger models tend to have a lower (expected) performance, 
which is the requirement for negative discrimination to occur. The 
first possibility to have a averaged lower performance on a given 
dataset is that the dataset is hard to separate, that is, there is little 
pattern to be learnt from any part of the dataset. However, for such a 
dataset we expect most models to perform similarly as the labels are 
not dependent on the features, indicating a 0 discrimination is more 
suitable than negative values. The second possibility for a model to 
perform poorly on a dataset is that the model over-fits the training 
set. While this can happen with a particular combination of the 
training set and test set, it is less likely to occur when considering 
the averaged performance from a large number of random training 
sets and test sets. Furthermore, as discussed above, a model needs to 
be robust against over-fitting on most datasets to be estimated with 
higher ability. Therefore, it does not appear realistic to postulate that 
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a specific dataset can cause more robust models to be more vulnerable 
to over-fitting.

In accordance with this discussion, in this paper we assume the 
discrimination parameter to be non-negative. In practice, we can 
achieve this either via constrained optimisation during the estimation 
of IRT parameters, or directly by estimating the logarithm of the 
discrimination parameters via unconstrained approaches. We adopt the 
latter in our implementation, within a stochastic gradient descent and 
automatic differentiation framework. Alternatively, one can also do it the 
Bayesian way, which assumes a prior distribution that makes positive 
discrimination more likely. However, as we only consider the maximum 
likelihood case in this paper, we leave this option as future work.

IV.	Empirical Evaluation

This section experimentally investigates the performance of the 
IRT and CAT-based benchmarking methods introduced in this paper. 
We assess their performance with the following two experiments.

1.	 To compare different IRT models, we evaluate their performance 
to make inferences over unseen responses (several standard 
machine learning evaluation measures).

2.	 To assess the utility of the CAT-based method, we examine the 
efficiency of different item selection methods, in terms of the 
amount of computation costs it saves from testing the entire 
collection of datasets.

We first introduce the experimental setup. For the first IRT 
experiment, we compare the inference errors on responses using a 
standard train-test split. Regarding the CAT methods, we compare the 
final root mean squared error (RMSE) on the inferred response and the 
convergence speed, given the test sequences and the validation sets.

A.	Setup
As response targets, we selected six evaluation measures commonly 

used in predictive machine learning: (1) multi-class accuracy, (2) Brier 
score, (3) log-loss, (4) weighted averaged binary accuracy, (5) weighted 
averaged binary AUC, and (6) weighted averaged binary F-measure. All 
these losses are bounded within [0, 1] except the log-loss, which requires 
post-processing. We rescaled the averaged log-loss to the range of [0, 1] 
with the exponential operation, which is an invertible calculation and 
ensures the final density function is valid on both scales. Furthermore, 
we use the negative value of Brier score and log-loss to fit the IRT 
models, so that they become gain measures (i.e., larger values indicate 
better results), in line with the other evaluation measures.

We select a set of datasets and model classes (described below) and 
run each model-dataset combination with an even random train-test 
split ten times. We use these results to train both Beta-3 and Logistic 
IRT models.

We use the 165 datasets provided by PMLB [16], which is a pre-
processed collection of UCI datasets on various classification tasks. For 
computational efficiency, for all the datasets with more than 10, 000 
instances, we sample it down to 10, 000 instances while approximately 
keeping the marginal distribution of the target variable.

We selected 9 model classes from the sklearn package: (1) multi-
layer perceptron (MLP), (2) K nearest neighbours (KNN), (3) support 
vector machine (SVM), (4) pseudo Gaussian process (GP), (5) decision 
tree (TREE), (6) random forest (RF), (7) Ada boosting (ADA), (8) naive 
Bayes (NB), and (9) logistic regression (LR).

We selected eight different parameter settings for each model class 
to form different model instances, resulting in a total number of 72 
models. For instance, for the MLP we choose a range of hidden units 
in a two-layer setting. Regarding the GP, here we call it pseudo models 
as the sklearn implementation does not support sparse covariance 
matrix hence can not scale to large datasets. We hence perform a 
simple random sampling on the training set. We first randomly select 
one data point for each class, then further sample random data points 
from the entire training set.

B.	Evaluation of IRT Approaches
The first experiment we performed was to investigate whether 

the IRT models can accurately model and infer the performance 
measurements. As introduced in section II and III, the IRT models can 
estimate a distribution of the responses given each dataset and model 
combination. Therefore, we can evaluate each IRT model’s goodness 
by evaluating the quality of these estimated distributions. Here we 
consider evaluating each distribution’s mean, which is the estimated 
average performance measurement between the corresponding model 
and dataset. In general, we expect the estimated average response from 
a good IRT model to be close to some previously unseen measurements 
during future tests.

For this purpose, we perform ten times random split experiments on 
the collected responses from the 165 datasets and 72 models. We then 
divided the collected responses into a training set and a test set. We use 
the training set to estimate the IRT models’ parameters, and the test 
set to verify the expected responses from each IRT model. Given the 
continuous responses, we use the root mean squared errors (RMSE) 
as the metric to evaluate the IRT models. Table I gives the results; 
notice here the RMSE is calculated after re-scaling all the evaluation 
metrics (e.g. the log-loss is re-scaled to [0, 1]). Additionally, the raw 
global mean and standard deviations of all the evaluation measures are 
also given. As the results show, both IRT models infer the evaluation 
measures well, with most RMSE values smaller than 0.05, which is 
considerably lower than the population standard deviation. For most 
evaluation measures, Logistic IRT and Beta-3 IRT perform similarly. 
Fig. 1 shows the item characteristic curves of both IRT approaches on 
the chess dataset and labour dataset with multi-class accuracy as an 
evaluation metric. Both IRT approaches tend to assign the same order 
to the ability parameters, as we can observe a similar pattern with the 
responses marked by the black points. Although in the bottom figures 
the two item characteristic curves are quite different from each other 
around the edges of the figures, it is noticeable that the curves behave 
similarly around the region with dense black points. This observation 
can help illustrate how the two different IRT approaches share similar 
RMSE values in the final results.

TABLE I. The Inference Errors (RMSE) of Both IRT Models on Different Evaluation Measures (top Two Rows), and the Global Mean and 
Standard Deviation of the Original Evaluation Measures (Bottom Two Rows)

Acc BS LL W-Acc W-AUC W-F1

Logistic 0.01349 0.00555 0.04379 0.00922 0.01763 0.05150

Beta-3 0.01569 0.00625 0.04151 0.02367 0.01498 0.05060

Global Mean 0.71878 0.79850 0.42725 0.79339 0.76487 0.58888

Global Std 0.21352 0.12954 0.29986 0.16509 0.18878 0.34585
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C.	Evaluation of IRT and CAT Pairs
For the second experiment, we use different IRT and item selection 

approaches to test a set of different classifiers. We selected five 
classifiers from the sklearn package with their default settings as the 
candidate model: (1) gradient boosting classifier (GBC), (2) multi-layer 
perceptron (MLP), (3) support vector machine (SVM), (4) random 
forest (RF), and (5) logistic regression (LR). Here the GBC classifier 
is not used during the fitting of IRT models, while other classifiers 
have different parameter settings compared to those in the IRT model 
estimation process. While this group of classifiers doesn’t cover all the 
model types as seen in the previous experiment, we select them due to 
their differences (e.g. linear v.s. nonlinear, ensemble v.s. standalone).

We run these models with all the datasets ten times using the same 
setting as in the previous experiment. The performance measurements 
are collected and used as a validation set. During adaptive testing, each 
time we update the model ability, we use the trained IRT to infer the 
expected value of responses (performance measures). We then calculate 
the corresponding RMSE the validation set to evaluate different IRT 
and CAT approaches. In principle, a better IRT-CAT combination 
should eventually have a lower RMSE and a faster convergence speed 
to the final RMSE.

We start by assuming the candidate model has average ability, then 
keep testing the model and updating its ability until we have tested 

all the datasets. We record the selected dataset at each test step, and 
the RMSE calculated using the validation set. Here we first analyse 
the results on the gradient boosting classifier (GBC) with multi-
class accuracy as an example. Table II and Table III show the indices 
of the selected dataset and the RMSE on the averaged response on 
some locations of the testing sequences, respectively. It can be seen 
that both item information approaches pick similar datasets around 
the beginning of the sequence. This result can be observed with the 
logistic case, where test 1, 2, 3 , and 10 all select the same combination 
of datasets, and the order only differs between the first two tests. 
As discussed, FII and KLI can give similar selections when the IRT 
approach models the responses well. Hence our observation here 
agrees with the low RMSE as shown in the previous experiment. To 
further verify this observation, we calculate the pair-wise correlation 
with Kendall’s Tau among the entire testing sequences for the GBC 
with all six performance metrics, and the results are shown in Fig. 2. 
The correlation between the two item information quantities with the 
same IRT approach can be clearly observed for the entire test sequence 
of 165 datasets across all metrics.

We can observe a similar pattern on the RMSE sequence decay on 
averaged responses. Both FII and KLI led to quite similar RMSE values 
around the beginning of the sequence with the first 3 tests. While 
the two item information approaches have lower RMSE values at the 
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Fig. 1. The estimated item characteristic curves of the Logistic IRT and Beta-3 IRT models on two datasets evaluated with multi-class accuracy. The blue line indicates 
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TABLE II. The Index of the Selected Dataset At Some Locations of the Adaptive Testing Sequence (Gradient Boosting Classifier and Multi-
class Accuracy). For Example, the Logistic-FII Approach Select the 93 Dataset for the First Test, and Proceed With the 114 Dataset for the 

Second Test, This Selection Process Continues Till All the Datasets Have Been Tested

Test 1 Test 2 Test 3 Test 10 Test 50 Test 100 Test 150

Logistic (Fisher) 93 114 147 135 79 140 42

Logistic (KL) 114 93 147 135 79 148 70

Logistic (Random) 20 80 89 39 27 164 61

Beta-3 (Fisher) 107 115 156 55 113 116 45

Beta-3 (KL) 107 1 43 124 113 23 45

Beta-3 (Random) 116 38 34 87 15 3 92
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early stage, the random selection also performs remarkably well and 
gets to a relatively low RMSE value at test 10 in the logistic case. All 
RMSE values are very similar within each IRT approach from test 50 
onwards.

To quantitatively adaptive testing sequence on the RMSE, we 
now examine the number of tests required before the inference error 
converges to a certain level according to the end of the test sequence. 
To calculate this number, given a test sequence of inference errors 
(RMSE), denoted as (r1, …, rT), we first select the final inference error rT 
at the end of the entire sequence and construct a consequence region 
of |rT − ϵ|. In this experiments we set ϵ to be 0.05 of the minimum RMSE 
in the sequence, then we can obtain the convergence point c so that for 
∀i ≥ c we have |ri − ϵ| ≤ ϵ.

Table IV lists the convergence points for the five different candidate 
classifiers and six evaluation measures. It is noteworthy that there are 
various cases where it took only 1 or 2 tests (out of 165 datasets) before 
the testing sequence reaches the convergence point. While both Fisher 
item information and KL item information require a smaller number 
of tests than random selection, we can still observe a few cases where 
random selection gives the fastest convergence. We hypothesise the 
randomness causes this within the model testing procedure. As the 
evaluation measurements can differ even on the same combination of 
dataset and model configuration, specific measurements cause a high 

bias on the item selection information, which leaves random selection 
a suitable backup choice. To obtain the best efficiency of adaptive 
testing, it is therefore suggested to calculate both item information 
and perform random selection while adaptive testing is required, so 
that the fastest convergence can always be achieved.

V.	 Conclusion

This paper introduced a novel framework to effectively benchmark 
a set of predictive models on an extensive collection of datasets. 
Instead of performing experiments on all possible datasets, we propose 
to model the similarity and dependency among different models and 
datasets to infer their experimental results without actually running 
all train-test cycles. Furthermore, we adopt the adaptive testing 
technique and uses the uncertainties on the unknown measurements 
to automatically decide a testing sequence for any unseen model based 
on the previous observations.

We performed a range of experiments, from which some general 
conclusions can be drawn. First of all, the choice of the IRT model 
plays an essential role in the benchmark. A suitable IRT model can 
indeed lead to better inference on the test results, without spending 
much effort on further testing. Which IRT model is most suited for 
which machine learning evaluation metric warrants further research. 

TABLE III. Root Mean Squared Error of the Expected Response At Some Locations of the Adaptive Testing Sequence (Gradient Boosting 
Classifier and Multi-class Accuracy)

Initial Test 1 Test 2 Test 3 Test 10 Test 50 Test 100 Test 150

Logistic (Fisher) 0.12102 0.08409 0.08411 0.08354 0.08368 0.08466 0.08438 0.08375

Logistic (KL) 0.12103 0.12099 0.08525 0.08462 0.08393 0.08480 0.08452 0.08380

Logistic (Random) 0.12103 0.09959 0.09138 0.09038 0.08542 0.08380 0.08362 0.08362

Beta-3 (Fisher) 0.10100 0.07818 0.07828 0.07821 0.07817 0.07814 0.07809 0.07811

Beta-3 (KL) 0.10100 0.07818 0.07808 0.07803 0.07832 0.07855 0.07841 0.07843

Beta-3 (Random) 0.10100 0.08526 0.08236 0.08264 0.08444 0.07814 0.07834 0.07811

(a) Multi-class accuracy (b) Brier score (c) Log-loss

(d) Weighted averaged binary accuracy (e) Weighted averaged binary AUC (f) Weighted averaged binary F-measure
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Fig. 2. Kendall’s Tau between the adaptive testing sequences of the gradient boosting classifier on all six evaluation metrics, a brighter yellow colour indicates a 
stronger correlation and a deeper blue colour corresponds to a weaker correlation.
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Secondly, we have demonstrated that adaptive testing can effectively 
reduce the total number of experiments. For most evaluation measures, 
we can observe a significant decay on the inference error with a 
small number of tests, leading to a significant reduction of model 
benchmarking costs.

One of the most promising directions for future research is to 
incorporate this adaptive testing framework into the development 
cycle of machine learning approaches. Modern data-driven 
approaches usually require many train-test runs to optimise their 
configuration and hyper-parameters. Although a range of approaches 
have been proposed in auto-ML and neural architecture search [17], 
most approaches still require to perform large-scale experiments on 
the given datasets to obtain the search points. With the assistance 
of adaptive testing, we can further attempt to reduce such search 
costs by selecting the most promising datasets. Another direction is 
to look beyond predictive machine learning tasks. Recent work has 
made significant progress on non-predictive tasks such as random 
data generation and neural-based density estimation. Both areas can 
potentially benefit from adaptive testing considering their significant 
computational demands during training. Item exposure control [18] is 
also worth further consideration in the benchmarking process, which 
allows us to further control the rate that a particular dataset is used.
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