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Abstract

One threatening medical problem for human beings is the increasing antimicrobial resistance of some 
microorganisms. This problem is especially difficult in Intensive Care Units (ICUs) of hospitals due to the 
vulnerable state of patients. Knowing in advance whether a concrete bacterium is resistant or susceptible to an 
antibiotic is a crux step for clinicians to determine an effective antibiotic treatment. This usual clinical procedure 
takes approximately 48 hours and it is named antibiogram. It tests the bacterium resistance to one or more 
antimicrobial families (six of them considered in this work). This article focuses on cultures of the Pseudomonas 
Aeruginosa bacterium because is one of the most dangerous in the ICU. Several temporal data-driven models are 
proposed and analyzed to predict the resistance or susceptibility to a determined antibiotic family previously 
to know the antibiogram result and only using the available past information from a data set. This data set 
is formed by anonymized electronic health records data from more than 3300 ICU patients during 15 years. 
Several data-driven classifier methods are used in combination with several temporal modeling approaches. The 
results show that our predictions are reasonably accurate for some antimicrobial families, and could be used by 
clinicians to determine the best antibiotic therapy in advance. This early prediction can save valuable time to 
start the adequate treatment for an ICU patient. This study corroborates the results of a previous work pointing 
that the antimicrobial resistance of bacteria in the ICU is related to other recent resistance tests of ICU patients. 
This information is very valuable for making accurate antimicrobial resistance predictions.
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I.	 Introduction

Antimicrobial resistance occurs when a germ develops the 
capacity to not respond to the drugs designed to combat them 

[1].  Nowadays, antimicrobial resistance is one of the greatest threats 
to the global health system [2]. Apart from the health consequences, 
the economic impact deriving from  antimicrobial resistance is not a 
trivial issue, resulting in a 7% reduction in the Gross Domestic Product 
by 2050 [3]. Indeed, it has become more acute in recent years due to 
the excessive use of antibiotics in many facets of daily life [4].

The acquisition of antimicrobial resistance is favoured in hospital 
environments, being even worsened for patients admitted to the 
Intensive Care Unit (ICU). This could be motivated by the duration 
and intensity of the drug treatment, as well as by the use of life 

support devices. The critical health status of ICU patients pushes 
actions to anticipate the result of the cultures provided by the 
microbiology laboratory, which usually takes 48 hours. A culture is 
a biological sample collected to isolate a bacterium, aiming to analyze 
its susceptibility to different antibiotics. The test used to measure 
this susceptibility is called antibiogram, and its result (susceptible/
resistant) is commonly used by clinicians to determine the antibiotic 
treatment [5]. It is interesting to note that several families of antibiotics 
may have similar susceptibility when tested on a given germ species 
[6]. There are several species with high prevalence, for example, 
Acinetobacter spp.; Enterococcous fecalis and Enterococcus faecium; 
Escherichia coli; Klebsiella pneumoniae; Pseudomonas aeruginosa; 
and Staphylococcus aureus, among others. In this paper, we focus on 
Pseudomonas aeruginosa for the following reasons: (1) its virulence, 
specially in the ICU;(2) its ability to cause chronic infectious diseases; 
and (3) its ability to develop multi-drug resistance [7], [8].

For all these reasons, anticipation to the culture result in case of 
resistance, is vital to isolate the patient and control the spread of 
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antimicrobial resistance among other ICU patients. Computational 
tools inspired on data-driven models may be supportive to clinical 
decisions previous to the antibiogram result. The article [6] introduces 
the concept drift observed in antimicrobial resistance data sets, and 
it uses a windowing scheme together with dynamic classifiers to 
perform resistance prediction. It classifies cultures as susceptible or 
resistant to some antibiotics using a database of EHR which includes 
years from 2002 to 2004, considering cases of meningitis. A high 
number of the state-of-the-art studies use whole genome sequencing 
[9]–[ 12]. Because of its considerable cost, in this study we propose to 
predict resistant bacteria based on Electronic Health Records (EHR) 
data from ICU, together with historic antibiogram results. This data 
is already available in most hospitals, and therefore the methodology 
proposed in this paper can be straightforward extrapolated. 
Comparable approaches are studied in previous works [6], [13]–[18]. 
In [17], bacterial infection in the ICU using EHR data is predicted 
(binary classification task) by applying a set of machine learning (ML) 
methods. The prediction is carried out at the patient level in order 
to determine which patients no longer require more antimicrobial 
treatment. Longitudinal data from 2001 to 2012, extracted over the 
24-hour, 48-hour or 72-hour window following their first antibiotic 
dose, are considered. No temporal modelling was explicitly taken into 
account. The work in [18] presents an study for predicting bacterial 
resistance also using EHR data, from 2013 to 2015. An ensemble of ML 
methods is used to classify isolated bacterial cultures as susceptible 
or resistant to a particular antibiotic. The temporal relation among 
instances is considered here, with features indicating the proportion 
of past antibiotic resistance infections identified as having the highest 
average impact. This study also concludes that the feature encoding 
the date of the culture has some effect on the prediction, probably due 
to the fluctuating resistance frequencies through time.

Owing to the dynamics of antimicrobial resistance, we analyze in 
this paper electronic health records collected during 15 years, from 2004 
to 2019, by the University Hospital of Fuenlabrada (UHF) in Madrid, 
Spain. This data have been partly considered in previous studies carried 
out by the authors [14], [15], [16],[19]. In particular, authors in [14] used 
a reduced dataset taking into account two years less (from 2004 to 2017) 
than in the current work. All patients admitted in the ICU in this period 
were considered in [14], regardless of their length stay. Additionally, 
authors in [14] used ML to determine whether a Pseudomona 
Aeruginosa bacterium will be resistant or not (binary target) to different 
families of antimicrobials without considering information about 
historic antibiogram results. In [15], we analyzed for the first time 
the dynamics on Pseudomona Aeruginosa by considering incremental 
time windows on a period of time from 2004 to 2013, with two families 
of antibiotics. It was also our first incursion on the use of features 
taking into account the result provided by previous antibiograms of 
other ICU patients. This current paper extends the work in [15] while 
considering the predictive window length (one month) that best results 
provided in [15]. Specifically, to carry out predictions, the Random 
Forest (RF) method has been added to previously considered method, 
Logistic Regression (LR). We have increased both the number of years 
under study and the number of antibiotics (from 2 to 6). We have also 
considered as features the result provided by previous antibiograms of 
each patient, weighted by a factor depending on the time elapsed since 
the last antibiogram was tested. Furthermore, two approaches have 
been explored to analyze the dynamic of antimicrobial resistance by 
evaluating the models in several time horizons.

The rest of the paper is as follows. In Section II, we describe the 
data set analyzed in this paper and provide a graphical exploration of 
it. Section III introduces the data preprocessing as well as the methods 
used for temporal modelling. Results and discussion and provided in 
IV. Finally, the conclusions are presented in Section V.

II.	 Materials

A.	Data Set Description
Data considered in this work correspond to 3812 admissions of 3346 

ICU patients, collected at the UHF during a period of 15 consecutive 
years (from July 2004 to May 2019). Note that, since the number of ICU 
admissions exceeds the number of patients, there are patients with more 
than one ICU admission during this period. A total of 43658 cultures 
were collected. Although there are more than 290 different types of 
bacteria and 27 antimicrobial families, we only take into account here 
the cultures where Pseudomonas have been detected, ending up in a total 
of 764 cultures. For this bacterium, the antibiograms considered in this 
work test the response (encoded as susceptible (s) or resistant (r)) against 
the following set of family of antibiotics a = {amg, car, cf4, pap, pol, qui}.  
Elements in the set a refer to: Aminoglycosides (AMG), Carbapenems 
(CAR), 4th Generation Cephalosporins (CF4), Extended-spectrum 
penicillins (PAP), polymyxins (POL) and Quinolones (QUI), respectively.

Since data-driven models are based on learning from instances, we 
consider here the target c&ai, as the antibiogram result for a specific 
family of antibiotic ai, for every culture collected to any patient. The 
feature vector associated with each target is represented by the 40 
features described in Table I. We define here the instance as the pair 
composed by the feature vector (input features to the data-driven 
models) and the target (outcome of the data-driven models).

TABLE I. Name and Description of the Features Characterizing 
Each Instance for Every Family of Antibiotics (AMG, CAR, CF4, PAP, 

POL, QUI), Tested on a particular Patient P. The Result for the 
Antibiogram Family ai Is Encoded in the Binary Target Feature c&ai 

(Not Presented in this Table)

Feature name Description

age
gender
origin
goi_*
pluripathology

age of the patient
gender of the patient

clinical origin before ICU admission 
7 features, each linked to a different group of 

illness *: A, B, C, D, E, F, G 
number of groups of illness

patient_category
reason_admission
start_date

day_week_admission

day_month_admission 
month_admission
year_admission

clinical category of the patient 
reason of admission at ICU 

date the patient was admitted 
day of the week the patient 

was admitted to the ICU
day of the month the patient  

was admitted to the ICU 
month the patient was admitted 
year the patient was admitted

date_culture
day_week_culture
day_month_culture
month_culture
year_culture
culture_type
culture_type_group1
culture_type_group2
days_to_culture

date of the culture
weekday the culture was collected 

day of month the culture was collected 
month the culture was collected
year the culture was collected

type of culture
1st level grouping for the culture type 

2nd level grouping for the culture 
type number of days elapsed from 

start_date to date_culture

p&ai 6 features, each linked to one family ai of 
previous antibiograms of patient p: amg, car, 

cf4, pap, pol and qui
r&ai 6 features, each linked to one family ai of 

previous antibiograms for other recent 
patients different from p: amg, car, cf4, pap, 

pol and qui
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As for the input features, we first analyze demographic data: age, 
gender, group of illness A (cardiovascular events), B (kidney failure, 
arthritis), C (respiratory problems), D (pancreatitis, endocrine), E 
(epilepsy, dementia), F (diabetes, arteriosclerosis) and G (neoplasms), 
and pluripathology (indicating whether the patient has more than two 
comorbidities). The median age of patients admitted to the ICU was 
64 years (interquartile range 55-73, range 18-87), with a majority of 
men (70%). Pluripathological patients are 40.6% of the patients, with 
comorbidities mostly related to respiratory problems (33.4%), diabetes 
(26.3%) and neoplasms (33.1%).

We then focus on the information about the ICU admission: date 
of admission to the ICU, department of origin before ICU admission 
(surgery, internal medicine, urology,...), reason for admission (serious 
infection, acute respiratory failure, hypovolaemia,...) and patient 
category (medical or surgical). The clinical origin before the ICU 
admission more common was surgery (31.1% patients) and emergency 
department (18.4%). The reason of admission more common was 
serious infection (22.5% patients) and acute respiratory failure (18.4% 
patients). The most common patient category was medical (52.2 %).

This work also analyses the information related to the cultures. 
Specifically, we consider the culture type (exudate, drainage, biopsy, 
sputum, bronchoaspirate, etc.); first level grouping for the type of 
culture, which classifies the cultures into surface, liquids, respiratory, 
etc.; and the second level grouping for the type of culture, used to 
identify a clinical sample or a surface culture. Besides, the date of the 
culture, the weekday the culture was collected , as well as the month 
and the year.

Finally, to collect temporal information in each instance associated 
to patient p, the current study proposes to generate two kind of features 
linked to previous resistant antibiograms. In particular, we consider: (1) 
previous resistant results of the same patient, and (2) previous resistant 
results of all patients who recently stayed in the ICU.

Own past cultures features. The first kind of features is associated 
with the detection of resistant bacteria in previous antibiograms for 
a specific patient p, and aims to quantify the current “intensity” of 
these bacteria. These features consider the result of antibiograms of 
Pseudomonas Aeruginosa during an interval between 21 days and 48 
hours previous to the current culture being studied for patient p, c ( p ). 
The 48-hour limit is considered since it is usually the time the results 
of the antibiogram take to be available. Furthermore, cultures are 
gathered until 21 days before the date d of current culture c, because 
if the antibiogram result is positive, from a clinical point of view, it is 
kept as positive for the following 21 days.

Thus, when a culture is collected, a total of six features, one per 
antimicrobial family, are generated: p&amg, p&car, p&cf4, p&pap, p&pol 
and p&qui. Each feature takes into account the antibiogram 
results for the corresponding antimicrobial family, e.g. p&pap just 
consider previous results associated with patient p for the family of 
antibiotics PAP. Because of that, the group of own past cultures of 
patient p, named C (p), is divided into six data sets . To illustrate 
how the value for each feature p&ai, i = 1, 2, ···, 6 is obtained, let us 

consider that the subset  has  cultures, i.e. . 
Each culture  has associated: (1) a date  when it was 
collected ; and (2) a susceptibility test result , which is susceptible 
or resistant depending on whether the bacterium is susceptible or 
resistant to ai, respectively. To calculate the potential contribution of a 
culture  to the feature p&ai, i = 1, 2, ... , 6, the Negative Exponential 
Function (NEF) is applied as follows:

	 (1)

where the value of parameter λ is experimentally set to 0.095. To 
compute the feature value p&ai for the instance associated with culture 
c(p) of patient p, the maximum outcome in Equation (1) is obtained 
according to Equation (2):

	 (2)

ICU-patients past cultures features. The second kind of features 
are named r&amg, r&car, r&cf4, r&pap, r&pol and r&qui. These 
features aim to encode the “intensity” of resistant bacteria in the ICU 
during the time previous to the date d of the current instance and 
culture. Differently from the previous set of six features p&ai, now the 
“intensity” takes into account the number of patients (different from 
current patient p) that were infected by a resistant bacterium and, for 
each of them, the time elapsed since the bacterium was detected. For 
a particular feature, a single value is calculated by considering the 
result of past susceptibility tests of Pseudomonas Aeruginosa for the 
P patients, denoted as pj with j = 1 ··· P, in the ICU during the time 
interval between 21 days and 48 hours previous to date d of culture c(p) 
of patient p. An exponential decay is again considered to weight the 
result of each susceptibility test.

The group C(p') of past cultures of other patients is divided into six 
subsets  too. Every particular subset  is split into n disjoint 
subsets, as many as patients:

	 (3)

where  is composed of the  antibiogram results for ai in 
patient pj. As previously mentioned, the set of cultures of patient p are 
excluded from .

Since every culture  has a susceptibility test result  and a 
date , the application of the NEF expression equivalent to that in 
Equation (1), just replacing ,  and  by ,  and , 
respectively. Then, each feature r&ai is obtained by adding up the 
maximum value of Equation (1) for each patient pj, as indicated in 
Equation (4). 

	 (4)

B.	Graphical Exploration
Owing to the high number of features, we start by identifying the 

most relevant features per family of antibiotics. For this purpose, we 
consider a filter approach with the Mutual Information (MI) score 
[20]. Thus, for each family of antibiotics, Fig. 1 shows the five features 
with the highest MI values, comprising among them the date of 
culture and the information about the previous cultures both for the 
own patient and for the UCI environment. According to the mutual 
information score, the most relevant feature is date_culture for 
each of the antimicrobial families considered. This results supports 
the importance of the antimicrobial resistance dynamics, which is 
common for all families of antibiotics.

To get a deeper insight on this issue, Fig. 2 graphically illustrates 
the evolution of the number of susceptible antibiograms (a) and 
resistant antibiograms (b) for each family of antimicrobials tested on 
Pseudomonas along time. Not all families of antibiotics were tested 
during the whole period considered. Specifically, clinicians first 
agreed to modify the range of tested antibiotics in the ICU of the UHF, 
first by including POL in 2007 and then by stop susceptibility testing 
antibiograms of QUI in 2018, due to its high resistance. Furthermore, 
there is a very noticeable fall in the number of resistant and susceptible 
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antibiograms in 2013. This decrease is probably motivated because 
of integration problems due to software update in the ICU health 
information system in 2013. As stated in the literature, the number 
of susceptible antibiograms tend to decrease in the most recent years.

In this line, we also analyze the annual ratio of resistant 
antibiograms results for each family of antimicrobials. To obtain this 
ratio, the number of resistant cultures per year has been divided by 
the number of total cultures per year (both resistant and susceptible 
cultures). The general trend is that, as time progresses (and therefore 
the value of date_culture increases), a higher percentage of instances 
tend to be resistant.

The second most relevant feature for the antimicrobial families 
AMG, CAR and QUI are p&amg, p&car and p&qui, respectively. This 
shows the importance of the outcome of previous antibiograms of the 
same patient for the family under consideration. In the case of CF4, 
p&cf4 is the 4th most important feature. Though not presented in Fig. 
1, p&pap is ranked on the 7th position for PAP, and p&pol in the 11th 
position for POL. It is interesting to remark here that, in all cases, the MI 
score for a particular family of antibiotics is higher for the p&ai feature 
corresponding to that particular family than to any of the other five 
p&ai features. This points out the relevance of considering the particular 
antimicrobial family when using results of previous antibiograms.

Fig. 4 shows the boxplots for each of the six features named p&ai, 
associated to the antibiogram results of the same patient for each 
family of antibiotics (in rows). Blue boxplots refer to p&ai for resistant 
results, while black ones refer to p&ai for susceptible results. In general, 
we observe that the median of p&ai is higher when the culture c was 
resistant than when it was susceptible. The results shown in Fig. 4 
for CAR and QUI are particularly interesting for susceptible cultures 
(black boxplots) for all the families, with most of the previous 
antibiogram results being susceptible. However, for CF4 and PAP, most 
of antibiogram results are susceptible for p&cf4, p&pap and p&pol, 
whereas for POL it only happens for p&pol. Note that, regardless 
the family of antibiotics tested, the boxplot of p&car and p&qui 
for resistant cultures (blue bloxplots) is very similar to the boxplot 
associated to the corresponding family of antibiotics considered (e.g, 
see p&amg, p&car and p&qui in Fig. 4 for AMG, or p&pap, p&car and 
p&qui for PAP.

The r&ai features are also among the most relevant features according 
to the MI score. In this case there is no clear distinction on the ranking 
depending on the antimicrobial family. It supports the importance of 
taking into account the existence of any resistant germ in the ICU. 
The feature r&pol (not included among the top five features in Table 
I) seems to be the one providing less information, probably because 
of low number of antibiograms with a resistant result for this family. 
Fig. 5 presents the bloxplots for the r&ai features. In comparison with 
boxplots in Fig. 4, note that boxplots of the r&ai features are not limited 
to a maximum of one, since the number of patients contributing in 
Equation (4) is n (usually greater than 1). For each antibiogram ai, the 
median values of the r&ai features resistant and susceptible results is 
much closer between them than when comparing the p&ai features. It 
is also remarkable that boxplots associated with r&pol show a median 
value very close to zero both for resistant and susceptible cultures, 
in line with previous comments. Furthermore, when analyzing POL, 
the median value is higher for susceptible than for resistant cultures, 
excepting for r&pol, showing a different behavior of this antibiotic.

Finally, among the features in the top five with a higher MI score, 
we also find days_to_culture (for POL) and age (for QUI). Both 
features are also among the top ten for the rest of the antimicrobial 
families. From a clinical viewpoint, it is known that both age and a 
longer ICU stay are risk factors to become infected [14].
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Fig. 2. Temporal evolution for the number of annual susceptible (a) and 
resistant (b) antibiograms when tested on Pseudomonas cultures for each 
family of antimicrobials.
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Fig. 1. For each antimicrobial family, the five features with the highest 
MI scores, indicated by the circle size from MI=0.56 (biggest size, pair 
date_culture-AMG) to MI=0.09 (smallest size, pair r&amg-POL).
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Fig. 3. Temporal evolution of the ratio between the number of annual resistant 
antibiograms tested on Pseudomonas cultures and the total annual number of 
cultures on Pseudomonas for each family of antimicrobials.
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III.	Methods

A.	Data Preprocessing
Before using the data set to predict the result of the susceptibility 

test, a previous stage of preprocessing is needed. The first aspect to be 
considered is that six binary classifiers are going to be built in order 
to predict whether a culture is susceptible or resistant to each of the 
six different antimicrobial families. A different approach to tackle this 
problem would be to train a multi-class classifier. However, generating 
different classifiers allows to individually tune the hyperparameters of 
each of them and also makes the interpretation and analysis of results 
easier. To train them, the main data set is divided in six smaller data 
sets, each of them just considering one binary target c&ai. After that, all 
the instances representing cultures from patients that have stayed less 
than 48 hours in the ICU, are removed from every of the six data sets.

As indicated in Table I, the number of features is 40 for every data 
set, considering the respective target feature. The number of instances 
are 755, 643, 749, 749, 483 and 708 for AMG, CAR, CF4, PAP, POL 
and QUI data sets, respectively. Since instances represent cultures, and 
cultures have an intrinsic temporal ordering, instances are sorted in a 

temporal manner, with older instances at the beginning of the data set 
and the newer ones towards the end.

The missing values of the data sets are found in the 12 generated 
features (r&ai and p&ai). The percentages of missing values for each of 
the data sets and features are detailed in Table II and Table III.

It is remarkable that the percentages of missing values for p&ai 
features are higher than those of r&ai features. This happens because, 
in general, during the same time interval the number of cultures 
associated to a group of patients will be higher than the number 
cultures associated to just one patient. It is also notable that, overall, 
p&pol and r&pol have a high percentage of missing values with respect 
to the rest of the features of their respective type. This is caused by 
the very few resistant instances there are for POL family , probably 
because POL started to be tested in 2007 and the rest of antimicrobial 
families in 2004.
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Fig. 5. Boxplots for the six features named r&ai when considering both 
resistant (left boxpplot, in blue) and susceptible (right bloxplot, in black) 
antibiograms for culture c.

1.0

0.5

0.0
p&amg p&car p&pap p&pol p&quip&cf4

1.0

0.5

0.0
p&amg p&car p&pap p&pol p&quip&cf4

1.0

0.5

0.0
p&amg p&car p&pap p&pol p&quip&cf4

1.0

0.5

0.0
p&amg p&car p&pap p&pol p&quip&cf4

1.0

0.5

0.0
p&amg p&car p&pap p&pol p&quip&cf4

1.0

0.5

0.0
p&amg p&car p&pap p&pol p&quip&cf4

AMG

CAR

CF4

PAP

POL

QUI
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antibiograms for culture c.
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TABLE II. Percentage of Missing Values of the p&ai Features for each 
of the Antimicrobial Families

Fam p&amg p&car p&cf4 p&pap p&pol p&qui

AMG 34.97 41.72 34.83 34.83 51.39 38.15

CAR 33.28 36.86 33.13 33.13 48.68 37.01

CF4 35.38 42.06 35.25 35.25 51.80 38.58

PAP 35.25 41.92 35.11 35.11 51.67 38.45

POL 29.81 34.78 29.61 29.61 34.16 34.58

QUI 34.75 41.95 34.75 34.75 52.40 35.03

TABLE III. Percentage of Missing Values of the r&ai Features for each 
of the Antimicrobial Families

Fam r&amg r&car r&cf4 r&pap r&pol r&qui

AMG 15.36 20.66 15.23 15.23 33.91 17.88

CAR 16.64 19.60 16.49 16.49 36.24 19.60

CF4 15.35 20.69 15.22 15.22 34.05 18.02

PAP 15.35 20.56 15.22 15.22 33.78 18.02

POL 15.11 19.67 14.91 14.91 20.91 19.05

QUI 14.41 20.20 14.41 14.41 34.32 14.69

In the clinical setting, dealing with missing values is an interesting 
and challenging topic which may have different implications. In this 
study, missing values are replaced by zeros because of the clinical 
meaning of p&ai and r&ai features. The reason for a p&ai feature not 
having a value is that, for the particular patient and time interval 
considered, it is not found a resistance test result for the specific 
antimicrobial family studied. If that is the case, it means that, probably, 
clinicians have considered that the patient may not be infected by a 
bacterium resistant to the antimicrobial family. Therefore, it can be 
inferred that likely, in the time prior of the culture being analyzed, 
the patient was not infected with a resistant bacterium. It seems 
reasonable to assign a zero in this case, since the feature gets a higher 
value the more recent a resistant bacterium was detected. Regarding 
r&ai features, a similar reasoning can be done. If in the time interval 
observed, none of the patients in the ICU were tested for resistance 
to the particular antimicrobial family, it implies clinicians considered 
it was unlikely to find this kind of resistant bacterium. Thus, it is 
probable that, prior to the culture, there were no patients infected with 
a bacterium resistant to the feature’s antimicrobial family, causing 
zero to be an appropriate value.

The categorical features in the data sets are converted into 
numerical before using them with the machine learning methods 
considered in this work. The two features representing dates (date_
culture and start_date) are categorical and ordered. Because of 
that, dates are encoded with integers, assigning lower values to older 
dates, and higher values to recent dates, indicating, in that way, the 
ordering among them. The value of a particular date is calculated as 
the difference, in number of days, between the particular date to be 
encoded and the first date in the data sets of the specific feature.

Having all features expressed as numerical, Pearson correlation 
is applied to detect the most correlated ones. If two features (both 
different from the target feature) are highly correlated, they are 
adding redundant information to the prediction, and therefore one 
of them should be removed. In this study it is considered that two 
features are highly correlated if their correlation coefficient is higher 
than 0.9 or lower than -0.9. In all of the six data sets, the same four 
features (date_culture, year_culture, start_date and year_

admission) are highly correlated among them. Because of that, just 
date_culture is maintained and the other three are removed from 
the data sets. After that, the number of features in every data set is 37 
including the target feature.

B.	Predictive Methods
In this section, we describe briefly the data-driven classifier 

considered in this work. Specifically, LR is tested as base line method, 
and it was also used in our previous work [15]. In this study, RF 
has been added to carry out predictions since its interpretability 
capabilities.

The LR method, very common in the clinical literature, allows us 
to conduct a linear analysis when the dependent variable is binary. It 
was used in our previous study [15] because of its simplicity to serve 
as a baseline, and to evaluate the feasibility of learning from data. 
In this work, it is again used to classify the instances, now with a 
greater amount of data and a higher number of antimicrobial families 
to be analyzed. This is done in order to have a more solid insight on 
whether the target can be predicted with the available features and the 
performance this method can provide. Before using LR, each feature 
is standardized by removing the mean and scaling to unit variance.

The another data-driven method explored here is RF, a machine 
learning approach commonly used for regression and classification 
[21], [22]. It is an ensemble method, that is, a RF model is built from 
multiple decision trees named estimators, which are able to generate 
individual predictions. RF combines the different predictions of its 
decision trees (which, individually, tend to over fitting to the training 
set) to provide a better prediction, providing a better generalization to 
data not considered in training. The RF method is very robust, since 
it can handle data sets with an extensive number of features, high 
dimensionality and heterogeneous features, while having very few 
hyperparameters. Because of this, RF is often used as a first approach 
to develop machine learning systems, as it enables to get an overview 
of the performance on a particular task.

C.	Temporal Modeling
Analyzing the problem to be solved, some special characteristics 

have to be considered when designing the experiments.

The first one is the temporal ordering among instances of the data 
sets. Since instances are associated with cultures with a susceptibility 
test, they have an inherent order marked by the date when they were 
collected. This forces to maintain this same order when predicting 
instances, that is, past instances cannot be predicted with instances in 
their respective future. This particularity arises from the fact that, in 
the real world, when predicting an antibiogram result, future results 
are not available.

Antimicrobial resistance is a phenomenon that changes over 
time as bacteria mutates. It allows bacteria to be more resistant to 
antibiotics as time progresses. As previously mentioned, the features 
considered include demographic data, information about the patient’s 
admission, and information about the culture and antibiogram results. 
Since bacteria’s mutations are not among the available features, the 
feature’s values telling apart one class from another may change along 
time. This fact has been previously described as the concept drift in 
which the concept being studied depends on some hidden context, not 
explicitly given in the form of predictive features [6]. An approach 
that is normally used to tackle this type of problems is the so called 
windowing, which generalizes from a sliding window that moves over 
the data set instances and applies the knowledge gathered to predict 
only in the immediate future.

The other particularity is the data scarcity. As previously 
mentioned, the maximum number of cultures (755) is observed for 
the AMG antimicrobial family. With the time interval considered (15 
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years, from 2004 to 2019), there is at most an average of 50 cultures 
per year. Data scarcity is a trouble spot when using windowing, 
because in this paradigm, usually, just a small fraction of the data set 
(the one considered by the sliding window at each particular time) is 
used for training.

A solution proposed in the previous work [15] was to build an 
incremental training window as the one depicted in panel (d) of Fig. 6. 
This type of window, which grows in length, contains instances that 
are as temporarily close as possible to the test instances. Then, the 
concept drift can be avoided by predicting temporarily close instances 
to the training set, but it also contains instances far in the past, so that 
the number of available instances for training is higher than when 
using sliding window. In addition to the incremental training window, 
this work considers a more commonly used sliding training window 
with fixed size to compare their prediction performance. Below we 
first describe the characteristics of the test window, which is the 
same for both types of training windows. After that, we present the 
characteristics of the two types of training windows considered in this 
work.

The test window consists in a sliding window with a fixed size of 
just 1 month. Considering just a small amount of time, it is ensured 
that test instances are as close as possible to the training set. In the 
experiments of this study, this window begins just considering the 
first month (January) of 2016. After that, in each prediction step, the 
test window shifts one month towards later dates. In Fig. 6, steps 
are indicated at the end of each row as (1), (2), (3), ... (N) for every 
approach. In the last step, this window considers the last month of 
the data set. The test window, when shifted, does not overlap with its 
previous position, that is, in each step predicted instances are different 
from instances predicted in any other step.

The incremental training window, as previously mentioned, is a 
window of increasing size. In the experiments, this window starts 
containing instances from 2004 to 2015. In the following steps, the 
window increases in size one month at a time. In the last step, the 
training window includes all the instances in the data set except the 
last month, which is the one considered by the test window.

The sliding training window with a fixed size consists in a window 
just considering 4 years of instances. In every step, this window shifts 
1 month towards last instances of the data set, in the same way as the 
test window does. Since the train and test windows always shift the 
same amount of time, the distance between them, if any, is always the 
same. The last step, as previously explained, is the one in which the test 
window considers the last month of the data set. This kind of window 
is tested with three different configurations, 0 years approach, 2 years 
approach and 4 years approach, which are represented in panels (a), 
(b) and (c) of Fig. 6. In the 0 years approach, the distance between 
the training and test windows is 0 years, that is, the training window 
is next to the test one. In this case, the training window considers 
years from 2012 to 2015 in the initial step. In the 2 years approach the 
distance among windows is 2 years, therefore taking into account that 
the test window initially contains the first month of year 2016, the 
training window includes years from 2010 to 2013, so that the desired 
distance is respected. Similarly, in the 4 years approach, the window 
starts considering years from 2008 to 2011, because of the same reason. 
These three different configurations are considered in order to observe 
how the prediction evolves as the windows move away from each 
other, and therefore, the concept drift is more noticeable.

For both types of training windows, at each step, a classifier is 
trained, and the performance is evaluated on a test set with each of 
the two methods considered (LR and RF). It is relevant to take into 
account that patients from training and test windows are different. 
That is, when predicting a particular patient’s susceptibility test 

result, it is ensured that there are not other susceptibility results of 
the same patient in the training set. Also, in the approaches where 
training and test windows are next to each other (as in the incremental 
training window and the 0 years approach), a margin of 48 hours is 
considered between them, since it is the time required for getting the 
antibiogram’s results.

As the windows traverse the data set, they encounter class 
imbalance, due to the temporal evolution of bacterial resistance. This 
causes that, in the time interval considered by test windows, there is 
a higher number of instances from one class. Because of that, in order 
to evaluate the prediction of the classifiers, is not enough to consider 
the global accuracy. To get a realistic approximation of the classifier 
performance, the success in susceptible instances and the success in 
resistant instances are also calculated. The names assigned to these 
figures of merit are Total Accuracy (AT ot), Resistant Accuracy (ARst) and 
Susceptible Accuracy (AScb), respectively. For a test window with Ns 
susceptible instances and Nr resistant instances, if the method succeeds 
in predicting Ss susceptible instances and Sr resistant instances, these 
figures of merit are computed as follows:

	 (5)

	 (6)

	 (7)

These three figures of merit are calculated for the test set of the 
particular approach considered. In order to get the mean value of 
these measurements, for every step, the values of Ns, Nr, Ss and Sr are 
accumulated and, at the end, the three figures of merit are obtained. 
This accumulation is carried out because test windows may have a 
different amount of instances, due to the fact that not all 1-month time 
intervals contain the same number of antibiograms. For that reason, 
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Fig. 6. Sketch for the proposed 14 models (M1 to M14). All models consider a 
test window of 1 month. Panels (a), (b) and (c) consider a training window of 
4 years, with a 1-month sliding training and test windows. Different time slots 
are considered between the training and the test set: 0 (a), 2 (b) and 4 (c) years. 
Panel (d) shows an incremental approach for the training set (starting from an 
initial length of 12 years and incremental steps of 1 month), with the test set 
immediately after the training set.
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an average would not be adequate, since some instances would have 
more weight than others depending on the number of instances in 
their test window.

In addition to the experiments using the different windows, a series 
of experiments are carried out considering different aspects of the 
prediction. First, it is analyzed the prediction contribution of the most 
relevant features according to the MI score. In particular, the features 
studied are date_culture and the two groups of features related to 
p&ai and r&ai. To assess their contribution, the target is predicted with 
and without considering these features, and the two outcomes are 
compared.

Secondly, since the incremental training window considers a high 
amount of instances (from the beginning of the data set) it is proposed 
to assign weights to its training instances. The purpose is to give a 
higher importance to the training instances that are temporarily closer 
to the test, which theoretically would have a more similar distribution 
to the test instances, and lower importance to instances far from the 
test. Equation (8) details how the weight is generated for each instance.

	 (8)

where dl represents the date of the last culture in the training 
window, and dc is the culture date for the instance which weight is 
being calculated. In the equation, the difference of these two dates 
is expressed in days. The parameter λ is empirically chosen for each 
experiment as the one providing the best results among the following: 
0, 1e-05, 1e-04, 1e-03, 1e-02, 0.1 and 1. If λ is very small, all instances 
get a very similar weight, regardless of how far they are from the end 
of the training window. For instance, for λ = 0, all instances has a 
weight of 1. On the other hand, if the value of λ is high, only a very few 
instances very close to the end of the training set get a weight close to 
1, and the great majority of instances get a weight very close to 0. Note 
that when the value of λ is zero, it is the same case as the incremental 
training window without weights. In the case of high values for λ, it is 
more similar to the 0 years approach of the sliding training window with 
a fixed size. So, in the end, these weights allow to regulate the amount 
of past instances considered for prediction.

To encode the models obtained from different combinations of 
windowing and features, a number is assigned to each model, with the 
following description:

M1. Sliding training window with a fixed size and following the 0 years 
approach. It uses neither r&ai nor p&ai  features.

M2. Sliding training window with a fixed size and following the 2 years 
approach. It uses neither r&ai nor p&ai features.

M3. Sliding training window with a fixed size and following the 4 years 
approach. It uses neither r&ai nor p&ai features.

M4. Sliding training window with a fixed size and following the 0 years 
approach. It uses r&ai features but not p&ai features. 

M5. Sliding training window with a fixed size and following the 2 years 
approach. It uses r&ai features but not p&ai features.

M6. Sliding training window with a fixed size and following the 4 years 
approach. It uses r&ai features but not p&ai features. 

M7. Sliding training window with a fixed size and following the 0 years 
approach. It uses both r&ai and p&ai features.

M8. Sliding training window with a fixed size and following the 2 years 
approach. It uses both r&ai and p&ai features.

M9. Sliding training window with a fixed size and following the 4 years 
approach. It uses both r&ai and p&ai features.

M10. Incremental training window. It uses neither r&ai nor p&ai fea-
tures.

M11. Incremental training window. It uses r&ai features but not p&ai 

features.
M12. Incremental training window. It uses both r&ai and p&ai features.
M13. Incremental training window with instance weighting. It uses r&ai 

features but not p&ai features.
M14. Incremental training window with instance weighting. It uses both 

r&ai and p&ai features.
Each of the above kind of models are designed with and 

without considering the date_culture feature, also with the two 
aforementioned machine learning methods, LR and RF.

After studying the outcomes of the different experiments, the 
feature relevance is calculated again, now with an embedded method 
from the RF model. Also, date_culture and the p&ai set of features 
is analyzed in more depth by making the predictions with just one of 
these features at a time.

IV.	Results and Discussion

The Results and Discussion section is divided in two different 
subsections. In the Subsection A, the performance of the predictive 
methods is assessed by considering different experiments. In the 
Subsection B, the features identified as the most relevant along the 
study are further analyzed.

A.	Prediction
The prediction results are detailed in Tables IV, V, VI, VII, VIII and 

TABLE IV. Prediction Accuracy Results for the AMG Antimicrobial 
Family. Column M Indicates the Model, Column DC Refers to Whether 
date_culture Is Used () or Not (X). In the Three Left/Right Grouped 

Columns, LR/RF Is Used

LR RF
M DC ATot ARst AScb ATot ARst AScb

1  62.5 75.76 22.73 54.55 66.67 18.18
2  75.0 83.33 50.0 64.77 83.33 9.09
3  75.0 96.97 9.09 53.41 60.61 31.82
4  60.23 74.24 18.18 60.23 78.79 4.55
5  73.86 81.82 50.0 70.45 90.91 9.09
6  76.14 96.97 13.64 54.55 62.12 31.82
7  59.09 71.21 22.73 76.14 93.94 22.73
8  73.86 80.30 54.55 73.86 90.91 22.73
9  81.82 96.97 36.36 73.86 81.82 50.0
10  73.86 98.48 0.0 51.14 62.12 18.18
11  73.86 98.48 0.0 64.77 83.33 9.09
12  77.27 96.97 18.18 76.14 87.88 40.91
13  62.5 77.27 18.18 62.5 74.24 27.27
14  75.0 89.39 31.82 81.82 90.91 54.55

1 X 60.23 69.7 31.82 62.5 77.27 18.18
2 X 67.05 72.73 50.0 63.64 80.3 13.64
3 X 29.55 27.27 36.36 36.36 34.85 40.91
4 X 60.23 74.24 18.18 65.91 87.88 0.0
5 X 65.91 72.73 45.45 68.18 86.36 13.64
6 X 31.82 27.27 45.45 34.09 34.85 31.82
7 X 65.91 75.76 36.36 80.68 98.48 27.27
8 X 73.86 77.27 63.64 75.0 90.91 27.27
9 X 69.32 69.7 68.18 65.91 63.64 72.73
10 X 34.09 22.73 68.18 39.77 30.30 68.18
11 X 37.5 24.24 77.27 38.64 24.24 81.82
12 X 73.86 71.21 81.82 77.27 72.73 90.91
13 X 60.23 69.7 31.82 56.82 69.7 18.18
14 X 76.14 78.79 68.18 79.55 75.76 90.91
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IX for AMG, CAR, CF4, PAP, POL and QUI families, respectively. The 
best results are in bold. For each table and models considering or not 
the date_culture feature, three results are marked: the best result 
among models from M1 to M9, the best result from M10 to M12 and 
the best result from M13 to M14. Table X shows the chosen values 
for the λ hyperparameter (instance weighting). The prediction models, 
identified in column M in Tables from IV to IX, are analyzed in three 
different groups according to the type of temporal window. Firstly, 
the experiments with an sliding training window with fixed size are 
discussed, with the impact of the distance between training and test 
windows becoming manifest. Secondly, the results obtained using an 
incremental training window are studied. Finally, we evaluate whether 
results of the incremental training window can be improved by an 
instance weighting approach.

1.	Sliding Training Windows with Temporal Distance Variation 
Among Training and Test Windows

The figures of merit provided by models considering the temporal 
distance between the training and test sets are in rows with numbers 
1 to 9 in the M column of Tables from IV to IX.

In the case of the LR method when considering the feature  
date_culture, the evolution of the figures of merit is not consistent 
among antimicrobial families when analyzing the separation between 
training and test windows. In some families, the Total Accuracy 
increases as the training window approaches the test window, while 
the opposite happens for other families. The same is observed with 

Resistant Accuracy and Susceptible Accuracy, its behavior varies 
depending on the antimicrobial family being predicted.

Predicting with RF and using feature date_culture, the evolution 
of the figures of merit is more similar among the different antimicrobial 
families. In general, Total Accuracy increases, Resistant Accuracy 
increases and Susceptible Acurracy decreases as the training window 
approaches test window. When this pattern is less evident, it may be 
helpful to analyze when both r&ai and p&ai features are considered. 
Also, the general performance of the three figures of merit appears to 
be better when both r&ai and p&ai features are used.

For LR and not using the feature date_culture, the 
aforementioned pattern appears, in which Total Accuracy increases, 
Resistant Accuracy increases and Susceptible Accuracy decreases when 
reducing the distance between windows. Comparing these results 
with those provided by LR and date_culture, two remarks deserve 
to be underscored: for the families in which this pattern was not 
previously evident (such as AMG, CAR and QUI), now windows 4 and 
2 years apart have lower Total Accuracy and lower Resistant Accuracy, 
with similar figures of merit in the 0 years-apart windows; on the 
other hand, for the families where this pattern was reasonably evident 
(such as CF4, PAP and POL), the figures of merit usually improve, 
while maintaining the same pattern. Also using both the r&ai and p&ai 
features tend to improve the performance.

Considering RF for prediction and not using the feature  
date_culture, the same behavior as in LR without date_culture, is 

TABLE V. Prediction Accuracy Results for the CAR Antimicrobial 
Family. Column M Indicates the Model, Column DC Refers to Whether 
date_culture Is Used () or Not (X). In the Three Left/Right Grouped 

Columns, LR/RF Is Used

LR RF
M DC ATot ARst AScb ATot ARst AScb

1  93.18 98.78 16.67 93.18 100.0 0.0
2  90.91 97.56 0.0 92.05 98.78 0.0
3  88.64 95.12 0.0 80.68 86.59 0.0
4  93.18 98.78 16.67 93.18 100.0 0.0
5  88.64 95.12 0.0 90.91 97.56 0.0
6  89.77 96.34 0.0 77.27 82.93 0.0
7  93.18 98.7805 16.67 93.18 100.0 0.0
8  89.77 96.34 0.0 89.77 96.34 0.0
9  88.64 95.12 0.0 72.73 78.05 0.0
10  93.18 100.0 0.0 93.18 100.0 0.0
11  93.18 100.0 0.0 93.18 100.0 0.0
12  93.18 100.0 0.0 93.18 100.0 0.0
13  94.32 100.0 16.67 93.18 98.78 16.67
14  94.32 100.0 16.67 92.05 97.56 16.67

1 X 90.91 97.56 0.0 93.18 100.0 0.0
2 X 84.09 90.24 0.0 93.18 100.0 0.0
3 X 61.36 65.85 0.0 77.27 82.93 0.0
4 X 89.77 95.12 16.67 93.18 100.0 0.0
5 X 81.82 87.80 0.0 90.91 97.56 0.0
6 X 55.68 59.76 0.0 56.82 60.98 0.0
7 X 88.64 93.90 16.67 93.18 100.0 0.0
8 X 79.55 85.37 0.0 85.23 91.46 0.0
9 X 68.18 70.73 33.33 69.32 73.17 16.67
10 X 60.23 60.98 50.0 61.36 65.85 0.0
11 X 50.0 52.44 16.67 51.14 54.88 0.0
12 X 75.0 74.39 83.33 79.55 81.71 50.0
13 X 94.32 100.0 16.67 93.18 98.78 16.67
14 X 92.05 97.56 16.67 93.18 98.78 16.67

TABLE VI. Prediction Accuracy Results for the CF4 Antimicrobial 
Family. Column M Indicates the Model, Column DC Refers to Whether 
date_culture Is Used () or Not (X). In the Three Left/Right Grouped 

Columns, LR/RF Is Used

LR RF
M DC ATot ARst AScb ATot ARst AScb

1  53.93 74.14 16.13 50.56 60.34 32.26
2  52.81 48.28 61.29 46.07 39.66 58.06
3  35.96 10.34 83.87 41.57 13.79 93.55
4  57.30 74.14 25.81 46.07 53.45 32.26
5  49.44 43.10 61.29 39.33 32.76 51.61
6  34.83 5.17 90.32 37.08 5.17 96.77
7  64.04 82.76 29.03 67.42 84.48 35.48
8  60.67 55.17 70.97 50.56 53.45 45.16
9  46.07 18.97 96.77 49.44 36.21 74.19
10  52.81 62.07 35.48 55.06 68.97 29.03
11  46.07 56.9 25.81 38.20 50.0 16.13
12  61.8 74.14 38.71 59.55 74.14 32.26
13  58.43 81.03 16.13 55.06 67.24 32.26
14  61.8 74.14 38.71 61.8 72.41 41.94

1 X 58.43 65.52 45.16 47.19 48.28 45.16
2 X 47.19 37.93 64.52 48.31 24.14 93.55
3 X 47.19 24.14 90.32 35.96 3.45 96.77
4 X 58.43 65.52 45.16 49.44 51.72 45.16
5 X 51.69 34.48 83.87 33.71 17.24 64.52
6 X 42.7 17.24 90.32 31.46 3.45 83.87
7 X 62.92 75.86 38.71 61.8 74.14 38.71
8 X 64.04 53.45 83.87 50.56 41.38 67.74
9 X 49.44 25.86 93.55 47.19 31.03 77.42
10 X 35.96 24.14 58.06 40.45 10.34 96.77
11 X 37.08 31.03 48.39 33.71 13.79 70.97
12 X 52.81 46.55 64.52 56.18 51.72 64.52
13 X 51.69 56.9 41.94 57.30 70.69 32.26
14 X 59.55 63.79 51.61 60.67 58.62 64.52
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observed for all antimicrobial families: note the same pattern for the 
evolution of the figures of merit (Total Accuracy increases, Resistant 
Accuracy increases and Susceptible Accuracy decreases as the distance 
between train and test windows decreases). Comparing these results 
to previous ones of RF using date_culture, it is noticed that now, for 
all families, windows of 4 and 2 years apart have lower Total Accuracy 
and lower Resistant Accuracy, with similar or improved figures of 
merit in the 0 years-apart windows. Furthermore, using both r&ai and 
p&ai features tend to provide a better performance.

In the considered experiments (from model 1 to model 9), it is also 
noticeable how results change depending on the antimicrobial family. 
It is specially remarkable for the CAR and POL families. Considering 
CAR, it is observed that, for the majority of models, the values of 
Total Accuracy and Resistant Accuracy are very high, while Susceptible 
Accuracy values are very low, in most cases zero. On the other hand, for 
the POL family, Total Accuracy and Susceptible Accuracy are very high 
and Resistant Accuracy is low in general, with many zero values. These 
results suggest that the outcomes depend on the class distribution 
along time, for each antimicrobial family. In Fig. 3 it is noticed that 
CAR is the family with the highest ratio of resistant instances (almost 
1 for the last years of the data set), and POL is the family with the 
lowest ratio of resistant instances. Although less obvious, the rest 
of the families also appear to be influenced by their respective class 
distribution.

Firstly, it is interesting to discuss the common pattern observed in 

almost all families, which causes Total Accuracy to increase, Resistant 
Accuracy to increase and Susceptible Accuracy to decrease as the 
distance between train and test windows gets smaller. The reason of 
this behavior is the temporal class imbalance, that is, in the first years 
of the data set, the majority of instances belong to the susceptible class, 
but as time progresses, the majority of instances become resistant, as it 
is depicted in Fig. 3. Using sliding training windows with fixed size and 
the approach with 4 years of distance between windows, the training 
window has to shift towards the past since the test window starts 
in 2016 for all experiments, therefore containing years from 2008 to 
2011 for the first step of the training window, as explained in Section 
III.C. Being in the past, it contains a higher number of susceptible 
instances compared to resistant ones, which causes to perform better 
in predicting susceptible instances (better Susceptible Accuracy) and 
worse in predicting resistant instances (worse Resistant Accuracy). The 
opposite happens when the distance between windows is 0 years. In 
this case the window is near the last years of the data set, therefore 
it contains more resistant instances (improving Resistant Accuracy) 
and less susceptible instances (decreasing Susceptible Accuracy). The 
Total Accuracy improves when the distance is small because in test 
window the majority of instances are, mostly, resistant. If the majority 
class is well predicted, the Total Accuracy is high. We conclude that 
not all the three figures of merit improve as expected when distance is 
diminishing, in fact one of them gets worse. Applying oversampling to 
the minority class in this kind of fixed-size temporal windows, in order 
to balance the number of the two kind of instances, could improve the 

TABLE VII. Prediction Accuracy Results for the PAP Antimicrobial 
Family. Column M Indicates the Model, Column DC Refers to Whether 
date_culture Is Used () or Not (X). In the Three Left/Right Grouped 

Columns, LR/RF Is Used

LR RF
M DC ATot ARst AScb ATot ARst AScb

1  50.56 66.04 27.78 55.06 84.91 11.11
2  60.67 77.36 36.11 51.69 64.15 33.33
3  46.07 52.83 36.11 35.96 24.53 52.78
4  50.56 66.04 27.78 46.07 69.81 11.11
5  65.17 62.26 69.44 59.55 52.83 69.44
6  47.19 49.06 44.44 37.08 20.75 61.11
7  61.8 83.02 30.56 68.54 86.79 41.67
8  67.42 79.25 50.0 68.54 81.13 50.0
9  56.18 58.49 52.78 60.67 58.49 63.89
10  64.04 98.11 13.89 52.81 67.92 30.56
11  61.8 96.23 11.11 39.33 47.17 27.78
12  65.17 98.11 16.67 67.42 75.47 55.56
13  64.04 96.23 16.67 50.56 56.60 41.67
14  68.54 90.57 36.11 67.42 75.47 55.56

1 X 55.06 64.15 41.67 50.56 67.92 25.0
2 X 58.43 64.15 50.0 43.82 37.74 52.78
3 X 47.19 45.28 50.0 40.45 22.64 66.67
4 X 52.81 66.04 33.33 46.07 66.04 16.67
5 X 57.30 64.15 47.22 47.19 39.62 58.33
6 X 49.44 47.17 52.78 34.83 16.98 61.11
7 X 61.8 73.58 44.44 67.42 86.79 38.89
8 X 66.29 67.92 63.89 68.54 77.36 55.56
9 X 55.06 49.06 63.89 62.92 58.49 69.44
10 X 39.33 28.30 55.56 44.94 20.75 80.56
11 X 37.08 22.64 58.33 32.58 11.32 63.89
12 X 70.79 67.92 75.0 69.66 71.7 66.67
13 X 53.93 62.26 41.67 51.69 56.60 44.44
14 X 71.91 69.81 75.0 70.79 69.81 72.22

TABLE VIII. Prediction Accuracy Results for the POL Antimicrobial 
Family. Column M Indicates the Model, Column DC Refers to Whether 
date_culture Is Used () or Not (X). In the Three Left/Right Grouped 

Columns, LR/RF Is Used

LR RF
M DC ATot ARst AScb ATot ARst AScb

1  68.97 63.33 71.93 63.22 0.0 96.49
2  44.83 6.67 64.91 65.52 0.0 100.0
3  47.13 0.0 71.93 65.52 0.0 100.0
4  67.82 63.33 70.18 66.67 3.33 100.0
5  49.43 6.67 71.93 65.52 0.0 100.0
6  50.57 0.0 77.19 65.52 0.0 100.0
7  66.67 63.33 68.42 65.52 3.33 98.25
8  54.02 6.67 78.95 65.52 0.0 100.0
9  52.87 0.0 80.70 65.52 0.0 100.0
10  58.62 13.33 82.46 65.52 0.0 100.0
11  63.22 30.0 80.70 65.52 0.0 100.0
12  56.32 23.33 73.68 66.67 3.33 100.0
13  72.41 60.0 78.95 73.56 46.67 87.72
14  65.52 56.67 70.18 59.77 23.33 78.95

1 X 74.71 63.33 80.70 65.52 0.0 100.0
2 X 56.32 0.0 85.96 65.52 0.0 100.0
3 X 64.37 0.0 98.25 65.52 0.0 100.0
4 X 72.41 60.0 78.95 64.37 0.0 98.25
5 X 58.62 0.0 89.47 65.52 0.0 100.0
6 X 60.92 0.0 92.98 65.52 0.0 100.0
7 X 70.11 60.0 75.44 64.37 0.0 98.25
8 X 57.47 0.0 87.72 65.52 0.0 100.0
9 X 60.92 0.0 92.98 65.52 0.0 100.0
10 X 65.52 0.0 100.0 65.52 0.0 100.0
11 X 63.22 0.0 96.49 65.52 0.0 100.0
12 X 64.37 6.67 94.74 65.52 0.0 100.0
13 X 65.52 56.67 70.18 68.97 33.33 87.72
14 X 65.52 56.67 70.18 64.37 26.67 84.21
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accuracy in the minority class.

Secondly, it is relevant the change in behavior of prediction when 
date_culture is not considered in both LR and RF methods. Overall, 
when using date_culture for prediction in the 4 years and 2 years 
approaches, the Resistant Accuracy increases and the Susceptible 
Accuracy decreases compared to models not using date_culture. This 
probably happens because date_culture is compensating the lack of 
resistant instances of training windows in 4 and 2 years approaches, 
by telling the classifier the most probable class in test years, which 
tend to be resistant, and hence Resistant Accuracy is high in most 
cases, causing Susceptible Accuracy to decrease. The disadvantage of 
using date_culture is that it causes the minority class to worsen its 
prediction, since it introduces bias towards classifying instances as the 
most probable class of the time interval. Since, in the 0 years approach, 
without considering the date_culture feature, the results are similar 
or better than when date_culture is taken into account, we conclude 
that it is convenient not to use this feature.

2.	Incremental Window
The experiments concerning the results of prediction by using an 

incremental training window are in rows with numbers from 10 to 12 
in the M column of Tables from IV to IX.

In the case of using the LR method and including the feature  
date_culture, adding just features r&ai does not generally improve 
figures of merit. With the addition of both features r&ai and p&ai, 
half of the antimicrobial families (AMG, CF4 and PAP) improve their 

results, although this improvement is mild.

With RF and using the date_culture feature, the inclusion of the 
r&ai features does not improve performance. Conversely, adding r&ai 
and p&ai features improves results in 5 out of the 6 families (AMG, CF4, 
PAP, POL and QUI), with no worsening of the figures of merit of the 
CAR family.

For both LR and RF models without date_culture, it is noticed 
that including just the r&ai features does not provide an improvement 
in performance. However, taking into account both the r&ai and p&ai 
features, there is a significant improvement for almost all antimicrobial 
families. Total Accuracy and Resistant Accuracy are, in general, 
considerably lower when r&ai and p&ai features are not used together, 
in comparison with the results provided by including date_culture.

Taking into account the results with sliding windows of fixed size 
of 4 years and the current ones with an incremental training window, 
it is observed that, in general, the best results are obtained with an 
incremental training window. Though for some antimicrobial families, 
a specific combination of sliding windows can outperform the results 
of the incremental training window, there is not a common approach 
of sliding windows with better results for all families. Furthermore, 
when the incremental training window outperforms, it is for very little. 
The exception is the POL antimicrobial family, which achieves clearly 
better results with the 0 years approach. With the incremental training 
window, best results are mostly achieved by not including date_
culture, and adding both the r&ai and p&ai features. This confirms that 
the use of incremental training window represents a useful temporal 
approach to tackle the task presented in this study.

It is notable that, although MI suggested that the set of r&ai 
features contain relevant information to predict the targets, its 
use in conjunction with other features does not appear to improve 
performance. On the other hand, the p&ai features show a great 
potential to predict the result of the susceptibility test, since they 
improve performance in almost all cases.

It is also worth to analyze the fact that, if date_culture is not 
used, Total Accuracy and Resistant Accuracy get a low value when the 
r&ai and p&ai features are not jointly used, in comparison with the 
results obtained by using date_culture. The reason of this behavior 
is similar as the one indicated in previous experiments when not 
using the date_culture feature. Without date_culture, classifiers 
tend to predict much of the test instances as susceptible, because it is 
usually the majority class in incremental training windows (windows 
starting at the beginning of the data set). The date_culture feature 
compensates this by introducing bias towards predicting the majority 
class in the time interval, which in test (near the end of the data set) 
is resistant. In any case, using date_culture worsens the Susceptible 
Accuracy. By adding the p&ai features, it is not necessary to count with 
date_culture to get a good performance. Moreover, results with p&ai 
features and without date_culture, improve both Resistant Accuracy 
and Susceptible Accuracy because this kind of features do not introduce 
a temporal bias towards one of the two classes.

3.	Incremental Window with Weights
The prediction results using an incremental training window and 

instance weighting are in rows with numbers 13 and 14 in the M 
column of Tables from IV to IX. The λ values for each particular case 
are expressed in Table X.

It is observed that, using instance weighting, results improve for 
most of the antimicrobial families. The following are the best figures 
of merit of AT ot ‒ ARst ‒ AScb provided by applying instance weighting:

•	 AMG: 79.55%-75.76%-90.91%. Obtained using RF, without  
date_culture and with both the r&ai and p&ai sets of features. The 
weight hyperparameter is λ =1e-05.

TABLE IX. Prediction Accuracy Results for the QUI Antimicrobial 
Family. Column M Indicates the Model, Column DC Refers to Whether 
date_culture Is Used () or Not (X). In the Three Left/Right Grouped 

Columns, LR/RF Is Used

LR RF
M DC ATot ARst AScb ATot ARst AScb

1  62.26 68.75 0.0 88.68 97.92 0.0
2  66.04 70.83 20.0 71.7 77.08 20.0
3  90.57 97.92 20.0 50.94 50.0 60.0
4  66.04 72.92 0.0 88.68 97.92 0.0
5  66.04 70.83 20.0 71.7 79.17 0.0
6  92.45 100.0 20.0 39.62 33.33 100.0
7  84.91 93.75 0.0 90.57 100.0 0.0
8  77.36 83.33 20.0 84.91 89.58 40.0
9  90.57 97.92 20.0 83.02 81.25 100.0
10  88.68 97.92 0.0 67.92 75.0 0.0
11  88.68 97.92 0.0 83.02 91.67 0.0
12  88.68 97.92 0.0 86.79 95.83 0.0
13  88.68 95.83 20.0 90.57 97.92 20.0
14  88.68 95.83 20.0 92.45 100.0 20.0

1 X 50.94 56.25 0.0 84.91 93.75 0.0
2 X 60.38 64.58 20.0 77.36 83.33 20.0
3 X 67.92 72.92 20.0 28.30 22.92 80.0
4 X 62.26 68.75 0.0 81.13 89.58 0.0
5 X 67.92 72.92 20.0 71.7 79.17 0.0
6 X 50.94 54.17 20.0 30.19 25.0 80.0
7 X 77.36 85.42 0.0 86.79 95.83 0.0
8 X 79.25 85.42 20.0 83.02 89.58 20.0
9 X 75.47 77.08 60.0 83.02 81.25 100.0
10 X 54.72 60.42 0.0 33.96 31.25 60.0
11 X 54.72 60.42 0.0 49.06 47.92 60.0
12 X 79.25 79.17 80.0 75.47 77.08 60.0
13 X 90.57 95.83 40.0 88.68 95.83 20.0
14 X 79.25 79.17 80.0 83.02 83.33 80.0
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•	 CAR: 94.32%-100.0%-16.67%. Obtained using LR, with or without 
date_culture and with the r&ai set of features. The weight 
hyperparameter is λ =1e-02.

•	 CF4: 60.67%-58.62%-64.52%. Obtained using RF, without date_
culture and with both the r&ai and p&ai sets of features. The 
weight hyperparameter is λ =1e-05.

•	 PAP: 71.91%-69.81%-75.0%. Obtained using LR, without date_
culture and with both the r&ai and p&ai sets of features. The 
weight hyperparameter is λ =1e-05.

•	 POL: 72.41%-60.0%-78.95%. Obtained using LR, with date_culture 
and with just the r&ai set of features. The weight hyperparameter 
is λ =1e-03.

•	 QUI: 83.02%-83.33%-80.0%. Obtained using RF, without date_
culture and with both the r&ai and p&ai sets of features. The 
weight hyperparameter is λ =1e-02.

Our results show that M13 and M14 performance, in the majority 
of families, improves or is maintained when the p&ai set of features 
is taken into account, confirming what was observed in the two 
previous groups of experiments. The only exception to that is the POL 
antimicrobial family. When the date_culture feature is used, just the 
POL family gets better results; in any other case, it is better to not 
consider this feature. The substantially different behavior of POL is 
probably due to the very small number of resistant instances for this 
family, which makes it very dependent on the date_culture feature. 
Besides that, for half of the families (CAR, PAP and POL), the best 
method is LR, while for the other half (AMG, CF4 and QUI), RF gets 
the best results.

It is also important to analyze the hyperparameter λ used to assign 
weights to instances. As previously explained, when the value of λ is 
small, a greater number of instances get a similar high weight (close to 
1); otherwise, when λ is high, just a few instances, temporally close to 
the test set, get a high weight and the rest of instances get very small 
weights. For AMG, CF4 and PAP, λ is very small and results are very 
similar to those of the respective incremental window without weights. 
This happens because almost all instances are being considered. On 
the other hand, families CAR, POL and QUI, with a greater λ, show 
results that are, mostly, more similar to the respective sliding training 
window with a fixed size than to the incremental window.

Comparing the results of the incremental window with the 
performance for the rest of experiments, it is noticed that it improves 
the results for 3 of the 6 families, which are AMG, PAP and QUI. In the 

case of CAR, the whole incremental training window achieves better 
results than the version with weights. As before, the family CF4 gets 
better performance with a specific combination of sliding windows, 
probably because some particularity of its distribution; POL notably 
gets its best result with the 0 years approach windows, without  
date_culture and with neither the r&ai nor p&ai sets of features.

B.	Relevant Features Analysis
Taking into account previous results, it seems that some features 

with high MI score, such as r&ai, do not help to predict the target 
feature. The feature date_culture, which has the highest MI score, 
increases the performance in some particular cases, but also introduces 
bias, and the best results in previous experiments are achieved when 
this feature is not used. On the other hand, the set of features p&ai, also 
with high MI scores, appears to improve performance in almost all 
antimicrobial families.

Our analysis reveals the inconsistency between features ranked as 
relevant according to MI and those that actually increase prediction 
performance. In order to contrast feature relevance, they are now 
obtained with an embedded method. Since RF has been used as 
classifier, tree-based estimators have been selected to compute the 
new feature importance, with Fig. 7 showing the ranking in relevance. 
Now, the most relevant feature for AMG, CAR, CF4, PAP and QUI 
are p&amg, p&car, p&cf4, p&pap and p&qui, respectively. In the case of 
POL, p&pol is ranked on the 7th position. Regarding date_culture, it 
is still very important. In the case of POL, date_culture is the most 
important one. The set of features r&ai are not considered important 
overall.

Feature
origin

reason_admission

date_culture

culture_tyoe_group1

culture_type

days_to_culture

p&amg

p&cf4
p&car

p&pap
p&qui

AMG CAR CF4 PAP POL QUI

Fig. 7. For each antimicrobial family, the five features with the highest RF 
relevance scores, indicated by the circle size, from relevance=0.19 (biggest 
size, pair p&amg-AMG) to relevance=0.03 (smallest size, pair reason_
admission-AMG).

The new ranking in feature relevance agrees to a greater extent 
with the prediction performance observed. The set of p&ai features are 
the most important ones, except for the POL family, where the most 
relevant feature is date_culture. These results make sense, since 
date_culture was the only feature improving performance in the 
POL family, due to small number of resistant instances. Also, the r&ai 
features get low relevance values, as expected. The reason why this 
method provides more insightful results is probably because it takes 
into account all other features in the data set, while in MI the feature 
relevance is calculated separately for each feature.

To further analyze the impact of the most relevant features, 
the antibiogram result has been predicted using just one feature. 
Two experiments have been carried out, each for one of the most 
important features in the data set (the p&ai features and date_
culture). Results with the respective p&ai features are detailed in 
Table XI, showing that the performance of both LR and RF is very 

TABLE X. Values of the Hyperparameter λ for Results of M13 and M14 
in TABLEs from IV to IX. The Column Fam Specifies the Family Being 

Predicted, and Column DC Whether date_culture Is Taken into 
Account. The Two Left/Right Columns Refer to the LR/RF Methods. 

Columns M13 and M14 Indicate the Model for Which λ is Chosen

LR RF
FAM DC M13 M14 M13 M14

AMG  1e-03 1e-03 1e-04 1e-05
AMG X 1e-03 1e-03 1 1e-05
CAR  1e-02 1e-02 1 1
CAR X 1e-02 0.1 1 1
CF4  1 0 1 1e-05
CF4 X 1e-03 1e-03 1 1e-05
PAP  1e-04 1e-03 1 0
PAP X 1e-03 1e-05 1 1e-04
POL  1e-03 0.1 1 1
POL X 0.1 0.1 1 1
QUI  0.1 0.1 1e-02 1e-02
QUI X 0.1 0 1 1e-02
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similar and the figures of merit are relatively high for most of the 
families. This evidences the high prediction power of this kind of 
features, even when using for prediction just one of them. Table XII 
presents the results with just date_culture. We observe that the 
prediction is dramatically biased towards the majority class when 
the LR method is considered, which in most cases is resistant due to 
the fact that test instances are in the future with respect to training 
instances. In the case of the POL antimicrobial family, results are 
biased towards the susceptible class since it generally is the majority 
class. Using RF, prediction is also biased, although to a lesser extent. 
As expected, the only family improving its performance when using 
just date_culture feature is POL.

TABLE XI. Results Using Just the Respective p&ai Feature When 
Predicting the Antibiogram Result for Every Antimicrobial Family 
(Column Fam). For Instance, Just p&amg Is Used to Predict Resistance 

to the AMG Family. In the Three Left/Right Grouped Columns, the LR/
RF Method Is Applied

LR RF
Fam ATot ARst AScb ATot ARst AScb

AMG 80.68 74.24 100.0 80.68 74.24 100.0
CAR 63.64 62.2 83.33 62.5 60.98 83.33
CF4 65.17 65.52 64.52 64.04 63.79 64.52
PAP 70.79 66.04 77.78 70.79 66.04 77.78
POL 62.07 0.0 94.74 63.22 0.0 96.49
QUI 73.58 70.83 100.0 73.58 70.83 100.0

TABLE XII. Results Using Just the date_culture Feature When 
Predicting the Antibiogram Result for Every Antimicrobial Family 
(Column Fam). In the Three Left/Right Grouped Columns, the LR/RF 

Method Is Applied

LR RF
Fam ATot ARst AScb ATot ARst AScb

AMG 75.0 100.0 0.0 56.82 66.67 27.27
CAR 93.18 100.0 0.0 90.91 96.34 16.67
CF4 65.17 100.0 0.0 51.69 60.34 35.48
PAP 59.55 100.0 0.0 57.3 54.72 61.11
POL 65.52 0.0 100.0 66.67 56.67 71.93
QUI 90.57 100.0 0.0 88.68 95.83 20.0

V.	 Conclusions

One important and increasing problem in daily operation 
of worldwide health systems, and in particular, of hospitals is 
antimicrobial resistance. This resistance in some microorganisms 
(bacterium, viruses, etc.) appears when these microorganisms become 
to be resistant to antimicrobial drugs to which they were susceptible 
before. This change is due to a mutation of the microorganism or 
to the acquisition of the resistance gen. This problem is even more 
difficult in hospital ICUs, due to the critical condition of those patients. 
Therefore, a reliable and anticipated prediction for a given bacterium 
of being resistant or not to one or more antimicrobial families in a 
patient culture would greatly help physicians in their fight against 
those microorganisms.

In this study, a real anonymized data set with information about 
patients staying at the ICU in the University Hospital of Fuenlabrada 
(UHF) has been used. The data set is related to 3812 admissions of 3346 
ICU patients, collected at the UHF during a period of 15 consecutive 
years (from July 2004 to May 2019). The collected data set from 
UHF was browsed to generate the final data set under study with 
the information regarding the patients and their different cultures. 
Originally there were 40 features, but after the application of some 

pre-processing techniques they were reduced to 37 to avoid the use of 
high correlated features.

The analysis have been focused on the Pseudomonas Aeruginosa 
bacteria because is one of the most dangerous bacteria in the ICU 
and its proved ability to develop multi-drug resistance. Furthermore, 
six antimicrobial families were considered: Aminoglycosides (AMG), 
Carbapenems (CAR), 4th Generation Cephalosporins (CF4), Extended-
spectrum Penicillins (PAP), Polymyxins (POL) and Quinolones (QUI).

Logistic Regression and Random Forest models were tested. 
Different temporal modeling strategies were proposed based on 
different windowing schemes (sliding training window, incremental 
training window) to capture the concept drift phenomenon related 
to the resistance process of microorganisms. In addition, some new 
temporally-oriented features (p&ai and r&ai features) capturing the 
resistance/susceptibility information regarding past cultures of the 
same patient or regarding the other patients were proposed and 
evaluated to improve the prediction accuracy of the different models. 
A temporal weighting scheme of the instances was proposed and 
it improved the prediction accuracy. Using or not some important 
features, according to the MI score, like date_culture, p&ai features 
and r&ai features were tested in fourteen models (M1 to M14). The 
results show that the Random Forest method with an incremental 
win-dow approach, using temporal weighting of the instances and 
the temporally-oriented features of past cultures is better, especially 
because both the accuracy for resistant bacteria and susceptible 
bacteria is more balanced.

Regarding previous studies such as [6], [17] and [18], some 
similarities and differences are observed with this study. There are 
many differences between [6] and our work, such as the time interval 
considered in the data set, the number of instances, the generation of 
new longitudinal features or the methods used, but the concept drift 
is observed in both works. It is even more noticeable in our work due 
to the long time interval considered, with the windowing approach 
showing great benefits when applied to this problem. Unlike the 
work in [17], our study applies temporal modelling with windowing, 
including data from the 21 days previous to the antibiogram result 
to be predicted. In this line, authors in [18] also consider the date of 
culture and apply a temporal modelling, but without windowing.

Remarkable contributions of our study are the new generated sets 
of features that consider temporal data contained along the data set, 
which regards the previous resistance of bacteria for the patient under 
study (p&ai), and the resistance of bacteria previously detected in the 
ICU (r&ai). In line with [18], our work also reveals that data from past 
cultures contain a relatively high amount of information to predict 
antimicrobial resistance. Particularly, the p&ai set of features showed 
to be the most useful for correct prediction when used in combination 
with some other features or even, in the case of some antimicrobial 
families, when used alone. Another relevant contribution of our study 
is the incremental training window scheme applied together with 
instance weighting. It allows to accurately classify cultures when the 
underlying data distribution dramatically changes along time. Our 
method introduces a more general and robust solution than those 
previously proposed, since it can be applied to heterogeneous data sets 
either with just a few or many years to be predicted, which is able to 
evolve along time and tackle the scarcity problem. Furthermore, it is 
able to provide high performance results for the majority of families, 
similar to the ones in other studies despite not using many of the 
most important risk factors identified in the literature, such as the 
antibiotics administered to patients. In addition, the thorough analysis 
of the relevance and interaction of different features will largely help 
in the development of future works.

There are different challenges to be addressed for future work. 
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On the one hand, oversampling techniques on training can be tested 
to check their influence on the model performance. On the other 
hand, we also consider including other features that could have 
some influence on the appearance of resistance bacteria in the 
ICU, like some additional patients’ details about their admission, 
whether they required intubation or not and whether they needed 
mechanical ventilation or not. It would also be interesting to consider 
the inclusion of features encoding the antibiotic usage in a temporal 
context, at a patient level and ICU level. In order to properly tackle the 
different resistant phenotypes observed in this study, the non-uniform 
distribution of genotypic resistance mechanisms could be considered. 
It is also relevant to analyze in a different manner (such as assigning 
particular weights) cultures isolated from some specific sites such as 
tracheostomy or environmental water sources, because of their ability 
to generate aerosols close to patients, increasing the probability of 
nosocomial bacterial transmission.
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