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Abstract

Cancer is an uncontrollable growth of abnormal cells in any tissue of the body. Many researchers have focused 
on machine learning and artificial intelligence (AI) based on approaches for cancer treatment. Dissimilar 
to traditional methods, these approaches are efficient and are able to find the optimal solutions of cancer 
chemotherapy problems. In   this paper, a system of ordinary differential equations (ODEs) with the state 
variables of immune cells, tumor cells, healthy cells and drug concentration is proposed to anticipate the tumor 
growth and to show their interactions in the body. Then, an artificial neural network (ANN) is applied to solve 
the ODEs system through minimizing the error function and modifying the parameters consisting of weights 
and biases. The mean square errors (MSEs) between the analytical and ANN results corresponding to four state 
variables are 1.54e-06, 6.43e-07, 6.61e-06, and 3.99e-07, respectively. These results show the good performance 
and efficiency of the proposed method. Moreover, the optimal dose of chemotherapy drug and the amount of 
drug needed to continue the treatment process are achieved.

I. Introduction

CANCER is a class of diseases caused by disorders in the natural 
function of the body cells and it is one of the main reasons of 

death in the world. Development of cancer happens when the normal 
control mechanism of the body does not work. In this situation, the 
former cells do not die but they will grow without control and new 
abnormal cells are developed. This making additional cells may cause a 
mass of tissue which is called a tumor. There are many types of cancer, 
such as lung cancer, prostate cancer, breast cancer, and colorectal 
cancer. The main and usual treatments for cancer therapy are surgical 
procedures, hormone therapy, radiation therapy, organic therapy and 
chemotherapy. 

The history of anticancer chemotherapy mathematical modeling 
comes back to more than forty years ago. Recently, plenty of attempts 
have been made to mathematically model the dynamics of the 
population of tumor cell and optimal control theory in order to provide 
optimal strategies for cancer treatment. New progress in computer and 
biological sciences have drawn attention to the role of computational 
methods in the wide scope of cancer research. 

We are witnessing the improvement and development of many 
mathematical models for anticipating the growth of tumor after 
execution of chemotherapy and for inhibiting the disease progression 

within treatment time. This can be done by minimizing the number of 
cancer cells, minimizing the doses of the drug as well as lessening side 
effects by the use of optimization methods in which finding optimal 
drug administration is considered as an optimal control problem 
(OCP) of a dynamical system [1]-[12]. The drug effect as well as 
interplays between normal, immune, and tumor cells in these models 
are seen as a result of the chemotherapy treatment drug for cancer. 
Based on the optimal measured dosage of the drug and the population 
number of tumor cells, Calzada et al. [9] and De Pillis and Radunskaya 
[6] proposed a performance index to decrease the tumor density. El-
Gohary [7] investigated the optimal control of tumor, the disorders 
behavior and the stability of the system in the equilibrium states of 
tumor’s model prior and posterior to the injection. Shuo Wang and 
Heinz Schattler [11] offered an optimal cancer therapy to decrease 
the tumor density and its destructive impacts during a specific time 
period. Urszula Ledzewicz et al. [12] argued the influences of tumor 
growth disorders and drug resistance on the process of treatment and 
optimal control analysis of a mathematical model. 

The interplay between cancerous, immune, and healthy cells can 
be modeled as an ordinary differential equations (ODE) system [13]. 
To explain natural phenomena by using the differential equation, as 
an application of differential equations, one can convert the natural 
phenomena and related problems into the differential equations and 
then solve those differential equations. Since achieving the analytical 
solution of ODE’s systems may not be easy, the researchers have 
attempted to find the approximate solutions for these systems. Many 
algorithms, for instance, finite element [14], predictor–corrector 
[15], finite difference, Runge–Kutta [16], and other methods have 
been studied and developed to solve these kinds of systems. In 
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these methods, the domain needs to be discretized into some finite 
domains or some points where we have the local approximation of the 
functions. Therefore, several AI methods especially artificial neural 
network (ANN) methods have been extensively applied to solve ODEs. 
Some of the related methods [17]-[30] are given in Table I.

TABLE I. Some ANN Methods for Solving ODEs

Reference Method
[17] Hopfield NN

[18][19] Feedforward NN
[20] Multi-layer perceptron (MLP)

[21] [22] Hybrid of NN and optimization techniques
[23] An unsupervised version of kernel least mean square algorithm
[24] New algorithms based on NN
[27] Multilayer perceptron and RBFNN
[29] Multi-Quadric RBFNN
[30] Regression-based NN
[41] Adaptive resonance theory and boosted fuzzy classifier
[42] ART1 network

[43] [44] Machine Learning
[45] Single layer Legendre Neural Network (LeNN)

[26] [46] ANN
[47] ANN time-series

In the field of computer sciences, the ANN has been known as a 
technology which has broad applications in many areas of engineering 
and science such as robot control, medicine, optimal control, 
manufacturing system design, pattern recognition, signal processing, 
business, classification and education (see [31]-[39] and the references 
therein). The real-time operation, Adaptive learning, Fault-tolerance 
through surplus information coding and self-organization are some 
benefits of ANNs. 

An ANN is a configuration of artificial intelligence on the base 
of algorithms which imitate the human brain operation. It uses the 
existing patterns in the data and makes a generalization from these 
patterns to classify or predict. Neural networks (NNs) are effective 
particularly for interpreting the nonlinear data that usually occur in 
the domain of medicine and biology research. Fundamentally, it is a 
mathematical model inspired by the structure of systems of biological 
neurons, similar to the brain processes of the human. A neuron in the 
ANN is a computational unit whose inputs and outputs are numbers. 
Fig. 1 shows a simple neuron. Neuron inputs (X1, X2, X3) have their 
own weights (W1, W2, W3). The output of each neuron is calculated 
as follows:

output= f(W1X1+W2X2+W3X3)
The function f can be a binary step, linear or non-linear function 

such as sigmoid.

Fig. 1. A simple neuron (neuron is a computational unit, which its inputs and 
outputs are numbers).

Input Layer

OutputLayer

Hidden Layer 1 Hidden Layer 2

Fig. 2. An ANN Model (a feedforward network).

Fig. 2 is a sample fully connected feedforward neural network 
consisting of an input layer, two hidden layers and an output layer. The 
connections among these neurons similar to biological neurons specify 
the network’s behavior which can be realized through the process of 
backpropagation [40]. In backpropagation, a given data set forms the 
network input, then network output is constantly compared with ANN 
output in order to minimize the MSE by making adjustments to the 
weights of the network. The network achieves higher accuracy after 
several repeated adjustments and becomes ready for solving complex 
problems [40]. Nowadays, it is found that biomedical systems should 
be demonstrated through nonlinear systems that represent ANNs as 
rich computing sources of biological investigation. In the last three 
decades, ANNs have been implemented in different domains of cancer 
medicine (several samples are given in Table I. [41]-[44]). To find the 
solutions of a nonlinear differential equation numerically, radial basis 
function (RBF) and multilayer perceptron neural networks with a 
novel unsupervised training model are utilized by Shirvany et al. [27]. 
Yazdi et al. [23] proposed and developed a new method based on a 
version of unsupervised kernel least mean square algorithm (KLMS) 
to solve ordinary differential equations of first and second order. A 
neural network on the base of regression was proposed by Mall and 
Chakraverty [30] to solve ordinary differential equations of higher 
and lower orders. Mall and Chakraverty [45] proposed a novel model 
for solving initial as well as boundary value problems on the base 
of Legendre Neural Network (LeNN) method with a single layer. A 
neural network model is proposed by Naushad et al. [46] for predicting 
the possibility of a woman growing breast cancer by analyzing the 
interplay of nutrients, genes, and demographic indicators. Another 
study having applications in quality warranty research and having 
modeled the treatment data resulted from the use of ANNs for cancer 
patients’ radiotherapy demonstrated computation superiority for 
time-series ANN modeling over traditional techniques [47]. 

 Although all the presented ordinary differential equations (ODE) 
systems used for cancer therapy have attempted to find the optimal 
doses of chemotherapy drugs, none of them has focused on the 
prediction of the drug dose needed to continue the treatment process. 
To fill the existing gap, the present work seeks new solutions to the 
system of ordinary differential equations (ODEs) for achieving the 
optimal dose of chemotherapy drugs and anticipating the amount of 
drug needed to continue the treatment process. To this end, a new 
method including Feedforward Neural Network (FFNN) is presented 
to find solutions to ODE at the same time predict cancer issues. 
Showing cancerous, immune and healthy cells interaction in the 
body and anticipating the tumor growth, this method predicts the 
optimum drug dose that should be injected with the most beneficial 
effect on tumor, immune, and normal cells. The dynamic behaviour 
of the system is analyzed by investigating the different equilibrium 
points in which the population number of tumor cells is zero or few. 
On the base of the ANN, the trial solution involves two components: 
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the first component with no adjustable parameters satisfies the initial/
boundary conditions and the second component comprises the output 
of ANN. There are some advantages to the approximate solution 
of ANN comparing to the traditional numerical methods. First, we 
have the differentiability and closeness to the analytical solution for 
the approximate solution. Second, when the training points number 
increases, we do not encounter with more computation complexity. 
Third, the speed with which the parameters of the ANN (biases 
and weights) are modified increases to reduce error function. The 
proposed method is compared with two machine-learning methods, 
Support Vector Regression (SVR) and Multi-Layer Perceptron (MLP) 
as well as two well-known numerical methods, Finite Element and 
Runge–Kutta.

The organization of this paper is as follows. In Section II, the modeling 
of the tumor and its equilibrium points are presented. Section III gives 
the proposed method including the formulation of the first order ODE 
and the structure of ANN. The numerical results are discussed in Section 
IV. Finally, some conclusions are given in Section V.

II.  The Tumor Model

The tumor expansion has attracted the attention of technicians, 
mathematicians and medical specialists, which can be modeled 
as systems of partial differential equations (PDEs) or ordinary 
differential equations (ODEs). The treatment of malignancy tumor 
is crucial. Hence, our model represents an optimal medical therapy 
for malignancy tumor derived from [13], [48]. The emphasis of this 
model is not on a specific kind of tumors, but it is a dynamic model 
to deal with the tumor expansion problem in its society [13], [48]. 
The explanation of our proposed model, its reduction and stability are 
brought in the following.

A. Tumor With Drug Mathematical Model and Stability of the 
Equilibrium States

  The tissue close to the tumor site is targeted by the model 
consisting of three anomalous cell populations. I(t), T(t), and N(t)  
illustrate immune cells, tumor cells, and normal cells at the time 
respectively. To show the impact of drug therapy, a state D is added 
representing the concentration of the drug in the bloodstream. The 
nonlinear differential system of equations expresses each component 
t dynamics for the treatment of chemotherapy which is shown below 
[13], [48].

 (1)

where υ(t) is used for the amount of drug consumed orally or by 
injections before impacting on the bloodstream and d2 is the number of 
death per capita for the drug. Here, because of physiological reasons, 
I(t), T(t) and N(t) values and their parameters should be positive. A 
situation that a system does not alter is called the equilibrium point. 
When a dynamical system is represented by the differential equation 
to find the equilibrium point, one can take the first derivative of the 
system equal to zero.

Definition 2.1. A point 𝑥* ∈ Rn is called an equilibrium point of the 
ODEs system ẋ = F(𝑥) if it satisfies F(𝑥*) = 0, where

 In this case, a patient is called the treated patient if the dynamic 
system of tumor model without drug is reached to the equilibrium 
points. In the equilibrium points, the population number of tumor 
cells is zero or few. Therefore, it is necessary to find these points. 
After finding the equilibrium points of the system, it is essential to 
investigate the stability of the model [13], [49]. According to the 
parameters values of the system, there are three kinds of equilibria for 
a system without drug input as follows [13].

B. Tumor-free Equilibrium Point
In this case, the population of tumor cells is zero and the normal 

cells remain alive. If

then, we have the asymptotical stability of this equilibrium point 
whose form is as follows:

1. Dead Equilibrium Points
If the population number of normal cells is zero, this equilibrium 

point is said to be “dead”. We have two types of these equilibrium 
points. In the first type, both population number of the tumor and 
normal cells are zero and the dead equilibrium point is as follows

in the second type, the population number of normal cells is zero 
but the tumor cells remain alive and the dead equilibrium point is as 
follows

Where x is a solution of (2) which is nonnegative value and f (𝑥) is 
introduced in (3):

 (2)

 (3)

 is always an unstable equilibrium point. Depending on the 
system parameters values, we may have  as stable or unstable 
equilibrium point.

2. Coexisting Equilibrium Point
In this kind, both tumor and normal cells remain alive while they 

have coexistence and their population number is not zero.  The form 
of this kind can be seen below:

where 𝑦 is a solution of the following equation with nonnegative 
value:

 (4)  

And g(𝑦) is as follows:

Relying on the parameters of the system, this equilibrium point is 
fairly stable or unstable. For the chemotherapy remedy, the system 
must ideally come close to two equilibrium points including Tf

* and 
any coexisting equilibrium point when the value of 𝑦 is small and 
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g(𝑦) is near to 1. The objective of chemotherapy treatment is that the 
system is brought into an attraction area in which equilibrium point 
can be tumor free or can be in the presence of only small population 
number of tumors.

C. Reducing Parameters of the System 
In this section, we will decrease the parameters of the system by 

determining the new parameters of the system and defining new 
variables. In order to decrease the parameters of the system, we use 
some new variables as

 (5)

We have the following system by substitution (5) into (1)

 (6)

Where the relations between the new parameters of the system and 
old parameters of the system are as follows:

 (7) 

In comparison with the system (1), solving the system (6) is simpler 
because of the reduction in the numbers of the system parameters.

III. Proposed Method

A. First Order ODEs System Formulation
Now, a system of first order initial value differential equations is 

considered as follows:

 (8)   

Where ψk(a) = Ak, k = 1, 2, 3, 4 and  indicates the kth trial 
solution based on ANN which can be shown here as:

 (9) 

Where Nk (t, pk) is the ANN’s output corresponding to input data t 
and parameters pk. The initial condition is satisfied by the trial solution 

. The derivative of the trial solution  is as follows:

 (10)

B. The Error Function and Elements of the ANN
In this case, the error function is given with 

 (11)

where n is the number of samples. The error function is composed 
of two terms. The first term described in (10) consists of the network 
output and its derivative. The second term involves the desired 
output. The error function (11) is minimized by applying fminunc  

according to (12) which is a toolbox function of Matlab for solving the 
unconstrained optimization problem.

 (12) 

In equation (12), the output of the fminunc is the local minimum of 
the function described in fun  with respect to the parameters initialized 
in X0. In this case, fun is the error function that is presented in (11) 
and the parameters are weights that are initialized randomly. With 
regard to a multilayer perceptron neural network with three layers 
including one input neuron and one output neuron in the input and 
output layers and a hidden layer with m neurons, the neural network 
output is computed for the input t as below

 (13)

where m is the number of neurons in the hidden layer, 𝑣j’s are the 
weights between hidden and output layers corresponding to jth neuron 
in the hidden layer, and the activation function of each neuron in the 
hidden layer is considered as sigmoid given by:

 (14)

where zj is: 

 (15)

where wj’s are weights between input and hidden layers and the 
biases indicated by 𝑢j. The network output derivative with respect to 
input t is as follows:

 (16)

In the next section, the numerical results will be shown while this 
strategy is applied for therapy and control of cancer modeled as an 
ODEs system.

IV. Numerical Results

In this section, the results of ANN are compared with the analytical 
solution using MATLAB R2015b, on a 2.4 GHz Intel(R) Core(TM) 
i7-4510U laptop running Windows 10 Ultimate with 12.00 GB main 
memory. The values of the ODEs system parameters presented in 
Section II are determined according to the following [7]:

By considering these parameter values, a four-coupled first order 
ODEs system is obtained as follows:

 (17)

where the initial conditions are ψ1(0) = 2.5, ψ2(0) = 2.5,  
ψ3(0) = 1.55 and ψ1(0) = 1.35. According to (9), the trial solutions 
are given by

According to the proposed method in Section III, four NNs 



- 22 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº4

associated with ψ1 to ψ4 equations are trained with 156 samples by 
considering the step size of 0.0008 within the interval [0 0.125]. Fig. 
3 illustrates the ANN and analytical results. The analytical results are 
obtained by Pontryagin minimum principle.

As it can be seen in Fig. 3, ANN results are a good approximation 
of analytical solutions because the MSEs between the analytical and 
ANN results corresponding to equations ψ1 to ψ4 are 1.54e-06, 6.43e-
07, 6.61e-06 and 3.99e-07, which are denoted by E1, E2, E3, and E4, 
respectively.

In Table II, a comparison is provided between analytical solutions 
and ANN results for the different number of neurons in the interval [2, 
8] with the step size 2. In Table II, for each equation except for ψ4, the 
best results are obtained for six neurons in the hidden layer. As it can 
be seen from Table II, when the number of neurons in the hidden layer 
increases from 2 to 4, the MSEs decrease to the amount of 1.5206e-
03, 2.8931e-03, and 4.709e-06, for ψ1, ψ3, and ψ4 while the MSE does 
not change for equation ψ2. In addition, when the number of neurons 
increases from 4 to 6, the MSEs of the equations ψ1, ψ2, and ψ3, except 
for ψ4, increase. By increasing the number of neurons from 6 to 8, the 
MSEs increase for ψ1, ψ2, and ψ3, whereas the MSE decreases for ψ4 . 
The running time of ANN corresponding to each equation ψ1 to ψ4 is 
given in Table III.

TABLE II. Mean Square Error Between Analytical and ANN Results 
for 2, 4, 6 and 8 Neurons in Hidden Layer of ANN

Number of
Neurons

MSEs

2 4 6 8

ψ1 0.0016 7.94e-05 1.54e-06 3.44e-06

ψ2 0.00013 0.00013 6.43e-07 0.00013

ψ3 0.0029 6.84e-06 6.61e-06 0.00013

ψ4 5.07e-06 3.61e-07 3.99e-07 3.84e-07

TABLE III. Running Time of ANN in Seconds for Six Neurons in Hidden 
Layer

Optimal control equation ψ1 ψ2 ψ3 ψ4

Running time 11.88 9.46 9.44  8.84

Ideally, the modeling should improve treatment strategies and 
lead to the development of new approaches. One of the goals of 
mathematical models is dosimetry, accurate prediction of dose 
response or simulation of different dose programs. Fig. 3 (d) shows the 
amount of drug used for different time intervals during treatment, and 
Figs. 3(a), 3(b) and 3(c) show the effect of the drug on tumor, normal 
and immune cells, respectively. 

Fig. 3(d) shows that we increase the amount of drug used to 
counteract tumor cells till t = 0.08. However, by decreasing tumor 
cells and increasing immunity after t=0.08, we gradually decrease 
the amount of drug. From now on, tumor cells will decline due to the 
competition between them and immune cells. In other words, as the 
immune system increases, the amount of used drug and the tumor cells 
decrease. Where the amount of normal cells is increasing to prevent 
additional toxicity of chemotherapy injection, we try to keep them at 
0.25 during treatment. To prevent self-control of the immune system 
on cancer cells, we assume the number of primary immune cells so 
small and the number of tumor cells so large that tumor growth is 
unavoidable unless chemotherapy is used. Support Vector Regression 
(SVR) is a version of SVM for solving regression problem which was 
proposed by Drucker, H. et al. [50].
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Fig. 3. Analytical and ANN solution for (a) Optimal tumor cells, (b) Optimal 
host cells, (c) Optimal immune cells and (d) Optimal amount of drug.
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Currently, therapies are expensive and time-consuming. They 
often result in variable treatment outcomes among patients and their 
harmful effects are often unpredictable [51]. We compare the results 
of ANN with the SVR model. The Optimal amount of drug by using 
SVR and ANN is shown in Fig. 4. The MSEs between the analytical 
and SVR results corresponding to equations are 1.48, 0.007, 3.5816 and 
0.0583 respectively. By comparing the results of ANN and SVR, it can 
be clearly seen that ANN performs better than SVR. In addition, Table 
IV shows the MSEs comparisons between the proposed method, SVR, 
MLP, Finite Element, and Runge–Kutta methods. We can clearly see 
that the proposed method provides more accurate results compared to 
the SVR and MLP machine learning methods as well as Finite Element 
and Runge–Kutta numerical methods.
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Fig. 4. Optimal amount of drug by using SVR(Red) and ANN(Blue).

Remark 4.1: In this paper, the goal is not just to find solutions to the 
ODEs system because the given ODE system can be solved by different 
numerical methods. Solving the system, the NN allows us to anticipate 
the process of cancer treatment here providing a great advantage over 
other methods for solving ODE systems. Using the proposed NN, the 
optimal dose of the chemotherapy drug injected is shown in Fig. 3 (d). 

TABLE IV. MSEs Comparisons Between SVR, MLP, Finite Element, 
Runge–Kutta, and Proposed Method

Methods

MSEs
SVR

Finite 
Element

 Here    MLP
Runge-
Kutta

ψ1 1.48 3.24e-04 1.54e-06 7.29e-05 1.003

ψ2 0.007 2.12e-05 6.43e-07 8.78e-06 0.002

ψ3 3.5816 1.37e-04 6.61e-06 5.61e-05 1.247

ψ4 0.0583 7.51e-05 3.99e-07 7.82e-07 0.0018

V. Conclusion

In this paper, a system of ODEs was used to anticipate the tumor 
growth and to show cancerous, immune and healthy cells interaction in 
the body. Also, the dynamic behaviour of the system was analyzed by 
investigating the different equilibrium points in which the population 
number of tumor cells is zero or few. Using the proposed ANN, not 
only the optimal dose of chemotherapy drug that should be injected 
was shown, but also the amount of the drug needed to continue the 
treatment process was predicted. This can lead to decreasing the 
number of tumor cells and increasing the number of immune and 
healthy cells to their utmost. Simulation results had shown the good 
performance and efficiency of the proposed method. Compared to 
existing methods in cancer treatment and diagnostic centers that 
require advanced equipment with expensive costs, this method can be 

used without trial and error to predict the process of cancer treatment. 
In the future works, we will design and implement effective closed 
loop control systems to control the dose of a chemotherapy drug to 
reduce the side effects of receiving an additional drug. 
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