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Abstract

The purpose of chromium plating is the creation of a hard and wear-resistant layer of chromium over a metallic 
surface. The principal feature of chromium plating is its endurance in the face of the wear and corrosion. This 
industrial process has a vast range of applications in many different areas. In the performance of this process, 
some difficulties can be found. Some of the most common are melt deposition, milky white chromium deposition, 
rough or sandy chromium deposition and lack of toughness of the layer or wear and lack of thickness of the 
layer deposited. This study builds a novel nonparametric method relied on the statistical machine learning 
that employs a hybrid support vector machines (SVMs) model for the hard chromium layer thickness forecast. 
The SVM hyperparameters optimization was made with the help of the Particle Swarm Optimizer (PSO). The 
outcomes indicate that PSO/SVM–based model together with radial basis function (RBF) kernel has permitted 
to foretell the thickness of the chromium layer created in this industrial process satisfactorily. Thus, two kinds 
of outcomes have been obtained: firstly, this model permits to determine the ranking of relevance of the seven 
independent input variables investigated in this industrial process. Finally, the high achievement and lack of 
complexity of the model indicate that the PSO/SVM method is very interesting compared to other conventional 
foretelling techniques, since a coefficient of determination of 0.9952 is acquired.
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I. Introduction

HARD chromium is an electroplating process that has been 
employed for many years. Its purpose is the creation of an 

extremely hard surface over a metal part [1].

According to the thickness of the chromium layer, there are two 
kinds of chromium plating processes. The decorative plating which 
makes use of layer thickness of up to 1.5 μm and the hard chromium 
plating whose thickness goes from 2.5 to 500 μm. Not only the 
thickness is the difference of decorative and hard chromium plating 
processes, but also that in the case of hard chromium plating the layer 
is applied over the metal part while in the case of decorative plating a 
coat of nickel or copper nickel alloy is employed.

In general, the hard chromium plating process requires of some 
initial baths that clear the piece and of an electropolishing phase. 
Afterwards the chrome plating operation is performed. The bath in 
which this operation is performed contains chromic and sulphuric acid 
in proportions of 100 to 1 respectively [2]. A chemical equilibrium is 
maintained of chromic and sulphuric acid that have a reversible chemical 

reaction, forming chrome metal, water and oxygen. In this electrolytic 
process the anode employed has not to be replaced as it is solid.

The presence of sulphuric acid is compulsory, as it is essential for 
the reaction and therefore, the coating, to take place but it must be 
controlled in order to maintain among certain limits [3].

There is a vast range of composition proportions of the bath. For 
example, the weight ratio of chromic acid to sulphate goes from 75 to 
1 to 120 to 1 with an optimum value about 90 to 1.

The disadvantages of low chromic acid have been reported in the 
literature [4] and they mainly consist of the difficulties to obtain the 
required thickness for the layer, the high sensitivity to different bath 
concentration and the need of a higher voltage. Despite these, such kind 
of baths are employed as they work faster. When high concentrations 
are employed, the resulting bath is less affected by bath contamination 
and, also, it can operate with lower voltages.

Hard chromium plating process is mainly applied in those parts that 
require of a high resistance to wear. The hardness of chromium plating 
is between 800 and 1000 HV. Also, it has a low friction coefficient. For 
example, it is of 0.16 for chromium to steel while for steel to steel it is 
of 0.30 [5]. One of the main fields where this kind of plating is useful 
is in automotive industry, where these covers are employed to fight 
against wear. Also, in iron and steel industry hard chromium plating is 
a process employed for plating rolling mill cylinders.
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In the case of tools, the hard chromium plating recommendation is 
linked to the achievement of a higher wear, friction and tear resistance 
[6]. This treatment is also of interest for the corrosion reduction. It 
means than any tool with a chrome layer from 2.5 to 13 μm will have 
a longer life. Hard chromium plating is also employed for the rework 
of parts out of tolerance. For example, engine components like shafts 
and cylinders.

Also, it is remarkable that those rolling mills that are coated 
experiment a great increase in their average life [3]. From a mechanical 
point of view, the properties of electrodeposited chromium are like 
those of metal chromium. The most important of these are its great 
hardness, low friction coefficient, good corrosion resistance, low 
thermal expansion, and high conductivity.

For a good result of a chromium plating process, it is not only 
required the control of the plating parameters but also having the 
required kind of base material. A cleaning with electropolishing before 
the plating is in many cases required. The base material employed 
must be able to withstand the external forces applied without hardly 
any deformation. That is that the properties of the base material must 
be like those of the applied chromium layer. Also, the thickness of the 
chromium layer should be reduced to a minimum in those areas of the 
part that would suffer from high deformation values.
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Fig. 1. The industrial process of hard chromium plating.

Fig. 1 shows the flowchart of the industrial hard chromium process. 
In a first stage, parts go through a vapour degreasing operation 
that cleans the part. It is followed by an electropolishing phase that 
prepares the part surface to receive the chromium layer. The next 
step is the proper chromium operation. This entire process requires 
of some intermediate inspection points and generates data that can be 
analyzed in order to adjust and improve the whole process.

The aim of this research is to assess the goodness of the support 
vector machines (SVMs) regression model [8]–[12] to predict the 
chromium layer thickness considering different variables from 
the industrial process. The purpose of the model developed in this 
research can overcome some problems found in industry and give to 
the researchers a more in-depth knowledge of the industrial process 
as a whole.

SVM are a kind of machine learning models that have shown a 
great performance for both regression and classification tasks [8]–
[12]. In the case of the present research SVM models were trained to 
predict the thickness of the chromium plating layer. SVM models has 
proved to be successful in other disciplines such as the prediction of 
biological parameters in environmental problems like forest modeling 
[13], solar power generation prediction [14], [15] and air and water 
quality estimation [16]–[19].

Particle swarm optimization (PSO) technique is a metaheuristic 
evolutionary global method able to solve multidimensional 
optimization problems that makes use of continuous variables. It is a 
bio-inspired algorithm relied on swarm intelligence [20]–[25].

In summary, the main objective of the present study was to develop 
a hybrid algorithm with PSO optimizing SVM parameters (PSO/SVM–
based model) to predict the thickness of the hard chromium layer 
from the seven physical-chemical input parameters from the hard 
chromium plating process.

II. Materials and Methods

A. The Chromium Plating Process and Experimental Datasets 
The chromium plating process requires of different stages in order 

to achieve the required chromium layer. There are four main process 
stages: vapor degreasing, cleaning, electropolishing and hard chrome 
process.

Usually the degreasing in vapor phase is performed in a stainless 
steel tank. This process takes about 10 minutes as such time is enough 
in order to reach the temperature required. It can be verified that the 
required temperature has been reached because the steam does not 
condense on the lower surfaces of the pieces. The next step consists 
on a parts cleaning in order to remove all the residual traces of dirt 
and surface impurities, this operation has an important manual 
component.

The next stage is the Electropolishing: The electropolishing 
operation consists of the following phases, first of all, pieces are 
cleaned with acetone. Afterwards, laded in the frames where the 
electropolishing process is performed. For each electropolished load, 
the system records the minimum, maximum and average temperature 
values. The electropolishing time depends on the amount of material 
to be removed.

After the electropolishing the hard chromium plating stage of 
the process is performed. Before the chrome operation, pieces are 
cleaned with a pressurized water gun. Next, each piece is blown with 
pressurized air to remove the remains of water. The chromating of 
the pieces is carried out by immersion in a bath with a temperature 
between 53 and 56ºC. Once the chromium plating process has finished, 
pieces are removed from the frame, washed with water and introduced 
into an alkaline bath. The minimum time in this bath will be of three 
minutes. After this time, they are extracted from the bath and washed 
by hand with water.

The experimental dataset was collected using a database from 
the hard chromium plating of the factory belonging to the company 
Tecnocrom Industrial Ltd (Madrid, Spain). Eight process variables 
are collected from the hard chrome plating process including the 
dependent variable (thickness of the hard chrome layer). These seven 
input variables are briefly described in Table I. The total number of 
data used in this study is 37,360. The output variable (or dependent 
variable) considered in this study was the hard chromium plating 
thickness (in microns).

In this research relationship between the thickness of the hard 
chromium layer (dependent variable) in microns and some physical-
chemical variables (independent variables) has been studied. The 
variables employed are listed below:

• Iron content of the electropolishing bath (mg/L): this variable 
measures the iron content in the electropolishing bath expressed 
in mg/L.

• Electropolishing time (minutes): this variable represents the 
amount of time, expressed in seconds that the part is submerged 
in the electropolishing bath.
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• Electropolishing bath temperature (ºC): this variable expresses the 
electropolishing bath temperature in Celsius degrees. It is well-
know that when the higher the temperature value, the lower the 
process performance.

• Layer thickness removed by electropolishing (mm): the 
electropolishing process suposses the removal of a certain amount 
of material. This variable measures the amount of material 
removed.

• Chromic acid content (g/L): chromic acid content in the hard 
chromium bath expressed in g/L.

• Hard chrome plating time (minutes): this variable measures the 
time of the hard chromium plating operation.

• Hard chrome plating temperature (ºC): this variable expresses the 
chrome plating bath temperature in Celsius degrees. As in the case 
of the electropolishing and in this case, due to the electrolytical 
process, the bath temperature increases. The bath temperature 
influences in the operation performance.

TABLE I. Set of Operation Physical input Variables Used in This Study 
and their Names Along With their Mean and Standard Deviation

Input variables Variable name Mean Stand. dev.

Iron content of the 
electropolishing bath (mg/l)

iron_ep 0.12 0.09

Electropolishing time 
(minutes)

ep_time 4.50 0.91

Electropolishing bath 
temperature (ºC)

ep_temp 53.60 4.62

Layer thickness removed by 
electropolishing (μm)

thick_electropol 305.9 34.46

Chromic acid content (g/l) chrom_acid 240.6 8.71

Hard chromium process 
time (minutes)

hard_chrom_time 30.7 3.33

Hard chrome bath 
temperature (ºC)

hard_chrom_temp 53.9 0.47

Fig. 2 shows an overview of the eight sample variables over time. 
The highly nonlinear behaviour of the output variables can be clearly 
appreciated.

B. Computational Procedures
The first step in this study is the determination of the correlation 

matrix of all the process variables (see Fig. 3). This matrix indicates 
that there is hardly any correlation among the independent variables 

and some correlation of the dependent variable thickness of the hard 
chrome layer (thickness_chrom) with input variables layer thickness 
removed by electropolishing (thick_electropol) and hard chromium 
process time (hard_chrom_time). This outcome stands out the trouble 
that we can encounter in acquiring foretold models using linear 
regression methods. As a consequence, it is required to deal with this 
complicated issue employing more developed nonlinear procedures 
relied on statistical machine learning such as the support vector 
machines (SVMs) together with the particle swarm optimizer (PSO) 
giving place to the PSO/SVM–relied model used in this study.
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Fig. 3. Correlation matrix.

1. Support Vector Machines For Regression (SVR) 
Initially, support vector machines (SVMs) arose to treat binary 

classification problems. Under these circumstances, it was quickly 
observed that the basic rules that support them could be used to tackle 
other kind of problems such as the regression problems. Certainly, 
in place of trying to sort new unnoticed variables x' into one of two 
classes y' = ± 1, we are going now to foretell a real-valued output for y' 
from the training data {xî, yi}, so that i = 1, 2, ..., L with yi ∈ ℜ, xi ∈ ℜD  
[26]–[29] so that: 

yi = w · xi + b (1)

where:

• w is director vector of the hyperplane (normal to this hyperplane);

•  is the perpendicular (normal) distance from the hyperplane          
        to the coordinates origin.

The support vector regression (SVR) approach employs a more 
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Fig. 2. Graphical overview of the process variables: variable value versus observation number.
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cumbersome penalty function than in case of classification, not 
permitting a penalization if the foretold value yi is less than a distance 
ε away from the observed value ti , that is to say, if |ti − yi | is fulfilled. 
Alluding to Fig. 4, the region enclosed by yi ± ε  for all i is termed an 
ε − insensitive tube. The another change of the penalization function 
is that output variables falling out of the tube receive one of two slack 
variable penalizations relying on whether they stay above (ξ+) or 
below (ξ−) the tube (so that ξi

+ > 0, ξi
− > 0 ∀i) [12], [13], [30], [31]:

ti ≤ yi + ε + ξi
+ (2)

ti ≥ yi − ε − ξi
− (3)

ξ− > 0

ξ+ > 0

y + ε+

y − ε−

y
Y

X

Experimental
data points

Fig. 4. Regression with ε − insensitive tube.

The error function for SVR approach is given by [9], [30]:

 (4)

In brief, the primal problem in the event of regression is described 
as [12] , [31], [32]:

 (5)

Next, we minimize the error function supplied by Eq. (4) along 
with the constraints ξi

+ ≥ 0, ξi
− ≥ 0 ∀i in addition to inequalities (2) and 

(3), which is expressed compactly by the Eq. (5). For the purpose of 
building the dual problem, the following steps are demanded [9], [12], 
[18], [30], [31]:

• Step 1: Lagrange function construction 

To this end, we use the following Lagrange multipliers 
:

 (6)

• Step 2: Implementation of Karush–Kuhn–Tucker (KKT) optimality 
conditions

Carrying out the differentiation of LP with respect to w, b, ξi
+ and ξi

−, 
and matching the derivatives to zero, it turns out that:

 (7)

 (8)

 (9)

 (10)

 (11)

 (12)

• Step 3: Establishment of the relations among the primal problem’s 
variables (w, b, ξ+, ξ−) and those of the dual problem(α+, α-, μ+, μ-). 
For this, we make use of  Eq. (7).

• Step 4: From the result obtained in previous step, it is possible to 
remove the primary variables of the Lagrangian function so that:

 (13)

Using μi
+ ≥ 0 and μi¯

 ≥ 0 together with Eqs. (9) and (10) means that  
αi

+ ≤ C and αi¯ ≤ C. Finally, the mathematical formulation of the dual 
problem can be expressed as [9], [12], [18], [30], [31]:

 (14)

Replacing Eq. (7) into Eq. (1), new forecasts y' can be calculated 
employing [12], [30]:

 (15)

An ensemble S of support vectors  can be determined encountering 
the indices i such that 0 < α < C and ξi

+ = 0 (or ξi
− = 0). This operation 

gives place to [12], [30]:

 (16)

Following the methodology, we average over all indices i in S so 
that b is defined correctly by [9], [12], [17]:

 (17)

Additionally, some investigations have shown that some regression 
problems are not linearly solved in the space of the inputs x, but 
are solvable in a higher-dimensional space called the feature space 
by using a suitable mapping x → Φ (x). This indicates that if the 
functions can be brought into a space of higher dimensionality by 
some potentially nonlinear mapping x → Φ (x), it is only necessary 
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to determine the scalar products of the inputs mapped in the feature 
space without having to explicitly calculate Φ (x). For the purpose of 
using an SVM approach to solve a regression problem with nonlinear 
separable data, firstly it is necessary to select a kernel together with its 
relevant parameters so that we can map the nonlinear separable data 
into a feature space where they are linearly separable (kernel trick).

Hence, the first step is the selection of a suitable kernel that gives 
place to a mapping x → Φ (x). Next, it is mandatory to follow the steps 
indicated below [9], [12], [30]:

• Selection of the appropriate values for the hyperparameters C and 
ε, that is to say, the weight of misclassifications and the size of the 
insensitive loss region.

• Determination of  α+ and α¯ by means of:

 (18)

such that k (xi, xj) = Φ (xi) · Φ (xj) is termed the kernel function. 
Moreover, the kernel function must be symmetric and semidefinite 
positive according to the Moore–Aronszajn theorem. Likewise, the 
solution of the dual problem (15) is carried out employing a quadratic 
programming (QP) solver.

• Calculation of .

• Determination of the ensemble of Support Vectors S encountering 
the indices i such that 0 < α ≤ C and ξi

+ = 0 (or ξi
− = 0 ).

• Calculation of b:

 (19)

• All novel point x' is encountering by means of the expression:

 (20)

Several usual functions used as kernels in the scientific literature 
[10], [12], [30]–[32] are formulated as:

• Radial basis function termed RBF kernel:

 (21)

• Polynomial kernel:

 (22)

• Sigmoid kernel:

 (23)

so that a, b and σ are hyperparameters indicating the kernel’s 
functioning.

Moreover, representative parameters of the SVM approach can be 
summarized as [12], [30], [32]:

• Regularization constant (C): also term cost function. This factor 
defines the trade-off between the margin (i.e., model flatness) and 
the relevance of the slack variables (related to the training error). 
Furthermore, this constant C must be chosen a priori, being a 
parameter of the machine learning.

• ε parameter: this factor controls the width of the error margin 
allowed. The second term of the objective function (see Eqs. (4) 
and (5)) is known as empirical error determined by means of the ε ⎯ 
insensitive loss function, which indicates that it does not disregard 
errors below ε (i.e. to a distance ε of the true value).

• a, b and σ: these factors determine the expression of the different 
kernels in the subsequent model.

Therefore, it is appropriate to utilize some mathematical technique 
that determines the previous hyperparameters accurately enough. 
These parameters determine the ensemble of support vectors and 
their influence in the subsequent regression model, that is to say, the 
precision and robustness of the last model. Moreover, the particle 
swarm optimizer (PSO) explained in more detail below was employed 
[20], [33] with triumph in this work.

2. The Particle Swarm Optimization (PSO) Algorithm
Particle swarm optimizer (PSO) [20]–[22], [33] is a heuristic kind 

of optimizer aimed at finding global minimums or maximums. Its 
operation is motivated by the habits of groups of birds or ensembles 
of fish in which, the movement of each individual (direction, speed, 
acceleration, etc.), is the result of combining the individual decisions 
of each with the behaviour of the rest.

Although there are variations, in general terms, the structure of a 
PSO algorithm to optimize (maximize or minimize) a function with 
one or multiple variables follows the following steps:

1. Create an initial swarm of n random particles. Each particle consists 
of 4 elements: a position that represents a certain combination of 
variable values, the value of the goal function at the position where 
the particle is located, a velocity that indicates how and where 
the particle moves, and a record of the best position in which the 
particle has been so far.

2. Evaluate each particle with the objective function.

3. Update the position and speed of each particle. This is the part 
that gives the algorithm the ability to optimize. This process is 
described in detail in the step Move the particle below.

4. If a stopping criterion is not fulfilled, return to step number 2.

In the following steps, each stage of the process is implemented to 
finally combine them all into a single function:

• Create a particle
Each particle is determined by a position, speed and value that vary 

as the particle moves. In addition, it also stores the best position in 
which the particle has been so far. When a new particle is created, 
only information about its position and velocity (normally initiated 
as zero) is available and the rest of the values are not known until the 
particle is evaluated.

• Evaluate the particle
Evaluating a particle consists in calculating the value of the goal 

function in the position that the particle occupies in that moment. 
The position with the best value in which the particle has been so 
far is stocked up on. In order to identify if a novel location is better 
than the previous ones, it is necessary to know if it is a problem of 
minimization or maximization.
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• Move the particle
Moving a particle means updating its speed and position. This 

step is the most important since it gives the algorithm the ability to 
optimize.

The speed of each particle in the ensemble is upgraded employing 
the next equation:

 (24)

where:

• vi (t+1): particle velocity i at time t+1, that is, the new velocity.

• vi (t) : particle velocity i at time t, that is, the current velocity.

• ω: inertia coefficient, which reduces or increases at the speed of 
the particle.

• c1: cognitive coefficient.

• r1: vector of random values between 0 and 1 of length equal to that 
of the velocity vector.

• i (t): best position in which the particle i has been so far.

• xi (t): position of the particle i at time t.
• c2: social coefficient.

• r2: vector of random values between 0 and 1 of length equal to that 
of the velocity vector.

• g(t): position of the whole swarm at time t, that is, the best overall 
value.

To understand how this equation relates to the motion of the 
particle, it is useful to differentiate three parts:

• ωvi (t) is the inertia constituent, in charge of remaining the particle 
advancing in the direction in which it has been doing so far. The 
recommended value of the inertia constituent ω is usually ranging 
from 0.8 to 1.2. If ω < 1, the particle slows down as the iterations 
progress. This means less exploration but a faster convergence 
towards the optimum. If ω > 1, the particle is accelerating, allowing 
more areas of the function space to be explored, but this makes 
convergence difficult.

• c1r1 [ i (t) − xi (t)] is the cognitive constituent, responsible for the 
particle tendency to advance towards the position where it has 
obtained better results so far. The cognitive coefficient c1 is usually 
bounded in the range [0, 2], where 2 is the recommended value. 
r1 is a vector of random values between 0 and 1 (one value for 
each dimension) that provides some stochastic behavior to the 
movement of the particles, thus improving the ability to escape 
from local minima.

• c2r2 [g(t) − xi (t)] is the social constituent, responsible for the particle 
tending to advance towards the best position found by the flock up 
until now. It can be interpreted as collective knowledge. The value 
of the social coefficient c2 is usually limited in the range [0, 2], 
where 2 is the recommended value. r2 is a vector of random values 
between 0 and 1 (one value for each dimension) that provides 
some stochastic behavior to the movement of the particles, thus 
improving the ability to escape from local minima.

The relative magnitude between the cognitive component and the 
social component allows regulating the exploratory behaviour of the 
algorithm. The higher the value of c1 with respect to c2, the greater 
independence of movement each particle has, which allows greater 
exploration but slower convergence. On the contrary, the higher the 
value of c2 with respect to c1, the more obliged the particles are to 
advance towards the most excellent zone found up until now, which 
reduces exploration but accelerates convergence.

Once the new velocity is calculated, the position of the particle can 
be updated with the expression:

 (25)

Finally, the parameters ω, c1 and c2 must be selected and control the 
behaviour and efficacy of the PSO method. Moreover, the Standard 
PSO 2011 [34] has been employed in this work. It considers some 
betterments from the point of view of its implementation [20]–[22], 
[33], [34] and besides the PSO parameters are calculated according to 
the next expressions:

and
 (26)

3.  Accuracy of this Approach
Seven input variables already described previously in subsection 

2.1 were employed in this study to build this novel PSO/SVM–relied 
method applying a regularized method [8]. As it is also known, the 
hard chrome layer thickness (HCLT) is the dependent variable that we 
want to foretell. In order to forecast HCLT from the seven remaining 
input variables with sufficient security, it is mandatory to select the 
best model fitted to the observed dataset. Although several possible 
statistics can be used to ascertain the goodness–of–fit, the rule used 
in this study was the coefficient of determination R 2 [8], [35]. The 
coefficient of determination is a statistic used in the context of a 
statistical model to foretell future results or to test a hypothesis. Next, 
we will call the observed values ti versus the values predicted by the 
model yi. Then, it is possible to define the following sums of squares 
given by [35]:

• : is the overall sum of squares, proportional 
to the sample variance.

• : is the regression sum of squares, also 
termed the explained sum of squares.

• : is the residual sum of squares.

where  is the mean of the n observed data:

 (27)

Considering the former sums, the coefficient of determination is 
given by the following equation:

 (28)

The closer the R 2 statistic is to the value 1.0, the smaller the 
difference between the observed and predicted data.

Two additional criteria considered in this study were the root mean 
square error (RMSE) and mean absolute error (MAE) [35]. These 
statistics are also used frequently to evaluate the forecasting capability 
of a mathematical model. Indeed, the root mean square error (RMSE) 
and mean absolute error (MAE) are given by the expressions [8], [35]:

 (29)

 (30)
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If the root mean square error (RMSE) has a value of zero, it means 
that there is no difference between the predicted and observed data. 
Mean Absolute Error (MAE) is the average vertical distance between 
each point and the identity line. MAE is also the average horizontal 
distance between each point and the identity line. MAE has a clear 
interpretation as the average absolute difference between ti and yi.

III. Results and Discussion

The hybrid model built here used as input variables seven distinct 
input operator parameters. All these variables were previously given 
in Table I. The hard chrome layer thickness (HCLT) is taken as output 
variable of this suggested new hybrid PSO/SVM–relied model. The 
forecast carried out from the seven self-reliant variables [8], [26] was 
appropriate as it was already exposed before, the SVM approximation 
is affected by the assortment of the SVM hyperparameters such as the 
regularization constant C, the width ε of the insensitive tube, and the 
parameters a, b and σ which condition the shape of the distinct kernels 
in the ultimate model. Usually, the traditional way of performing 
hyperparameter optimization in most computational codes has been 
grid search, or a parameter sweep, which is simply an exhaustive 
searching through a manually specified subset of the hyperparameter 
space of a learning algorithm. Indeed, the grid search is a brute force 
method and, as such, almost any optimization method improves its 
efficiency [10], [12], [30], [32].

The determination of the SVM optimal parameters was carried 
out assisted by the metaheuristic optimizer termed as particle swarm 
optimizer (PSO) [20]–[22], [34] which showed a good performance. In 
this sense, we have built a novel hybrid model called as PSO/SVM–
relied model, which utilizes as output (dependent) variable HCLT in 
the hard chromium plating process [4].

For the purpose of studying variables effect, the coefficient of 
determination was calculated. The flowchart indicating the way of 
implementation of the present novel model is made visible in Fig. 5.

1. Initialize
C, ε, σ

2. SVM training process

3. SVM validating process

4. Coe�icient of determination
(fitness function)

5. Termination criteria

7. Optimized parameters

n = n + 1

No

Yes

C, ε, σ

6. PSO searching

Fig. 5. Flowchart of the novel hybrid PSO/SVM–relied model.

Next, Fig. 6 makes visible those terms that make up of the best-
fitted PSO/SVM–relied model for prediction of the hard chrome layer 
thickness (HCLT).

This graphical chart permits us to know the relevance of the 
distinct input variables entailed in the model. From the previous chart, 
Fig. 6 (a) shows the hard chrome layer thickness (Y–axis) as a function 
of hard chromium process time (X–axis), keeping as constant the six 

remaining input variables. Similarly, Fig. 6 (d) shows the hard chrome 
layer thickness as a function of hard chromium process time and the 
thickness of the layer removed by electropolishing, keeping constant 
the five remaining input variables.
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Fig. 6. Graphical chart of the terms that make up the hybrid PSO/SVM model 
for the hard chrome layer thickness (HCLT): (a) hard chromium process time 
first-order term; (b) layer thickness removed by electropolishing first-order 
term; (c) electropolishing time first-order term; (d) hard chromium process 
time and layer thickness removed by electropolishing second-order term; (e) 
hard chromium process time and electropolishing time second-order term; 
and (f) layer thickness removed by electropolishing and electropolishing time 
second-order term.

The value of R2 was calculated assisted by the K–fold cross-
validating procedure [36]. The mean of the term R2 values obtained is 
taken into account to be the cross-validating R2. The LIBSVM library of 
the statistical software R [37], along with the PSO technique utilizing 
the standard PSO 2011 form [34], were employed to build the ultimate 
regression model. Table II indicates the ranges of the space of solutions 
utilized for the metaheuristic PSO optimizer.

TABLE II. Intervals of the Solutions Space for Each of the RBF–SVM 
Parameters in the PSO Tuning Procedure

SVR parameters Lower limit Upper limit
C 10−4 101

ε 10−6 100 

σ 10−4 100

Hence, the PSO algorithm was employed to find the optimal SVM 
parameters utilizing the cross-validation error in each interaction. The 
particles xi are represented by vectors that include the parameters to 
tune: for example, xi = (Ci, εi, σi) for the RBF kernel employed here. 
Moreover, we have employed 20 particles in this work. Next, we 
initialized them randomly in the first iteration. Then, the particles for 
the next iterations were calculated according to the PSO algorithm. 
The value of the objective function for the particles was calculated in 
each stage. In this sense, the objective function value was computed 
as the cross-validation coefficient of determination for each particle. 
When the stopping criteria were fulfilled, the global best xi included 
the optimized parameters. Additionally, the search space is three-
dimensional and Table III points out the optimal parameters of the 
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best-fitted PSO/SVM–relied model with RBF kernel encountered with 
the PSO optimizer.

TABLE III. Optimal Parameters of the Best-fitted RBF–SVM Model 
Encountered With the PSO Optimizer

RBF/SVR hyperparameters Optimal values

C 0.99900 x 101

ε 2.972757 x 10−3

σ 6.396450 x 10−1

Moreover, Table IV shows the determination and correlation 
coefficients for the novel PSO/SVM–relied approach with RBF kernel 
adjusted for the hard chrome layer thickness.

TABLE IV. Coefficient of Determination (R2), Correlation Coefficient 
(R), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) 
for the Novel PSO/SVM–relied Model With RBF Kernel Adjusted for 

the Hard Chrome Layer Thickness 

Model R2/ R RMSE MAE

PSO/RBF–SVM 0.9952/0.9975 0.01571 0.006050

Taking into account the outcomes accomplished, the SVM 
technique together with the PSO optimizer is able to build a novel 
model with a high efficiency for the forecasting of the hard chrome 
layer thickness. The R2 of the fitted SVM model turned out to be 0.9952 
and a correlation coefficient of 0.9975. A computer with a CPU Intel 
Core i7-4770 @ 3.40 GHz with eight cores and 15.5 GB RAM memory 
was used, taking 333 seconds (approximately 6 min) to obtain the hard 
chrome layer thickness (HCLT) model.

Table V indicates the weights of the seven input variables entailed 
in the best-fitted PSO/SVM–relied model with RBF kernel for the 
hard chrome layer thickness (HCLT) forecast. These weights in 
absolute value indicate the relevance of the distinct independent input 
variables within the model. Indeed, the greater the weight in absolute 
value, the more significant is the variable. According to these rules, 
hard chromium process time is the most significant input variable in 
the HCTL forecast. The next input variable in relevance is the layer 
thickness removed by electropolishing. Similarly, the electropolishing 
time and chromic acid content are the third and fourth most significant 
variables in the HCTL forecast, respectively. Then, the iron content of 
the electropolishing bath holds the fifth place in relevance and, finally 
the two last places are occupied by electropolishing bath temperature 
and hard chrome bath temperature (see Table V and Fig. 7).

TABLE V. Relevance Ranking for the input Variables Entailed in the 
Best-fitted PSO/SVM–relied Model With RBF Kernel for the Hard 

Chrome Layer Thickness (HCLT) forecast

Input variable Weight
hard_chrom_time 0.9683
thick_electropol 0.9129

ep_time 0.2493
chrom_acid 0.2327

iron_ep 0.2025
hard_chrom_temp 0.1246

ep_temp 0.1220

Furthermore, the model demonstrated its ability to forecast the 
HCLT. Fig. 8 makes a comparison between the observed and predicted 
values of the HCTL by employing this novel hybrid PSO/SVM–relied 
model. Therefore, a convenient way to overcome the difficulties due to 
the problem complexity as a result of nonlinearities is the use of this 
PSO/SVM–relied model.
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Fig. 7. Relative relevance of the input operation variables to forecast the hard 
chrome layer thickness (HCLT).
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Fig. 8. Comparison between the HCTL values observed and predicted by 
employing the PSO/SVM–relied model (R2 = 0.9952).

In summary, this novel hybrid model exposed here permits to assess 
the HCTL conforming to the actual experimental values observed 
employing the PSO/SVM–relied model with enough precision and 
success. Therefore, it is very appropriate the use of a RBF–SVM model 
with a PSO–relied optimizer for the purpose of accomplishing the best 
effective approximation in this regression problem. Obviously, these 
results have concordance again with the statistical criterion based on 
‘the goodness-of-fit’ (R2), since the PSO/SVM–relied model with RBF 
kernel achieves an outstanding fitting.

IV. Conclusions

Relied on the former results, several core discoveries of this study 
can be drawn and indicated as follows:

• A PSO/SVM–relied model is an accurate tool in order to predict 
the hard chrome layer thickness (HCLT).

• In this study, we have predicted the HCLT from the measured 
seven independent variables. This type of data-driven models are 
serviceable for industry for the purpose of decreasing costs in the 
setup of new industrial processes.

• The predicted HCTL values match with the observed ones since 
this novel PSO/SVM model gives place to a high coefficient of 
determination equal to 0.9952.
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• The assessment of the input variables relevance in this industrial 
process was possible. Indeed, the hard chromium process time and 
the variable layer thickness removed by electropolishing are the 
most significant variables.

• The PSO/SVM–relied model used the LIBSVM library of the 
free software environment for statistical computing R [37] in 
combination with the PSO optimizer employing the standard PSO 
2011 form [34]. 

• According to the results obtained it has been tested that PSO/
SVM–relied model with RBF kernel improves the generalization 
capability reached employing only the standard support vector 
machines (SVMs) for regression.

To sum up the current research, it can be affirmed that this new 
approximation can be put into practice in other similar plating 
industrial processes. From our point of view and to conclude, this 
effective PSO/SVM–relied approach with RBF kernel is a convenient 
and pragmatic solution to the problem of the forecasting of the hard 
chrome layer thickness obtained from the hard-chromium plating 
industrial process.
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