
Regular Issue

- 49 -

* Corresponding author.

E-mail address: minnijain@dtu.ac.in 

DOI:  10.9781/ijimai.2020.10.003

Rumour Source Detection Using Game Theory
Minni Jain*, Aman Jaswani, Ankita Mehra, Laqshay Mudgal

Delhi Technological University, Delhi (India)

Received 25 February 2020 | Accepted 1 October 2020 | Published 22 October 2020 

Keywords

Game-Theory, Jaccard 
Similarity Coefficient, 
Network Centrality, 
Rumour Source 
Detection (RSD), Shapley 
Value (SV).

Abstract

Social networks have become a critical part of our lives as they enable us to interact with a lot of people. 
These networks have become the main sources for creating, sharing and also extracting information regarding 
various subjects. But all this information may not be true and may contain a lot of unverified rumours that 
have the potential of spreading incorrect information to the masses, which may even lead to situations of 
widespread panic. Thus, it is of great importance to identify those nodes and edges that play a crucial role 
in a network in order to find the most influential sources of rumour spreading. Generally, the basic idea is to 
classify the nodes and edges in a network with the highest criticality. Most of the existing work regarding the 
same focuses on using simple centrality measures which focus on the individual contribution of a node in a 
network. Game-theoretic approaches such as Shapley Value (SV) algorithms suggest that individual marginal 
contribution should be measured for a given player as the weighted average marginal increase in the yield 
of any coalition that this player might join. For our experiment, we have played five SV-based games to find 
the top 10 most influential nodes on three network datasets (Enron, USAir97 and Les Misérables). We have 
compared our results to the ones obtained by using primitive centrality measures. Our results show that SV-
based approach is better at understanding the marginal contribution, and therefore the actual influence, of 
each node to the entire network.

I. Introduction

RUMOUR Source Detection (RSD) aims to identify the most powerful 
nodes that are the primary sources of rumour propagation within 

a network. Social networking has become a modern tool for people 
to connect and spread the news with the development of science and 
technology. Diffusion of information in a social network can occur at 
lightning speeds and more often than not, this is considered a boon 
when it comes to relevant and correct information being spread. But 
at the same time, these networks can also be used to spread false or 
unverified information, either deliberately or by mistake. Therefore, 
rumours spread quickly and widely, and they have a great power of 
destruction. It is therefore of great theoretical and practical importance 
to decide whether there is an influential spreader and to recognize who 
is the influential spreader in the process for prevention and control of 
rumour propagation. This task is considered to be challenging due to 
the high speed of diffusion of information, and also because of the 
continuously evolving and dynamic nature of these social networks. 

The most common approaches to finding the most influential node 
used in the past include single centrality [1] and group centrality [2] 
measures. The four major centrality measures are as follows. First, 
Degree Centrality (DC) refers to the number of associations that a 
node has with other nodes in a network. For an undirected graph, 
it is taken equal to the number of nodes to which a node is directly 
connected. For a directed graph, we need to compute the in-degree as 
well as the out-degree for each node. Second, Eigen-Vector Centrality 

(EVC) considers the relative power or significance of the nodes. Here, 
each node is assigned a value representing its relative significance 
considering the fact that nodes which are connected to high-power 
nodes have a stronger influence over the network in comparison to 
those which are connected to low-power nodes. Third, Betweenness 
Centrality (BC) measures how strongly two nodes are connected via 
a given node. It is estimated as the ratio of the aggregate of shortest 
distances between any two nodes in the network, on which the node 
lies, to the shortest path between the two nodes considered. Finally, 
Closeness Centrality (CC) measures how quickly rumour can be spread 
from one node to all the other nodes in a network. It is measured as the 
inverse of the total sum of all shortest path distances between a given 
node and all other nodes in a network. For more insight into centrality 
measures along with mathematical derivations, refer to [3].

But these measures have a lot of disadvantages as different measures 
are based on different concepts and emphasize upon different topological 
properties of the network. For instance, DC gives the same weight to 
all the neighbours of a node when computing its importance. It would 
be more intuitive to give higher weights to nodes that are themselves 
important. In EVC, most of the weights get concentrated in a relatively 
smaller subgraph and therefore, all nodes are not quantified as they 
should be [4]. The remaining measures do not tend to capture the flow 
of information in the graph. Moreover, single centrality measures suffer 
from an inevitable disadvantage due to the failure to recognize the effects 
when considered in groups on node functionality. Group centrality 
measures were created to overcome this barrier and place great focus on 
operating in groups of nodes and not on their individual functionalities. 
Nonetheless, group centrality also suffers from a drawback as it focuses 
on a-priori-determined node groups and contributes to confusion when 
prioritizing individual nodes within the network.
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We aimed to work on game-theoretical algorithms to explore 
different strategies and metrics to assess the root cause of the 
rumour spread. Game-Theory is a significant paradigm that finds 
its applications in various fields. It is used in statistics and business 
analytics for prototyping the interactivity among participating agents 
[5]. Game-Theory has helped us to improve our presentiment, allowing 
for a logical analysis of various ideas which can be implemented in 
tandem with decision theory. Game-Theory has been widely used in 
the field of natural language processing. One of its most prominent 
applications is finding the most influential node within a network, 
which is relevant to our problem statement. We also do not face any 
of the above-mentioned disadvantages in this approach. Typical social 
network analysis cannot capture the dynamics of strategic interactions 
among the individuals in the network. Our proposed model is based 
on cooperative game-theory that solves this issue [6]. The elemental 
constituents of intricate interactivities in a network can be efficiently 
processed using a rich class of games, called influence games, as has 
been demonstrated in [7].

Shapley Value (SV) algorithm is a game-theoretic approach that has 
been explored in the past for finding the most influential nodes in a 
graphical network [8], [9], [10], but not for RSD problem specifically. 
The strategic issues in the Gale-Shapley model and its applications 
have been discussed in [11]. On the basis of the concept of marginal (or 
borderline) contribution, an important solution concept was proposed. 
Player i’s SV, denoted by SVi(�), is equal to the weighted mean of i’s 
borderline contributions to each coalition C, to which the player may 
belong.

 (1)

In (1), the aggregate count of players is given by ‘n’ while π (I) 
gives the set of all permutations with ‘n’ players. This concept is 
based on cooperative game-theory - an aspect of game-theory which 
encourages players to form coalitions to maximize their yield in the 
game. Coalitions are gatherings of players that form the essential 
or fundamental elements of decision making. These are assumed to 
uphold cooperative conduct which makes it reasonable to view these 
games as a contest between alliances of participants and not between 
separate players. The core assumption here is that as the game 
proceeds, an eminent alliance or coalition comprising all participants 
will manifest eventually. The theory of cooperative games provides 
a high-level approach as it describes only the coalitions’ structure, 
strategies and benefits. More insight into the SV algorithm and its 
derivation can be found in [8].

We have used SV-based centrality algorithm that is based on the key 
idea of a game-theoretic network which means defining a cooperative 
game across a network in which agents are nodes, coalitions are node 
groups, and coalition payoffs are defined to meet the requirements of 
a given application. The main contribution of our work is that we have 
explored the power of five different variations of the SV algorithm on 
various social networks that can be used for the purpose of spreading 
rumours.

We also used main centrality measures to identify the prominent 
top-k nodes to demonstrate a distinct and detailed contrast between 
our game-theoretical approach and the measures of prime centrality. 
Such a good analogy helped to portray the game-theoretical 
algorithm’s aspects and accuracy vividly.

Section II gives a detailed study of various works done in the 
related field. Section III explains the datasets used and the algorithmic 
flow. Section IV describes the results obtained and the evaluations 
performed. Section V discusses the results and gives a theoretical 
explanation for the obtained results. Section VI concludes the research 
work with an insight into its future scope.

II. Related Work

One of the fundamental research discussions in the literature on 
network analysis is the topic of connectivity. The first to experiment 
to detect the primary top-k nodes were Domingos and Richardson 
[12]. They developed an algorithmic model to address this problem 
by modelling social media network as Markov random fields which 
mathematically characterized the probability of occurrence of an 
event.

Chen and Teng [1] explained that single node centrality measures 
are suitable for assessing individual influence in isolation while 
Shapley centrality assesses individuals’ performance in group 
influence settings. Wei et. al. [2] explored the need to learn distributed 
vector representation for each vertex in a network. They laid emphasis 
on node classification and link prediction. An interesting approach 
to discover influential nodes in a network by formulating a target 
set selection problem has been discussed in [9]. Here, the problem 
comprises two main steps – the first step deals with finding a set of ‘k’ 
key nodes that would maximize the number of nodes being influenced 
in the network, while the second step is based on the λ-coverage 
problem.

We further investigated various kinds of centrality measures used 
for finding the most influential nodes in a network. DC, discussed 
by Gao et. al. [13], is used to efficiently measure the significance of 
nodes. However, it suffers from a severe disadvantage which is that 
it does not take into consideration the overall, detailed anatomy of 
the network. EVC, according to Stephenson and Zelen [14], overcomes 
the defects associated with DC. It takes into account the influence of 
neighbours of the node in consideration. BC, as explored by Freeman 
[15], learns topology-related data of networks in advance. Al-Garadi 
et. al. [16] describes how CC can be efficiently used to identify 
multiple influential spreaders. We also investigated the disadvantages 
associated with using centrality measures to find the most influential 
node in [1], [17], [18], which have been discussed in section I.

An attempt has been made to find the most influential node in a 
network using mapping entropy (ME) that reflects the correlation 
between a node and its neighbours [18]. We particularly inspected the 
application of ME using ENRON email dataset which is commonly used 
for the study of social networks [19]. ME recognizes the significance 
of a node in a complex network based on the knowledge of degree of 
the node and degrees of its neighbours. This technique for network 
attack helps to identify the node to attack, thereby saving valuable 
resources. However, the game-theoretic approach, that has been 
proposed, is able to capture and take into account the interactivity 
and dynamics of strategic interactions in a network, not only with 
immediate neighbours, but also with a larger subset of relationships 
in the graphs. Thus, we chose an SV-based algorithm to find the most 
influential nodes in a cooperative game.

Previous research by Tan et. al. [20] on spreading rumours focused 
primarily on communities’ viral epidemics. The normal (and somewhat 
standard) model for viral epidemics is called the restored or SIR model 
that is susceptible-infected- recovered. There are three types of nodes 
in a typical rumour propagation model: i) vulnerable nodes capable of 
infection, ii) infected nodes capable of further spreading the virus, and 
iii) recovered nodes that are healed and no longer capable of infection. 
The most influential spreaders of rumour are identified. Various 
methods have been defined for the same including weighted k-core 
decomposition method [15] and rumour centrality with a mass centre 
technique [20]. An advanced form of this model, called the SEIR model, 
was also studied. Zhou et. al. [21] considered the graph topology 
and observed snapshots in a network to identify the single rumour 
source by formulating the nodes in a network into four possible states: 
susceptible (S), exposed (E), infected (I), and recovered (R). 
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We studied about Explosion-Trust (ET) Game Model by referring 
to [22]. It remarkably explains how a rumour spreading model can be 
constructed using game-theory by considering two very significant 
factors – rumour explosion degree and trust degree of the source node. 
In [23], a unique Belief-Propagation-based (BP) algorithm has been 
discussed that computes the joint likelihood function of the source 
location and the spreading time for the general continuous-time to 
detect the rumour source in a network. In [24], the concept of influence 
maximization has been explained from a game-theoretical perspective. 
A Coordination Game (CG) model, in which every individual node 
makes its decision based on the benefit of coordination with its 
network neighbours, has been proposed. SV or other game-theory 
solution theories can be applied to other network-related issues as 
well, for example, to the cost allocation problem in the electric market 
transmission system, and for each application, the mathematical 
aspects of the problem should then be addressed.

The original SV algorithms that have been implemented using 
Monte-Carlo simulations in the past are computationally expensive 
and may not arrive at an exact answer. Michalak et. al. [8] developed 
approximate analytical formulas for these simulations that run in 
polynomial time. They discuss five characteristic functions, each of 
which tries to convey a certain centrality concept. We have taken 
inspiration from their work and worked with five SV games that 
focus upon one characteristic function each. Furthermore, to show the 
comparisons of our work with existing literature, we have taken the 
works of Qiao et. al. [25], Hardin et. al. [26] and Munjal et. al. [27]. We 
found very few works that list out the top 10 most influential nodes 
on one of the datasets that we used in our study, with the help of 
primitive centrality measures. Hence, we have used these three works 
for our comparative study. Qiao et. al. [26] explored an entropy-based 
centrality measure along with the primitive centrality measures 
and tested it on the USAir97 dataset [28]. Hardin et. al. [26] studied 
the relationships in the Enron dataset [29], [30] using six centrality 
measures. Finally, Munjal et. al. [27] found the most influential 
nodes from the Les Misérables dataset [31]. We have performed our 
experiments on these three datasets and compared the top 10 most 
influential nodes obtained by using our five SV games, with the top 
nodes listed in these works. More details about the datasets used are 
given in section III.A.

III. Proposed Method For RSD

Section III.A explains the datasets used and their importance. 
Section III.B explains the algorithmic flow used in detail.

A. Datasets
This section gives an elaborate description of the datasets that have 

been used for our implementation. For our experiments, we required 
undirected, positive weighted-graphs that could be expressed as social 
networks, the top 10 most influential nodes of which were already 
known (so that we could compare our results with these already 
known influential nodes). We have used three major datasets which 
satisfy these criteria and they have been described below.

Unweighted Graph 
An unweighted graph can be technically defined as a graph G(N, E) 

having ‘n’ nodes represented by set N and ‘e’ edges represented by set E 
consisting of unordered pairs, such that (n1, n2) = (n2, n1) and (n1, n2) ∈ E 
and n1, n2 ∈ N. Games 1 and 2 are played by creating an unweighted 
network from the datasets.

Weighted Graph 
A weighted graph can be technically defined as a graph G(N, E) 

having ‘n’ nodes represented by set N and ‘e’ edges represented by set 

E consisting of ordered pairs, such that (n1, n2) ≠ (n2, n1) and (n1, n2) ∈ E 
and n1, n2 ∈ N. Games 3 – 5 are played by creating a weighted network 
from the datasets.

1. Enron Dataset 
The CALO Project (A Cognitive Assistant that Learns and 

Organizes) compiled and planned this dataset [29], [30]. It contains 
data from about 150 users, belonging to the Enron organization, 
grouped into files, mainly senior Enron executives. There are a total of 
about 0.5 M messages in the corpus. We used a subset of this dataset, 
containing 143 nodes (people from the Enron organization) and 1800 
edges (an edge exists between two people if they have communicated 
with each other via email). Edges are weighted with the frequency of 
email exchanges between two users. This dataset can act as a social 
network which can be used to spread rumours within the members 
of the organization. Hence, we can identify the important nodes and 
assign them labels that symbolize their relative network value. This 
dataset has been commonly used for the study of social networks as 
well as for finding the most influential nodes [19], [26], [32], and so 
we have compared the results of our algorithm with other studies that 
used the same dataset [26].

2. Les Misérables
This is a co-occurrence graph for the characters that appear in the 

novel ‘Les Misérables’ by Victor Hugo [31]. This dataset consists of 
77 nodes and 254 edges where a node represents a character and an 
edge between two nodes shows that these two characters appear in 
the same chapter of the book. The weight of each link indicates how 
often such a co-appearance occurs. This dataset too can act as a social 
network for the spread of a rumour. We have compared the results 
obtained by our SV-based approach with those obtained by various 
centrality measures used in [27].

3. USAir97
USAir97 dataset [28] has been transformed into an undirected 

network, created by 332 nodes, where one airport represents a node, 
and 2126 edges, with each edge reflecting a direct airline between 
two American airports if any. Here, weights represent the normalized 
distance between two airports. This dataset is not particularly useful 
for the purpose of rumour spreading but due to lack of supervised 
datasets with their most influential nodes known to us, we have 
included this dataset to test the results of our approach with the most 
influential nodes obtained by various centrality measures, as in [25].

B. Algorithm
Focusing on Game-Theory’s Shapley algorithm, we referred to the 

algorithms described in Michalak and Szczepański’s work [8]. In both 
weighted and unweighted networks, the exact analytical formulae 
for SV-based centrality were established. The SV-based centrality 
polynomial-time algorithms have been developed.

1. Creation of Weighted and Un-Weighted Network Graphs
Graphs were created by using the networkx library in Python for all 

three datasets. Games 1 and 2 require unweighted graphs whereas the 
remaining games require weighted graphs.

2. Coalition Games Based on Shapley Algorithm
SV is the average marginal cost contribution across all potential 

coalitions of the function value. The Shapley algorithm was applied 
carefully and it tries to find the top-k nodes that might be the most 
prominent nodes. 

Specifically, we concentrated on five underlying network-defined 
coalition games that vary in degree and centrality of the network. 
Each game has a certain characteristic function v(C) which represents 
how prominent a particular node is to a given coalition C. 
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For more insight into the working of these games and their 
underlying mathematics, refer to [8]. The game descriptions are as 
follows:

a) Game 1: In this game, we considered all the permutations of all 
the nodes that are immediately reachable, by one hop to the node 𝑛𝑖 ∈ 
N(G). Let each random permutation be denoted by Ρ𝑖, the neighbours 
of node 𝑛𝑖, in the graph G(N, E) be denoted by ni.neighbours and the 
degree of node 𝑛𝑖, be denoted by 𝑛𝑖.degree.

Algorithm 1 describes the procedure involved in SV calculation.

Algorithm 1: SVs for Game 1

Input: An unweighted graph G(N, E)

Output: SVs of all nodes in G

Initialise: ∀ 𝑛𝑖 ∈ N(G) set SV[𝑛𝑖] ← 0
for each 𝑛𝑖 ∈ N(G) do

SV[𝑛𝑖] ← 1/(1 + 𝑛𝑖.degree)

for each 𝑢𝑖 ∈ 𝑛𝑖.neighbours do
SV[𝑛𝑖]  ←  SV[𝑛i] + 

end for
end for
return SV

b) Game 2: In many real-life social scenarios, often taking into 
account nodes that are directly attached to each other is not enough. 
A rumour source will, more often than not, affect farther nodes. 

For the purpose of taking relationships with farther nodes into 
account, and generalising the game, we introduced a value, p, depicting 
the number of agents that the node is adjacent to in a coalition. In this 
game, a node is considered ‘influenced’ if at least p of its neighbours 
are influenced. We divided the analysis using this game into two parts, 
first, where the degree of the node is less than p and second where the 
degree is more than p.

Algorithm 2 describes the procedure involved in SV calculation.

Algorithm 2: SVs for Game 2

Input: An unweighted graph G(N, E) and a positive integer p

Output: SVs of all nodes in G

Initialise: ∀ 𝑛𝑖 ∈ N(G) set SV[𝑛𝑖] ← 0
for each 𝑛𝑖 ∈ N(G) do

SV[𝑛i] ←

for each 𝑢𝑖 ∈ 𝑛𝑖.neighbours do
SV[𝑛i] ← SV[𝑛i]+ 

end for
end for
return SV

c) Game 3: In this game, we introduced the concept of weighted 
graph networks. This game is an extension of game 1; it uses the 
Dijkstra Algorithm to compute the distance between 2 nodes. The 
cutoff value, d, is the maximum permissible distance of a node from 
any member in a given coalition. 

The extended degree is defined as the size of the set of all nodes that 
are at most distance ‘d’ away from the node 𝑛𝑖. 

Algorithm 3 describes the procedure involved in SV calculation.

Algorithm 3: SVs for Game 3

Input: A weighted graph G(N, E, W) and a positive cut-off value d
Output: SVs of all nodes in G
Initialise: ∀ 𝑛𝑖 ∈ N(G) set SV[𝑛𝑖] ← 0
for each 𝑛𝑖 ∈ N(G) do

Distance_Vector D ← Dijkstra(𝑛𝑖)
extended_neighbours ← empty 2D array
extended_degree[𝑛𝑖] ← 0
for each 𝑢𝑖 ∈ N(G) such that 𝑢𝑖 ≠ 𝑛𝑖 do

if D[𝑢𝑖] ≤ d then
extended_neighbours[𝑛𝑖].add(𝑢𝑖)
extended_degree[𝑛𝑖]++
end if

end for
end for
for each 𝑛𝑖 ∈ N(G) do

SV[𝑛i] ← 

for each 𝑢𝑖 ∈ extended_neighbours[𝑛𝑖] do
SV[𝑛i] ← SV[𝑛i] + 

end for
end for
return SV

d) Game 4: This is a generalization of game 3. Here we worked with 
the assumption that a node closer to a coalition will have a greater 
effect on it than some other node farther away, even if both 

nodes satisfy the cut-off criteria as in game 3. 

For this purpose, we introduced a positive-valued decreasing 
function f(x). f(d) refers to the function which has a directly proportional 
effect on SV of the coalition which is ‘d’ units away from a node. 

The marginal contribution of each node 𝑛𝑖 through node 𝑛𝑖 ≠ 𝑛j, for 
each coalition 𝐶𝑖 gives SV, as shown in Algorithm 4.

Algorithm 4: SVs for Game 4
Input: A weighted graph G(N,E,W) and function f : ℝ+ → ℝ+

Output: SVs of all nodes in G
Initialise: ∀ 𝑛𝑖 ∈ N(G) set SV[𝑛𝑖] ← 0
for each 𝑛𝑖 ∈ N(G) do

[Distance D , Nodes w] ← Dijkstra(𝑛𝑖)
sum ← 0, index ← |N|-1 , prev_dist ← -1, prevSV ← -1
while index > 0 do

if D(index) == prev_dist then
 currSV = prevSV
else

 
end if
SV[w(index)] ← currSV + SV[w(index)] 

prev_dist = D(index) , prevSV = currSV

index ← index - 1

end while
SV[𝑛𝑖] ← SV[𝑛𝑖] + f(0) – sum

end for
return SV
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e) Game 5: This is a generalization of game 2 in case of weighted 
networks. Here, we have defined a cut-off value (𝑛𝑖) for each 𝑛𝑖 ∈ N(G). 
d(𝑛𝑗, C) = ∑𝑛𝑗∈ 𝑛𝑖.neighbours W(𝑛𝑖, 𝑛𝑗) for every coalition C, where W(𝑛𝑖, 𝑛𝑗) 
is the weight of the edge between nodes 𝑛𝑖 𝑎𝑛𝑑 𝑛𝑗 (0 if no edge exists).

A node 𝑛𝑖 marginally contributes node 𝑛𝑗 ∈ 𝑛𝑖. neighbours to the 
value of coalition 𝐶𝑖 if and only if 𝑛𝑗 ∉ 𝐶𝑖 and d(𝑛𝑗) - W(𝑛𝑖, 𝑛𝑗) ≤ W(𝐶𝑖, 
𝑛𝑗) < d(𝑛𝑗, C).

Algorithm 5 describes the procedure for calculating the SVs.

Algorithm 5: SVs for Game 5

Input: A weighted graph G(N, E, W) and cut-offs 𝑊𝑐𝑢𝑡𝑜𝑓𝑓(𝑛𝑖) for 
each 𝑛𝑖 ∈ N(G)

Output: SVs of all nodes in G

Initialise: ∀ 𝑛𝑖 ∈ N(G) set SV[𝑛𝑖] ← 0
for each 𝑛𝑖 ∈ N(G) do

compute and store 𝛼𝑖 and 𝛽𝑖

end for
for each 𝑛𝑖 ∈ N(G) do

for each m in 0 to 𝑛𝑖. 𝑑𝑒𝑔𝑟𝑒𝑒 do
compute 𝜇 ←  , 𝜎 ←
compute 𝑝 ← Pr {𝒩(𝜇 , 𝜎 2) < 𝑊𝑐𝑢𝑡𝑜𝑓𝑓(𝑛𝑖)}
SV[𝑛i] ← SV[𝑛i]+ 

end for
for each 𝑣𝑗 ∈ 𝑛𝑖. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑛𝑖. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠  do

p ← 0

for each m in 0 to 𝑛𝑖. 𝑑𝑒𝑔𝑟𝑒𝑒 do
 compute 𝜇  ←  , 𝜎 ←
 compute z ← 

 p  ← p + 
end for
SV[𝑛𝑖] ← SV[𝑛𝑖] + p

end for
end for 
return SV

3. Estimating Centrality Measures
After working on the five coalition games, we introduced multiple 

centrality measures to determine the network’s most powerful node 
with the highest scope or effect. To generate an elaborate comparison, 
various network centrality measures such as DC, EVC, BC, CC, have 
been used.

IV. Results

We experimented on three real-world network datasets - USAir97 
dataset [28], Enron email dataset [29], [30] and Les Misérables dataset 
[31], and then compared the results of five coalition games defined 
previously, with the results obtained using the four aforementioned 
centrality measures. Qiao et. al. [25] has applied these centrality 
algorithms using the USAir97 network to assess the performance 
of network centrality model. Table I accurately shows for USAir97 
dataset, the comparison between the top-k (k=10) nodes identified 
by our model for all the five coalition games and those identified 
by various centrality models employed in [25]. Also, Table II shows 
for Les Misérables dataset, the comparison between the top-k (k=10) 
nodes identified by our model for all the five coalition games, and 
those identified by various centrality models employed in [25].

We observed that the number of common items between the top-
10 nodes found using coalitional game 1 and those found using DC, 
BC, and CC measures are nine, nine and four, respectively. The most 
significant observation is that the top-10 nodes are the same for both 
the coalitional game 1 and EVC measure. For Les Misérables dataset, 
we observed that node 11 was recognized as the most influential node 
in all five coalitional games and also using DC, BC, and CC measures. 
We noticed an overlap of six nodes in the observations of game 3, 
game 5 and CC measure. 

TABLE I. Comparison Between Shapley and Centrality Values Using 
USAIR97 Dataset

DC BC CC EVC Proposed Model

Game 1 Game 2 Game 3 Game 4 Game 5

118 118 118 118 118 261 261 118 118

261    8 261 261 261 118 118 261 261

255 261 67 255 255 152 152 182 67

182 201 255 182 166 182 182 152 255

152 47 201 152 152 255 255 201 201

230 182 182 230 182 230 230 255 166

166 255 47 112 230 201 201 230 293

67 152 248 67 67 8 8 8 248

112 313 166 166 147 166 166 67 47

201 13 112 147 112 67 67 166 182

TABLE II. Comparison Between Shapley and Centrality Values Using 
Les Misérables Dataset 

DC BC CC EVC Proposed Model

Game 1 Game 2 Game 3 Game 4 Game 5

11 11 11 11 11 11 11 11 11

49 1 56 49 2 55 56 2 56

56 49 28 56 49 49 28 49 26

28 56 26 59 28 43 26 28 49

26 24 49 65 24 44 49 56 28

24 26 59 63 56 73 27 26 27

59 28 27 28 26 32 25 24 70

63 52 65 26 52 51 59 27 69

65 59 69 66 27 57 65 25 71

64 17 70 66 25 40 69 52 42

Similarly, we referred to the work of Hardin, Sarkis and Urc [26] to 
compare the efficiency of our model using Enron email dataset. Table 
III shows the results obtained for the same. 

We observed that Philip K. Allen, the Managing Director of Trading, 
appeared in the results of all the coalition games. Mike Grigbsy, VP 
of Trading, is also an important figure who is present in the results 
of three of the five games. Found in results of four coalition games, 
Barry Tycholiz is also the VP of Trading. Another person who can be 
identified as a prominent figure is Director for State Government, Jeff 
Dasovich. Game 5 recognizes Louise Kichen – the president of Enron 
– as one of the most significant nodes.

To get a better numerical understanding of our results, we used 
a comparison metric – The Jaccard Index, also known as the Union 
Intersection and the Jaccard Similarity Coefficient – which is used to 
calculate the similarity and diversity of sample sets.
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The coefficient of Jaccard measures similarity between finite 
sample sets and is defined as the intersection size divided by the size 
of the union of sample sets which is shown in (2).

 (2)

We compared the intersection similarity of the most significant 
nodes from each coalition game, with the results of the proposed 
model. Finally, for holistic comparison, we took the mean overall 
intersections, as shown in (3).

 (3)

Icentrality depicts the mean of all intersections between sets over the 
five coalition games, where centrality denotes the centrality model 
used, and ij represents the intersection similarity between centrality 
measures with game j. The results are displayed in Table IV.

TABLE IV. Jaccard Similarity Coefficient Values 

MEASURE INTER-SECTION OF SETS

USAIR97 ENRON 
EMAIL

LES 
MISÉRABLES

Idc 0.762 0.112 0.368

Iec 0.685 0.010 0.354

Ibc 0.475 0.156 0.389

Icc 0.514 0.304 0.490

Fig. 1 shows the comparison of the Jaccard Indices measured with 
various degree centralities. Idc, Iec, Ibc and Icc denote Degree Centrality, 
Eigen-vector Centrality, Betweenness Centrality and Closeness 
Centrality, respectively. USAir97 shows the maximum similarity with 
Idc, whereas Enron Email and Les Misérables dataset show maximum 
similarity with Closeness Centrality. Thus we were able to show the 
comparison of the Shapely algorithm considering EC, DC, BC and CC 
as benchmarks for all three datasets.

Jaccard Similarity Coe�icient Values
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Fig. 1. Comparison of Jaccard Indices.

V. Discussion

We had observed many disadvantages in primitive centrality 
measures that had been used in the past for finding the most influential 
node, including putting too much focus on the individual node and 
not on the neighbours of the node. An elaborate description of these 
disadvantages is mentioned in section II. Game-theoretic approaches 
like the SV algorithm, take into consideration the marginal contribution 
of a node to every coalition that it is a part of. This approach has also 
not been specifically used in the past for RSD problem. For this reason, 
we aimed to explore the effectiveness of this approach for the purpose 
of RSD. Our results show a good similarity score (Jaccard Index) with 
the previous studies that used primitive centrality measures. 

But as discussed, there were numerous disadvantages with these 
measures that our SV-based approach tried to overcome. Hence, we 
observe a slight difference between the most influential nodes found 
by our approach and those found by the earlier studies conducted on 
the same datasets.

TABLE III. Comparison Of Most Important Nodes Using Enron Dataset Based On Various Centrality Measures

DC BC EVC CC Game 1 Game 2 Game 3 Game 4 Game 5

Jeff Dasovich
Louise 

Kitchen
Tana Jones

Robert 
Benson

Scott Neal
Phillip K. 

Allen
Kevin Presto

Phillip K. 
Allen

Scott Neal

Mike Grigsby Mike Grigsby
Sara 

Shackleton
Mike Grigsby

Phillip K. 
Allen

Scott Neal
James D. 
Steffes

Scott Neal Mike Grisby

Tana Jones Susan Scott
Stephanie 

Panus
Louise 

Kitchen
Mike Grisby Mike Grisby

Phillip K. 
Allen

Mike Grisby John Arnold

Sara 
Shackleton

Jeff Dasovich Marie Heard
Kevin M. 

Presto
Barry 

Tycholiz
Barry 

Tycholiz
Mark Haedick

Barry 
Tycholiz

John Lavorato

Richard 
Shapiro

Mary Hain Susan Bailey Susan Scott Sally Beck Sally Beck Steven J. Kean Sally Beck Joe Quenet

Steven J. Kean Sally Beck Kay Mann Scott Neal John Lavorato John Lavorato
Mike 

Swerzbin
John Lavorato Phillip Allen

Louise 
Kitchen

Kenneth Lay
Louise 

Kitchen
Barry 

Tycholiz
Susan Scott Mark Haedick Jeff Dasovich Mark Haedick

Barry 
Tycholiz

Susan Scott Scott Neal
Elizabeth 

Sager
Greg Whalley Kim Ward Susan Scott

Richard 
Sanders

Richard 
Sanders

Sally Beck

Michelle 
Lokay

Kate Symes
Jason 

Williams
Phillip K. 

Allen
Mark Haedick

Richard 
Sanders

Doug Gilbert-
Smith

Kim Ward
Louise 

Kitchen

Chris 
Germany

Cara 
Semperger

Jeff Dasovich Jeff Dasovich Bill Williams Kim Ward
Richard 
Shapiro

Kevin Presto
David 

Delainey
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VI. Conclusion

Sometimes the propagation of rumours on online social networks 
can lead to serious social problems. It is known to be of great value 
to accurately identify them from regular comments. Social media 
rumours have recently become a major concern, especially as people 
are aware of their ability to influence society. Rumours can not only 
cause social hysteria in all sorts of crises, but can also cause mass 
events that are unpredictable and threaten social stability.

We tried to introduce a game-theoretical algorithm in our research 
work in order to detect the origin of rumour in a complex network. 
The algorithm used is the algorithm of Shapley. We compared the 
performance of our game-theoretic approach with prime centrality 
measures. We also sought to locate prominent top nodes to catch and 
record multiple potential gossip sources, rather than concentrating 
discreetly on a single source. The most influential node identified is 
assumed to be the rumour source in the network.

To evaluate our algorithm on various real-world scenarios, 
we examined five different game situations, thereby taking into 
consideration various approaches to determine the most influential 
nodes in a given dataset.  This helped us to gain a deeper and holistic 
understanding of the game-theoretical algorithm. The Jaccard Index 
has been used as a metric of comparison for our proposed method. The 
model has shown significant success as the most prominent nodes are 
successfully identified for both the datasets used.

We are currently working on expanding the theory of Shapley 
algorithm to consider each person’s impact in a social network 
and thus determine the most serious cause of rumours. We plan to 
extend the idea of finding the most powerful node in social networks 
to numerous other similar applications for future work, such as the 
Internet, or urban networks, and involving a given node in disease 
dynamics. This will help us understand our algorithm’s efficiency and 
accuracy in multiple applications in the real world.

Further, various optimisation techniques on the SV algorithm, 
for example, Fuzzy Logic will be implemented for mining much 
larger social networks and to improve accuracy and other relevant 
metrics of the project. Fuzzy-based implementation will solve various 
complexities and limitations that we are currently encountering.
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